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Abstract
In this paper, we prove that the solution constructed in [2] satisfies the s-

tochastic vorticity equations with the stochastic integration being understood
in the sense of the integration of controlled rough path introduced in [8]. As
a result, we obtain the existence and uniqueness of the global solutions to the
stochastic vorticity equations in 3D case for the small initial data independent of
time, which can be viewed as a stochastic version of the Kato-Fujita result (see
[10]).
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1 Introduction

Consider the stochastic 3D Navier-Stokes equation on (0,∞)× R3:

(1.1)

dX −∆Xdt+ (X · ∇)Xdt =
N∑
i=1

(Bi(X) + λiX)dβi(t) +∇πdt,

∇ ·X = 0,

X(0) = x,
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where {βi}Ni=1 is a system of independent Brownian motions on a probability space
(Ω,F , P ) with normal filtration (Ft)t≥0, and λi ∈ R, x : Ω → L2(R3;R3) is a random
variable. Here π denotes the pressure, ∆ is the Laplacian on L2(R3;R3) and Bi are
convolution operators given by

Bi(X)(ξ) =

∫
R3

hi(ξ − ξ̄)X(ξ̄)dξ̄ = (hi ∗X)(ξ), ξ ∈ R3,

where hi ∈ L1(R3), i = 1, ..., N .
Consider the vorticity field

U = ∇×X = curlX

and apply the curl operator to equation (1.1). We obtain the transport vorticity equa-
tion on (0,∞)× R3:

(1.2)
dU −∆Udt+ ((X · ∇)U − (U · ∇)X)dt =

N∑
i=1

(hi ∗ U + λiU)dβi(t),

U0(ξ) = (curlx)(ξ), ξ ∈ R3.

The vorticity U is related to the velocity X by the Biot-Savart integral operator (see
[4])

(1.3) Xt(ξ) = K(Ut)(ξ) = − 1

4π

∫
R3

ξ − ξ̄

|ξ − ξ̄|3
× Ut(ξ̄)dξ̄, t ∈ (0,∞), ξ ∈ R3.

Then one can rewrite the vorticity equation (1.2) as

(1.4)
dU −∆Udt+ ((K(U) · ∇)U − (U · ∇)K(U))dt =

N∑
i=1

(hi ∗ U + λiU)dβi
t ,

U0(ξ) = (curlx)(ξ), ξ ∈ R3.

In [2] using the transformation

Ut = Γtyt

with

Γt = ΠN
i=1 exp

(
βi
tB̃i −

t

2
B̃2

i

)
, B̃i = Bi + λiI,

the authors transformed (1.4) into the following equation

(1.5)

dy

dt
− Γ−1

t ∆(Γtyt)dt+ Γ−1
t ((K(Γtyt) · ∇)(Γtyt)− (Γtyt · ∇)K(Γtyt)) = 0,

y0 = U0.
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In [2] the authors proved that if the initial value is small enough (compared to a function
depending on the paths of Brownian motions βi), then there exists a unique solution
yt (in the mild sense) to (1.5). However, since the initial value satisfying the following
condition (1.7) is not F0-measurable, the process yt is not (Ft)t≥0-adapted. Therefore,
the solution to (1.5) cannot be transformed back into (1.4).

The main aim of this paper is to obtain the stochastic version of the result of Kato-
Fujita to (1.4). Let y be the solution to (1.5) obtained in [2] and define Ut =: Γtyt. Since
yt is not (Ft)t≥0-adapted, the corresponding Ut is also not (Ft)t≥0-adapted. Therefore,
the stochastic integral should be understood in the sense of a rough path integral or the
Skorohod integral. To use the Skorohod integral and find a solution to (1.4) we have
to use the shift operator (see [3], [12]), which breaks the result that there exists some
C(ω) independent of time such that if |U0|3/2 ≤ C(ω), there exists a global solution to
(1.5). Thus in this paper we understand the stochastic integral of (1.4) in the sense of
a rough path integral.

Framework and main result

First we recall the main result in [2]. In the following we denote by Lp, 1 ≤ p ≤ ∞
the space Lp(R3;R3) with norm | · |p and by Cb([0,∞);Lp) the space of all bounded
and continuous functions u : [0,∞) → Lp with the sup-norm. We also set Di =

∂
∂ξi

, i =

1, 2, 3. We set for p ∈ (3
2
, 3), q ∈ (1,∞)

ηt = ∥Γt∥L(Lp,Lp)∥Γt∥
L(L

3p
3−p ,L

3p
3−p )

∥Γ−1
t ∥L(Lq ,Lq), t ≥ 0,

where ∥ · ∥L(Lp,Lp) is the norm of the space L(Lp, Lp) of linear continuous operators on
Lp.

For p ∈ [1,∞) we denote by Zp the space of all functions y : [0,∞)×R3 → R3 such
that

t1−
3
2pyt ∈ Cb([0,∞);Lp),

t
3
2
(1− 1

p
)Diyt ∈ Cb([0,∞);Lp), i = 1, 2, 3.

The space Zp is endowed with the norm

∥y∥ = sup{t1−
3
2p |yt|p + t

3
2
(1− 1

p
)|Diyt|p; t ∈ (0,∞), i = 1, 2, 3}.

In the following we take λi ∈ R such that

|λi| > (
√
12 + 3)|hi|1, i = 1, 2, ..., N.

Consider the equation (1.5) in the following mild sense:

(1.6) yt = et∆U0 +

∫ t

0

e(t−s)∆Γ−1
s M(Γsys)ds, t ∈ (0,∞),
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where
M(u) = −(K(u) · ∇)(u) + (u · ∇)K(u).

The following is the main result in [2].

Theorem 1.1. Let p, q ∈ (1,∞) such that

3

2
< p < 2,

1

q
=

2

p
− 1

3
.

Let Ω0 = {supt≥0 ηt < ∞} and consider (1.6) for fixed ω ∈ Ω0. Then P (Ω0) = 1

and there exists a positive constant C∗ independent of ω ∈ Ω0 such that, if U0 ∈ L3/2

satisfying

(1.7) sup
t≥0

ηt|U0|3/2 ≤ C∗,

then there exists a unique solution y ∈ Zp to (1.6). Moreover, for each φ ∈ L3 ∩ L
q

q−1 ,
the function t →

∫
R3 yt(ξ)φ(ξ)dξ is continuous on [0,∞).

To formulate our first main result we introduce the following notations and defini-
tions from rough paths theory: Fix 1

3
< α < 1

2
, 0 ≤ s < t, for X ∈ C([s, t],RN) we

define

δXuv := Xv −Xu, ∥X∥α,[s,t] := sup
u,v∈[s,t],u̸=v

|δXuv|
|u− v|α

.

Moreover, for a tensor process X ∈ C([s, t]2,RN×N) we define

∥X∥2α,[s,t] := sup
u,v∈[s,t],u̸=v

|Xuv|
|u− v|2α

.

In fact, (X,X) is an α-Hölder rough path in the sense of [7], Def.2.1 if ∥X∥α,[s,t] <
∞, ∥X∥2α,[s,t] < ∞ and the following holds for every triple of times (u, v, w)

Xuv − Xuw − Xwv = δXuw ⊗ δXwv.

For anN -dimensional Brownian motion β on the probability space (Ω,F , P ) and Buv :=∫ v

u
δβur ⊗ dβr ∈ RN×N , it is well known that there exists a set Ω1 with P (Ω1) = 1 such

that for ω ∈ Ω1 (β(ω),B(ω)) is an α-Hölder rough path (see [7], Prop. 3.4), where the
stochastic integration is understood in the sense of Itô. In the following we consider
the problem on Ω1 ω-wise. We also introduce the following smaller space for later use:
for ε > 0 we set

Zε
p := {y ∈ Zp| sup

s≤u<v≤t
u2ε+1− 3

2p
|δyuv|p
|u− v|ε

+u2ε+ 3
2
− 3

2p

∑3
j=1 |δ(Djy)uv|p
|u− v|ε

< ∞, ∀0 < s < t}.

Now we recall the notion of a controlled path Y relative to some reference path X due
to Gubinelli [8].
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Definition 1.1. Given a path X ∈ Cα([s, t],RN), we say that Y ∈ Cα([s, t],RN) is
controlled by X if there exists Y ′ ∈ Cα([s, t],RN×N) so that the remainder term R, for
s ≤ u < v ≤ t given by the formula

δY µ
uv =

N∑
ν=1

Y ′µν
u δXν

uv +Rµ
uv,

satisfies ∥R∥2α,[s,t] < ∞. Here the superscript µ and ν relates to the coordinate.

By [8], if we are given a path Y controlled by X, then we can define the integration
of Y against (X,X), which is an extension of Young’s integral (see Theorem 1 and
Corollary 2 in [8]): for 0 ≤ s < t ≤ T

(1.8)

∫ t

s

Y µdXν := lim
|P|→0

n−1∑
i=0

(Y µ
ti δX

ν
titi+1

+
N∑

µ′=1

Y ′µµ′

ti Xµ′ν
titi+1

),

where P = {t0, t1, ..., tn} is a partition of the interval [s, t] such that t0 = s, tn =
t, ti+1 > ti, |P| = supi |ti+1 − ti|.

Now we give the definition of solutions to equation (1.4). In the following we define
the analytic weak solution to equation (1.4) and we use ⟨·, ·⟩ to denote the L2 inner
product.

Definition 1.2. We say that U is a solution to equation (1.4) if Γ−1U ∈ Zε
p for some

ε > 0 and for any φ ∈ C∞
c (R3;R3), the function t → ⟨Γ−1

t Ut, φ⟩ is continuous on [0,∞)
and for 0 < s < t,

(1.9) ⟨Ut − Us, φ⟩ −
∫ t

s

[⟨Ur,∆φ⟩ − ⟨M(Ur), φ⟩]dr =
N∑
i=1

∫ t

s

⟨B̃iUr, φ⟩dβi
r,

U |t=0 = U0,

where the integral
∫ t

s
⟨B̃iUr, φ⟩dβi

r is understood in the sense of (1.8) with respect to

the rough paths (β,B). Here for 0 < s < t ⟨B̃iU,φ⟩ ∈ Cα([s, t]) is controlled by β in
the sense of Definition 1.1 and

(1.10) δ(⟨B̃iU,φ⟩)st =
N∑
k=1

⟨B̃kB̃iUs, φ⟩δβk
st +Ri

st,

with R being the remainder term satisfying

(1.11) ∥⟨B̃kB̃iU,φ⟩∥α,[s,t] < ∞, ∥Ri∥2α,[s,t] < ∞.
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Remark 1.2. (i) Here due to the singularity of solution U at t = 0, the stochastic
integral defined in (1.8) has some problem at t = 0. So, in (1.9) we only assume
0 < s < t. Since Γ−1U ∈ Zp,

∫ t

s
⟨M(Ur), φ⟩dr is well-defined due to (2.35) in [2].

(ii) In general rough paths theory, often approximations are used to give a meaning
to the solution of stochastic equations (see [7], Chapter 12). However, in this case if
we need the approximation equations to be well-posed for small initial data, then the
conditions on the initial value might be artificial. Therefore, since our aim is to prove
a stochastic version of the Kato-Fujita result (see [10]), the above definition is more
suitable. We also want to mention that such kind of definition has also been used for
the linear equation in [5].

The main result of this paper is the following theorem:

Theorem 1.3. Under the condition of Theorem 1.1 and for y as obtained in Theorem
1.1, for ω ∈ Ω0 ∩ Ω1, Ut(ω) := Γt(ω)yt(ω) is the unique solution to (1.4) in the sense
of Definition 1.2.

2 Proof of Theorem 1.3

First, we prove the following lemma.

Lemma 2.1. ( mild solution ⇔ weak solution) If y ∈ Zp is the unique solution to
(1.6), then for any φ ∈ C∞

c (R3;R3)

(2.1) ⟨yt, φ⟩ =⟨U0, φ⟩+
∫ t

0

[
⟨ys,∆φ⟩+ ⟨Γ−1

s M(Γsys), φ⟩
]
ds, t ∈ [0,∞).

Conversely, if there exists y ∈ Zp satisfying equation (2.1) for any φ ∈ C∞
c (R3;R3),

then y is a solution to (1.6).

Proof. mild solution ⇒ weak solution: By (1.6) we know that for φ ∈ C∞
c (R3;R3), T >

0 ∫ T

0

⟨yt,∆φ⟩dt =
∫ T

0

⟨et∆U0,∆φ⟩dt

+

∫ T

0

⟨
∫ t

0

e(t−s)∆Γ−1
s M(Γsys)ds,∆φ⟩dt.

Following similar arguments as in the proof of [6], Proposition 6.4, we have∫ T

0

⟨et∆U0,∆φ⟩dt =
∫ T

0

⟨U0,
d

dt
et∆φ⟩dt = ⟨eT∆U0, φ⟩ − ⟨U0, φ⟩.

∫ T

0

⟨
∫ t

0

e(t−s)∆Γ−1
s M(Γsys)ds,∆φ⟩dt =

∫ T

0

⟨Γ−1
s M(Γsys), (e

(T−s)∆ − I)φ⟩ds.
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Combining the above arguments we have∫ t

0

⟨ys,∆φ⟩ds =⟨et∆U0, φ⟩ − ⟨U0, φ⟩+
∫ t

0

⟨e(t−s)∆Γ−1
s M(Γsys), φ⟩ds

−
∫ t

0

⟨Γ−1
s M(Γsys), φ⟩ds,

which implies (2.1).
weak solution ⇒ mild solution: By (2.1) and similar arguments as in the proof of

[6], Proposition 6.3, we have for ζ ∈ C1([0, T ];C∞
c (R3;R3)), T > 0 and 0 < t ≤ T

(2.2) ⟨yt, ζt⟩ =⟨U0, ζ0⟩+
∫ t

0

[
⟨ys,∆ζs + ζ ′s⟩+ ⟨Γ−1

s M(Γsys), ζs⟩
]
ds, t ∈ [0,∞).

Choosing ζs := e(t−s)∆φ, φ ∈ C∞
c (R3;R3), we have

⟨yt, φ⟩ =⟨U0, e
t∆φ⟩+

∫ t

0

⟨e(t−s)∆Γ−1
s M(Γsys), φ⟩ds.

Thus (1.6) follows. �
Now we prove the following estimate for the solutions:

Lemma 2.2. For T > 0, φ ∈ Lq/(q−1) ∩ L3 and Ω0 being in Theorem 1.1, on Ω0

supt∈[0,T ] |⟨Γtyt, φ⟩| < ∞ and y ∈ Zε
p for 0 < ε < 1

2
− 3

4p
, with p, q as in Theorem 1.1.

Proof. We have

yt = et∆U0 +

∫ t

0

e(t−s)∆Γ−1
s M(Γsys)ds.

Then on Ω0

|⟨Γtyt, φ⟩| ≤C∥Γt∥L(L3/2,L3/2)|et∆U0|3/2 + C∥Γt∥L(Lq ,Lq)

∫ t

0

|Γ−1
s M(Γsys)|qds

≤C∥Γt∥L(L3/2,L3/2)|U0|3/2 + C∥Γt∥L(Lq ,Lq)

∫ t

0

∥Γ−1
s ∥L(Lq ,Lq)|M(Γsys)|qds

≤C∥Γt∥L(L3/2,L3/2)|U0|3/2 + C∥Γt∥L(Lq ,Lq)∥y∥2 sup
s∈[0,t]

ηs

∫ t

0

s−5/2+3/pds

<∞,

where in the second inequality we used (2.15) in [2] and in the third inequality we used
(2.35) in [2] and in the last inequality we used that ∥y∥ ≤ C|U0|3/2 by the proof of
Theorem 1.1 in [2]. Now we prove y ∈ Zε

p . We have

|δyuv|p ≤|(ev∆ − eu∆)U0|p + |(e(v−u)∆ − 1)

∫ u

0

e(u−s)∆Γ−1
s M(Γsys)ds|p

+ |
∫ v

u

e(v−s)∆Γ−1
s M(Γsys)ds|p.
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For the first term we have

|(ev∆ − eu∆)U0|p = |(e(v−u)∆ − I)eu∆U0|p ≤ C|(e(v−u)∆ − I)eu∆U0|Bε
p,∞

≤C(v − u)ε|eu∆U0|B3ε
p,∞ ≤ C(v − u)εu−2ε|eu∆/2U0|p ≤ C(v − u)εu−2ε−1+ 3

2p |U0|3/2,

where Bs
m,n is the usual Besov space and we used Propositions 3.11 and 3.12 in [11].

For the second term similarly we have

|(e(v−u)∆ − 1)

∫ u

0

e(u−s)∆Γ−1
s M(Γsys)ds|p

≤C(v − u)ε
∫ u

0

|e(u−s)∆Γ−1
s M(Γsys)|B3ε

p,∞ds

≤C(v − u)ε
∫ u

0

(u− s)−2ε|e(u−s)∆/2Γ−1
s M(Γsys)|pds

≤C(v − u)ε sup
s≥0

ηs∥y∥2
∫ u

0

(u− s)−2ε− 1
2
( 3
p
−1)s−

5
2
+ 3

pds

≤C(v − u)εu−1−2ε+ 3
2p sup ηs∥y∥2,

where in the third inequality we used a similar calculation as (2.17) in [2]. For the
third term we have

|
∫ v

u

e(v−s)∆Γ−1
s M(Γsys)ds|p

≤C sup
s≥0

ηs∥y∥2
∫ v

u

(v − s)−
1
2
( 3
p
−1)s−

5
2
+ 3

pds

=C sup
s≥0

ηs∥y∥2(v − u)
3
2
− 3

2p

∫ 1

0

(1− l)−
1
2
( 3
p
−1)[u+ l(v − u)]−

5
2
+ 3

pdl

≤C sup
s≥0

ηs∥y∥2(v − u)2εu−1−2ε+ 3
2p

∫ 1

0

(1− l)−
1
2
( 3
p
−1)l−

3
2
+ 3

2p
+2εdl,

where we used interpolation and −1−2ε+ 3
2p

< 0,−3
2
+ 3

2p
+2ε < 0 in the last inequality.

Combining the argument above we obtain that

|δyuv|p ≤C(v − u)εu−2ε−1+ 3
2p (|U0|3/2 + sup

s≥0
ηs∥y∥2).

Similarly we have

|δ(Djy)uv|p ≤|(ev∆ − eu∆)DjU0|p + |(e(v−u)∆ − 1)

∫ u

0

e(u−s)∆DjΓ
−1
s M(Γsys)ds|p

+ |
∫ v

u

e(v−s)∆DjΓ
−1
s M(Γsys)ds|p

≤C(v − u)εu−2ε− 3
2
+ 3

2p (|U0|3/2 + sup
s≥0

ηs∥y∥2),
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where we used a similar calculation as (2.18) in [2]. Thus the second result follows. �
Proof of Theorem 1.3 [Existence] Now we check that U = Γy satisfies equation (1.9).

We first calculate ⟨(δΓy)uv, φ⟩: for 0 < u < v

⟨(δΓy)uv, φ⟩ =⟨δΓuvyu, φ⟩+ ⟨Γuδyuv, φ⟩+ ⟨δΓuvδyuv, φ⟩
:=I1 + I2 + I3.

Since Γuϕ = ΠN
i=1 exp

(
βi
uB̃i− u

2
B̃2

i

)
ϕ for ϕ ∈ C∞

c (R3;R3), by Taylor expansion we have

δΓuvϕ = Γu

N∑
i=1

(δβi
uvB̃iϕ− (v − u)

2
B̃2

i ϕ+
N∑
k=1

1

2
B̃iB̃kϕδβ

k
uvδβ

i
uv) + o(|v − u|).

Here and in the following o(|u−v|) means a higher order term of |u−v|. Now we recall
the following result from Section 3.3 in [7]:

(2.3) Bik
uv +

1

2
δik(v − u) = Bik

str,uv,

(2.4)
1

2
(Bik

str,uv + Bki
str,uv) =

1

2
δβi

uvδβ
k
uv,

where δik = 1 if i = k, zero else, and Bstr,uv :=
∫ v

u
δβur ⊗ d̂βr ∈ RN×N with the integral

in the Stratonovich sense. Then by symmetry of B̃iB̃kφ with respect to i, k we have

δΓuvϕ = Γu

N∑
i=1

(δβi
uvB̃iϕ− (v − u)

2
B̃2

i ϕ+
N∑
k=1

B̃iB̃kϕBik
str,uv) + o(|v − u|),

which by (2.3) implies that

I1 =
N∑
i=1

⟨ΓuB̃iyu, φ⟩δβi
uv +

N∑
i,k=1

⟨ΓuB̃kB̃iyu, φ⟩Bki
uv + o(|u− v|).

Also since y satisfies equation (2.1) and y ∈ Zε
p , we have

I2 =⟨yu,∆Γ∗
uφ⟩(v − u) + ⟨Γ−1

u M(Γuyu),Γ
∗
uφ⟩(v − u) + o(|v − u|)

=⟨Γuyu,∆φ⟩(v − u) + ⟨M(Γuyu), φ⟩(v − u) + o(|v − u|),

where Γ∗
u means the dual operator of Γu. Here in the first equality we used the following

for u < s

(2.5)

|Γ−1
s M(Γsys)− Γ−1

u M(Γuyu)|q
≤∥Γ−1

s − Γ−1
u ∥L(Lq ,Lq)|M(Γsys)|q + ∥Γ−1

u ∥L(Lq ,Lq)|M(Γsys)−M(Γuyu)|q
≤Cu|s− u|ε,
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where in the last inequality we used a similar calculation as Lemma 2.2 in [2]. By the
above calculations we know that

I3 = ⟨δyuv, δΓ∗
uvφ⟩ = o(|v − u|),

where δΓ∗
uv means the dual operator of δΓuv. The above calculations and Lemma 2.2

and (2.35) in [2] imply that ⟨B̃iU,φ⟩ is controlled by β in the sense of Definition 1.1 and
satisfies (1.10) and (1.11). By the above calculations we also obtain that for 0 < s < t

⟨Ut, φ⟩ − ⟨Us, φ⟩

=
∑

[u,v]∈P

⟨(δΓy)uv, φ⟩

=
∑

[u,v]∈P

[ N∑
i=1

⟨ΓuB̃iyu, φ⟩δβi
uv +

N∑
i,k=1

⟨ΓuB̃kB̃iyu, φ⟩Bki
uv

+ ⟨Γuyu,∆φ⟩(v − u) + ⟨M(Γuyu), φ⟩(v − u) + o(|u− v|)
]
,

where P is a partition of the interval [s, t] similar as above. Taking the limit |P| → 0,
by (1.8) we obtain that U = Γy satisfies the equation (1.9).

[Uniqueness] Now we prove the uniqueness of the solution. In fact by Theorem 1.1
we already know that the solution to (1.6) is unique, so we only need to prove that
y = Γ−1U satisfies (2.1), which is equivalent to (1.6) by Lemma 2.1. We have for
0 < u < v

⟨δ(Γ−1U)uv, φ⟩ =⟨δΓ−1
uvUu, φ⟩+ ⟨Γ−1

u δUuv, φ⟩+ ⟨δΓ−1
uv δUuv, φ⟩

:=J1 + J2 + J3.

Since Γ−1U ∈ Zε
p , we obtain the Hölder continuity of Uu when u > 0. Since M(Uu) =

M(Γuyu), then (2.5) implies the Hölder continuity of M(Uu) when u > 0. Then by
Corollary 3 in [8] we have

J2 =⟨δUuv, (Γ
−1
u )∗φ⟩ = ⟨yu,∆φ⟩(v − u) + ⟨Γ−1

u M(Γuyu), φ⟩(v − u)

+
N∑
k=1

⟨B̃kyu, φ⟩δβk
uv +

N∑
i,k=1

⟨B̃iB̃kyu, φ⟩Bik
uv + o(|u− v|),

where (Γ−1
u )∗ means the dual operator of Γ−1

u . Moreover, since

Γ−1
u φ = ΠN

i=1 exp(−βi
uB̃i +

u

2
B̃2

i )φ,

by Taylor expansion we have

δΓ−1
uvφ = Γ−1

u

N∑
i=1

(−δβi
uvB̃iφ+

(v − u)

2
B̃2

i φ+
N∑
k=1

1

2
B̃iB̃kφδβ

k
uvδβ

i
uv) + o(|v − u|).
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Thus, we have

J1 = ⟨
N∑
i=1

(−δβi
uvB̃iyu +

(v − u)

2
B̃2

i yu +
N∑
k=1

1

2
B̃iB̃kyuδβ

k
uvδβ

i
uv), φ⟩+ o(|v − u|),

and

J3 = ⟨δUuv, (δΓ
−1
uv )

∗φ⟩ = −
N∑

k,i=1

⟨B̃iB̃kyu, φ⟩δβk
uvδβ

i
uv + o(|u− v|),

where (δΓ−1
uv )

∗ means the dual operator of δΓ−1
uv . Using (2.3) and (2.4) we obtain that

N∑
i,k=1

⟨B̃iB̃kyu, φ⟩Bik
uv

=
N∑

i,k=1

⟨B̃iB̃kyu, φ⟩Bik
str,uv −

1

2

N∑
i=1

⟨B̃2
i yu, φ⟩(v − u)

=
N∑

i,k=1

⟨B̃iB̃kyu, φ⟩[
Bik

str,uv + Bki
str,uv

2
+

Bik
str,uv − Bki

str,uv

2
]− 1

2

N∑
i=1

⟨B̃2
i yu, φ⟩(v − u)

=
N∑

i,k=1

⟨B̃iB̃kyu, φ⟩
1

2
δβi

uvδβ
k
uv −

1

2

N∑
i=1

⟨B̃2
i yu, φ⟩(v − u).

Thus, we have that for 0 < s < t

⟨yt, φ⟩ − ⟨ys, φ⟩

=
∑

[u,v]∈P

⟨(δΓ−1U)uv, φ⟩

=
∑

[u,v]∈P

[
⟨yu,∆φ⟩(v − u) + ⟨Γ−1

u M(Γuyu), φ⟩(v − u) + o(|u− v|)
]
,

where P is a partition of the interval [s, t]. Taking the limit |P| → 0 we obtain that
for 0 < s < t

⟨yt, φ⟩ =⟨ys, φ⟩+
∫ t

s

[
⟨yr,∆φ⟩+ ⟨Γ−1

r M(Γryr), φ⟩
]
dr.

Now letting s → 0, by the continuity of ⟨ys, φ⟩ and y ∈ Zp we obtain that y = Γ−1U
satisfies (2.1). Thus uniqueness follows. �
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