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Abstract. Consider the following distribution dependent SDE:

dXt = σt(Xt, µXt )dWt + bt(Xt, µXt )dt,

where µXt stands for the distribution ofXt. In this paper for non-degenerate σ,

we show the strong well-posedness of the above SDE under some integrability

assumptions in the spatial variable and Lipschitz continuity in µ about b and σ.

In particular, we extend the results of Krylov-Röckner [15] to the distribution

dependent case.
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1. Introduction

Let P(Rd) be the space of all probability measures over (Rd,B(Rd)), which is
endowed with the weak convergence topology. Consider the following distribution
dependent stochastic differential equation (abbreviated as DDSDEs):

dXt = bt(Xt, µXt)dt+ σt(Xt, µXt)dWt, (1.1)

where b : R+ × Rd × P(Rd) → Rd and σ : R+ × Rd × P(Rd) → Rd ⊗ Rd are
two Borel measurable functions, W is a d-dimensional standard Brownian motion
on some filtered probability space (Ω,F , (Ft)t>0,P), and µXt := P ◦ X−1t is the
time marginal of Xt at time t, By Itô’s formula, it is easy to see that µXt satis-
fies the following non-linear Fokker-Planck equation (abbreviated as FPE) in the
distributional sense:

∂tµXt = (L σX

t )∗µXt + div(bXt µXt), (1.2)

where σXt (x) := σt(x, µXt), b
X
t (x) := bt(x, µXt), and (L σX

t )∗ is the adjoint operator
of the following second order partial differential operator

L σX

t f(x) :=
1

2

d∑
i,j,k=1

(σikt σ
jk
t )(x, µXt)∂i∂jf(x). (1.3)

We note that if

σXt (x) =

∫
Rd
σt(x, y)µXt(dy), bXt (x) =

∫
Rd
bt(x, y)µXt(dy),
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then DDSDE (1.1) is also called mean-field SDE or McKean-Vlasov SDE in the
literature, which naturally appears in the studies of interacting particle systems and
mean-field games (see [14, 20, 24, 4, 6], in particular, [5] and references therein).

Up to now, there are numerous papers devoted to the study of this type of
nonlinear FPEs and DDSDE (1.1). In [12], Funaki showed the existence of mar-
tingale solutions for (1.1) under broad conditions of Lyapunov’s type and also the
uniqueness under global Lipschitz assumptions. His method is based on a suitable
time discretization. Thus, the well-posedness of FPE (1.2) is also obtained. More
recently, under some one-side Lipschitz assumptions, Wang [28] showed the strong
well-posedness and some functional inequalities to DDSDE (1.1). In [9], Hammer-
sley, Sitsa and Szpruch proved the existence of weak solutions to SDE (1.1) on a
domain D ⊂ Rd with continuous and unbounded coefficients under Lyapunov-type
conditions. Moreover, uniqueness is also obtained under some functional Lyapunov
conditions. Notice that all the above results require the continuity of coefficients.
In [7], Chiang obtained the existence of weak solutions for time-independent SDE
(1.1) with drifts that have some discontinuities. When the diffusion matrix is uni-
formly non-degenerate and b, σ are only measurable and of at most linear growth,
by using the classical Krylov estimates, Mishura and Veretennikov [21] showed the
existence of weak solutions. The uniqueness is also proved when σ does not depend
on µ and is Lipschitz continuous in x and b is Lipschitz continuous with respect
to µ with Lipschitz constant linearly depending on x. It should be noted that
by Schauder’s fixed point theorem and Girsanov’s theorem, Li and Min [17] also
obtained the existence and uniqueness of weak solutions when b is bounded mea-
surable and σ is nondegenerate and Lipschitz continuous. On the other hand, by
a purely analytic argument, Manita and Shaposhnikov [19] and Manita, Romanov
and Shaposhnikov [18] showed the existence and uniqueness of solutions to the non-
linear FPE (1.2) under quite general assumptions. As observed in [1], by a result
of Trevisan [25] (see Theorem 5.1 below), one in fact can obtain the well-posedness
of DDSDE (1.1) from [19] and [18]. In [1], a technique is developed to prove weak
existence of solutions to (1.1) by first solving (1.2) which works also for coefficients
whose dependence on µXt is of “Nemytskii-type”, i.e., are not continuous in µXt in
the weak topology.

In this work we are interested in extending Krylov-Röckner’s result [15] to the
singular distribution dependent case, that is not covered by all of the above results.
More precisely, we want to show the well-posedness of the following DDSDE:

dXt =

(∫
Rd
bt(Xt, y)µXt(dy)

)
dt+

√
2dWt, (1.4)

where b : R+ × Rd × Rd → Rd is a Borel measurable function and satisfies

(Hb) |bt(x, y)| 6 ht(x − y) for some h ∈ Lqloc(R+; L̃p(Rd)), where p, q ∈ (2,∞)

satisfy d
p + 2

q < 1, and L̃p(Rd) is the localized Lp-space defined by (2.2)

below.

Here the advantage of using the localized space L̃p(Rd) is that for any 1 6 p 6 p′ 6
∞,

L∞(Rd) + Lp
′
(Rd) ⊂ L̃p

′
(Rd) ⊂ L̃p(Rd) ⊂p>d Kd−1,
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where Kd−1 is the usual Kato’s class defined by

Kd−1 :=

{
f : lim

ε→0
sup
x∈Rd

∫
|x−y|6ε

|x− y|1−df(y)dy = 0

}
.

We note that the above DDSDE is not covered by Huang and Wang’s recent results
[10] since µ 7→

∫
Rd bt(x, y)µ(dy) is not weakly continuous. In fact, if we let

Bt(x, µ) :=

∫
Rd
bt(x, y)µ(dy), µ ∈ P(Rd), (1.5)

then by |bt(x, y)| 6 ht(x− y), we only have

|||Bt(·, µ)−Bt(·, µ′)|||p 6 |||ht|||p‖µ− µ′‖TV , (1.6)

where ‖ · ‖TV is the total variation distance, and ||| · |||p is defined by (2.2) below.

Throughout this paper we assume d > 2. One of the main results of this paper is
stated as follows (but see also section 4 for corresponding results when the diffusion
matrix σ is non-degenerate, but not constant):

Theorem 1.1. Under (Hb), for any β > 2 and initial random variable X0 with
finite β-order moment, there is a unique strong solution to SDE (1.4). Moreover,
the following assertions hold:

(i) The time marginal law µt of Xt uniquely solves the following nonlinear FPE
in the distributional sense:

∂tµt = ∆µt + div (µt(bt(x, ·))µt) , lim
t↓0

µt(dy) = P ◦X−10 (dy) (1.7)

in the class of all measures such that t 7→ µt is weakly continuous and∫ T

0

∫
Rd

∫
Rd
|bt(x, y)|µt(dy)µt(dx)dt <∞, ∀T > 0.

(ii) µt(dy) = ρXt (y)dy and (t, y) 7→ ρXt (y) is continuous on (0,∞) × Rd and
satisfies the following two-sided estimate: for any T > 0, there are constants
γ0, c0 > 1 such that for all t ∈ (0, T ] and y ∈ Rd,

c−10 Pt/γ0µ0(y) 6 ρXt (y) 6 c0Pγ0tµ0(y),

where Ptµ0(y) := (2πt)−d/2
∫
Rd e−|x−y|

2/(2t)µ0(dx) is the Gaussian heat semi-
group.

(iii) If divb = 0, then for each t > 0, ρXt (·) ∈ C1(Rd) and we have the following
gradient estimate: for any T > 0, there are constants γ1, c1 > 1 such that for
all t ∈ (0, T ] and y ∈ Rd,

|∇ρXt (y)| 6 c1t−1/2Pγ1tµ0(y).

Example 1.2. Let bt(x, y) := at(x, y)/|x− y|α for some α ∈ [1, 2), where at(x, y) :
R+ × Rd × Rd → Rd satisfies that for some κ > 0,

|at(x, y)| 6 κ|x− y|.

Then it is easy to see that b satisfies (Hb) for some p > d and q =∞.
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Remark 1.3. Here an open question is to show the following propagation of chaos
(see [24]): Given N ∈ N, let XN,j , j = 1, · · · , N solve the following SDEs

dXN,j
t =

1

N

N∑
i=1

bt(X
N,j
t , XN,i

t )dt+
√

2dW j
t , j = 1, · · · , N,

where W j
· , j = 1, · · · , N are N -independent d-dimensional Brownian motion. Let

X be the unique solution of SDE (1.4) in Theorem 1.1. Is it possible to show that

XN,1
· → X· in distribution as N →∞?

Even for bounded measurable b, the above question seems to be still open.

To show the existence of a solution to DDSDE (1.4), by the well-known result for
bounded measurable drift b obtained in [21] (see also [17]and [32]), for each n ∈ N,
there is a solution to the following distribution dependent SDE:

dXn
t =

(∫
Rd
bnt (Xn

t , y)µXnt (dy)

)
dt+

√
2dWt, Xn

0 = X0, (1.8)

where bnt (x, y) := (−n)∨bt(x, y)∧n. By the well-known results in [29], one can show
the following uniform Krylov estimate: For any p1, q1 ∈ (1,∞) with d

p1
+ 2

q1
< 2

and T > 0, there is a constant C > 0 such that for any f ∈ L̃p1q1 (T ),

sup
n

E

(∫ T

0

ft(X
n
t )dt

)
6 CT |||f |||L̃p1q1 (T ). (1.9)

By this estimate and Zvonkin’s technique, we can further show the tightness of Xn
·

in the space of continuous functions. However, since b is allowed to be singular,
it is not obvious by taking the limit n → ∞ to obtain the existence of a solution.
Indeed, one needs the following Krylov estimate: for suitable p0, q0 ∈ (1,∞) and
any f : R+ × Rd × Rd → R+,

sup
n

E

(∫ t

0

fs(X
n
s , X̃

n
s )ds

)
6 |||f |||L̃p0q0 (T ),

where X̃n
· is an independent copy of Xn. When b is bounded measurable, such an

estimate is easy to get by considering (Xn, X̃n) as an R2d-dimensional Itô process
and using the classical Krylov estimates (see [21]). While for singular b, such
simple observation fails in order to obtain best integrability index p. We overcome
this difficulty by a simple duality argument (see Lemma 2.7 below). Moreover,
concerning the uniqueness, under assumption (1.6), we shall employ Girsanov’s
transformation as usual.

This paper is organized as follows: In Section 2, we prepare some well-known
results and tools for later use. In Section 3, we show the existence of weak and
strong solutions to DDSDE (1.1) when the drift satisfies (Hb), and the diffusion
coefficient is uniformly nondegenerate and bounded Hölder continuous. In Section
4, we prove the uniqueness of weak and strong solutions to (1.1) in two cases: the
coefficients b and σ are Lipschitz continuous in the third variable with respect to
the Wasserstein metric; drift b is Lipschitz continuous in the third variable with
respect to the total variation distance and the diffusion coefficient does not depend
on the distribution. In Section 5, we present some applications to nonlinear FPE
(1.2) and prove Theorem 1.1.
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Finally we collect some frequently used notations and conventions for later use.

• For θ > 0, Pθ(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd |x|

θµ(dx) <∞
}

.

• For R > 0, set BR := {x ∈ Rd : |x| < R}.
• For a function f : Rd → R, MRf(x) := supr∈(0,R)

1
|Br|

∫
Br
|f |(x+ y)dy.

• Let Stoch be the set of all measurable stochastic processes on (Ω,F ,P) that
are stochastically continuous.
• Let b : R+×Rd×P(Rd)→ Rd be a measurable vector field. For X ∈ Stoch,

define

bXt (x) := bt(x, µXt), µXt := P ◦X−1t . (1.10)

• For a signed measure µ, we denote by ‖µ‖TV := sup‖f‖∞61 |µ(f)| the total
variation of µ.
• For j = 1, 2, we introduce the index set Ij as following:

Ij :=
{

(p, q) ∈ (1,∞) : dp + 2
p < j

}
. (1.11)

• For a matrix σ, we use ‖σ‖HS to denote the Hilbert-Schmidt norm of σ.
• We use A . B (resp. �) to denote A 6 CB (resp. C−1B 6 A 6 CB) for

some unimportant constant C > 1, whose dependence on the parameters
can be traced from the context.

2. Preliminaries

In this section we recall some well-known results. We first introduce the following
spaces and notations for later use. For (α, p) ∈ R+ × (1,∞), the usual Bessel
potential space Hα,p is defined by

Hα,p :=
{
f ∈ L1

loc(Rd) : ‖f‖α,p := ‖(I−∆)α/2f‖p <∞
}
,

where ‖ · ‖p is the usual Lp-norm, and (I−∆)α/2f is defined by Fourier transform

(I−∆)α/2f := F−1
(
(1 + | · |2)α/2Ff

)
.

Notice that for n ∈ N, an equivalent norm in Hn,p is given by

‖f‖n,p = ‖f‖p + ‖∇nf‖p.
For T > S > 0, p, q ∈ (1,∞) and α ∈ R+, we introduce space-time function spaces

Lpq(S, T ) := Lq
(
[S, T ];Lp

)
, Hα,pq (S, T ) := Lq

(
[S, T ];Hα,p

)
.

Let χ ∈ C∞c (Rd) be a smooth function with χ(x) = 1 for |x| 6 1 and χ(x) = 0 for
|x| > 2. For r > 0 and z ∈ Rd, define

χzr(x) := χ((x− z)/r). (2.1)

Fix r > 0. We introduce the following localized Hα,p-space:

H̃α,p :=
{
f ∈ Hα,p

loc (Rd), |||f |||α,p := sup
z
‖fχzr‖α,p <∞

}
, (2.2)

and the localized space-time function space H̃α,pq (S, T ) with norm

|||f |||H̃α,pq (S,T ) := sup
z∈Rd

‖χzrf‖Hα,pq (S,T ) <∞. (2.3)

For simplicity we shall write

H̃α,pq (T ) := H̃α,pq (0, T ), L̃pq(T ) := H̃0,p
q (0, T ),
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and

H̃α,pq := ∩T>0H̃α,pq (T ), L̃pq := ∩T>0L̃pq(T ).

The following lemma list some easy properties of H̃α,pq (see [35] and [29]).

Proposition 2.1. Let p, q ∈ (1,∞), α ∈ R+ and T > 0.

(i) For r 6= r′ > 0, there is a C = C(d, α, r, r′, p, q) > 1 such that

C−1 sup
z
‖fχzr′‖Hα,pq (T ) 6 sup

z
‖fχzr‖Hα,pq (T ) 6 C sup

z
‖fχzr′‖Hα,pq (T ). (2.4)

In other words, the definition of H̃α,pq does not depend on the choice of r.

(ii) Let α > 0 , p, q ∈ [1,∞) and p′ ∈ [p, pd
d−pα1pα<d +∞ · 1pα>d]. It holds that

for some C = C(d, α, p, p′) > 0,

|||f |||L̃p′q (T )
6 C|||f |||H̃α,pq (T ). (2.5)

(iii) For any k ∈ N, there is a constant C = C(d, k, α, p, q) > 1 such that

C−1|||f |||H̃α+k,p
q (T ) 6 |||f |||H̃α,pq (T ) + |||∇kf |||H̃α,pq (T ) 6 C|||f |||H̃α+k,p

q (T ).

(iv) Let (ρε)ε∈(0,1) be a family of mollifiers in Rd and fε(t, x) := f(t, ·) ∗ ρε(x).

For any f ∈ H̃α,pq , it holds that fε ∈ Lqloc(R;C∞b (Rd)) and for some C =
C(d, α, p, q) > 0,

|||fε|||H̃α,pq (T ) 6 C|||f |||H̃α,pq (T ), ∀ε ∈ (0, 1), (2.6)

and for any ϕ ∈ C∞c (Rd),

lim
ε→0
‖(fε − f)ϕ‖Hα,pq (T ) = 0. (2.7)

(v) For r = p/(p− 1) and s = q/(q − 1),

|||f |||L̃pq(T ) � |||f |||
′
L̃pq(T )

= sup
|||g|||∗

L̃rs(T )
61

∣∣∣∣∣
∫ T

0

∫
Rd
ft(x)gt(x)dxdt

∣∣∣∣∣ , (2.8)

and |||g|||∗L̃rs(T )
= sup
|||f |||′

L̃pq (T )
61

∣∣∣∣∣
∫ T

0

∫
Rd
ft(x)gt(x)dxdt

∣∣∣∣∣ , (2.9)

where |||f |||′
L̃pq(T )

:= supz∈Zd ‖1Qzf‖Lpq(T ) and |||g|||∗
L̃rs(T )

:=
∑
z∈Zd ‖1Qzg‖Lrs(T ),

Qz := Πd
i=1(zi, zi + 1], z = (z1, · · · , zd) ∈ Zd. (2.10)

Proof. The first four conclusions can be found in [35, Proposition 4.1]. We only
prove (v). The equivalence between |||f |||L̃pq(T ) and |||f |||′

L̃pq(T )
is obvious by definition.

Concerning the others, we note that by Hölder’s inequality,∫ T

0

∫
Rd
ft(x)gt(x)dxdt =

∑
z∈Zd

∫ T

0

∫
Rd

1Qz (x)ft(x)gt(x)dxdt

6
∑
z∈Zd

‖1Qzf‖Lpq(T )‖1Qzg‖Lrs(T ) 6 |||f |||′L̃pq(T )
|||g|||∗L̃rs(T )

.

(2.11)

On the other hand, assume that zn is a sequence in Zd so that for Qn := Qzn ,

lim
n→∞

‖1Qnf‖Lpq(T ) = |||f |||′L̃pq(T )
. (2.12)
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If we take

gt(x) :=
1Qn(x)|ft(x)|p−1

‖1Qnft‖
p−q
p

(∫ T

0

‖1Qnft‖qpdt

)1/q−1

with the convention 0/0 = 0, then by easy calculations, we have |||g|||∗
L̃rs(T )

= 1 and

∫ T

0

∫
Rd
ft(x)gt(x)dxdt =

(∫ T

0

‖1Qnft‖qpdt

)1/q

= ‖1Qnf‖Lpq(T ),

which together with (2.11) and (2.12) yields (2.8). Similarly, if we take

ft(x) :=
∑
z∈Zd

1Qz (x)|gt(x)|r−1

‖1Qzgt‖r−sr
·

(∫ T

0

‖1Qzgt‖srdt

)1/s−1

,

then |||f |||′
L̃pq(T )

= 1 and

∫ T

0

∫
Rd
ft(x)gt(x)dxdt =

∑
z∈Zd

(∫ T

0

‖1Qzgt‖srdt

)1/s

= |||g|||∗L̃rs(T )
,

which together with (2.11) yields (2.9). �

We now recall the following result about Lq(Lp)-solvability of PDE (see [29]).

Theorem 2.2. Let (p, q) ∈ I1 (see (1.11)) and T > 0. Assume that σt(x, µ) =
σt(x) and bt(x, µ) = bt(x) are independent of µ, and satisfy that for some c0 > 1,
γ ∈ (0, 1] and for all t > 0, x, y, ξ ∈ Rd,

c−10 |ξ| 6 |σt(x)ξ| 6 c0|ξ|, ‖σt(x)− σt(y)‖HS 6 c0|x− y|γ , (2.13)

and |||b|||L̃pq(T ) 6 κ0 for some κ0 > 0, Then for any λ > 1 and f ∈ L̃pq(T ), there

exists a unique solution u ∈ H̃2,p
q (T ) to the following backward parabolic equation:

∂tu+ (L σ
t − λ)u+ b · ∇u = f, u(T, x) = 0. (2.14)

Moreover, letting Θ := (γ, c0, d, p, q, κ0, T ), we have the following:

(i) For any α ∈ [0, 2− 2
q ), there is a c1 = c1(α,Θ) > 0 such that for all λ > 1,

λ1−
α
2−

1
q |||u|||H̃α,p∞ (T ) + |||u|||H̃2,p

q (T ) 6 C|||f |||L̃pq(T ). (2.15)

(ii) Let (σ′, b′, f ′) be another set of coefficients satisfying the same assumptions
as (σ, b, f) with the same parameters (γ, c0, κ0). Let u′ be the solution of
(2.14) corresponding to (σ′, b′, f ′). For any α ∈ [0, 2− 2

q ), there is a constant

c2 = c2(α,Θ) > 0 such that for all λ > 1,

λ1−
α
2−

1
q |||u− u′|||H̃α,p∞ (T ) 6 c2|||f − f

′|||L̃pq(T )

+ c2‖f‖L̃pq(T )

(
‖σ − σ′‖L∞(T ) + |||b− b′|||L̃pq(T )

)
.

(2.16)

Proof. The existence and uniqueness of u ∈ H̃2,p
q (T ) as well as the first conclusion

are proved in [29, Theorem 3.1]. We only show (ii). Let w = u′ − u. Then

∂tw + (L σ′

t − λ)w + b′ · ∇w = (L σ
t −L σ′

t )u+ (b− b′) · ∇u+ f ′ − f.
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By (2.15) and Hölder’s inequality we have

λ1−
α
2−

1
q |||w|||H̃α,p∞ (T ) . |||(L

σ
t −L σ′

t )u+ (b− b′) · ∇u+ f ′ − f |||L̃pq(T )

. ‖σ′ − σ‖L∞(T )|||∇2u|||L̃pq(T ) + |||b′ − b|||L̃pq(T ) · ‖∇u‖L∞(T ) + |||f ′ − f |||L̃pq(T ).

Estimate (2.16) now follows by Sobolev’s embedding (2.5) due to d
p + 2

q < 1 and

(2.15). �

Remark 2.3. It should be noted that if b is bounded measurable, then the assertions
in Theorem 2.2 holds for all p, q ∈ (1,∞).

The following stochastic Gronwall inequality for continuous martingales was
proved by Scheutzow [22], and for general discontinuous martingales in [30].

Lemma 2.4 (Stochastic Gronwall’s inequality). Let ξ(t) and η(t) be two non-
negative càdlàg Ft-adapted processes, At a continuous nondecreasing Ft-adapted
process with A0 = 0, Mt a local martingale with M0 = 0. Suppose that

ξ(t) 6 η(t) +

∫ t

0

ξ(s)dAs +Mt, ∀t > 0. (2.17)

Then for any 0 < q < p < 1 and τ > 0, we have[
E(ξ(τ)∗)q

]1/q
6
(

p
p−q

)1/q(
EepAτ/(1−p)

)(1−p)/p
E
(
η(τ)∗

)
, (2.18)

where ξ(t)∗ := sups∈[0,t] ξ(s).

We also recall the following result about maximal functions (see [29, Lemma
2.1]).

Lemma 2.5. (i) For any R > 0, there exists a constant C = C(d,R) such that
for any f ∈ L∞(Rd) with ∇f ∈ L1

loc(Rd) and Lebesgue-almost all x, y ∈ Rd,

|f(x)− f(y)| 6 C|x− y|(MR|∇f |(x) +MR|∇f |(y) + ‖f‖∞), (2.19)

where MR is defined at the end of the introduction.
(ii) For any p > 1 and R > 0, there is a constant C = C(R, d, p) such that for

any T > 0 and all f ∈ L̃pq(T ),

|||MRf |||L̃pq(T ) 6 C|||f |||L̃pq(T ). (2.20)

We introduce the following notion about Krylov’s estimates.

Definition 2.6. Let p, q ∈ (1,∞) and T, κ > 0. We say a stochastic process
X ∈ Stoch satisfies Krylov’s estimate with index p, q and constant κ if for any

f ∈ L̃pq(T ),

E

(∫ T

0

ft(Xt)dt

)
6 κ|||f |||L̃pq(T ). (2.21)

The set of all such X will be denoted by Kp,q
T,κ.

For a space-time function ft(x, y) : R+ × Rd × Rd → R and p1, p2, q0 ∈ [1,∞],
we also introduce the norm

|||f |||L̃p1,p2q0
(T ) := sup

z,z′∈Rd

∫ T

0

(∫
Qz′

‖1Qzft(·, y)‖p2p1dy

) q0
p2


1
q0

.
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The following lemma is an easy consequence of Proposition 2.1 (v).

Lemma 2.7. Let p1, p2, q0, q1, q2 ∈ (1,∞) with 1
q1

+ 1
q2

= 1 + 1
q0

and T, κ1, κ2 > 0.

Let X ∈ Kp1,q1
T,κ1

and Y ∈ Kp2,q2
T,κ2

be two independent processes. Then for any

ft(x, y) ∈ L̃p1,p2q0 (T ),

E

(∫ T

0

ft(Xt, Yt)dt

)
6 κ1κ2|||f |||L̃p1,p2q0

(T ). (2.22)

Proof. Let Z1 = X and Z2 = Y . First of all, by Krylov’s estimate (2.21), for each

i = 1, 2, there is a function ρZ
i ∈ Lrisi(T ) with ri = pi

pi−1 , si = qi
qi−1 so that∫ T

0

∫
Rd
ft(x)ρZ

i

t (x)dxdt = E

(∫ T

0

ft(Z
i
t)dt

)
6 κi|||f |||L̃piqi (T ) 6 κi‖f‖Lpiqi (T ).

By Proposition 2.1 (v), we further have

|||ρZ
i

|||∗L̃risi (T )
:=
∑
z∈Zd

‖1QzρZ
i

‖Lrisi (T ) 6 κi, i = 1, 2,

where Qz is defined by (2.10). Now by the independence of X,Y and Hölder’s
inequality, we have

E

(∫ T

0

ft(Xt, Yt)dt

)
=

∫ T

0

∫
Rd

∫
Rd
ft(x, y)ρXt (x)ρYt (y)dxdydt

=
∑
z∈Zd

∑
z′∈Zd

∫ T

0

∫
Rd

∫
Rd

1Qz (x)1Qz′ (y)ft(x, y)ρXt (x)ρYt (y)dxdydt

6
∑
z∈Zd

∑
z′∈Zd

‖1Qz×Qz′ f‖Lp1,p2q0
(T )‖1QzρX‖Lr1s1 (T )‖1Qz′ρ

Y ‖Lr2s2 (T )

6 κ1κ2 sup
z,z′∈Zd

‖1Qz×Qz′ f‖Lp1,p2q0
(T ) = κ1κ2|||f |||L̃p1,p2q0

(T ),

which gives (2.22). The proof is complete. �

Now we prove the following convergence lemmas, which have independent inter-
est and will be crucial for showing the existence of solutions in Section 3.

Lemma 2.8. Let Xn, Y n, X, Y ∈ Stoch be such that for each t > 0, Xn
t converges

to Xt almost surely and Y nt converges to Yt in distribution. Let p, q > 1 and
T, β, κ > 0. Suppose that Xn ∈ Kp,q

T,κ for each n ∈ N, and for some C1 > 0,

sup
n

sup
t∈[0,T ]

E|Xn
t |β 6 C1. (2.23)

If for each (t, x), µ 7→ bt(x, µ) is continuous with respect to the weak convergence
topology and for some γ > 1, C2 > 0 and all Z ∈ Stoch,

|||bZ |||Lγpγq(T ) 6 C2, (2.24)

where bZ is defined by (1.10), then

lim
n→∞

E

(∫ T

0

|bYnt (Xn
t )− bYt (Xt)|dt

)
= 0. (2.25)
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Proof. To prove (2.25), it suffices to show the following:

lim
n→∞

E

(∫ T

0

∣∣∣bY nt (Xn
t )− bYt (Xn

t )
∣∣∣dt) = 0, (2.26)

lim
n→∞

E

(∫ T

0

∣∣bYt (Xn
t )− bYt (Xt)

∣∣dt) = 0. (2.27)

We first look at (2.26). Since µY nt weakly converges to µYt for each t > 0, by the
assumption we have

bYnt (x)
n→∞→ bYt (x), ∀(t, x) ∈ R+ × Rd. (2.28)

For fixed R,M > 0, since Xn ∈ Kp,q
T,κ (see (2.21)), by the definitions we have

E

(∫ T

0

1BR(Xn
t )
∣∣∣bYnt (Xn

t )− bYt (Xn
t )
∣∣∣ dt) 6 κ|||1BR(bYn − bY )|||L̃pq(T )

.
∥∥1BR(bYn − bY )1|bYn−bY |6M

∥∥
Lpq(T )

+
∥∥1BR(bYn − bY )1|bYn−bY |>M

∥∥
Lpq(T )

6
∥∥1BR(bYn − bY )1|bYn−bY |6M

∥∥
Lpq(T )

+
∥∥1BR |bYn − bY |γ∥∥Lpq(T )

/Mγ−1.

By the dominated convergence theorem and (2.28), the first term converges to zero
as n→∞ for each M > 0. By (2.24), the second term converges to zero uniformly
in n as M →∞. Thus, we obtain that for any R > 0,

lim
n→∞

E

(∫ T

0

1BR(Xn
t )
∣∣∣bYnt (Xn

t )− bYt (Xn
t )
∣∣∣ dt) = 0. (2.29)

On the other hand, by Hölder and Chebyshev’s inequalities and (2.23), we have

E

(∫ T

0

1BcR(Xn
t )
∣∣∣bYnt (Xn

t )− bYt (Xn
t )
∣∣∣ dt)

6
∫ T

0

P(|Xn
t | > R)

γ−1
γ

(
E
∣∣∣bYnt (Xn

t )− bYt (Xn
t )
∣∣∣γ) 1

γ

dt

6 sup
t∈[0,T ]

P(|Xn
t | > R)

γ−1
γ T

γ−1
γ

(∫ T

0

E
∣∣∣bYnt (Xn

t )− bYt (Xn
t )
∣∣∣γ dt

) 1
γ

6

(
C1T

Rβ

) γ−1
γ

κ
1
γ |||bYn − bY |||Lγpγq(T )

(2.24)

6

(
C1T

Rβ

) γ−1
γ

κ
1
γ · 2C2.

Combining this with (2.29), we obtain (2.26).

Next we show (2.27). Let bY,εt (x) := bYt (·) ∗ %ε(x) be a mollifying approximation
of bY . By Proposition 2.1 (iv) and (2.23), as above one can derive that

lim
ε→0

sup
n∈N∪{∞}

E

(∫ T

0

∣∣∣bY,εt (Xn
t )− bYt (Xn

t )
∣∣∣dt) = 0, (2.30)

where we have used the convention X∞ := X. On the other hand, since by (2.21),

sup
n

E

(∫ T

0

∣∣∣bY,εt (Xn
t )− bY,εt (Xt)

∣∣∣γ dt

)
6 C|||bY,ε|||γ

L̃γpγq(T )
,
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and for fixed ε > 0 and any t > 0, x 7→ bY,εt (x) is continuous, by the dominated
convergence theorem, we have

lim
n→∞

E

(∫ T

0

∣∣∣bY,εt (Xn
t )− bY,εt (Xt)

∣∣∣dt) = 0,

which together with (2.30) yields (2.27). �

There are, of course, many examples where the weak continuity assumption of
µ 7→ bt(x, µ) in the above lemma is not satisfied, as in the following interesting case:

bt(x, µ) =

∫
Rd
b̄t(x, y)µ(dy), (2.31)

where b̄ : R+ × Rd × Rd → R is a bounded measurable function. Obviously the
weak continuity of µ 7→ b(t, x, µ) does not hold. However, in this case we still have
the following limiting result.

Lemma 2.9. Let Xn, Y n, X, Y ∈ Stoch be such that for each t > 0, Xn
t converges

to Xt almost surely and Y nt converges to Yt in distribution. Let p1, p2, q0, q1, q2 ∈
(1,∞) with 1

q1
+ 1

q2
= 1 + 1

q0
and T, β, κ > 0. Suppose that Xn ∈ Kp1,q1

T,κ and

Y n ∈ Kp2,q2
T,κ for each n ∈ N, and that there is a constant C1 > 0 such that

sup
n

sup
t∈[0,T ]

E
(
|Xn

t |β + |Y nt |β
)
6 C1. (2.32)

Let γ > 1. Then for any b̄ ∈ L̃γp1,γp2γq0 (T ), we have

lim
n→∞

E

(∫ T

0

|bY
n

t (Xn
t )− bYt (Xt)|dt

)
= 0. (2.33)

Proof. Let N∞ := N∪{∞} and Y∞ := Y,X∞ := X. Since bY
n

only depends on the
distribution of Y n, by Skorohod’s representation, without loss of generality we may
assume that (Xn)n∈N∞ and (Y n)n∈N∞ are independent, and (Xn

t , Y
n
t ) → (Xt, Yt)

a.e. as n→∞ for each t. Notice that by the assumptions and (2.22),

sup
n∈N∞

E

(∫ T

0

|b̄t(Xn
t , Y

n
t )|γdt

)
6 κ2|||b̄|||γ

L̃γp1,γp2γq0
(T )

<∞. (2.34)

Let b̄εt (x, y) = b̄t ∗ %ε(x, y) be a mollifying approximation of b̄. As in the proof of
(2.26), we have

lim
ε→0

sup
n∈N∞

E

(∫ T

0

|b̄εt (Xn
t , Y

n
t )− b̄t(Xn

t , Y
n
t )|dt

)
= 0. (2.35)

Thus, to prove (2.33), it suffices to show that for fixed ε ∈ (0, 1),

lim
n→∞

E

(∫ T

0

|b̄εt (Xn
t , Y

n
t )− b̄εt (Xn

t , Yt)|dt

)
= 0,

lim
n→∞

E

(∫ T

0

|b̄εt (Xn
t , Yt)− b̄εt (Xt, Yt)|dt

)
= 0,

which follows by (2.34) and the dominated convergence theorem. �
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3. Existence of weak and strong solutions

In this section we show the weak existence and strong existence of DDSDEs
with singular drifts. First of all we recall the notions of martingale solutions and
weak solutions for (1.1). Let C be the space of all continuous functions from R+ to
Rd, which is endowed with the usual Borel σ-field B(C). The set of all probability
measures on (C,B(C)) is denoted by P(C). Let wt be the coordinate process over
C, that is,

wt(ω) = ωt, ω ∈ C.
For t > 0, let Bt(C) = σ{ws : s 6 t} be the natural filtration. For a probability
measure P ∈ P(C), the expectation with respect to P will be denoted by E if there
is no confusion.

Definition 3.1 (Martingale solutions). We call a probability measure P ∈ P(C) a
martingale solution of DDSDE (1.1) with initial distribution ν ∈ P(Rd) if P◦w−10 =
ν and for any f ∈ C∞(Rd),∫ t

0

|L σP

s f |(ws)ds+

∫ t

0

|bPs · ∇f |(ws)ds <∞, P− a.s, ∀t > 0,

where σP
t (x) := σt(x, µ

P
t ) and bPt (x) := bt(x, µ

P
t ), µP

t := P ◦ w−1t , and

Mf
t := f(wt)− f(w0)−

∫ t

0

(L σP

s f)(ws)ds−
∫ t

0

(bPs · ∇f)(ws)ds, (3.1)

is a continuous local Bt(C)-martingale under P. All the martingale solutions of
DDSDE (1.1) with coefficients σ, b and initial distribution ν are denoted by M σ,b

ν .

Definition 3.2 (Weak solutions). Let (X,W ) be two Rd-valued continuous adapted
processes on some filtered probability space (Ω,F , (Ft)t>0,P). We call

(Ω,F , (Ft)t>0,P;X,W )

a weak solution of DDSDE (1.1) with initial distribution ν ∈ P(Rd) if

(i) P ◦X−10 = ν and W is a d-dimensional standard Ft-Brownian motion.
(ii) For all t > 0, it holds that∫ t

0

|bs|(Xs, µXs)ds+

∫ t

0

‖σsσ∗s‖HS(Xs, µXs)ds <∞, P− a.s.

and

Xt = X0 +

∫ t

0

bs(Xs, µXs)ds+

∫ t

0

σs(Xs, µXs)dWs, P− a.s. (3.2)

Remark 3.3. It is well known that weak solutions and martingale solutions are
equivalent (cf. [23]), which means that for any P ∈M σ,b

ν , there is a weak solution

(Ω,F , (Ft)t>0,P;X,W )

to DDSDE (1.1) with initial distribution ν ∈ P(Rd) such that

P = P ◦X−1.

Now we make the following assumptions about σ and b:
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(Hσ,b) For each t, x, the mapping µ 7→ σt(x, µ) is weakly continuous, and there are
c0 > 1 and γ ∈ (0, 1] such that for all t > 0, x, x′, ξ ∈ Rd and µ ∈ P(Rd),

c−10 |ξ| 6 |σt(x, µ)ξ| 6 c0|ξ|, ‖σt(x, µ)− σt(x′, µ)‖HS 6 c0|x− x′|γ . (3.3)

The drift b satisfies one of the following conditions:
(i) For each t, x, the mapping µ 7→ bt(x, µ) is weakly continuous, and for

some (p, q) ∈ I1 and κ0 > 0,

sup
Z∈Stoch

|||bZ |||L̃pq(T ) 6 κ0 <∞. (3.4)

(ii) b has the form (2.31) with b̄ satisfying (Hb).

It should be noticed that under (Hb), (3.4) holds. Indeed, by definition we have

|||bZ |||q
L̃pq(T )

= sup
z∈Rd

∫ T

0

∥∥∥∥χzr ∫
Rd
b̄s(·, y)µZs(dy)

∥∥∥∥q
p

ds

6 sup
z∈Rd

∫ T

0

∥∥∥∥χzr ∫
Rd
hs(· − y)µZs(dy)

∥∥∥∥q
p

ds

6 sup
z∈Rd

∫ T

0

∫
Rd

∥∥χz−yr hs
∥∥q
p
µZs(dy)ds

6
∫ T

0

sup
z∈Rd

‖χzrhs‖
q
p µZs(R

d)ds =

∫ T

0

|||hs|||qpds.

To show the existence of weak solutions, we first establish the following apriori
estimates.

Lemma 3.4. Let β > 0. Under (Hσ,b), for any ν ∈ Pβ(Rd) and Z ∈ Stoch, there
is a unique weak solution (Ω,F , (Ft)t>0,P;X,W ) to the following SDE:

dXt = bZt (Xt)dt+ σZt (Xt)dWt, P ◦X−10 = ν.

Moreover, letting Θ = (d, p, q, c0, γ, κ0, β), we have

(i) For any T > 0, there is a C1 = C1(Θ, T ) > 0 such that

E

(
sup
t∈[0,T ]

|Xt|β
)
6 C1(E|X0|β + 1), (3.5)

and for any δ < T ,

E

(
sup

t∈[0,T−δ]
|Xt+δ −Xt|β

)
6 C1δ

β/2. (3.6)

(ii) For any (p1, q1) ∈ I2 and T > 0, there is a constant C2 = C2(p1, q1,Θ, T ) > 0

such that for all 0 6 t0 < t1 6 T and f ∈ L̃p1q1 (t0, t1),

E

(∫ t1

t0

fs(Xs)ds
∣∣∣Ft0

)
6 C2|||f |||L̃p1q1 (t0,t1). (3.7)

Proof. The proof of this lemma is essentially contained in [33]. For the reader’s
convenience, we sketch the proofs below. We use Zvonkin’s transformation to kill
the drift bZ . For λ, T > 0, consider the following backward PDE:

∂tu+ (L σZ

t − λ)u+ bZ · ∇u+ bZ = 0, u(T, x) = 0.
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Since bZ ∈ L̃pq(T ) with (p, q) ∈ I1, by Theorem 2.2, for λ > 1, there is a unique

solution u ∈ H̃2,p
q (T ) solving the above PDE. Moreover, for any α ∈ [0, 2− 2

q ), there

is a constant c1 = c1(α,Θ, T ) > 0 such that for all λ > 1,

λ1−
α
2−

2
q |||u|||H̃α,p∞ (T ) + |||u|||H̃2,p

q (T ) 6 c1|||b
Z |||L̃pq(T ). (3.8)

In particular, since d
p + 2

q < 1, by (2.5) we can choose λ large enough so that

‖u‖L∞(T ) + ‖∇u‖L∞(T ) 6 1/2.

Now if we define

Φt(x) := x+ ut(x),

then it is easy to see that

|x− y|/2 6 |Φt(x)− Φt(y)| 6 2|x− y|, (3.9)

and

∂tΦ + L σZ

t Φ + bZ · ∇Φ = λu. (3.10)

By the generalized Itô formula and (3.10), we have

Yt := Φt(Xt) = Φ0(X0) + λ

∫ t

0

us(Xs)ds+

∫ t

0

(σZs · ∇Φs)(Xs)dWs,

= Φ0(X0) +

∫ t

0

b̃s(Ys)ds+

∫ t

0

σ̃s(Ys)dWs, (3.11)

where

σ̃ := (σZ · ∇Φ) ◦ Φ−1, b̃ := λu ◦ Φ−1.

Moreover, by (3.8), (3.9) and the Sobolev embedding (2.5), it is easy to see that
for some c2 = c2(Θ, T ) > 0 and γ0 = γ0(γ, p, q) ∈ (0, 1),

c−12 |ξ| 6 |σ̃t(x)ξ| 6 c2|ξ|, ‖σ̃t(x)− σ̃t(y)‖HS 6 c2|x− y|γ0 , (3.12)

and

‖b̃‖L∞(T ) + ‖∇b̃‖L∞(T ) 6 4λ. (3.13)

By well-known results, SDE (3.11) admits a unique weak solution (cf. [23]). More-
over, as in [33], one can check that Xt := Φ−1t (Yt) solves the original SDE.

(i) Let β > 0. By (3.12) and (3.13), estimate (3.5) directly follows by BDG’s
inequality. We prove (3.6). Fix δ ∈ (0, T ). Let τ be any stopping time less than
T − δ. By equation (3.11) and BDG’s inequality, we have

E|Yτ+δ − Yτ |β . E

∣∣∣∣∣
∫ τ+δ

τ

b̃s(Xs)ds

∣∣∣∣∣
β

+ E

∣∣∣∣∣
∫ τ+δ

τ

σ̃s(Xs)dWs

∣∣∣∣∣
β

. ‖b̃‖βL∞(T )δ
β + ‖σ̃‖βL∞(T )δ

β/2 6 Cδβ/2,

which yields (3.6) by [34, Lemma 2.7] and (3.9).
(ii) It was proved in [31, Theorem 2.1] (see also [30, Theorem 5.7]) that for

any (p1, q1) ∈ I2, there is a constant C2 = C2(p1, q1,Θ, T ) > 0 such that for all

0 6 t0 < t1 6 T and f ∈ L̃p1q1 (t0, t1),

E

(∫ t1

t0

fs(Ys)ds
∣∣∣Ft0

)
6 C2|||f |||L̃p1q1 (t0,t1).
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By a change of variable and (3.9) again, we obtain (3.7). �

Remark 3.5. An important conclusion of (ii) above is the following Khasminskii’s

type estimate (see [30, Lemma 3.5]): For any λ, T > 0 and f ∈ L̃p1q1 (T ) with
(p1, q1) ∈ I2,

E exp

(
λ

∫ T

0

|fs(Xs)|ds

)
6 C3, (3.14)

where C3 only depends on λ,Θ, p1, q1, T and |||f |||L̃p1q1 (T ).

Now we can show the following weak existence result.

Theorem 3.6. Let β > 2. Under (Hσ,b), for any ν ∈ Pβ(Rd), there exists a weak

solution (Ω,F , (Ft)t>0,P;X,W ) to DDSDE (1.1) with P ◦X−10 = ν.

Proof. Let X0
t ≡ X0. For n ∈ N, consider the following approximating SDE:

Xn
t = Xn

0 +

∫ t

0

bns (Xn
s , µXns )ds+

∫ t

0

σs(X
n
s , µXns )dWs, (3.15)

where

bns (x, µ) := (−n) ∨ bs(x, µ) ∧ n, b̄ns (x, y) := (−n) ∨ b̄s(x, y) ∧ n.
Since bn is bounded measurable, by [21] or [32, Theorem 1.2], there is a weak
solution

(Ω,F , (Ft)t>0,P;Xn,W )

to DDSDE (3.15) with P ◦ (Xn
0 )−1 = ν. Moreover, since

sup
Z∈Stoch

|||bn,Z |||L̃pq(T ) 6 sup
Z∈Stoch

|||bZ |||L̃pq(T ) 6 κ0,

by Lemma 3.4, the following uniform estimates hold:

(i) For any T > 0, there is a constant C1 > 0 such that

sup
n

E

(
sup
t∈[0,T ]

|Xn
t |β
)
6 C1(E|X0|β + 1),

and for all δ ∈ (0, T ),

sup
n

E

(
sup

t∈[0,T−δ]
|Xn

t+δ −Xn
t |β
)
6 C1δ

β/2.

(ii) Let (p1, q1) ∈ I2. For any T > 0, there is a C2 > 0 such that for all

f ∈ L̃p1q1 (T ),

sup
n

E

(∫ T

0

fs(X
n
s )ds

)
6 C2|||f |||L̃p1q1 (T ).

Now by (i), the laws Qn of (Xn,W ) in C×C are tight. Let Q be any accumulation
point of Qn. Without loss of generality, we assume that Qn weakly converges to
some probability measure Q. By Skorokhod’s representation theorem, there are a
probability space (Ω̃, F̃ , P̃) and random variables (X̃n, W̃n) and (X̃, W̃ ) defined
on it such that

(X̃n, W̃n)→ (X̃, W̃ ), P̃− a.s. (3.16)
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and

P̃ ◦ (X̃n, W̃n)−1 = Qn = P ◦ (Xn,W )−1, P̃ ◦ (X̃, W̃ )−1 = Q. (3.17)

Define F̃n
t := σ(W̃n

s , X̃
n
s ; s 6 t). We note that

P(Wt −Ws ∈ ·|Fs) = P(Wt −Ws ∈ ·)

⇒ P̃(W̃n
t − W̃n

s ∈ ·|F̃n
s ) = P̃(W̃n

t − W̃n
s ∈ ·).

In other words, W̃n is an F̃n
t -Brownian motion. Thus, by (3.15) and (3.17) we

have

X̃n
t = X̃n

0 +

∫ t

0

bns (X̃n
s , µX̃ns

)ds+

∫ t

0

σs(X̃
n
s , µX̃ns

)dW̃n
s .

By (ii), (3.16), Lemmas 2.8, 2.9 and [13, Theorem 6.22, p383], one can take limits
as n→∞ to obtain

X̃t = X̃0 +

∫ t

0

bs(X̃s, µX̃s)ds+

∫ t

0

σs(X̃s, µX̃s)dW̃s.

Here we only check that the assumptions of Lemma 2.9 are satisfied in the case
that b takes the form (2.31) with b̄ satisfying (Hb). Clearly, by (ii) above, for any
(p1, q1) ∈ I2, there is a κ > 0 such that for each n ∈ N,

X̃n ∈ Kp1,q1
T,κ .

We note that |b̄t(x, y)| 6 ht(x−y), where for some (p, q) ∈ I1, h ∈ Lqloc(R+; L̃p(Rd)) ⊂
L̃pq . One can choose γ > 1 so that dγ

p + γ
q < 1. Now if we take p1 = p2 = p

γ , q0 = q
γ ,

q1 = q2 = 2q
q+γ , then it is easy to see that (p1, q1) ∈ I2 and

b̄ ∈ L̃p,∞q = L̃γp1,∞γq0 ⊂ ∩p′>1L̃γp1,p
′

γq0 .

Thus one can apply Lemma 2.9 to conclude that

lim
n→∞

Ẽ

(∫ t

0

|bs(X̃n
s , µX̃ns

)− bs(X̃s, µX̃s)|ds
)

= 0.

Moreover, as in showing (2.35), we also have

lim
m→∞

sup
n

Ẽ

(∫ t

0

|b̄ms − b̄s|(X̃n
s , Y

n
s )ds

)
= 0,

where Y n· is an independent copy of X̃n
· . The proof is thus complete. �

About the existence of strong solutions, we have

Corollary 3.7. Let β > 2. Under (Hσ,b), if for some (p1, q1) ∈ I1,

sup
Z∈Stoch

|||∇σZ |||L̃q1p1 (T ) <∞,

then for any initial random variable X0 with finite β-order moment, there exists a
strong solution to DDSDE (1.1).

Proof. Let (Ω,F , (Ft)t>0,P;X,W ) be a weak solution of DDSDE (1.1). Define

bXt (x) := bt(x, µXt), σXt (x) := σt(x, µXt), µXt := P ◦X−1t .

Consider the following SDE:

dZt = bXt (Zt)dt+ σXt (Zt)dWt.
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Under the assumption of the theorem, it has been shown in [29] that there is a
unique strong solution to this equation. Since X also satisfies the above equation,
by strong uniqueness, we obtain that X = Z is a strong solution. �

Remark 3.8. Although we have shown the existence of strong or weak solutions,
the uniqueness of strong solutions or weak solutions is a more difficult problem.

4. Uniqueness of strong and weak solutions

In this section we study the uniqueness of strong and weak solutions. We intro-
duce the following assumptions about the dependence on third variable µ:

(Aσ,b
θ ) Let (p, q), (p1, q1) ∈ I1 and θ > 1. It holds that

sup
Z∈Stoch

|||bZ |||L̃pq(T ) <∞, sup
Z∈Stoch

|||∇σZ |||L̃p1q1 (T ) <∞,

and there are ` ∈ Lqloc(R+) and a constant c0 > 1 such that for any two
random variables X,Y with finite θ-order moments,

|||bt(·, µX)− bt(·, µY )|||p 6 `t‖X − Y ‖θ,
‖σt(·, µX)− σt(·, µY )‖∞ 6 c0‖X − Y ‖θ,

(4.1)

where ‖ · ‖θ stands for the Lθ-norm in the probability space (Ω,F ,P).

Notice that (4.1) is equivalent to that for all µ, µ′ ∈ Pθ(Rd),

‖bt(·, µ)− bt(·, µ′)‖p 6 `tWθ(µ, µ
′),

‖σt(·, µ)− σt(·, µ′)‖∞ 6 c0Wθ(µ, µ
′),

where Wθ is the usual Wasserstein metric of θ-order. For convenience, we would
like to use (4.1) rather than introducing the Wasserstein metric.

Remark 4.1. We note that in [10], (4.1) is assumed to hold for p =∞.

We first show the following strong uniqueness result.

Theorem 4.2. Let θ > 1 and β > 2∨ θ. Under (Hσ,b) and (Aσ,b
θ ), for any initial

random variable X0 with finite β-order moment, there is a unique strong solution
to DDSDE (1.1).

Proof. Below we fix p, q ∈ I1, and without loss of generality, we consider the time
interval [0, 1] and assume that for some γ > 1,

‖`‖Lγq(0,1) + sup
Z∈Stoch

‖bZ‖Lγqγp(1) <∞. (4.2)

Otherwise, we may choose γ > 1 so that 2γ
q + dγ

p < 1 holds and replace (p, q)

with (p/γ, q/γ). The existence of strong solutions has been shown in Corollary 3.7.
We only need to prove the pathwise uniqueness. Let X,Y be two strong solutions
defined on the same probability space with same starting points X0 = Y0 a.s. We
divide the proof into three steps and use the convention that all the constants below
will be independent of T ∈ [0, 1].

(i) Let T ∈ (0, 1) and λ > 0. We consider the following backward PDE:

∂tu
X + (L σX

t − λ)u+ bX · ∇uX + bX = 0, uX(T, x) = 0. (4.3)
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By Theorem 2.2, for λ > 1, there is a unique solution uX ∈ H̃2,p
q (T ) solving the

above PDE. Moreover, for any α ∈ [0, 2− 2
q ), there is a constant c1 > 0 such that

for all λ > 1 and T ∈ [0, 1],

λ1−
α
2−

2
q |||uX |||H̃α,p∞ (T ) + |||uX |||H̃2,p

q (T ) 6 c1|||b
X |||L̃pq(T ). (4.4)

In particular, since d
p + 2

q < 1, by (2.5), we can choose λ large enough so that

‖uX‖L∞(T ) + ‖∇uX‖L∞(T ) 6 1/2, ∀T ∈ [0, 1]. (4.5)

Below we shall fix such a λ and define

ΦXt (x) := x+ uXt (x).

It is easy to see that

∂tΦ
X + L σX

t ΦX + bX · ∇ΦX = λuX .

(ii) By the generalized Itô formula, we have

X̃t := ΦXt (Xt) = ΦX0 (X0) + λ

∫ t

0

uXs (Xs)ds+

∫ t

0

σ̃Xs (Xs)dWs, (4.6)

where
σ̃X := σX · ∇ΦX .

Similarly, we define Ỹt := ΦYt (Yt), and for simplicity write

ξt := Xt − Yt, ξ̃t := X̃t − Ỹt.
Noting that by (4.5),

|x− y| 6 2|ΦXt (x)− ΦXt (y)| 6 2|ΦXt (x)− ΦYt (y)|+ 2‖uX − uY ‖L∞(T )

and
|ΦXt (x)− ΦYt (y)| 6 2|x− y|+ ‖uX − uY ‖L∞(T ),

we have

|ξt| 6 2|ξ̃t|+ 2‖uX − uY ‖L∞(T ), |ξ̃t| 6 2|ξt|+ ‖uX − uY ‖L∞(T ). (4.7)

By (4.6) and again Itô’s formula, we have for any β > 1,

|ξ̃t|β = |ξ̃0|β + βλ

∫ t

0

|ξ̃s|β−2〈ξ̃s, uXs (Xs)− uYs (Ys)〉ds

+ β

∫ t

0

|ξ̃s|β−2〈(σ̃Xs (Xs)− σ̃Ys (Ys))
∗ξ̃s,dWs〉

+ β
(
β
2 − 1

)∫ t

0

|ξ̃s|β−4|(σ̃Xs (Xs)− σ̃Ys (Ys))
∗ξ̃s|2ds

+
β

2

∫ t

0

|ξ̃s|β−2‖σ̃Xs (Xs)− σ̃Ys (Ys)‖2HSds

:= I1 + I2 + I3 + I4 + I5.

Since by (4.5),

|uXt (x)− uYt (y)| 6 |x− y|+ ‖uX − uY ‖L∞(T ),

by Young’s inequality we obtain

I2 .
∫ t

0

|ξ̃s|βds+ λ

∫ t

0

|uXs (Xs)− uYs (Ys)|βds
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.
∫ t

0

(|ξ̃s|β + λ|ξs|β)ds+ λβT‖uX − uY ‖βL∞(T ).

Let

gXs (x) := |∇2uXs (x)|+ |∇σXs (x)|+ ‖∇uX‖L∞(T ) + ‖σX‖L∞(T ).

By the definition of σ̃X , we also have that

|σ̃Xs (x)− σ̃Ys (y)|

6 ‖σY ‖L∞(T )|∇ΦXs (x)−∇ΦYs (y)|+ |σXs (x)− σYs (y)| · ‖∇ΦX‖L∞(T )

6 ‖σY ‖L∞(T )

(
|∇uXs (x)−∇uXs (y)|+ |∇uXs (y)−∇uY (s, y)|

)
+
(
|σXs (x)− σXs (y)|+ |σXs (y)− σYs (y)|

)
· ‖∇ΦX‖L∞(T )

(2.19)

. |x− y|
(
M1g

X
s (x) +M1g

X
s (y)

)
+ ‖∇uX −∇uY ‖L∞(T ) + ‖σXs − σYs ‖∞.

Hence,

I4 + I5 .
∫ t

0

(
|ξs|β + |ξ̃s|β

)(
MgXs (Xs) +MgXs (Ys)

)2
ds

+ T‖∇uX −∇uY ‖βL∞(T ) +

∫ t

0

‖σXs − σYs ‖β∞ds.

Combining the above calculations and noting that |ξ̃0| 6 ‖uX0 − uY0 ‖∞, we obtain

|ξ̃t|β . ‖uX − uY ‖βH1,∞
∞ (T )

+

∫ t

0

(
|ξ̃s|β + |ξs|β + ‖ξs‖βθ

)
ds

+

∫ t

0

(
|ξs|β + |ξ̃s|β

)(
M1g

X
s (Xs) +M1g

X
s (Ys)

)2
ds+Mt,

(4.8)

where Mt is a continuous local martingale.
(iii) Now we define

At := t+

∫ t

0

(
M1g

X
s (Xs) +M1g

X
s (Ys)

)2
ds.

By (4.8) and (4.7), we obtain that for all t ∈ [0, T ],

|ξs|β + |ξ̃s|β . ‖uX − uY ‖βH1,∞
∞ (T )

+

∫ t

0

‖ξs‖βθds+

∫ t

0

(
|ξs|β + |ξ̃s|β

)
dAs +Mt.

Note that by the assumption and (2.20),

(s, x) 7→ (M1|∇2uXs (x)|)2 ∈ L̃p/2q/2(T ),

and

(s, x) 7→ (M1|∇σXs (x)|)2 ∈ L̃p1/2q1/2
(T ).

Since (p2 ,
q
2 ), (p12 ,

q1
2 ) ∈ I2, by Khasminskii’s estimate (3.14), we have

E exp γAT <∞, ∀γ > 0, ∀T ∈ [0, 1].

Thus we can use the stochastic Gronwall inequality (2.18) to derive that

sup
s∈[0,T ]

‖ξs‖βθ =

(
sup

s∈[0,T ]

E|ξs|θ
)β/θ

. ‖uX − uY ‖βH1,∞
∞ (T )

+

∫ T

0

‖ξs‖βθds. (4.9)
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Noticing that by (4.1),

|||bX − bY |||L̃pq(T ) 6

(∫ T

0

`qt‖Xt − Yt‖qθdt

)1/q

6 ‖`‖Lq(0,T ) sup
t∈[0,T ]

‖ξt‖θ,

and
‖σX − σY ‖L∞(T ) 6 c0 sup

t∈[0,T ]

‖Xt − Yt‖θ = c0 sup
t∈[0,T ]

‖ξt‖θ,

we have by (2.16),

‖uX − uY ‖H1,∞
∞ (T )

. |||bX − bY |||L̃pq(T ) + |||bX |||L̃pq(T )

(
‖σX − σY ‖L∞(T ) + |||bX − bY |||L̃pq(T )

)
.
(
‖`‖Lq(0,T ) + |||bX |||L̃pq(T )

)
sup
t∈[0,T ]

‖ξt‖θ
(4.2)

. T
γ−1
γq sup

t∈[0,T ]

‖ξt‖θ.

Substituting this into (4.9), we obtain

sup
s∈[0,T ]

‖ξs‖βθ 6 CT
β(γ−1)
γq sup

t∈[0,T ]

‖ξt‖βθ , T ∈ (0, 1),

where C does not depend on T ∈ (0, 1). By choosing T small enough, we get

‖ξt‖βθ = 0 for all t ∈ [0, T ]. By shifting the time T , we obtain the uniqueness. �

It is obvious that b defined in (2.31) does not satisfy (4.1). Below we shall relax
it to the weighted total variation norm by Girsanov’s transformation. The price we
have to pay is that we need to assume that the diffusion coefficient does not depend
on the time marginal law of X. For θ > 1, let

φθ(x) := 1 + |x|θ.
We assume

(Ãσ,b
θ ) Let (p, q), (p1, q1) ∈ I1 and θ > 1 and σt(x, µ) = σt(x). It holds that

sup
Z∈Stoch

|||bZ |||L̃pq(T ) <∞, |||∇σ|||L̃p1q1 (T ) <∞,

and there is an ` ∈ Lqloc(R+) such that for all µ, µ′ ∈ P(Rd) and t > 0,

|||b(t, ·, µ)− b(t, ·, µ′)|||p 6 `t‖φθ · (µ− µ′)‖TV . (4.10)

It should be noted that [27, Theorem 6.15] implies,

Wθ(µ, µ
′) 6 c‖φθ · (µ− µ′)‖1/θTV .

Theorem 4.3. Let θ > 1 and β > 2θ. Under (Hσ,b) and (Ãσ,b
θ ), for any initial

random variable X0 with finite β-order moment, there is a unique weak solution to
DDSDE (1.1), which is also a unique strong solution.

Proof. We use the Girsanov transform in the same way asin [21] to show the weak
uniqueness, and so also the strong uniqueness. Since under the assumptions of the
theorem, weak solutions are also strong solutions (see Corollary 3.7), without loss
of generality, let X(i), i = 1, 2 be two solutions of SDE (1.1) defined on the same
probability space (Ω,F ,P) and with the same Brownian motion and starting point
ξ. That is,

dX
(i)
t = σt(X

(i)
t )dWt + bt(X

(i)
t , µ

(i)
t )dt, X

(i)
0 = ξ, (4.11)
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where µ
(i)
t = P ◦ (X

(i)
t )−1. We want to show µ

(1)
t = µ

(2)
t .

Since σt(x, µ) = σt(x) satisfies (2.13) under our assumptions, it is well known
that there is a unique weak solution to SDE

dZt = σt(Zt)dWt, Z0 = ξ.

Let β > 2θ. Since σ is bounded, it is easy to see that

sup
t∈[0,T ]

E|Zt|β 6 C
(
E|ξ|β + 1

)
. (4.12)

Define

b̃(i)s (x) := σ−1s (x) · bX
(i)

s (x), W̃
(i)
t := Wt −

∫ t

0

b̃(i)s (Zs)ds,

and

E
(i)
T := exp

{∫ T

0

b̃(i)s (Zs) · dWs −
1

2

∫ T

0

|b̃(i)s (Zs)|2ds

}
.

Since |||b̃(i)|||L̃pq(T ) 6 |||b
X(i) |||L̃pq(T ) < ∞ for some (p, q) ∈ I1, by Khasminskii’s esti-

mate (3.14), we have

E exp

{
γ

∫ T

0

|b̃(i)s (Zs)|2ds

}
6 CT,γ , ∀γ > 0, (4.13)

and for any γ ∈ R,

E(E
(i)
T )γ 6 CT,γ <∞. (4.14)

Hence, for each i = 1, 2, EE
(i)
T = 1, and W̃ (i) is still a Brownian motion under

E
(i)
T ·P, and

dZt = σt(Zt)dW̃
(i)
t + bX

(i)

t (Zt)dt, Z0 = ξ.

Since the above SDE admits a unique strong solution (see also (4.11)), we have

(E
(i)
T P) ◦ Z−1T = P ◦ (X

(i)
T )−1 = µ

(i)
T , i = 1, 2.

Therefore, for δ = β
β−θ < 2, by Hölder’s inequality, we get

‖φθ · (µ(1)
T − µ

(2)
T )‖TV = ‖φθ · ((E (1)

T P) ◦ Z−1T − (E
(2)
T P) ◦ Z−1T )‖TV

6 E
(
φθ(ZT )|E (1)

T − E
(2)
T |
)
6 ‖φθ(ZT )‖δ/(δ−1)‖E

(1)
T − E

(2)
T ‖δ

= ‖1 + |ZT |θ‖β/θ‖E
(1)
T − E

(2)
T ‖δ

(4.12)

6 C‖E (1)
T − E

(2)
T ‖δ. (4.15)

Noting that

dE
(i)
t = E

(i)
t b̃

(i)
t (Zt) · dWt,

we have

d(E
(1)
t − E

(2)
t ) = (E

(1)
t b̃

(1)
t (Zt)− E

(2)
t b̃

(2)
t (Zt)) · dWt.

By Itô’s formula, we have

d|E (1)
t − E

(2)
t |2 = |E (1)

t b̃
(1)
t (Zt)− E

(2)
t b̃

(2)
t (Zt)|2dt+Mt,

6 2|E (1)
t − E

(2)
t |2|b̃

(1)
t (Zt)|2dt+ 2|E (2)

t (b̃
(1)
t (Zt)− b̃(2)t (Zt))|2dt+Mt,
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where M is a continuous local martingale. Since δ < 2, by the stochastic Gronwall
inequality (2.18) and (4.13), we obtain

‖E (1)
T − E

(2)
T ‖

2
δ .

∫ T

0

E|E (2)
t (b̃

(1)
t (Zt)− b̃(2)t (Zt))|2dt.

Since (p, q) ∈ I1, one can choose γ ∈ (1, 1/(d/p+ 2/q)) so that

(p/(2γ), q/(2γ)) ∈ I2.

Thus by Hölder’s inequality and Krylov’s estimate (3.7), we further have

‖E (1)
T − E

(2)
T ‖

2
δ

(4.14)

.

(∫ T

0

E|b̃(1)t (Zt)− b̃(2)t (Zt)|2γdt

) 1
γ

. ||||b̃(1) − b̃(2)|2γ |||1/γ
L̃p/(2γ)
q/(2γ)

(T )
= |||b̃(1) − b̃(2)|||2L̃pq(T )

.

(∫ T

0

|||bt(·, µ(1)
t )− bt(·, µ(2)

t )|||qpdt

) 2
q

(4.10)

.

(∫ T

0

`qt‖φθ · (µ
(1)
t − µ

(2)
t )‖qTV dt

) 2
q

,

which together with (4.15) yields

‖φθ · (µ(1)
T − µ

(2)
T )‖qTV 6 C

∫ T

0

`qt‖φθ · (µ
(1)
t − µ

(2)
t )‖qTV dt.

By Gronwall’s inequality, we obtain

‖φθ · (µ(1)
T − µ

(2)
T )‖qTV = 0⇒ µ

(1)
T = µ

(2)
T .

The proof is thus complete. �

5. Application to nonlinear Fokker-Planck equations

In this section we present some applications to nonlinear Fokker-Planck equa-
tions. First of all we recall the following superposition principle: one-to-one cor-
respondence between DDSDE (1.1) and nonlinear Fokker-Planck equation (1.2),
which was first proved in [1, 2], and is based on a result for linear Fokker-Planck
equations due to Trevisan [25] (see also [11] for the special linear case where the
coefficients are bounded). We repeat the argument from [1, 2] here.

Theorem 5.1 (Superposition principle). Let µt : R+ → P(Rd) be a continuous
curve such that for each T > 0,∫ T

0

∫
Rd

(
|(σikt σ

jk
t )(x, µt)|+ |bt(x, µt)|

)
µt(dx)dt <∞. (5.1)

Then µt solves the nonlinear Fokker-Planck equation (1.2) in the distributional
sense if and only if there exists a martingale solution P ∈ M σ,b

ν to DDSDE (1.1)
so that for each t > 0,

µt = P ◦ w−1t .

In particular, if there is at most one element in Mσ,b
ν with time martingale µt :=

µXt , t > 0, satisfying (5.1), then there is at most one solution to (1.2) satisfying
(5.1).
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Proof. If P ∈ M σ,b
ν and µt = P ◦ w−1t , then by (5.1) and Itô’s formula, it is easy

to see that µt solves (1.2). Now we assume µt solves (1.2). Consider the following
linear Fokker-Planck equation:

∂tµ̃t = (L σµ

t )∗µ̃t + div(bµt · µ̃t),

where bµt (x) := bt(x, µt) and σµt (x) := σt(x, µt). Since µt is a solution of the above
linear Fokker-Planck equation, by [25, Theorem 2.5], there is a martingale solution
P ∈M σµ,bµ

ν so that

µt = P ◦ w−1t .

In particular, P ∈ M σ,b
ν . The last assertion is then obvious and thus the proof is

complete. �

From the above superposition principle and our well-posedness results, we can
obtain the following wellposedness result about the nonlinear Fokker-Planck equa-
tions.

Theorem 5.2. In the situations of Theorems 4.2 and 4.3, there is a unique con-
tinuous curve µt solving the nonlinear Fokker-Planck equation (1.2).

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence and uniqueness of solutions to the nonlinear
FPE (1.7) are consequences of Theorem 4.3 and Theorem 5.1. We now aim to show
the existence and smoothness of the density ρXt (y). Let µt be the solution of the
Fokker-Planck equation (1.7). We consider the following SDE:

dXt = bµt (Xt)dt+
√

2dWt, X0 = ξ, (5.2)

where bµt (x) :=
∫
Rd bt(x, y)µt(dy). Since bµ ∈ L̃pq , where d

p + 2
q < 1, it is well

known that the operator ∆ + bµ · ∇ admits a heat kernel ρbµ(s, x; t, y) (see [8,
Theorems 1.1 and 1.3]), which is continuous in (s, x; t, y) on {(s, x; t, y) : 0 6 s <
t < ∞, x, y ∈ Rd} and satisfies the following two-sided estimate: For any T > 0,
there are constants c0, γ0 > 1 such that for all 0 6 s < t 6 T and x, y ∈ Rd

c−10 (t− s)−d/2e−γ0|x−y|
2/(t−s) 6 ρbµ(s, x; t, y) 6 c0(t− s)−d/2e−|x−y|

2/(γ0(t−s)),

and the gradient estimate: for some c1, γ1 > 1,

|∇xρbµ(s, x; t, y)| 6 c1(t− s)−(d+1)/2e−|x−y|
2/(γ1(t−s)).

If divb ≡ 0, then ρbµ(s, x; t, y) = ρ−bµ(s, y; t, x), and so in this case,

|∇yρbµ(s, x; t, y)| 6 c1(t− s)−(d+1)/2e−|x−y|
2/(γ1(t−s)).

In particular, the density of the law of Xt is just given by

ρXt (y) =

∫
Rd
ρ(0, x; t, y)(P ◦X−10 )(dx).

Strong uniqueness of SDE (5.2) ensures that ρXt (y)dy = µt(dy). The desired esti-
mates now follow from the above estimates. �
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