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Abstract. We study the stochastic total variation �ow (STVF) equation with linear
multiplicative noise. By considering a limit of a sequence of regularized stochastic gradi-
ent �ows with respect to a regularization parameter ε we obtain the existence of a unique
variational solution of the STVF equation which satis�es a stochastic variational inequal-
ity. Furthermore, we propose a fully discrete implicit numerical scheme for the regularized
gradient �ow equation and show that the numerical solution converges to the solution of
the unregularized STVF equation. We perform numerical experiments to demonstrate the
practicability of the numerical approximation.

1. Introduction

We study numerical approximation of the stochastic total variation �ow (STVF)

dX = div

(
∇X
|∇X|

)
dt− λ(X − g) dt+X dW, in (0, T )×O,

X = 0 on (0, T )× ∂O,(1)

X(0) = x0 in O,

where O ⊂ Rd, d ≥ 1 is a bounded, convex domain with a piecewise C2-smooth boundary
∂O, and λ ≥ 0, T > 0 are constants. We assume that x0, g ∈ L2 and consider a one
dimensional real-valued Wiener process W , for simplicity; generalization for a su�ciently
regular trace-class noise is straightforward.
Equation (1) can be interpreted as a stochastically perturbed gradient �ow of the pe-

nalized total variation energy functional

Jλ(u) :=

∫
O

|∇u| dx+
λ

2

∫
O

|u− g|2 dx.(2)

The minimization of above functional, so-called ROF-method, is a prototypical approach
for image denoising, cf. [13]; in this context the function g represents a given noisy image
and λ serves as a penalization parameter. Further applications of the functional include,
for instance, elastoplasticity and the modeling of damage and fracture, for more details see
for instance [4] and the references therein.
The use of stochastically perturbed gradient �ows has proven useful in image processing.

Stochastic numerical methods for models with nonconvex energy functionals are able to
avoid local energy minima and thus achieve faster convergence and/or more accurate results

1



2 �UBOMÍR BA�AS, MICHAEL RÖCKNER, AND ANDRÉ WILKE

than their deterministic counterparts; see [10] which applies stochastic level-set method in
image segmentation, and [14] which uses stochastic gradient �ow of a modi�ed (non-convex)
total variation energy functional for binary tomography.
Due to the singular character of total variation �ow (1), it is convenient to perform

numerical simulations using a regularized problem

dXε = div

(
∇Xε√

|∇Xε|2 + ε2

)
dt− λ(Xε − g) dt+Xε dW in (0, T )×O,

Xε = 0 on (0, T )× ∂O,(3)

Xε(0) = x0 in O ,
with a regularization parameter ε > 0. In the deterministic setting (W ≡ 0) equation (3)
corresponds to the gradient �ow of the regularized energy functional

Jε,λ(u) :=

∫
O

√
|∇u|2 + ε2 dx+

λ

2

∫
O

|u− g|2 dx.(4)

It is well-known that the minimizers of the above regularized energy functional converge
to the minimizers of (2) for ε→ 0, cf. [7] and the references therein.
Due to the singular character of the di�usion term in (1) the classical variational ap-

proach for the analysis of stochastic partial di�erential equations (SPDEs), see e.g. [11],
[12], is not applicable to this problem. To study well-posedeness of singular gradient �ow
problems it is convenient to apply the solution framework developed in [3] which charac-
terizes the solutions of (1) as stochastic variational inequalities (SVIs). In this paper, we
show the well posedness of variational solutions using the practically relevant regulariza-
tion procedure (3) which, in the regularization limit, yields a SVI solution in the sense of
[3].
Convergence of numerical approximation of (3) in the deterministic setting (W ≡ 0)

has been shown in [7]. Analogically to the deterministic setting we construct a numer-
ical approximation of (1) via a full discretization of the regularized problem (3). The
deterministic variational inequality framework used in the the numerical analysis of [7] is
not directly transferable to the stochastic setting. Instead, we show the convergence of
the proposed numerical approximation of (3) to the SVI solution of (1) via an additional
regularization step on the discrete level. The convergence analysis of the discrete approx-
imation is inspired by the analytical approach of [8] where the SVI solution concept was
applied to the stochastic p-Laplace equation. As far as we are aware, the present work is
the �rst to show convergence of implementable numerical approximation for singular sto-
chastic gradient �ows in the framework of stochastic variational inequalities. Throughout
the paper, we will refer to the solutions which satisfy a stochastic variational inequality as
SVI solutions, and to the classical SPDE solutions as variational solutions.
The paper is organized as follows. In Section 2 we introduce the notation and state

some auxiliary results. The existence of a unique SVI solution of the regularized stochastic
TV �ow (3) and its convergence towards a unique SVI solution of (1) for ε → 0 is shown
in Section 3. In Section 4 we introduce numerical approximation of (3) and show the
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convergence of the proposed numerical approximation to the SVI solution of (1). Numerical
experiments are presented in Section 5.

2. Notation and preliminaries

Throughout the paper we denote by C a generic positive constant that may change from
line to line. For 1 ≤ p ≤ ∞, we denote by (Lp, ‖ · ‖Lp) the standard spaces of p-th order
integrable functions onO, and use ‖·‖ := ‖·‖L2 and (·, ·) := (·, ·)L2 for the L2-inner product.
For k ∈ N we denote the usual Sobolev space on O as (Hk, ‖ · ‖Hk), and (H1

0, ‖ · ‖H1
0
) stands

for the H1 space with zero trace on ∂O with its dual space (H−1, ‖ · ‖H−1). Furthermore,
we set 〈·, ·〉 := 〈·, ·〉H−1×H1

0
, where 〈·, ·〉H−1×H1

0
is the duality pairing between H1

0 and H−1.
The functional (4) with λ = 0 will be denoted as Jε := Jε,0. We say that a function
X ∈ L1(Ω× (0, T );L2) is Ft-progressively measurable if X1[0,t] is Ft⊗B([0, t])-measurable
for all t ∈ [0, T ].
For the convenience of the reader we state some basic de�nitions below.

De�nition 2.1. Let H be a real Banach space, A : D(A)→ H a linear operator and ρ(A)
its resolvent set. For a real number ξ ∈ ρ(A) we de�ne the resolvent Rξ : H→ H of A as

Rξ(x) := (I − ξA)−1x .

Furthermore we de�ne the Yosida approximation of A as

Tξ(x) := ARξ =
1

ξ
(I −Rξ)x.

De�nition 2.2. The mapping Pm : L2 → Vm ⊂ L2 which satis�es

(w − Pmw, vm) = 0 ∀vm ∈ Vm.

de�nes the L2-orthogonal projection onto Vm.

De�nition 2.3. A function u ∈ L1(O) is called a function of bounded variation, if its total
variation ∫

O

|∇u| dx := sup

−
∫
O

u div v dx; v ∈ C∞0 (O,Rd), ‖v‖L∞ ≤ 1

 ,(5)

is �nite. The space of functions of bounded variations is denoted by BV (O).
For u ∈ BV (O) we denote∫

O

√
|∇u|2 + ε2 dx := sup


∫
O

(
− u div v + ε

√
1− |v(x)|2

)
dx; v ∈ C∞0 (O,Rd), ‖v‖L∞ ≤ 1

 .

The following proposition plays an important role in the analysis below; the proposition
holds for convex domains with piecewise smooth boundary, which includes the case of
practically relevant polygonal domains, cf. [3, Proposition 8.2 and Remark 8.1].
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Proposition 2.1. Let O ⊂ Rd, d ≥ 1 be a bounded domain with a piecewise C2-smooth
and convex boundary. Let g : [0,∞) → [0,∞) be a continuous and convex function of at
most quadratic growth such that g(0) = 0, then it holds∫

O

g(|∇Rξ(y)|) dx ≤
∫
O

g(|∇y|) dx, ∀y ∈ H1
0.(6)

3. Well posedness of STVF

In this section we show existence and uniques of the SVI solution of (1) (see below for
a precise de�nition) via a two-level regularization procedure. To be able to treat problems
with L2-regular data, i.e., x0 ∈ L2(Ω,F0;L2), g ∈ L2 we consider a H1

0-approximating
sequence {xn0}n∈N ⊂ L2(Ω,F0;H1

0) s.t. xn0 → x0 in L
2(Ω,F0;L2) for n→∞ and {gn}n∈N ⊂

H1
0 s.t. gn → g in L2 for n→∞. We introduce a regularization of (3) as

dXε,δ
n =δ∆Xε,δ

n dt+ div

 ∇Xε,δ
n√

|∇Xε,δ
n |2 + ε2

 dt

− λ(Xε,δ
n − gn) dt+Xε,δ

n dW (t) in (0, T )×O,(7)

Xε,δ
n (0) =xn0 in O,

where δ > 0 is an additional regularization parameter.
We de�ne the operator Aε,δ : H1

0 → H−1 as

〈Aε,δu, v〉H−1×H1
0

=

∫
O

δ∇u∇v +
∇u√

|∇u|2 + ε2
∇v + λ(u− gn)v dx ∀u, v ∈ H1

0,(8)

and note that (7) is equivalent to

dXε,δ
n + Aε,δXε,δ

n dt = Xε,δ
n dW (t) ,(9)

Xε,δ
n (0) = xn0 .

The operator Aε,δ is coercive, demicontinuos and satis�es (cf. [12, Remark 4.1.1])

〈Aε,δ(u)− Aε,δ(v), u− v〉H−1×H1
0
≥ δ‖∇(u− v)‖2 + λ‖u− v‖2, ∀u, v ∈ H1

0,(10)

‖Aε,δ(u)‖H−1 ≤ C(δ, λ, ‖gn‖)(‖u‖H1
0

+ 1), ∀u ∈ H1
0.(11)

The following monotonicity property, which follows from the convexity of the function√
| · |2 + ε2, will be used frequently in the subsequent arguments(

∇X√
|∇X|2 + ε2

− ∇Y√
|∇Y |2 + ε2

,∇(X − Y )

)

=

(
∇X√

|∇X|2 + ε2
,∇(X − Y )

)
+

(
∇Y√

|∇Y |2 + ε2
,∇(Y −X)

)
(12)

≥ Jε(X)− Jε(Y ) + Jε(Y )− Jε(X) = 0.
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The existence and uniqueness of a variational solution of (7) is established in the next
lemma; we note that the result only requires L2-regularity of data.

Lemma 3.1. For any ε, δ > 0 and xn0 ∈ L2(Ω,F0;H1
0), gn ∈ H1

0 there exists a unique
variational solution Xε,δ

n ∈ L2(Ω;C([0, T ];L2)) of (7). Furthermore, there exists a C ≡
C(T ) > 0 such that the following estimate holds

E

[
sup
t∈[0,T ]

‖Xε,δ
n (t)‖2

]
≤ C(E

[
‖xn0‖2

]
+ ‖gn‖2).

Proof of Lemma 3.1. On noting the properties (10)-(11) of the operator Aε,δ for ε, δ > 0
the classical theory, cf. [12], implies that for any given data xn0 ∈ L2(Ω,F0;H1

0), gn ∈ H1
0

there exists a unique variational solution Xε,δ
n ∈ L2(Ω;C([0, T ];L2)) of (7) which satis�es

the stability estimate. �

In next step, we show a priori estimate for the solution of (7) in stronger norms; the
estimate requires H1

0-regularity of the data.

Lemma 3.2. Let xn0 ∈ L2(Ω,F0;H1
0), gn ∈ H1

0. There exists a constant C ≡ C(T ) such
that for any ε, δ > 0 the corresponding variational solution Xε,δ

n of (7) satis�es

E

[
sup
t∈[0,T ]

‖∇Xε,δ
n (t)‖2

]
+ δE

[∫ t

0

‖∆Xε,δ
n (s)‖2 ds

]
≤ C

(
E
[
‖xn0‖2

H1
0

]
+ ‖gn‖2

H1
0

)
.(13)

Proof of Lemma 3.2. Let {ei}∞i=0 be an orthonormal basis of eigenfunctions of the Dirich-
let Laplacian −∆ on L2 and Vm := span{e0, . . . , em}. Let Pm : L2 → Vm be the L2-
orthogonal projection onto Vm.
For �xed ε, δ, n the Galerkin approximation Xε,δ

n,m ∈ Vm of Xε,δ
n satis�es

dXε,δ
n,m =δ∆Xε,δ

n,m dt+ Pmdiv

 ∇Xε,δ
n,m√

|∇Xε,δ
n,m|2 + ε2

 dt

− λ(Xε,δ
n,m − Pmgn) dt+Xε,δ

n,m dW (t),(14)

Xε,δ
n,m(0) =Pmxn0 .

By standard arguments, cf. [12, Theorem 5.2.6], there exists a Xε,δ
n ∈ L2(Ω;C([0, T ];L2))

such that Xε,δ
n,m ⇀ Xε,δ

n in L2(Ω × (0, T );L2) for m → ∞. We use Itô's formula for
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‖∇Xε,δ
n,m(t)‖2 to obtain

1

2
‖∇Xε,δ

n,m(t)‖2 =
1

2
‖∇Pmxn0‖2 − δ

∫ t

0

‖∆Xε,δ
n,m(s)‖2 ds

−
∫ t

0

div
∇Xε,δ

n,m(s)√
|∇Xε,δ

n,m(s)|2 + ε2

,∆Xε,δ
n,m(s)

 ds

− λ
∫ t

0

(
(Xε,δ

n,m(s)− gn),∆Xε,δ
n,m(s)

)
ds(15)

−
∫ t

0

(
∆Xε,δ

n,m(s), Xε,δ
n,m(s) dW (s)

)
ds

+
1

2

∫ t

0

‖Xε,δ
n,m(s)‖2

H1
0

ds.

Let Tξ be the Yosida-approximation and Rξ the resolvent of the Dirichlet Laplacian −∆
on L2, respectively; see De�nition 2.1. By the convexity, cf. (12), we get

−∆Xε,δ
n,m(s), div

∇Xε,δ
n,m(s)√

|∇Xε,δ
n,m(s)|2 + ε2


= lim

ξ→∞

TξXε,δ
n,m(s), div

∇Xε,δ
n,m(s)√

|∇Xε,δ
n,m(s)|2 + ε2


= lim

ξ→∞

1

ξ

Xε,δ
n,m(s)−RξX

ε,δ
n,m(s), div

∇Xε,δ
n,m(s)√

|∇Xε,δ
n,m(s)|2 + ε2


= lim

ξ→∞

1

ξ

∇RξX
ε,δ
n,m(s)−∇Xε,δ

n,m(s),
∇Xε,δ

n,m(s)√
|∇Xε,δ

n,m(s)|2 + ε2


≤ lim

ξ→∞

1

ξ

(
Jε(∇RξX

ε,δ
n,m(s))− Jε(∇Xε,δ

n,m(s))
)

≤ 0,
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where we used Proposition 2.1 in the last step above. The Burkholder-Davis-Gundy in-
equaltiy for p = 1 implies that

E

[
sup
t∈[0,T ]

∫ t

0

‖∇Xε,δ
n,m(s)‖2 dW (s)

]
≤CE

[(∫ T

0

‖∇Xε,δ
n,m(s)‖4 ds

) 1
2

]

≤CE

[
sup
t∈[0,T ]

‖∇Xε,δ
n,m(t)‖

(∫ T

0

‖∇Xε,δ
n,m(s)‖2 ds

) 1
2

]
(16)

≤1

4
E

[
sup
t∈[0,T ]

‖∇Xε,δ
n,m(t)‖2

]
+ CE

[∫ T

0

‖∇Xε,δ
n,m(s)‖2 ds

]
.

After taking supremum over t and expectation in (15), using (16) along with the Tonelli
and Gronwall lemmas we obtain

E

[
sup
t∈[0,T ]

‖∇Xε,δ
n,m(t)‖2 + δ

∫ T

0

‖∆Xε,δ
n,m(s)‖2 ds

]
≤ C(E

[
‖xn0‖2

H1
0

]
+ ‖gn‖2

H1
0
).

Hence, from the sequence {Xε,δ
n,m}m∈N we can extract a subsequence (not relabeled), s.t.

for m→∞

Xε,δ
n,m ⇀ Xε,δ

n in L2(Ω;L2((0, T );H2)

Xε,δ
n,m ⇀∗ Xε,δ

n in L2(Ω;L∞((0, T );H1
0)).

By lower-semicontinuity of the norms, we get

E

[
sup
t∈[0,T ]

1

2
‖∇Xε,δ

n (t)‖2 + δ

∫ T

0

‖∆Xε,δ
n (s)‖2 ds

]
≤ C(E

[
‖xn0‖2

H1
0

]
+ ‖gn‖2

H1
0
).

�

We de�ne the SVI solution of (3) and (1) analogically to [3, De�nition 3.1] as a stochastic
variational inequality.

De�nition 3.1. Let 0 < T < ∞, ε ∈ [0, 1] and x0 ∈ L2(Ω,F0;L2) and g ∈ L2. Then
a Ft-progressively measurable map Xε ∈ L2(Ω;C([0, T ];L2)) ∩ L2(Ω;L1((0, T );BV (O)))
(denoted by X ∈ L2(Ω;C([0, T ];L2))∩L2(Ω;L1((0, T );BV (O))) for ε = 0) is called a SVI
solution of (3) (or (1) if ε = 0) if Xε(0) = x0 (X(0) = x0), and for each (Ft)-progressively
measurable process G ∈ L2(Ω × (0, T ),L2) and for each (Ft)-adapted L2-valued process
Z ∈ L2(Ω× (0, T );H1

0) with P-a.s. continuous sample paths which satisfy the equation

dZ(t) = −G(t) dt+ Z(t) dW (t), t ∈ [0, T ],(17)
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it holds for ε ∈ (0, 1] that

1

2
E
[
‖Xε(t)− Z(t)‖2

]
+ E

[∫ t

0

Jε,λ(Xε(s)) ds

]
≤ 1

2
E
[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0

Jε,λ(Z(s)) ds

]
(18)

+ E
[∫ t

0

‖Xε(s)− Z(s)‖2 ds

]
+ E

[∫ t

0

(Xε(s)− Z(s), G) ds

]
,

and analogically for ε = 0 it holds that

1

2
E
[
‖X(t)− Z(t)‖2

]
+ E

[∫ t

0

Jλ(X(s)) ds

]
≤ 1

2
E
[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0

Jλ(Z(s)) ds

]
(19)

+ E
[∫ t

0

‖X(s)− Z(s)‖2 ds

]
+ E

[∫ t

0

(X(s)− Z(s), G) ds

]
.

In the next theorem we show the existence and uniqueness of a SVI solution to (3) for
ε > 0 in the sense of the De�nition 3.1.

Theorem 3.1. Let 0 < T < ∞ and x0 ∈ L2(Ω,F0;L2), g ∈ L2. For each ε ∈ (0, 1] there
exists a unique SVI solution Xε of (3). Moreover, any two SVI solutions Xε

1 , X
ε
2 with

x0 ≡ x1
0, g ≡ g1 and x0 ≡ x2

0, g ≡ g2 satisfy

E
[
‖Xε

1(t)−Xε
2(t)‖2

]
≤ C

(
E
[
‖x1

0 − x2
0‖2
]

+ ‖g1 − g2‖2
)
,(20)

for all t ∈ [0, T ].

Proof of Theorem 3.1.
We show that for �xed ε > 0 the sequence {Xε,δ

n }δ,n of variational solutions of (7) is a
Cauchy-sequence w.r.t. δ for any �xed n ∈ N, and then show that it is a Cauchy-sequence
w.r.t. n for δ ≡ 0.
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We denote by Xε,δ1
n1

, Xε,δ2
n2

the solutions of (7) for δ ≡ δ1, δ ≡ δ2 and x0 ≡ xn1
0 ∈

L2(Ω,F0;H1
0), x0 ≡ xn2

0 ∈ L2(Ω,F0;H1
0), respectively, where xn1

0 , xn2
0 belong to the H1

0-
approximating sequence of x0 ∈ L2(Ω,F0;L2). By Itô's formula it follows that

1

2
‖Xε,δ1

n1
(t)−Xε,δ2

n2
(t)‖2

=
1

2
‖xn1

0 − xn2
0 ‖2 +

∫ t

0

(
δ1∆Xε,δ1

n1
(s)− δ2∆Xε,δ2

n2
(s), Xε,δ1

n1
(s)−Xε,δ2

n2
(s)
)

ds

−
∫ t

0

 ∇Xε,δ1
n1

(s)√
|∇Xε,δ2

n2 (s)|2 + ε2

−
∇Xε,δ2

n2
(s)√

|∇Xε,δ2
n2 (s)|2 + ε2

,∇(Xε,δ1
n1

(s)−Xε,δ2
n2

(s))

 ds

− λ
∫ t

0

‖(Xε,δ1
n1

(s)−Xε,δ2
n2

(s)‖2 ds+

∫ t

0

‖Xε,δ1
n1

(s)−Xε,δ2
n2

(s)‖2 dW (s)

+

∫ t

0

‖Xε,δ1
n1

(s)−Xε,δ2
n2

(s)‖2 ds.

We note that (
δ1∆Xε,δ1

n1
(s)− δ2∆Xε,δ2

n2
(s), Xε,δ1

n1
(s)−Xε,δ2

n2
(s)
)

= −
(
δ1∇Xε,δ1

n1
(s)− δ2∇Xε,δ2

n2
(s),∇Xε,δ1

n1
(s)−∇Xε,δ2

n2
(s)
)

≤ C(δ1 + δ2)(‖∇Xε,δ1
n1

(s)‖2 + ‖∇Xε,δ2
n2

(s)‖2).

Hence by using the convexity (12), Lemma 3.2, the Burkholder-Davis-Gundy inequality
for p = 1, the Tonelli and Gronwall lemmas we obtain

E

[
sup
t∈[0,T ]

‖Xε,δ1
n1

(t)−Xε,δ2
n2

(t)‖2

]
≤ CE

[
‖xn1

0 − xn2
0 ‖2

]
+ C

(
E
[
‖xn1

0 ‖2
H1

0

]
,E
[
‖xn2

0 ‖2
H1

0

]
, ‖gn‖2

H1
0

)
(δ1 + δ2).(21)

Inequality (21) implies for xn1
0 ≡ xn2

0 ≡ xn0 that

E

[
sup
t∈[0,T ]

‖Xε,δ1
n (t)−Xε,δ2

n (t)‖2

]
≤ C

(
E
[
‖xn0‖2

H1
0

]
, ‖gn‖2

H1
0

)
(δ1 + δ2).

Hence for any �xed n, ε there exists a {Ft}-adapted process Xε
n ∈ L2(Ω, C([0, T ];L2)), s.t.

lim
δ→0

E

[
sup
t∈[0,T ]

‖Xε,δ
n (t)−Xε

n(t)‖2

]
→ 0.(22)
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For �xed n1, n2, ε we get from (21) using (22) by the lower-semicontinuity of norms that

E

[
sup
t∈[0,T ]

‖Xε
n1

(t)−Xε
n2
‖2

]
≤ lim inf

δ→0
E

[
sup
t∈[0,T ]

‖Xε,δ
n1

(t)−Xε,δ
n2
‖2

]
(23)

≤ 1

2
E
[
‖xn1

0 − xn2
0 ‖2

]
.

Since xn1
0 , x

n2
0 → x0 for n1, n2 → ∞ we deduce from (23) that for any �xed ε there exists

an {Ft}-adapted process Xε ∈ L2(Ω;C([0, T ];L2)) such that

lim
n→∞

E

[
sup
t∈[0,T ]

‖Xε(t)−Xε
n(t)‖2

]
→ 0.(24)

In the next step, we show that the limiting process Xε is a SVI solution of (3). We
subtract the process

dZ(t) = −G(t) dt+ Z(t) dW (t) ,

with Z(t) = z0 from (7) and obtain

d
(
Xε,δ
n (t)− Z(t)

)
=
(
−Aε,δXε,δ

n (t) +G(t)
)

dt+
(
Xε,δ
n (t)− Z(t)

)
dW (t).

The Itô formula implies

1

2
E
[
‖Xε,δ

n (t)− Z(t)‖2
]

=
1

2
E
[
‖Xε,δ

n (0)− z0‖2
]
− E

[∫ t

0

〈Aε,δXε,δ
n (s), Xε,δ

n (s)− Z(s)〉 ds
]

(25)

+ E
[∫ t

0

(
G(s), Xε,δ

n (s)− Z(s)
)

ds

]
+ E

[∫ t

0

‖Xε,δ
n (s)− Z(s)‖2 ds

]
.

We rewrite the second term on the right-hand side in above inequality as

E
[∫ t

0

〈Aε,δXε,δ
n (s), Xε,δ

n (s)− Z(s)〉 ds
]

= E
[∫ t

0

δ(∇Xε,δ
n (s),∇(Xε,δ

n (s)− Z(s))) ds

]

+ E

∫ t

0

 ∇Xε,δ
n (s)√

|∇Xε,δ
n (s)|2 + ε2

,∇
(
Xε,δ
n (s)− Z(s)

) ds


+ E

[∫ t

0

λ(Xε,δ
n (s)− gn, Xε,δ

n (s)− Z(s)) ds

]
.
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The convexity of Jε along with the Cauchy-Schwarz and Young's inequalities imply that

E

∫ t

0

(
∇Xε,δ

n (s)√
|∇Xε,δ

n (s)|2 + ε2

,∇(Xε,δ
n (s)− Z(s))) ds


+ E

[∫ t

0

λ(Xε,δ
n (s)− gn, Xε,δ

n (s)− Z(s)) ds

]
≥ E

[∫ t

0

Jε(Xε,δ
n (s))− Jε(Z(s)) ds

]
+ E

[∫ t

0

λ

2
‖Xε,δ

n (s)− gn‖2 − λ

2
‖Z(s)− gn‖2 ds

]
.

By combining two inequalities above with (25) we get

1

2
E
[
‖Xε,δ

n (t)− Z(t)‖2
]

+ E
[∫ t

0

Jε(Xε,δ
n (s)) ds+

λ

2
‖Xε,δ

n (s)− gn‖2 ds

]
+
δ

2
E
[∫ t

0

‖∇Xε,δ
n (s)‖) ds

]
≤ 1

2
E
[
‖Xε,δ

n (0)− Z(0)‖2
]

+ E
[∫ t

0

Jε(Z(s)) ds+
λ

2
‖Z(s)− gn‖2 ds

]
(26)

+
δ

2
E
[∫ t

0

‖∇Z(s)‖) ds

]
+ E

[∫ t

0

(
G(s), Xε,δ

n (s)− Z(s)
)

ds

]
+ E

[∫ t

0

‖Xε,δ
n (s)− Z(s)‖2 ds

]
.

The lower-semicontinuity of Jε in BV (O) with respect to convergence in L1, cf. [1], and
(22), (24) and the strong convergence gn → g in L2 imply that for δ → 0 and n→∞ the
limiting process Xε ∈ L2(Ω;C([0, T ];L2) satis�es (18).
To conclude thatXε is a SVI solution of (3) it remains to show thatXε ∈ L2(Ω;L1((0, T );BV (O))).

Setting G ≡ 0 in (17) (which implies Z ≡ 0 by (17)) yields

1

2
E
[
‖Xε(t)‖2

]
+ E

[∫ t

0

Jε,λ(Xε(s)) ds

]
≤ 1

2
E
[
‖x0‖2

]
+ E

[∫ t

0

Jε,λ(0) ds

]
+ E

[∫ t

0

‖Xε(s)‖2 ds

]
.(27)

On noting that (cf. De�nition 2.3 or [7, proof of Theorem 1.3])

Jε,λ(Xε) ≥Jλ(Xε),
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and Jε,λ(0) = ε|O|+ λ
2
‖g‖2, we deduce from (27) that

1

2
E
[
‖Xε(t)‖2

]
+ E

[∫ t

0

Jλ(Xε(s)) ds

]
≤ 1

2
E
[
‖x0‖2

]
+ E

[∫ t

0

ε
(
|O|+ λ

2
‖g‖2

)
ds

]
+ E

[∫ t

0

‖Xε(s)‖2 ds

]
.

Hence, by the Tonelli and Gronwall lemmas it follows that

1

2
E
[
‖Xε(t)‖2

]
+ E

[∫ t

0

Jλ(Xε(s)) ds

]
≤ CT exp(T )

(
E
[
‖x0‖2

]
+ |O|+ λ‖g‖2

)
.(28)

Hence Xε ∈ L2(Ω;C([0, T ];L2)) ∩ L2(Ω;L1((0, T );BV (O))) is a SVI solution of (3) for
ε ∈ (0, 1].
In the next step we show the uniqueness of the SVI solution. Let Xε

1 , X
ε
2 be two SVI

solutions to (3) for a �xed ε ∈ (0, 1] with initial values x0 ≡ x1
0, x

2
0 and g ≡ g1, g2,

respectively. Let {x2,n
0 }n∈N ⊂ L2(Ω,F0;H1

0) be a sequence, s.t. x2,n
0 → x2

0 in L2(Ω,F0;L2)

and {g2,n}n∈N ⊂ H1
0 be a sequence, s.t. g2,n

0 → g2 in L2 for n → ∞ and let {Xε,δ
2,n}n∈N,δ>0

be a sequence of variational solutions of (7) (for �xed ε > 0) with x0 ≡ x2,n
0 , g ≡ g2,n.

We note that the �rst part of the proof implies that Xε,δ
2,n → Xε

2 in L2(Ω;C([0, T ];L2) for

δ → 0, n→∞. We set Z = Xε,δ
2,n, G = Aε,δ(Xε,δ

2,n) in (18) and observe that

1

2
E
[
‖Xε

1(t)−Xε,δ
2,n(t)‖2

]
+E

[∫ t

0

Jε,λ(Xε
1(s)) ds

]
≤ 1

2
E
[
‖x1 − x2,n

0 ‖2
]

+ E
[∫ t

0

Jε,λ(Xε,δ
2,n(s)) ds

]
+ E

[
δ

∫ t

0

(
∇Xε

1(s)−∇Xε,δ
2,n(s),∇Xε,δ

2,n(s))
)

ds

]
(29)

+ E

∫ t

0

∇Xε
1(s)−∇Xε,δ

2,n(s),
∇Xε,δ

2,n(s)√
|∇Xε,δ

2,n(s)|2 + ε2

 ds


+ E

[∫ t

0

λ
(
Xε

1(s)−Xε,δ
2,n(s), Xε,δ

2,n(s)− g2,n
)

ds

]
+ E

[∫ t

0

‖Xε
1(s)−Xε,δ

2,n(s)‖2 ds

]
:= I + II + III + IV + V + V I.
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The term III is estimated using Young's inequality as

III = δE
[∫ t

0

(
∇Xε

1(s)−∇Xε,δ
2,n(s),∇Xε,δ

2,n(s))
)

ds

]
≤ CE

[∫ t

0

δ
2
3‖Xε

1(s)−Xε,δ
2,n(s)‖2 + δ

4
3‖∆Xε,δ

2,n(s))‖2 ds

]
.

By the convexity (12) we estimate

IV = E

∫ t

0

∇Xε
1(s)−∇Xε,δ

2,n(s),
∇Xε,δ

2,n(s)√
|∇Xε,δ

2,n(s)|2 + ε2

 ds


≤ E

[∫ t

0

√
|∇Xε

1(s)|2 + ε2 −
√
|∇Xε,δ

2,n(s)|2 + ε2 ds

]
.

Next, we obtain

V = λE
[∫ t

0

(
Xε

1(s)−Xε,δ
2,n(s), Xε,δ

2,n(s)− g2,n
)

ds

]
≤ λ

2
E
[∫ t

0

‖Xε
1(s)− g2,n‖2 − ‖Xε,δ

2,n(s)− g2,n‖2 ds

]
.

After substituting III-V into (29) we arrive at

1

2
E
[
‖Xε

1(t)−Xε,δ
2,n(t)‖2

]
+
λ

2
E
[∫ t

0

‖Xε
1(s)− g1‖2 ds

]
≤ 1

2
E
[
‖x1

0 − x
2,n
0 ‖2

]
+
λ

2
E
[∫ t

0

‖Xε,δ
2,n(s)− g1‖2 ds

]
+ CE

[∫ t

0

δ
2
3‖Xε

1(s)−Xε,δ
2,n(s)‖2 + δ

4
3‖∆Xε,δ

2,n(s))‖2 ds

]
λ

2
E
[∫ t

0

‖Xε
1(s)− g2,n‖2 ds

]
− λ

2
E
[∫ t

0

‖Xε,δ
2,n(s)− g2,n‖2 ds

]
(30)

+ E
[∫ t

0

‖Xε
1(s)−Xε,δ

2,n(s)‖2 ds

]
.

The convergences (22), (24) imply the convergence Xε,δ
2,n → Xε

2 in L2(Ω;C([0, T ];L2)) for
δ → 0, n → ∞. We note that for δ → 0 the fourth term on the right-hand side of (30)
vanishes due to Lemma 3.2. Hence, by taking the limits for δ → 0, n→∞ in (30), using
the strong convergence g2,n → g2 in L2 for n→∞ , the lower-semicontinuity of norms and
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(22), (24) we obtain

E
[
‖Xε

1(t)−Xε
2(t)‖2

]
≤ CE

[
‖x1

0 − x2
0‖2
]

+
λ

2
E
[∫ t

0

‖Xε
1(s)− g2‖2 + ‖Xε

2(s)− g1‖2 − ‖Xε
1(s)− g1‖2 − ‖Xε

2(s)− g2‖2 ds

]
+ E

[∫ t

0

‖Xε
1(s)−Xε

2(s)‖2 ds

]
≤ C

(
E
[
‖x1

0 − x2
0‖2
]

+ E
[∫ t

0

‖Xε
1(s)−Xε

2(s)‖2 ds

]
+ ‖g1 − g2‖2

)
,

for all t ∈ [0, T ]. After applying the Tonelli and Gronwall lemmas we obtain (20). �

Our second main theorem establishes existence and uniqueness of a SVI solution to (1) in
the sense of De�nition 3.1. The solution is obtained as a limit of solutions of the regularized
gradient �ow (3) for ε→ 0.

Theorem 3.2. Let 0 < T < ∞ and x0 ∈ L2(Ω,F0;L2), g ∈ L2 be �xed. Let {Xε}ε>0 be
the SVI solutions of (3) for ε ∈ (0, 1]. Then Xε converges to the unique SVI variational
solution X of (1) in L2(Ω;C([0, T ];L2)) for ε→ 0, i.e., there holds

lim
ε→0

E

[
sup
t∈[0,T ]

‖Xε(t)−X(t)‖2

]
= 0.(31)

Furthermore, the following estimate holds

E
[
‖X1(t)−X2(t)‖2

]
≤ C

(
E
[
‖x1

0 − x2
0‖2
]

+ ‖g1 − g2‖2
)

for all t ∈ [0, T ] ,(32)

where X1 and X2 are SVI solutions of (1) with x0 ≡ x1
0, g ≡ g1 and x0 ≡ x2

0, g ≡ g2,
respectively.

Proof of Theorem 3.2.
We consider L2-approximating sequences {xn0}n∈N ⊂ L2(Ω,F0;H1

0) and {gn}n∈N ⊂ H1
0 of

the initial condition x0 ∈ L2(Ω,F0;L2) and g ∈ L2, respectively. For n ∈ N, δ > 0 we
denote by Xε1,δ

n , Xε2,δ
n the variational solutions of (7) with ε ≡ ε1, ε ≡ ε2, respectively. By
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Itô's formula the di�erence satis�es

1

2
‖Xε1,δ

n (t)−Xε2,δ
n (t)‖2

=− δ
∫ t

0

‖∇(Xε1,δ
n (s)−Xε2,δ

n (s))‖2 ds

−
∫ t

0

 ∇Xε1,δ
n (s)√

|∇Xε1,δ
n (s)|2 + ε2

1

− ∇Xε2,δ
n (s)√

|∇Xε2,δ
n (s)|2 + ε2

2

,∇(Xε1,δ
n (s)−Xε2,δ

n (s))

 ds(33)

− λ
∫ t

0

‖(Xε1,δ
n (s)−Xε2,δ

n (s)‖2 ds+

∫ t

0

‖Xε1,δ
n (s)−Xε2,δ

n (s)‖2 dW (s)

+

∫ t

0

‖Xε1,δ
n (s)−Xε2,δ

n (s)‖2 ds.

We estimate the second term on the right-hand side of (33) using the convexity (12)

 ∇Xε1,δ
n (s)√

|∇Xε1,δ
n (s)|2 + ε2

1

− ∇Xε2,δ
n (s)√

|∇Xε2,δ
n (s)|2 + ε2

2

,∇(Xε1,δ
n (s)−Xε2,δ

n (s))


=

 ∇Xε1,δ
n (s)√

|∇Xε1,δ
n (s)|2 + ε2

1

,∇(Xε1,δ
n (s)−Xε2,δ

n (s))


+

 ∇Xε2,δ
n (s)√

|∇Xε2,δ
n (s)|2 + ε2

2

,∇(Xε2,δ
n (s)−Xε1,δ

n (s))

(34)

≥
∫
O

√
|∇Xε1,δ

n |2 + ε2
1 −

√
|∇Xε2,δ

n |2 + ε2
1 dx

+

∫
O

√
|∇Xε2,δ

n |2 + ε2
2 −

√
|∇Xε1,δ

n |2 + ε2
2 dx.
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Next, we observe that∫
O

(√
|∇Xε1,δ

n |2 + ε2
1 −

√
|∇Xε1,δ

n |2 + ε2
2

)
dx

=

∫
O

(√
|∇Xε1,δ

n |2 + ε2
1 −

√
|∇Xε1,δ

n |2 + ε2
2

)(√
|∇Xε1,δ

n |2 + ε2
1 +

√
|∇Xε1,δ

n |2 + ε2
2

)
√
|∇Xε1,δ

n |2 + ε2
1 +

√
|∇Xε1,δ

n |2 + ε2
2

dx

=

∫
O

|∇Xε1,δ
n |2 + ε2

1 − |∇Xε1,δ
n |2 − ε2

2√
|∇Xε1,δ

n |2 + ε2
1 +

√
|∇Xε1,δ

n |2 + ε2
2

dx

=

∫
O

(ε1 + ε2)(ε1 − ε2)√
|∇Xε1,δ

n |2 + ε2
1 +

√
|∇Xε1,δ

n |2 + ε2
2

dx

≤
∫
O

|ε1 − ε2|

 ε1√
|∇Xε1,δ

n |2 + ε2
1

+
ε2√

|∇Xε1,δ
n |2 + ε2

2

 dx ≤ C(ε1 + ε2).

Using the inequality above, we get∫
O

√
|∇Xε1,δ

n |2 + ε2
1 −

√
|∇Xε2,δ

n |2 + ε2
2 dx+

∫
O

√
|∇Xε2,δ

n |2 + ε2
2 −

√
|∇Xε1,δ

n |2 + ε2
2 dx

≥ −

∣∣∣∣∣∣
∫
O

√
|∇Xε1,δ

n |2 + ε2
1 −

√
|∇Xε1,δ

n |2 + ε2
2 dx

∣∣∣∣∣∣
−

∣∣∣∣∣∣
∫
O

√
|∇Xε2,δ

n |2 + ε2
1 −

√
|∇Xε2,δ

n |2 + ε2
2 dx

∣∣∣∣∣∣
≥ −C(ε1 + ε2).

Substituting (34) along with the last inequality into (33) yields

1

2
‖Xε1,δ

n (t)−Xε2,δ
n (t)‖2 ≤C(ε1 + ε2)

+

∫ t

0

‖Xε1,δ
n (s)−Xε2,δ

n (s)‖2 dW (s)(35)

+

∫ t

0

‖Xε1,δ
n (s)−Xε2,δ

n (s)‖2 ds.
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After using the Burkholder-Davis-Gundy inequality for p = 1, the Tonelli and Gronwall
lemmas we obtain that

E

[
sup
t∈[0,T ]

‖Xε1,δ
n (t)−Xε2,δ

n (t)‖2

]
≤ C(ε1 + ε2).(36)

We take the limit for δ → 0 in (36) for �xed n and ε1, ε2, and obtain using (22) by the
lower-semicontinuity of norms that

E

[
sup
t∈[0,T ]

‖Xε1
n (t)−Xε2

n (t)‖2

]
≤ lim inf

δ→0
E

[
sup
t∈[0,T ]

‖Xε1,δ
n (t)−Xε2,δ

n (t)‖2

]
≤C(ε1 + ε2).(37)

Hence, by (24) and the lower-semicontinuity of norms, after taking the limit n → ∞ in
(37) for �xed ε1, ε2 we get

E

[
sup
t∈[0,T ]

‖Xε1(t)−Xε2(t)‖2

]
≤ lim inf

n→∞
E

[
sup
t∈[0,T ]

‖Xε1
n (t)−Xε2

n (t)‖2

]
(38)

≤C(ε1 + ε2).

The above inequality implies that {Xε}ε>0 is a Cauchy Sequence in ε. Consequently there
exists a unique {Ft}-adapted process X ∈ L2(Ω;C([0, T ];L2)) with X(0) = x0 such that

lim
ε→0

E

[
sup
t∈[0,T ]

‖Xε(t)−X(t)‖2

]
= 0.(39)

This concludes the proof of (31).
Next, we show that the limiting process X is the SVI solution of (1), i.e., we show that

(19) holds. We note that (28) implies that

sup
ε∈(0,1]

E
[∫ t

0

Jλ(Xε(s) ds

]
≤ C.(40)

Hence using (39), (40) we get by Fatou's lemma and [2, Prop. 10.1.1] that

lim inf
ε→0

E
[∫ t

0

Jλ(Xε(s)) ds

]
≥ E

[∫ t

0

Jλ(X(s)) ds

]
.

By Theorem 3.1 we know that Xε satis�es (18) for any ε ∈ (0, 1]. By taking the limit
for ε → 0 in (18), using the above inequality and (39) it follows that X satis�es (19).
Finally, inequality (32) follows after taking the limit for ε → 0 in (39), by (20) and the
lower semicontinuity of norms. �
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4. Numerical Approximation

We will construct numerical scheme for the STVF equation (1) via a time-implicit full
discretization of the regularized STVF equation (3). We �x N ∈ N and de�ne the time-
step τ := T/N , set ti := iτ for i = 0, . . . , N and denote the discrete Wiener increments
as ∆iW := W (ti)−W (ti−1). For the spatial discretization we employ a spectral Galerkin
Scheme: for a �xed m we consider a �nite-dimensional subspace Vm ⊂ H1

0 which consists of
the �rst m eigenfunctions of the Dirichlet Laplacian and set set xm0 := Pmx0, g

m := Pmg,
where Pm is the L2-projection onto Vm.
We note that the convergence analysis below directly covers the case of H2-conforming

�nite element based spatial discretization, i.e., Vm may be replaced by a �nite element
space Vh ⊂ H2 ∩H1

0 and Pm by the corresponding orthogonal L2-projection Ph : L2 → Vh;
this includes, for instance, the C1(O)-conforming Argyris element, cf. [5].
The fully discrete approximation of (3) is de�ned as follows: �x N,m ∈ N set X0

ε =
xm0 ∈ Vm and determine X i

ε ∈ Vm, i = 1, . . . , N as the solution of(
X i
ε, vh

)
=
(
X i−1
ε , vh

)
− τ

(
∇X i

ε√
|∇X i

ε|2 + ε2
,∇vh

)
(41)

− τλ
(
X i
ε − gm, vh

)
+
(
X i−1
ε , vh

)
∆iW ∀vh ∈ Vm.

Remark 4.1. Throughout this section, to simplify the notation, whenever we take the limit
w.r.t. to the time-step τ we implicitly assume that the limit is simultaneously taken with
respect to the spatial discretization parameter m, i.e., we will denote by lim

τ→0
≡ lim

τ→0,m→∞
.

Nevertheless we stress, that due to the implicit time-discretization in (41) there is no explicit
coupling between the time-step τ and the spatial discretization m.

To show convergence of the solution of the numerical scheme (41) we need to consider
a fully discrete approximation of the corresponding regularized problem (7). Given x0 ∈
L2(Ω,F0;L2), g ∈ L2 and n ∈ N we choose xn0 := Pnx0 ∈ Vn, g

n := Png ∈ Vn in
(7). Since Vn ⊂ H1

0 the sequences {xn0}n∈N ⊂ L2(Ω,F0;H1
0), {gn}n∈N ∈ H1

0 constitute
H1

0-approximating sequences of x0 ∈ L2(Ω,F0;L2), g ∈ L2, respectively. To simplify
the notation, we assume without the loss of generality that m ≥ n, which implies that
Pmxn0 ≡ xn0 and Pmgn ≡ gn. The numerical approximation of (7) for �xed n ∈ N is then
de�ned as follows: �x m, N ∈ N , m ≥ n set X0

ε,δ,n = xn0 and determine X i
ε,δ,n ∈ Vm,

i = 1, . . . , N as the solution of

(
X i
ε,δ,n, vh

)
=
(
X i−1
ε,δ,n, vh

)
− τδ

(
∇X i

ε,δ,n,∇vh
)
− τ

 ∇X i
ε,δ,n√

|∇X i
ε,δ,n|2 + ε2

,∇vh


− τλ

(
X i
ε,δ,n − gn, vh

)
+
(
X i−1
ε,δ,n, vh

)
∆iW ∀vh ∈ Vm.(42)

The next lemma, cf. [15, Lemma II.1.4] is used to show P-a.s. existence of discrete
solutions {X i

ε}Ni=1, {X i
ε,δ,n}Ni=1 of numerical schemes (41), (42), respectively.
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Lemma 4.1. Let h : Rm → Rm be continuous. If there is R > 0 such that h(v)v ≥ 0
whenever ‖v‖Rm = R then there exist v̄ satisfying ‖v̄‖Rm ≤ R and h(v̄) = 0.

In order to show {Fti}Ni=1-measurability of the random variables {X i
ε}Ni=1, {X i

ε,δ,n}Ni=1 we
make use of the following lemma, cf. [9, 6].

Lemma 4.2. Let (S,Σ) be a measure space. Let f : S × Rm → Rm be a function that
is Σ-measurable in its �rst argument for every x ∈ Rm, that is continuous in its second
argument for every α ∈ S and moreover such that for every α ∈ S the equation f(α, x) = 0
has an unique solution x = g(α). Then g : S → Rm is Σ-measurable.

Below we show the existence, uniqueness and measurability of numerical solutions of
(41), (42). We state the result for the scheme (42) only, since the proof also holds for δ = 0
(i.e. for (41)) without any modi�cations.

Lemma 4.3. Let x0 ∈ L2(Ω,F0;L2), g ∈ L2 and let m,n,N ∈ N be �xed. The for any
δ ≥ 0, ε > 0, i = 1, . . . , N, there exist Fti-measurable P-a.s. unique random variables
X i
ε,δ,n ∈ Vm which solves (42).

Proof of Lemma 4.3. Assume that the Vm-valued random variables X0
ε,δ,n, . . . , X

i−1
ε,δ,n

satisfy (42) and that Xk
ε,δ,n is Ftk-measurable for k = 1, . . . , i − 1. We show that there

is a Fti measurable random variable X i
ε,δ,n, that satis�es (41). Let {ϕ`}m`=1 be the basis of

Vm. We identify every v ∈ Vm with a vector v̄ ∈ Rm with v =
∑m

`=1 v̄`ϕ` and de�ne a
norm on Rm as ‖v̄‖Rm := ‖v‖H1

0
. For an arbitrary ω ∈ Ω we represent Xω ∈ Vm as a vector

X̄ω ∈ Rm and de�ne a function h : Ω× Rm → Rm component-wise for ` = 1, . . . ,m as

h(ω, X̄ω)` := (Xω −X i−1
ε,δ,n(ω), ϕ`) + τδ(∇Xω,∇ϕ`) + τ(

∇Xω√
|∇Xω|2 + ε2

,∇ϕ`)

+τλ(Xω − gn, ϕ`)− (X i−1
ε,δ,n(ω), ϕ`)∆iW (ω).

We show, that for each ω ∈ Ω there exists an X̄ω such that h(ω, X̄ω) = 0. We note the
following inequality

h(ω, X̄ω) · X̄ω =(Xω −X i−1
ε,δ,n(ω), X) + τδ‖∆Xω‖2 + τ(

∇Xω√
|∇Xω|2 + ε2

,∇Xω)

+ τλ(Xω − gn, Xω)− (X i−1
ε,δ,n(ω), Xω)∆iW (ω)

≥‖Xω‖2 − (X i−1
ε,δ,n(ω), Xω) + τ(

∇Xω√
|∇Xω|2 + ε2

,∇Xω)

− (X i−1
ε,δ,n(ω), Xω)∆iW + τλ‖Xω‖ − τλ(gn, Xω)

≥‖Xω‖
(
‖Xω‖ − ‖X i−1

ε,δ,n(ω)‖ − ‖X i−1
ε,δ,n(ω)‖|∆iW (ω)| − ‖gn‖

)
.

On choosing ‖Xω‖ = Rω large enough, the existence of X i
ε,δ,n(ω) ∈ Vm for each ω ∈ Ω then

follows by Lemma 4.1, since h(ω, ·) is continuous by the demicontinuity of the operator
Aε,δ, which follows from hemicontinuity and and monotonicty of Aε,δ for δ ≥ 0, ε > 0, see
[12, Remark 4.1.1]. The Fti-measurabilty follows by Lemma 4.2 for unique X i

ε,δ,n.
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Hence, it remains to show that X i
ε,δ,n is P-a.s. unique. Assume there are two di�erent

solution X1, X2, s.t. h(ω,X1(ω)) = 0 = h(ω,X2(ω)) for ω ∈ Ω. Then by the convexity
(12) we observe that

0 =
(
h(ω,X1(ω))− h(ω,X2(ω))

)
·
(
X1(ω)−X2(ω)

)
=(1 + τλ)‖X1(ω)−X2(ω)‖2 + τδ‖∇(X1 −X2)(ω)‖2

+ τ

(
∇X1(ω)√

|∇X1(ω)|2 + ε2
− ∇X2(ω)√

|∇X2(ω)|2 + ε2
,∇X1(ω)−∇X2(ω)

)
≥(1 + τλ)‖X1(ω)−X2(ω)‖2 + τδ‖∇(X1 −X2)(ω)‖2 .

Hence X1 ≡ X2 P-a.s. �

In the next lemma we state the stability properties of the numerical solution of the
scheme (42) which are discrete analogues of estimates in Lemma 3.1 and Lemma 3.2.

Lemma 4.4. Let x0 ∈ L2(Ω,F0;L2) and g ∈ L2 be given. Then there exists a constant
C ≡ C(E [‖x0‖L2 ] , ‖g‖L2) > 0 such that for any m ≥ n ∈ N, τ > 0 the solution of scheme
(42) satis�es

sup
i=1,...,N

E
[
‖X i

ε,δ,n‖2
]

+
1

4
E

[
N∑
k=1

‖Xk
ε,δ,n −Xk−1

ε,δ,n‖
2

]

+τδE

[
N∑
k=1

‖∇Xk
ε,δ,n‖2

]
+
τλ

2
E

[
N∑
k=1

‖Xk
ε,δ,n‖2

]
≤ C ,(43)

and a constant Cn ≡ C(E[‖xn0‖H1
0
], ‖gn‖H1

0
) > 0 such that for any m ∈ N, τ > 0

sup
i=1,...,N

E
[
‖∇X i

ε,δ,n‖2
]

+
1

4
E

[
N∑
k=1

‖∇(Xk
ε,δ,n −Xk−1

ε,δ,n)‖2

]
+ τδE

[
N∑
k=1

‖∆Xk
ε,δ,n‖2

]
≤ Cn.

(44)

Proof of Lemma 4.4. We set vh = X i
ε,δ,n in (42), use the identity 2(a− b)a = a2 − b2 +

(a− b)2 and get for i = 1, . . . , N

1

2
‖X i

ε,δ,n‖2 +
1

2
‖X i

ε,δ,n −X i−1
ε,δ,n‖

2 + τδ‖∇X i
ε,δ,n‖2 + τ

 ∇X i
ε,δ,n√

|∇X i
ε,δ,n|2 + ε2

,∇X i
ε,δ,n


=

1

2
‖X i−1

ε,δ,n‖
2 − τλ

(
‖X i

ε,δ,n‖2 −
(
gn, X i

ε,δ,n

))
+
(
X i−1
ε,δ,n, X

i
ε,δ,n

)
∆iW.(45)

We take expected value in (45) and on noting the properties of Wiener increments E [∆iW ] =
0, E [|∆iW |2] = τ and the independence of ∆iW and X i−1

ε,δ,n we estimate the stochastic term
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as

E
[(
X i−1
ε,δ,n, X

i
ε,δ,n

)
∆iW

]
= E

[(
X i−1
ε,δ,n, X

i
ε,δ,n −X i−1

ε,δ,n

)
∆iW

]
+ E

[(
X i−1
ε,δ,n, X

i−1
ε,δ,n

)
∆iW

]
≤E

[
1

4
‖X i−1

ε,δ,n −X
i
ε,δ,n‖2 + ‖X i−1

ε,δ,n‖
2|∆iW |2

]
+ E

[
‖X i−1

ε,δ,n‖
2
]
E [∆iW ]

=
1

4
E
[
‖X i

ε,δ,n −X i−1
ε,δ,n‖

2
]

+ τE
[
‖X i−1

ε,δ,n‖
2
]
.

We neglect the positive term ∇X i
ε,δ,n√

|∇X i
ε,δ,n|2 + ε2

,∇X i
ε,δ,n

 ≥ 0 ,

and get from (45) that

1

2
E
[
‖X i

ε,δ,n‖2
]

+
1

4
E
[
‖X i

ε,δ,n −X i−1
ε,δ,n‖

2
]

+ τδE
[
‖∇X i

ε,δ,n‖2
]

+
τλ

2
E
[
‖X i

ε,δ,n‖2
]

≤1

2
E
[
‖X i−1

ε,δ,n‖
2
]

+ τE
[
‖X i−1

ε,δ,n‖
2
]

+ τλ‖gn‖2 .

We sum up the above inequality for k = 1, . . . , i and obtain

1

2
E
[
‖X i

ε,δ,n‖2
]

+
1

4
E

[
i∑

k=1

‖Xk
ε,δ,n −Xk−1

ε,δ,n‖
2

]
+ τδE

[
i∑

k=1

‖∇Xk
ε,δ,n‖2

]
+
τλ

2
E

[
i∑

k=1

‖Xk
ε,δ,n‖2

]

≤1

2
E
[
‖xn0‖2

]
+ τE

[
i∑

k=1

‖Xk−1
ε,δ,n‖

2

]
+ Tλ‖gn‖2 .(46)

By the discrete Gronwall lemma it follows from (46) that

sup
i=1,...,N

E
[
‖X i

ε,δ,n‖2
]
≤ exp(2T )

(
E
[
‖x0‖2

]
+ 2Tλ‖g‖2

)
.

We substitute the above estimate into the right-hand side of (46) to conclude (43). To
show the estimate (44) we set vh = ∆X i

ε,δ,n in (42) use integration by parts and proceed
analogically to the �rst part of the proof. We note that by Proposition 2.1, as in the proof
of Lemma 3.2, it holds that

τ

div
∇X i

ε,δ,n√
|∇X i

ε,δ,n|2 + ε2
,∆X i

ε,δ,n

 ≥ 0.(47)
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Hence we may neglect the positive term and get that

1

2
E
[
‖∇X i

ε,δ,n‖2
]

+
1

4
E

[
i∑

k=1

‖∇(Xk
ε,δ,n −Xk−1

ε,δ,n)‖2

]
+ τδE

[
i∑

k=1

‖∆Xk
ε,δ,n‖2

]

+
τλ

2
E

[
i∑

k=1

‖∇Xk
ε,δ,n‖2

]
≤ 1

2
E
[
‖∇xn0‖2

]
+ τE

[
i∑

k=1

‖∇Xk−1
ε,δ,n‖

2

]
+ Tλ‖∇gn‖2 .

and obtain (44) after an application of the discrete Gronwall lemma. �

We de�ne piecewise constant time-interpolants of the fully discrete solution {X i
ε,δ,n}Ni=0

of (42) for t ∈ [0, T ] as

X
ε,δ,n

τ (t) := X i
ε,δ,n if t ∈ (ti−1, ti](48)

and

X
ε,δ,n

τ− (t) := X i−1
ε,δ,n if t ∈ [ti−1, ti) .(49)

We note that (42) can be reformulated as(
X
ε,δ,n

τ (t), vh

)
+

〈∫ θ+(t)

0

Aε,δX
ε,δ,n

τ (s) ds, vh

〉

=
(
X0
ε,δ,n, vh

)
+

(∫ θ+(t)

0

X
ε,δ,n

τ− (s) dW (s), vh

)
for t ∈ [0, T ],(50)

where θ+(0) := 0 and θ+(t) := ti if t ∈ (ti−1, ti].
Estimate (43) yields the bounds

sup
t∈[0,T ]

E
[
‖Xε,δ,n

τ (t)‖2
]
≤ C, sup

t∈[0,T ]

E
[
‖Xε,δ,n

τ− (t)‖2
]
≤ C,(51)

δE
[∫ T

0

‖∇Xε,δ,n

τ (s)‖2 ds

]
≤ C.

Furthermore, (51) and (11) imply

δE
[∫ T

0

‖Aε,δXε,δ,n

τ (s)‖2
H−1 ds

]
≤ C.(52)

The estimates in (51) imply for �xed n ∈ N, ε, δ > 0 the existence of a subsequence, still de-

noted by {Xε,δ,n

τ }τ>0, and a Y ∈ L2(Ω×(0, T );L2)∩L2(Ω×(0, T );H1
0)∩L∞((0, T );L2(Ω;L2),

s.t., for τ → 0

X
ε,δ,n

τ ⇀ Y in L2(Ω× (0, T );L2),

X
ε,δ,n

τ ⇀ Y in L2(Ω× (0, T );H1
0),(53)

X
ε,δ,n

τ ⇀∗ Y in L∞((0, T );L2(Ω;L2)).
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In addition, there exists a ν ∈ L2(Ω;L2) such that X
ε,δ,n

τ (T ) ⇀ ν in L2(Ω;L2) as τ → 0
and the estimate (52) implies the existence of a aε,δ ∈ L2(Ω× (0, T );H−1), s.t.,

Aε,δX
ε,δ,n

τ ⇀ aε,δ in L2(Ω× (0, T );H−1) for τ → 0.(54)

The estimates in (51) also implies for �xed n ∈ N, ε, δ > 0 the existence of a subsequence,

still denoted by {Xε,δ,n

τ− }τ>0, and a Y − ∈ L2(Ω× (0, T );L2), s.t.,

X
ε,δ,n

τ− ⇀ Y − in L2(Ω× (0, T );L2) for τ → 0.(55)

Finally, the inequality (46) implies

lim
τ→∞

E
[∫ T

0

‖Xε,δ,n

τ (s)−Xε,δ,n

τ− (s)‖2 ds

]
= lim

τ→∞
τE

[
N∑
k=1

‖Xk
ε,δ,n −Xk−1

ε,δ,n‖
2

]
≤ lim

τ→∞
Cτ(56)

=0.

which shows that the weak limits of Y and Y − coincide.
The following result shows that the limit Y ≡ Xε,δ

n , i.e., that the numerical solution of
scheme (42) converges to the unique variational solution of (7) for τ → 0. Owing to the
properties (10), (11) the convergence proof follows standard arguments for the convergence
of numerical approximations of monotone equations, see for instance [9], [6], and is therefore

omitted. We note that the convergence of the whole sequence {Xε,δ,n

τ }τ>0 follows by the
uniqueness of the variational solution.

Lemma 4.5. Let x0 ∈ L2(Ω,F0;L2) and g ∈ L2 be given, let ε, δ, λ > 0, n ∈ N be
�xed. Further, let Xε,δ

n be the unique variational solution of (7) for xn0 = Pnx0, g
n = Png

and X
ε,δ,n

τ , X
ε,δ,n

τ− be the respective time-interpolant (48), (49) of the numerical solution

{X i
ε,δ,n}Ni=1 of (42). Then X

ε,δ,n

τ , X
ε,δ,n

τ− converge to Xε,δ
n for τ → 0 in the sense that the weak

limits from (53), (54) satisfy Y ≡ Xε,δ
n , aε,δ ≡ Aε,δY ≡ Aε,δXε,δ

n and ν = Y (T ) ≡ Xε,δ
n (T ).

In addition it holds for almost all (ω, t) ∈ Ω× (0, T ) that

Y (t) = Y (0) +

∫ t

0

Aε,δY (s) ds+

∫ t

0

Y (s) dW (s),

and there is an L2-valued continuous modi�cation of Y (denoted again as Y ) such that for
all t ∈ [0, T ]

1

2
‖Y (t)‖2 =

1

2
‖Y (0)‖2 +

∫ t

0

〈Aε,δY (s), Y (s)〉+
1

2
‖Y (s)‖2 ds(57)

+

∫ t

0

(Y (s), Y (s)) dW (s).

The strong monotonicity property (10) of the operator Aε,δ implies strong convergence
of the numerical approximation in L2(Ω× (0, T );L2).
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Lemma 4.6. Let x0 ∈ L2(Ω,F0;L2) and g ∈ L2 be given, let ε, δ, λ > 0, n ∈ N be �xed.

Further, let Xε,δ
n be the variational solution of (7) for xn0 = Pnx0, g

n = Png and X
ε,δ,n

τ be
the time-interpolant (48) of the numerical solution {X i

ε,δ,n}Ni=1 of (42). Then the following
convergence holds true

lim
τ→0
‖Xε,δ

n −X
ε,δ,n

τ ‖2
L2(Ω×(0,T );L2) → 0.(58)

Proof of Lemma 4.6. The proof follows along the lines of [9], [6]. We sketch the main
steps of the proof for the convenience of the reader.

We note that X
ε,δ,n

τ satis�es (cf. proof of Lemma 4.4)

e−κTE
[
‖Xε,δ,n

τ (T )‖2
]
≤E

[
‖xn0‖2

]
− κ

∫ T

0

e−κsE
[
‖Xε,δ,n

τ (s)‖2
]

ds

−2E
[∫ T

0

e−κs〈Aε,δXε,δ,n

τ (s), X
ε,δ,n

τ (s)〉 ds
]

(59)

+E
[∫ T

0

e−κs‖Xε,δ,n

τ (s)‖2 ds

]
+ κ

∫ T

0

e−κs|Rτ (s)| ds,

where Rτ (t) := E

[∫ θ+(t)

t

2〈Aε,δXε,δ,n

τ (s), X
ε,δ,n

τ (s)〉 − ‖Xε,δ,n

τ (s)‖2 ds

]
.

We reformulate the third term on the right-hand side in (59) as

E
[∫ T

0

e−κs〈Aε,δXε,δ,n

τ (s), X
ε,δ,n

τ (s)〉 ds
]

= E
[∫ T

0

e−κs〈Aε,δXε,δ,n

τ (s)− Aε,δXε,δ
n (s), X

ε,δ,n

τ (s)−Xε,δ
n (s)〉 ds

]
+ E

[∫ T

0

e−κs〈Aε,δXε,δ
n (s), X

ε,δ,n

τ (s)−Xε,δ
n (s)〉+ 〈Aε,δXε,δ,n

τ (s), Xε,δ
n (s)〉 ds

]
.

We substitute the equality above into (59) and obtain for κ ≥ 1 that

e−κTE
[
‖Xε,δ,n

τ (T )‖2
]

+ 2E
[∫ T

0

e−κs〈Aε,δXε,δ,n

τ (s)− Aε,δXε,δ
n (s), X

ε,δ,n

τ (s)−Xε(s)〉 ds
]

≤ E
[
‖xn0‖2

]
− 2E

[∫ T

0

e−κs〈Aε,δXε,δ
n (s), X

ε,δ,n

τ (s)−Xε,δ
n (s)〉+ 〈Aε,δXε,δ,n

τ (s), Xε,δ
n (s)〉 ds

]
+ κ

∫ T

0

e−κs|Rτ (s)| ds.

We observe that

∫ T

0

e−κs|Rτ (s)| ds→ 0 for τ . Hence, by the lower-semicontinuity of norms

using the convergence properties from Lemma 4.5 and the monotonicity property (10) we
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get for τ → 0 that

e−κTE
[
‖Xε,δ

n (T )‖2
]

+ 2λ lim
τ→0

E
[∫ T

0

e−κs‖Xε,δ,n

τ (s)−Xε,δ
n (s)‖2 ds

]
+ 2δ lim

τ→0
E
[∫ T

0

e−κs‖∇
(
X
ε,δ,n

τ (s)−Xε,δ
n (s)

)
‖2 ds

]
(60)

≤ E
[
‖xn0‖2

]
− 2E

[∫ T

0

e−κs〈Aε,δXε,δ
n (s), Xε,δ

n (s)〉 ds
]
.

It is not di�cult to see that (57) for Y ≡ Xε,δ
n implies

e−κTE
[
‖Xε,δ

n (T )‖2
]

= E
[
‖xn0‖2

]
− 2E

[∫ T

0

e−κs〈Aε,δ(s)Xε,δ
n , Xε,δ

n (s)〉 ds
]

(61)

− κ
∫ T

0

e−κsE
[
‖Xε,δ

n (s)‖2
]

ds+ E
[∫ T

0

e−κs‖Xε,δ
n (s)‖2 ds

]
.

We subtract the equality (61) from (60) and obtain for κ ≥ 1

λ lim
τ→∞

E
[∫ T

0

e−κs‖Xε,δ,n

τ (s)−Xε,δ
n (s)‖2 ds

]
≤ 0.

Hence, we conclude that X
ε,δ,n

τ → Xε,δ
n in L2(Ω;L2((0, T );L2). �

Remark 4.2. It is obvious from the proof of Lemma 4.6 that the strong convergence in
L2(Ω× (0, T );L2) remains valid for λ = 0 due to (10) by the Poincaré inequality.

Next lemma guarantees the convergence of the numerical solution of scheme (42) to the
numerical solution of scheme (41) for δ → 0.

Lemma 4.7. Let x0 ∈ L2(Ω,F0;L2) and g ∈ L2 be given. Then for each n ∈ N there exists
a constant C ≡ C(T ) > 0, Cn ≡ C(E[‖xn0‖H1

0
], ‖gn‖H1

0
) > 0 such that for any N ∈ N,

δ > 0, m ≥ n ∈ N, ε ∈ (0, 1] the following estimate holds for the di�erence of numerical
solutions of (41) and (42):

max
i=1,...,N

E
[
‖X i

ε −X i
ε,δ,n‖2

]
≤ C(Cnδ + E

[
‖xm0 − xn0‖2

]
+ λ‖gm − gn‖2).

We note that the n-dependent constant Cn in the estimate above is due to the a priori
estimate (44), for H1

0-regular data x0, g it holds that Cn ≡ C(E[‖x0‖H1
0
], ‖g‖H1

0
) by the

stability of the L2 projection in H1
0.
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Proof of Lemma 4.7. We de�ne Zi
ε := X i

ε −X i
ε,δ,n. From (41) and (42) we get(

Zi
ε, vh

)
=
(
Zi−1
ε .vh

)
− τδ

(
∆X i

ε,δ,n, vh
)

− τ

(
∇X i

ε√
|∇X i

ε|2 + ε2
, vh

)
− τ

 ∇X i
ε,δ,n√

|∇X i
ε,δ,n|2 + ε2

,∇vh


− τλ

(
Zi
ε, vh

)
− τλ (gm − gn, vh)

+
(
Zi−1
ε , vh

)
∆iW.

We set vh = Zi
ε and obtain(

Zi
ε − Zi−1

ε , Zi
ε

)
=− τδ

(
∆X i

ε,δ,n, Z
i
ε

)
− τ

 ∇X i
ε√

|∇X i
ε|2 + ε2

−
∇X i

ε,δ,n√
|∇X i

ε,δ,n|2 + ε2
,∇Zi

ε


− τλ‖Zi

ε‖2 − τλ
(
gm − gn, Zi

ε

)
+
(
Zi−1
ε , Zi

ε

)
∆iW.

We note that (
Zi
ε − Zi−1

ε , Zi−1
ε

)
=

1

2
‖Zi

ε‖2 +
1

2
‖Zi−1

ε ‖2 − 1

2
‖Zi

ε − Zi−1
ε ‖2 ,

and by the Cauchy-Schwarz and Young's inequalities

τδ
(
∆X i

ε,δ,n, Z
i
ε

)
≤ τδ2

2λ
‖∆X i

ε,δ,n‖2 +
τλ

2
‖Zi

ε‖2,

τλ
(
gm − gn, Zi

ε

)
≤ τλ

2
‖gm − gn‖2 +

τλ

2
‖Zi

ε‖2.

From the convexity (12) it follows that

−τ

 ∇X i
ε√

|∇X i
ε|2 + ε2

−
∇X i

ε,δ,n√
|∇X i

ε,δ,n|2 + ε2
,∇(X i

ε −X i
ε,δ,n)

 ≤ 0.

Hence, we obtain that

1

2
‖Zi

ε‖2 +
1

2
‖Zi

ε − Zi−1
ε ‖2(62)

≤ 1

2
‖Zi−1

ε ‖2 +
τδ2

2λ
‖∆X i

ε,δ,n‖2 +
τλ

2
‖gm − gn‖2 +

(
Zi−1
ε , Zi

ε

)
∆iW .
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We estimate the last term on the right-hand side above as(
Zi−1
ε , Zi

ε

)
∆iW =

(
Zi−1
ε , Zi

ε − Zi−1
ε

)
∆iW + ‖Zi−1

ε ‖2∆iW

≤ 1

2
‖Zi

ε − Zi−1
ε ‖2 +

1

2
‖Zi−1

ε ‖2|∆iW |2 + ‖Zi−1
ε ‖2∆iW,

and substitute the above identity into (62)

1

2
‖Zi

ε‖2 +
1

2
‖Zi

ε − Zi−1
ε ‖2 ≤1

2
‖Zi−1

ε ‖2 +
τδ2

2λ
‖∆X i

ε,δ,n‖2 +
τλ

2
‖gm − gn‖2 +

1

2
‖Zi

ε − Zi−1
ε ‖2

+
1

2
‖Zi−1

ε ‖2|∆iW |2 + ‖Zi−1
ε ‖2∆iW .

Next, we sum up the above inequality up to i ≤ N and obtain

1

2
‖Zi

ε‖2 ≤1

2
‖Z0

ε‖2 +
τδ2

2λ

i∑
k=1

‖∆Xk
ε,δ‖2 +

1

2

i∑
k=1

‖Zk−1
ε ‖2|∆kW |2 +

i∑
k=1

‖Zk−1
ε ‖2∆kW

+
Tλ

2
‖gm − gn‖2.

After taking expectation in the above and using the independence properties of Wiener
increments and the estimate (44) we arrive at

1

2
E
[
‖Zi

ε‖2
]
≤1

2
‖Z0

ε‖2 +
τδ2

2λ
E

[
i∑

k=1

‖∆Xk
ε,δ‖2

]
+
τ

2

i∑
k=1

E
[
‖Zk−1

ε ‖2
]

≤Cnδ +
1

2
E
[
‖Z0

ε‖2
]

+
τ

2

i−1∑
k=0

E
[
‖Zk

ε ‖2
]

+
Tλ

2
‖gm − gn‖2.

with Cn ≡ C(‖xn0‖H1
0
, ‖gn‖H1

0
). Finally, the Discrete Gronwall lemma yields for i = 1, . . . , N

that

E
[
‖Zi

ε‖2
]
≤ exp(T )(Cnδ +

1

2
E
[
‖xm0 − Pmxn0‖2

]
+
Tλ

2
‖gm − gn‖2).(63)

which concludes the proof . �

We de�ne piecewise constant time-interpolant of the fully discrete solution {X i
ε}Ni=0 of

(41) for t ∈ [0, T ) as

X
ε

τ (t) = X i
ε if t ∈ (ti−1, ti].(64)

We are now ready to state the second main result of this paper which is the convergence
of the fully discrete numerical approximation (41) to the unique SVI solution of the total
variation �ow (1) (cf. De�nition 3.1).

Theorem 4.1. Let X be the SVI solution of (1) and let X
ε

τ be the time-interpolant (64)
of the numerical solution of the scheme (41). Then the following convergence holds true

lim
ε→0

lim
τ→0
‖X −Xε

τ‖2
L2(Ω×(0,T );L2) → 0.(65)
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Proof of Theorem 4.1. For x0 ∈ L2(Ω,F0;L2) and g ∈ L2 we de�ne theH1
0-approximating

sequences {xn0}n∈N ⊂ H1
0, x

n
0 → x0 ∈ L2(Ω,F0;L2), {gn}n∈N ⊂ H1

0, n ∈ N, gn → g ∈ L2 via
the L2-projection onto Vn ⊂ H1

0. We consider the solutions Xε, Xε,δ
n of (3), (7), respec-

tively, and denote by Xε
n the SVI solution of (3) for x0 ≡ xn0 , g ≡ gn. Furthermore, we

recall that the interpolant X
ε,δ,n

τ of the numerical solution of (42) was de�ned in (48).
We split the numerical error as

‖X −Xε

τ‖2
L2(Ω×(0,T );L2) ≤‖X −Xε‖2

L2(Ω×(0,T );L2) + ‖Xε −Xε
n‖2

L2(Ω×(0,T );L2)

+ ‖Xε
n −Xε,δ

n ‖2
L2(Ω×(0,T );L2) + ‖Xε,δ

n −X
ε,δ,n

τ ‖2
L2(Ω×(0,T );L2)(66)

+ ‖Xε,δ,n

τ −Xε

τ‖2
L2(Ω×(0,T );L2)

=: I + II + III + IV + V.

By Theorem 3.1 it follows that

lim
ε→0

I = lim
ε→0
‖X −Xε‖2

L2(Ω×(0,T );L2) = 0.

To estimate the second term we consider the solutions Xε
n of (3) with x0 ≡ xn0 and g ≡ gn.

From (20) we deduce that

lim
n→∞

II = lim
n→∞

‖Xε −Xε
n‖2

L2(Ω×(0,T );L2) = 0 .

We use (22) to estimate the third term as

lim
δ→0

III = lim
δ→0
‖Xε

n −Xε,δ
n ‖2

L2(Ω×(0,T );L2) = 0 .

The fourth term is estimated by Lemma 4.6

lim
τ→0

IV = lim
τ→0
‖Xε,δ

n −X
ε,δ,n

τ ‖2
L2(Ω×(0,T );L2) = 0.

For the last term we use Lemma 4.7

lim
n→∞

lim sup
δ→0

lim sup
m→∞

V = lim
n→∞

lim sup
δ→0

lim sup
m→∞

‖Xε,δ,n

τ −Xε

τ‖2
L2(Ω×(0,T );L2) = 0.

Finally, we consecutively take τ → 0 (m→∞), δ → 0, n→∞ and ε→ 0 in (66) and use
the above convergence of I − V to obtain (65). �

We conclude this section by showing unconditional stability of scheme (41), i.e., we
show that the numerical solution satis�es a discrete energy law which is an analogue of the
energy estimate (27).

Lemma 4.8. Let x0, g ∈ L2 and T > 0. Then there exist a constant C ≡ C(T ) such that
the solutions of scheme (41) for ε ∈ (0, 1] satisfy for any m, N ∈ N

sup
i=1,...,N

1

2
E
[
‖X i

ε‖2
]

+ τE

[
N∑
k=1

Jε(X i
ε) +

τλ

2
‖X i

ε − gm‖2

]

≤ C

(
1

2
E
[
‖x0‖2

]
+ T |O|+ λ

2
‖g‖2)

)
.(67)
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Proof of Lemma 4.8. We set vh ≡ X i
ε in (41) and obtain

1

2
‖X i

ε‖2 +
1

2
‖X i

ε −X i−1
ε ‖2 + τ

(
∇X i

ε√
|∇X i

ε|2 + ε2
,∇X i

ε

)
+ τλ(X i

ε − gm, X i
ε)

=
1

2
‖X i−1

ε ‖2 + (X i−1
ε , X i

ε)∆iW.(68)

Using the the convexity of Jε along with the identity

(X i−1
ε , X i

ε)∆iW = (X i−1
ε , X i

ε −X i−1
ε )∆iW + ‖X i−1

ε ‖2∆iW ,

we get from (68) that

1

2
‖X i

ε‖2 +
1

2
‖X i

ε −X i−1
ε ‖2 + τJε(X i

ε) +
τλ

2
‖X i

ε − gm‖2

≤τJε(0) +
τλ

2
‖gm‖2 +

1

2
‖X i−1

ε ‖2 +
1

2
‖X i

ε −X i−1
ε ‖2(69)

+
1

2
‖X i−1

ε ‖2‖∆iW‖2 + ‖X i−1
ε ‖2∆iW.

After taking the expectation and summing up over i in (69), and noting that Jε(0) = ε|O|
we obtain

1

2
E
[
‖X i

ε‖2
]

+ τE

[
i∑

k=1

Jε(X i
ε) +

λ

2
‖X i

ε − gm‖2

]

≤1

2
E
[
‖x0‖2

]
+ T

(
ε|O|+ λ

2
‖g‖2

)
+
τ

2
E

[
i−1∑
k=0

‖Xk
ε ‖2

]
.

Hence (67) follows after an application of the discrete Gronwall lemma. �

5. Numerical experiments

We perform numerical experiments using a variant of the spectral scheme (41) on the
unit square O = (0, 1)2. For convenience we employ spatial discretization based on the H1

0-
conforming �nite element method; for a given regular triangulation Th of O with mesh size
h = maxK∈Th{diam(K)} we consider the associated space of piecewise linear continuous
functions Vh = {vh ∈ C0(O); vh|K ∈ P1(K) ∀K ∈ Th} ⊂ H1

0, for more detail see, e.g., [5],
[7], [4]. The fully discrete �nite element scheme for i = 1, . . . , N then reads as(

X i
ε, vh

)
=
(
X i−1
ε , vh

)
− τ

(
∇X i

ε√
|∇X i

ε|2 + ε2
,∇vh

)
− τλ

(
X i
ε − gh, vh

)
+ µ

(
σ(X i−1

ε )∆iW
h, vh

)
∀vh ∈ Vh ,(70)

X0
ε =x0

h ,

where gh, x
0
h ∈ Vh are suitable approximations of g, x0 (e.g., orthogonal projections

onto Vh), respectively, and µ > 0 is a constant. The multiplicative space-time noise
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σ(X i−1
ε )∆iW

h is constructed as follows. The term W h is taken to be a Vh-valued space-
time noise of the form

∆iW
h(x) =

L∑
`=1

ϕ`(x)∆iβ` ∀x ∈ D ,

where β`, ` = 1, . . . , L are independent scalar-valued Wiener processes and {ϕ`}L`=1 is
the standard 'nodal' �nite element basis of Vh. In the simulations below we employ three
practically relevant choices of σ: a tracking-type noise σ(X) ≡ σ1(X) = |X−gh|, a gradient
type noise σ(X) ≡ σ2(X) = |∇X| and the additive noise σ(X) ≡ σ3 = 1; in the �rst case
the noise is small when the solution is close to the 'noisy image' gh, in the gradient noise
case the noise is localized along the edges of the image.
We note that the fully discrete �nite element scheme (70) satis�es a corresponding coun-

terpart of the discrete energy law (67) for σ ≡ σ1, σ2, σ3; the proof is analogical to the
proof of Lemma 4.8.
In all experiments we set T = 0.05, λ = 200, x0 ≡ xh0 ≡ 0. If not mentioned otherwise

we use the time step τ = 10−5, the mesh size h = 2−5 and set ε = h = 2−5, µ = 1. We
de�ne g ∈ Vh as a piecewise linear interpolation of the characteristic function of a circle
with radius 0.25 on the �nite element mesh, see Figure 1 (left), and set gh = g + ξh ∈ Vh

with ξh(x) = ν
L∑
`=1

ϕ`(x)ξ`, x ∈ O where ξ`, ` = 1, . . . , L are realizations of independent

U(−1, 1)-distributed random variables. If not indicated otherwise we use ν = 0.1; the
corresponding realization of ξh is displayed in Figure 1 (right).

Figure 1. The function g (left) and the noise ξh (right).

We choose ε = h = 2−5, µ = 1, σ ≡ σ1 as parameters for the 'baseline' experiment;
the individual parameters are then varied in order to demonstrate their in�uence on the
evolution. The time-evolution of the discrete energy functional Jε,λ(X i

ε), i = 1, . . . , N for a
typical realization of the space-time noise W h is displayed in Figure 2; in the legend of the
graph we state parameters which di�er from the parameters of the baseline experiment,
e.g., the legend 'sigma2, mu = 0.125' corresponds to the parameters σ ≡ σ2, µ = 0.125
and the remaining parameters are left unchanged, i.e., ε = h = 2−5. For all considered
parameter setups, except for the case of noisier image ν = 0.2, the evolution remained close
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to the discrete energy of the deterministic problem (i.e., (70) with µ = 0). The energy
decreases over time until the solution is close to the (discrete) minimum of Jε,λ; to highlight
the di�erences we display a zoom at the graphs. We observe that in the early stages
(not displayed) the energy of stochastic evolutions with su�ciently small noise typically
remained below the energy of the deterministic problems and the situation reversed as the
solution approached the stationary state.
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Figure 2. Evolution of the discrete energy: σ ≡ σ1, h = 2−5, ε = h, h
2
,

µ = 1, 2 (left); σ ≡ σ1, σ2, σ3, σ ≡ σ1, h = 2−5, ε = 2h, σ = σ1, ε = h = 2−6

and ν = 0.2 (middle and right).

In Figure 3 we display the solution at the �nal time computed with σ ≡ σ1, ε = h
for h = 2−5, 2−6, respectively, and σ ≡ σ2, ε = h = 2−5; graphically the results of the
remaining simulations did not signi�cantly di�er from the �rst case. The displayed results
may indicate that the noise σ2 yields worse results than the noise σ1 and σ2; however, for
su�ciently small value of µ the results would remain close to the deterministic simulation
as well. We have magni�ed noise intensity µ to highlight the di�erences to the other noise
types (i.e., the noise is concentrated along the edges of the image). We note that the
gradient type noise σ2 might be a preferred choice for practical computations, cf. [14].

Figure 3. From let to right: the solution for σ ≡ σ1 with ε = h = 2−5,
σ ≡ σ1 with ε = h = 2−6 and σ ≡ σ2 with ε = 2−5.
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