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COLLECTIVE STOCHASTIC DYNAMICS OF THE CUCKER-SMALE

ENSEMBLE UNDER UNCERTAIN COMMUNICATIONS

SEUNG-YEAL HA, JINWOOK JUNG, AND MICHAEL RÖCKNER

Abstract. We present collective dynamics of the Cucker-Smale (C-S) ensemble under
random communications. As an effective modeling of the C-S ensemble, we introduce
a stochastic kinetic C-S equation with a multiplicative white noise. For the proposed
stochastic kinetic model with a multiplicative noise, we present a global well-posedness of
strong solutions and their asymptotic flocking dynamics, when initial datum is sufficiently
regular, and random communication weight function has a positive lower bound.

1. Introduction

Collective movements of self-propelled particles are ubiquitous in many biological systems
in our nature, to name a few, flocking of birds, herding of sheep and swarming of fish,
etc. Throughout the paper, we will use a terminology “flocking” to denote aforementioned
coherent collective motions. More precisely, flocking phenomenon denotes a situation in
which self-propelled particles adjust their motions into a self-organized ordered motion
using only the environmental information based on simple rules [12, 13, 27, 28, 35, 37].
After Reynolds and Vicsek et al’s pioneering works in [32, 38], several mechanical models
were introduced in literature [5, 7, 9, 10, 25, 27, 29, 30, 34, 37] to model such coherent
collective motions. Among others, our main interest lies on the mean-field kinetic model,
namely “kinetic C-S model [20, 22, 23]”. Let f := f(t, x, v) be the one-particle distribution
function for C-S ensemble at position x with microscopic velocity v at time t. Then, the
dynamics of f is governed by the kinetic C-S equation:

∂tf + v · ∇xf +∇v · (F̃a[f ]f) = 0, (t, x, v) ∈ R+ × R
2d,

F̃a[f ](t, x, v) :=

∫

R2d

φ(x∗ − x)(v∗ − v)f(t, x∗, v∗)dv∗dx∗.
(1.1)

Here F̃a[f ] is a non-local operator measuring the attractive interactions between particles,
and φ is a communication weight function which is nonnegative and radially symmetric:

φ(x) = φ̄(|x|) ≥ 0, ∀x ∈ R
d,

where φ̄ : R+ → R+ is Lipschitz continuous, bounded and monotonically decreasing.
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In the last decade, the mean-field equation (1.1) and its variants have been extensively
studied from the various perspectives, e.g., well-posedness and emergent dynamics [4, 23],
Fokker-Planck perturbation [19], local sensitivity analysis [18], etc. For more detailed dis-
cussion, we refer to a recent survey article [7]. In this paper, we are interested in the
quantitative effects on the flocking dynamics of (1.1) due to the uncertain communication
weights. Recently, the local sensitivity analysis for (1.1) has been discussed in an abstract
and general framework in [18] and some quantitative pathwise estimates for the variations
in f and its derivatives in random space were studied. However, authors in [18] could
not provide interesting probabilistic estimates in relation with the emergent dynamics (see
[2, 6, 11, 17, 26] for a related local sensitivity analysis in uncertainty quantification (UQ)).
Thus, our goal of this paper is to address some probability estimate for (1.1) with uncer-

tain communications. To fix the idea, we employ the following ansatz for F̃a[f ] which is
responsible for the flocking mechanism due to mutual communications:

F̃a[f ](t, x, v) :=

∫

R2d

[

φ(x∗ − x)(v∗ − v) + σ(v∗ − v) ◦ Ẇt

]

f(t, x∗, v∗)dv∗dx∗,

where Ẇt is a one-dimensional white noise on a probability space (Ω,F ,P), σ denotes the
strength of noise and the stochastic integration is taken in Stratonovich sense. Formally,
under the unit mass assumption

∫

R2d f(t, x, v)dxdv = 1, the non-local operator F̃a[f ] can

split into the deterministic part Fa[f ] and stochastic part involving with Ẇt:

(1.2) F̃a[f ] =

∫

R2d

φ(x∗ − x)(v∗ − v)f(t, x∗, v∗)dv∗dx∗
︸ ︷︷ ︸

=:Fa[f ]

+σ(vc − v) ◦ Ẇt.

Now, we combine (1.1) and (1.2) to derive the stochastic kinetic C-S equation:

(1.3) ∂tft + v · ∇xft +∇v · (Fa[ft]ft) = σ∇v · ((v − vc)ft) ◦ Ẇt.

Here we use the standard notation for random probability density function ft(x, v) :=
f(t, x, v).

At the particle level, the effects of white noise perturbations were discussed in [1, 14, 21].
However, as far as the authors know, the kinetic C-S equation (1.2) perturbed by a multi-
plicative white noise has not been addressed in literature yet. For other types of stochastic
kinetic equations, we refer to [16, 31]. In this paper, we address the following two questions:

• (Well-posedness): Is the stochastic kinetic C-S equation (1.3) well-posed
in a suitable function space?

• (Emergence of flocking): If so, does the solution to (1.3) exhibit asymp-
totic flocking dynamics?

Our main results in this paper are affirmative answers for the above two questions. First,
we introduce a concept of a strong solution to (1.3) and then provide a global well-posedness
for strong solutions by employing a suitable regularization method and stopping time ar-
gument. Second, we provide a stochastic flocking estimate by showing that the expectation
of the second velocity moment decays to zero exponentially fast, when the communication
weight function φ has a positive infimum φm := infx∈Rd φ(x) and noise strength σ is suf-
ficiently small compared to φm. The main difficulty in our analysis arises, when we prove
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the existence of a solution to the regularized equation. Here, we obtain Wm,∞-estimates for
the sequence of functions that approximates the regularized equation. OurWm,∞-estimates
contain terms with infinite expectation. Hence, even though we can find a limit function of
the sequence from the pathwise estimates, it is not certain that the limit function becomes a
solution to the regularized equation (see Remark 3.2 for detailed discussion). To cope with
this problem, we used stopping time argument to get a solution to the regularized equation.

The rest of this paper is organized as follows. In Section 2, we briefly study several a
priori estimates for (1.3) and then briefly discuss main results on the global well-posedness
of strong solutions and asymptotic flocking estimate of classical solutions. In Section 3, we
provide a global well-posedness of strong solutions to (1.3) with regularized initial datum.
In Section 4, we derive a global well-posedness and emergent dynamics of strong solutions
to (1.3). Finally, Section 5 is devoted to a brief summary of main results and discussion on
future works.

2. Presentation of main results

In this section, we provide our main results on the global well-posedness of (1.3) and
emergent flocking dynamics.

First, we consider the Cauchy problem for (1.3):

∂tft + v · ∇xft +∇v · (Fa[ft]ft) = σ∇v · ((v − vc)ft) ◦ Ẇt, (t, x, v) ∈ R+ × R
2d,

f0(x, v) = f in(x, v),
(2.1)

where we assume that initial datum f in is deterministic. Next, we provide a definition for
a strong solution to the Cauchy problem (2.1) as follows.

Definition 2.1. For a given T ∈ (0,∞], ft = ft(x, v) is a strong solution to (2.1) on [0, T ]
if it satisfies the following relations:

(1) (Regularity): For k ≥ 1, ft ∈ C([0, T ];W k,p(R2d)) for any p ∈ [1,∞).

(2) (Integral relation): ft satisfies the equation (1.3) in distribution sense: for ψ ∈
C∞
c ([0, T ]× R

2d),

∫

R2d

ftψ dvdx =

∫

R2d

f inψ dvdx+

∫ t

0

∫

R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds

− σ

∫ t

0

(∫

R2d

[(v − vc)fs] · ∇vψ dvdx
)

◦ dWs, a.s. ω ∈ Ω.

(2.2)

Note that relation (2.2) can be reformulated in the Itô form under suitable conditions.

Lemma 2.1. Suppose that for every ψ ∈ C∞
c (R2d) and a random process ft ∈ L∞(Ω×[0, T ]×

R
2d),

∫

R2d ftψdvdx has a continuous Ft-adapted modification, where {Ft} is a family of σ-
field generated by the Wiener process. Then, ft is a Ft-semimartingale satisfying relation
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(2.2) if and only if for every ψ ∈ C∞
c (R2d),

∫

R2d

ftψ dvdx =

∫

R2d

f inψ dvdx+

∫ t

0

∫

R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds

− σ

∫ t

0

(∫

R2d

[(v − vc)fs] · ∇vψ dvdx
)

dWs

+
σ2

2

∫ t

0

∫

R2d

(v − vc)fs ·
[

∇v

(
(v − vc) · ∇vψ

)]

dvdxds a.s. ω ∈ Ω.

(2.3)

Proof. The proof is almost the same as in Lemma 13 from [16], but we provide a proof
for readers’ convenience. Note that the following relation between Itô and Stratonovich
integrals holds:

∫ t

0
hs ◦ dWs =

∫ t

0
hsdWs +

1

2
〈h,W 〉t,

where 〈·, ·〉 denotes the joint quadratic variation (see [24]). In our case, hs corresponds to
∫

R2d [(v− vc)fs] · ∇vψdvdx. Then, to deal with 〈h,W 〉t,, one needs to specify the stochastic
part of hs. Here, if we replace ψ in (3.3) by (v−vc)·∇vψ, we can find out that the stochastic

part of hs becomes −σ
∫ t
0

[ ∫

R2d((v − vc)fs) · ∇v(v · ∇vψ)dvdx
]

dWs. This means

〈∫

R2d

[(v − vc)f·] · ∇vψdvdx,W
〉

t
= −σ

∫ t

0

∫

R2d

[(v − vc)fs] · ∇v[(v − vc) · ∇vψ]dvdxds,

and we may conclude the proof here. �

Once we reformulate relation (2.2) to Itô form, we can show that the process ft satisfies
the following pointwise relation if f is sufficiently smooth.

Lemma 2.2. Suppose that ft ∈ L∞(Ω; C([0, T ]; C2(R2d))) has a continuous Ft-adapted mod-
ification and has a compact support in x and v. Then, ft satisfies relation (2.3) if and only
if ft satisfies the following relation:

ft(x, v)

= f in(x, v) −
∫ t

0

(

v · ∇xfs +∇v · (Fa[fs]fs)
)

ds+ σ

∫ t

0

[

∇v ·
(
(v − vc)fs

)]

dWs

+
σ2

2

∫ t

0
∇v ·

[

(v − vc)∇v ·
(
(v − vc)fs

)]

ds, P⊗ dx⊗ dv-a.s.

(2.4)

Proof. First, we assume that f satisfies (2.3). Since ft is smooth and compactly supported,
we use Fubini’s theorem to show that (2.3) is equivalent to

∫

R2d

ftψ dvdx =

∫

R2d

f inψ dvdx−
∫ t

0

∫

R2d

[

v · ∇xfs +∇v · (Fa[fs]fs)
]

ψ dvdxds

+ σ

∫ t

0

( ∫

R2d

∇v · [(v − vc)fs]ψ dvdx
)

dWs

+
σ2

2

∫ t

0

∫

R2d

∇v ·
[

(v − vc)∇v ·
(
(v − vc)fs

)]

dvdxds a.s. ω ∈ Ω.

(2.5)

Note that for each ψ ∈ D(R2d), it satisfies the relation (2.5) outside P-zero set that depends
on the choice of ψ. We recall from standard functional analysis that D(R2d) is separable,
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i.e. there exists {ψi}∞i=1 ⊆ D(R2d) which is dense in D(R2d). Here, we choose Ωi ⊂ Ω such

that P(Ωi) = 1 and (2.2) holds for ft and ψi over Ωi. Let Ω̃ := ∩∞
i=1Ωi. Then P(Ω̃) = 1 and

(2.2) holds for any ψi and ft over Ω̃.

Now, we show ft satisfies the relation (2.4). Define functionals Lt[f ] and M [ft] as follows:

L [ft](x, v) := ft − f in +

∫ t

0

(

v · ∇xfs +∇v · (Fa[fs]fs)
)

ds

− σ2

2

∫ t

0
∇v ·

[

(v − vc)∇v ·
(
(v − vc)fs

)]

ds,

M [ft] := ∇v · [(v − vc)ft].

For given (x∗, v∗) ∈ R
2d, we can choose a sequence {ρi} ⊂ D(R2d), using standard mollifier

technique or other tools, such that for any i ∈ N,

∣
∣
∣(ρi ∗ L [ft])(x

∗, v∗)− L [ft](x
∗, v∗)

∣
∣
∣+

∫ t

0

∣
∣
∣(ρi ∗ M [fs])(x

∗, v∗)− M [fs](x
∗, v∗)

∣
∣
∣

2
ds ≤ 1

2i+1
,

where the regularity and compact support of f can be used to guarantee the above inequality.
We also use the denseness of {ψi} to obtain {ψ̃i} ⊆ {ψi} which satisfies, for any i ∈ N,

∣
∣
∣(ρi − ψ̃i) ∗ Lt[f ](x

∗, v∗)
∣
∣
∣+

∫ t

0

∣
∣
∣(ρi − ψ̃i) ∗ M [fs](x

∗, v∗)
∣
∣
∣

2
ds ≤ 1

2i+1
,

Thus we have

(2.6)
(

ψ̃i ∗ Lt[f ]
)

(x∗, v∗) −→ Lt[f ](x
∗, v∗).

Moreover, we use Itô isometry to get

(2.7) E

[( ∫ t

0
(ψ̃i ∗ M [fs]− M [fs])dWs

)2
]

= E

[∫ t

0
(ψ̃i ∗ M [fs]− M [fs])

2ds

]

−→ 0.

Hence, we can obtain the convergence of (2.5) with ψ = ψ̃i(x
∗ − x, v∗ − v) towards (2.4) at

(x∗, v∗) as i→ ∞, by combining (2.6) and (2.7). We perform this procedure to obtain that
for every (x∗, v∗) ∈ R

2d, f satisfies relation (2.4) P-a.s. and this gives

E

[∣
∣
∣
∣
L[ft]−

∫ t

0
M [fs]dWs

∣
∣
∣
∣
(x, v)

]

= 0,

for every (x, v) ∈ R
2d. Thus, we use Fubini theorem to get

E

[∫

R2d

∣
∣
∣
∣
L[ft]−

∫ t

0
M [fs]dWs

∣
∣
∣
∣
dvdx

]

= 0.

This implies our first assertion.

Next, we assume that f satisfies (2.4) P ⊗ dx ⊗ dv-a.s. Then by (deterministic) Fubini’s
theorem, the following relation is easily obtained: for every ψ ∈ C∞

c (R2d),

∫

R2d

ftψ dvdx =

∫

R2d

f inψ dvdx+

∫ t

0

∫

R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds



6 HA, JUNG, AND RÖCKNER

+ σ

∫

R2d

( ∫ t

0
∇v · [(v − vc)fs]ψ dWs

)

dvdx

+
σ2

2

∫ t

0

∫

R2d

(v − vc)fs ·
[

∇v

(
(v − vc) · ∇vψ

)]

dvdxds a.s. ω ∈ Ω.

Since ft is in L
∞(Ω; C([0, T ]; C2(R2d))) and compactly supported, we have

∫

R2d

(∫ t

0

∣
∣
∣∇v · [(v − vc)fs]ψ

∣
∣
∣

2
ds

)1/2

dvdx <∞, a.s. ω ∈ Ω.

Then, we can use the stochastic Fubini theorem (see [36] and references therein) and deter-
ministic Fubini’s theorem to get

∫

R2d

( ∫ t

0
∇v · [(v − vc)fs]ψ dWs

)

dvdx =

∫ t

0

( ∫

R2d

∇v · [(v − vc)fs]ψ dvdx
)

dWs

= −
∫ t

0

( ∫

R2d

[(v − vc)fs] · ∇vψ dvdx
)

dWs,

which implies our desired result.
�

Remark 2.1. 1. If a strong solution ft to (1.3) satisfies conditions in Lemma 2.2, then ft
satisfies the relation (2.4).
2. If ft is a Ft-semimartingale with the regularity f ∈ L∞(Ω; C([0, T ]; C3,δ(R2d))) for some
δ ∈ (0, 1), we may use Lemma 2.2 in [8] to obtain that relation (2.4) is equivalent to (2.1).
3. We say ft is a classical solution to (2.1) if it is a Ft-semimartingale satisfying relation
(2.1) pointwisely and the regularity condition ft ∈ L∞(Ω; C([0, T ]; C3,δ(R2d))) for some δ ∈
(0, 1).

Next, we study the propagation of velocity moments along the stochastic flow (2.1)1. For
a random density function ft, we set

(2.8) M0(t) :=

∫

R2d

ftdvdx, M1(t) :=

∫

R2d

vftdvdx, M2(t) :=

∫

R2d

|v|2ftdvdx, t ≥ 0.

Lemma 2.3. Let ft be a classical solution to (2.1) which is compactly supported in x and
v and satisfies

M0(0) = 1, M1(0) = 0.

Then, we have

M0(t) = 1, M1(t) = 0, M2(t) ≤M2(0) exp(−2φmt− 2σWt), t ≥ 0.

Proof. • (Conservation of mass): It follows from Remark 2.1 that

ft(x, v) = f in(x, v)−
∫ t

0

(

v · ∇xfs +∇v · (Fa[fs]fs)
)

ds+ σ

∫ t

0

(

∇v · ((v − vc)fs)
)

dWs

+
σ2

2

∫ t

0
∇v ·

[

(v − vc)∇v ·
(
(v − vc)fs

)]

ds.

(2.9)
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We integrate (2.9) over (x, v) ∈ R
2d to get

∫

R2d

ft(x, v)dvdx

=

∫

R2d

f in(x, v)dvdx −
∫

R2d

∫ t

0

(

v · ∇xfs +∇v · (Fa[fs]fs)
)

dsdvdx

+ σ

∫

R2d

[ ∫ t

0

(

∇v · ((v − vc)ft)
)

dWs

]

dvdx

+
σ2

2

∫

R2d

∫ t

0
∇v ·

[

(v − vc)∇v ·
(
(v − vc)fs

)]

dsdvdx

=:

∫

R2d

f in(x, v)dvdx + I11 + I12 + I13.

Next, we show that the terms I1i are zero using deterministic and stochastic Fubini’s the-
orems.

⋄ (Estimate of I11 and I13): Since ft has a compact support in (x, v), we can use determin-
istic Fubini’s theorem to see

I11 + I13 = −
∫ t

0

∫

R2d

(

∇x · (vfs) +∇v · (Fa[fs]fs)
)

dvdxds

+
σ2

2

∫ t

0

∫

R2d

∇v ·
[

(v − vc)∇v ·
(
(v − vc)fs

)]

dvdxdx

= 0.

⋄ (Estimate of I12): As in the proof of Lemma 2.2, we can use the stochastic Fubini theorem
to get

I12 =
∫ t

0

( ∫

R2d

∇v · ((v − vc)ft)dvdx
)

dWs = 0.

• (Conservation of momentum): In this case, we multiply v to (2.9) and use the same
argument for conservation of mass to derive

M1(t) =M1(0) = 0, t ≥ 0.

• (Dissipation estimate): We multiply (2.9) by |v|2 and use stochastic Fubini’s theorem to
have

(2.10) dM2(t) =
(

2σ2M2(t) +

∫

R2d

2v · Fa[fs]fsdvdx
)

dt− 2σM2(t)dWt,

where we used the relation M1(t) = 0.
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We use (2.10) to get

M2(t) =M2(0) +

∫ t

0

[( ∫

R2d

2v · Fa[fs]fsdvdx
)

+ 2σ2M2(s)

]

ds− 2σ

∫ t

0
M2(s)dWs

=M2(0) + 2

∫ t

0

∫

R4d

φ(x∗ − x)(v∗ − v) · vfs(x∗, v∗)fs(x, v)dv∗dx∗dvdxds

+ 2σ2
∫ t

0
M2(s)ds − 2σ

∫ t

0
M2(s)dWs

=M2(0) −
∫ t

0

∫

R4d

φ(x∗ − x)|v − v∗|2fs(x∗, v∗)fs(x, v)dv∗dx∗dvdxds

+ 2σ2
∫ t

0
M2(s)ds − 2σ

∫ t

0
M2(s)dWs

≤M2(0) − φm

∫ t

0

∫

R4d

|v − v∗|2fs(x∗, v∗)fs(x, v)dv∗dx∗dvdxds

+ 2σ2
∫ t

0
M2(s)ds − 2σ

∫ t

0
M2(s)dWs

≤M2(0) − 2(φm − σ2)

∫ t

0
M2(s)ds− 2σ

∫ t

0
M2(s)dWs.

Then we use Lemma A.1 and Lemma A.2 to get

M2(t) ≤M2(0) exp(−2φmt− 2σWt).

�

Remark 2.2. It is well-known that

lim sup
t→∞

Wt√
2t log log t

= 1, for a.s. ω ∈ Ω.

Thus, if φm > 0, there exists t∗ = t∗(ω) such that for a.s. ω,

−2φmt− 2σWt ≤ −φmt, t ≥ t∗(ω).

Hence, we have an exponential decay of M2(t) for each sample path:

M2(t) ≤M2(0) exp(−φmt), for t ≥ t∗(ω).

Moreover, if φm > σ2, we also obtain the emergence of asymptotic flocking discussed in [18]:

E[M2(t)] ≤M2(0) exp(−2(φm − σ2)t), t ≥ 0.

Finally, we are ready to provide a framework (F) and main results below:

• (F1): The initial datum f in is nonnegative, compactly supported in x and v and
independent of ω.

• (F2): For k ≥ 1, f in and φ are assumed to be in Ck(R2d) and C∞(R2d), respectively.

• (F3): The zeroth and first moment of f in are normalized:

(2.11)

∫

R2d

f indvdx = 1,

∫

R2d

vf indvdx = 0.
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Note that due to Lemma 2.1, the conditions (2.11) would imply

∫

R2d

ftdvdx = 1,

∫

R2d

vftdvdx = 0, t ≥ 0.

Under the framework (F), our main results are summarized as follows.

Theorem 2.1. Let T ∈ (0,∞) and assume that f in and φ satisfies the framework (F).
Then, there exists a strong solution ft to (2.1) on [0, T ] such that

E‖ft‖L∞ ≤ ‖f in‖L∞ exp

{(

dφM +
(σd)2

2

)

t

}

, EM2(t) ≤M2(0) exp(2σ
2t), t ∈ [0, T ).

Moreover, if a strong solution ft exists on (0,∞) and φm := infx∈RN φ(x) > σ2, then one
obtains an asymptotic flocking estimate:

EM2(t) ≤M2(0) exp(−2(φm − σ2)t), t > 0.

Proof. For the proof, we will first regularize the initial datum using standard mollification
and then solve the linearized system for (2.1) to get a sequence of approximate solutions.
Then, we use the stopping time argument to get a strong solution for (2.1) with the given
initial datum. The detailed proof will be presented in Section 4. �

Remark 2.3. Note that for k > 3, a strong solution ft to (2.1) can be shown to satisfy
the equation (2.1) pointwisely under our framework. Moreover, we can use the stability
estimates for the classical solutions to get the uniqueness of solutions.

3. Construction of approximate solutions

In this section, we provide a global well-posedness of (2.1) with regularized one for the
given initial datum satisfying (F). In particular, the first velocity moment is assumed to
be zero, i.e., vc(t) = 0.

Let f in,ε be a smooth mollification of the given initial datum f in satisfying the framework
(F). Then, with this regularized initial datum, consider the Cauchy problem (2.1) with
regularized initial datum:

∂tf
ε
t + v · ∇xf

ε
t +∇v · (Fa[f

ε
t ]f

ε
t ) = σ∇v · (vf εt ) ◦ Ẇt, (t, x, v) ∈ R+ ×R

2d,

f ε0 (x, v) = f in,ε(x, v).
(3.1)

Note that due to the framework (F), the initial datum f in and its partial derivatives up to
order k are uniformly continuous on R

2d and there exists a constant R0 > 0, such that

suppf in ⊆ BR0
(0),

where BR0
(0) is a ball of radius R0 centered at 0 ∈ R

2d. As mentioned above, we use a
mollifier to obtain a family of regularized initial data f in,ε ∈ C∞(R2d), ε ∈ (0, 1), so that
the regularized datum satisfies the following conditions:

• (Fε1): {f in,ε} are nonnegative, compactly supported, converge to f in in Ck(R2d)
and

‖f in,ε‖W k,∞ ≤ ‖f in‖W k,∞ .
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• (Fε2): {M ε
2}(0) is uniformly bounded with respect to ε and converges to M2(0) as

ε→ 0.

• (Fε3): The zeroth and first moment of f in,ε are initially constrained:
∫

R2d

f in,εdxdv = 1,

∫

R2d

vf in,εdvdx = 0.

• (Fε4): f in,ε has a compact support in x and v, and satisfy

suppf in,ε ⊆ BR0+1(0).

In the following three subsections, we will provide a global well-posedness for system (3.1).

3.1. Construction of approximate solutions. In this subsection, we provide a sequence
of approximate solutions to (3.1) using the successive approximations.

First, the zeroth iterate f0,εt is simply defined as the mollified initial datum:

f0,εt (x, v) := f in,ε(x, v), (x, v) ∈ R
2d.

For n ≥ 1, suppose that the (n− 1)-th iterate fn−1,ε
t is given. Then, n-th iterate is defined

as the solution to the linear equation with fixed initial datum:

(3.2)

{

∂tf
n,ε
t + v · ∇xf

n,ε
t +∇v · (Fa[f

n−1,ε
t ]fn,εt ) = σ∇v · (vfn,εt ) ◦ Ẇt, n ≥ 1,

fn,ε0 (x, v) = f in,ε(x, v).

The linear system (3.2) can be solved by the method of stochastic characteristics. Let
ϕn,ε
t (x, v) := (Xn,ε

t (x, v), V n,ε
t (x, v)) be the forward stochastic characteristics, which is a

solution to the following SDE:

(3.3)







dXn,ε
t = V n,ε

t dt,

dV n,ε
t = Fa[f

n−1,ε
t ](Xn,ε

t , V n,ε
t )dt− σV n,ε

t ◦ dWt,

(Xn,ε
t (0), V n,ε

t (0)) = (x, v) ∈ suppf in,ε.

Note that the SDE (3.3) is equivalent to the following Itô SDE [15] :

(3.4)







dXn,ε
t = V n,ε

t dt,

dV n,ε
t =

(

Fa[f
n−1,ε
t ](Xn,ε

t , V n,ε
t ) +

σ2

2
V n,ε
t

)

dt− σV n,ε
t dWt,

(Xn,ε
t (0), V n,ε

t (0)) = (x, v) ∈ suppf in,ε.

Here, we can deduce from our framework, Lemma 3.1 and Theorem 3.2 in [8] that for any
m ≥ 3, (3.3) has a unique solution fn,εt which is a Cm-semimartingale for every n ≥ 0 and
the characteristics (3.3) becomes a Cm-diffeomorphism. Then, fn,εt can also be represented
by the following integral formula:

(3.5) fn,εt (ϕn,ε
t (x, v)) = f in,ε(x, v) exp

[

−
∫ t

0
∇v · Fa[f

n−1,ε](s, ϕn,ε
s (x, v))ds + dσWt

]

.

Note that if f in,ε is nonnegative, then surely fn,εt is also nonnegative as well. Before we
finish this subsection, we also remark that the linear, first-order Stratonovich equation (3.2)
is equivalent to the following parabolic Itô equation (see Corollary 3.3. in [8]):
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(3.6)







∂tf
n,ε
t + v · ∇xf

n,ε
t +∇v · (Fa[f

n−1,ε
t ]fn,εt )

= σ∇v · (vfn,εt )Ẇt +
σ2

2
∇v ·

[

v∇v · (vft)
]

, n ≥ 1,

fn,ε0 (x, v) = f in,ε(x, v).

3.2. Estimates on approximate solutions. In this subsection, we provide several esti-
mates for the approximate solutions for (3.2). To be more precise, we would try to obtain
n and ε-independent estimates for the later sections. Before we move on, we define p-th
velocity moments Mn,ε

p (t), p = 0, 1, 2:

Mn,ε
0 (t) :=

∫

R2d

fn,εt dvdx, Mn,ε
1 (t) :=

∫

R2d

vfn,εt dvdx,

Mn,ε
2 (t) :=

∫

R2d

|v|2fn,εt dvdx, Mn,ε
p (0) := M ε

p0.

Before we provide the uniform estimates for the p-th (p = 0, 1, 2) moments, we set

(3.7) M∞
20 := sup

ε∈(0,1)
M ε

2 (0), φM := sup
x∈RN

φ(x) <∞, γ := max{M∞
20 , φM}.

We also present a technical lemma from [3] for later discussion.

Lemma 3.1. [3] Let T ∈ (0,∞] and (an)n∈N be a sequence of nonnegative continuous
functions on [0, T ] satisfying

an(t) ≤ A+B

∫ t

0
an−1(s)ds + C

∫ t

0
an(s)ds, t ∈ [0, T ], n ≥ 1,

where A, B and C are nonnegative constants.

(1) If A = 0, there exists a constant Λ ≥ 0 depending on B, C and supt∈[0,T ] a0(t) such
that

an(t) ≤
(Λt)n

n!
, t ∈ [0, T ], n ∈ N.

(2) If A > 0 and C = 0, there exists a constant Λ ≥ 0 depending on A, B and
supt∈[0,T ] a0(t) such that

an(t) ≤ Λexp(Λt), t ∈ [0, T ], n ∈ N.

Remark 3.1. 1. In (2) of Lemma 3.1, Λ can be explicitly written as

Λ := max

{

A, B, sup
t∈[0,T ]

a0(t)

}

.

2. We can also use the similar argument to obtain the following estimate for (2):

an(t) ≤ (Λ + κt) exp(Λt), t ∈ [0, T ], n ∈ N,

where Λ := max{A,B} and κt := sup0≤s≤t a0(s).
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Proposition 3.1. For every n ∈ N and T ∈ (0,∞), let fn,εt be a solution to (3.2). Then,
for any t ∈ (0, T ) we have

Mn,ε
0 (t) = 1, Mn,ε

1 (t) = 0, Mn,ε
2 (t) ≤ (γ +Kt) exp{(γ + φM )t− 2σWt},

where γ is a constant in (3.7) and Kt is defined as

Kt := M∞
20 sup

0≤s≤t
exp(−φMs+ 2σWs).

Proof. We will use the same arguments as in Lemma 2.3. First note that fn,εt satisfies re-
lation (3.6) and fn,εt is compactly supported in x and v, since f in,ε is compactly supported
in the phase space and ϕn,ε

t is a Cm-diffeomorphisim. Thus, we may follow the arguments
in Lemma 2.3 to derive the conservation estimates.

For the dissipation estimate of Mn,ε
2 , we use a similar argument to Lemma 2.3 to have

Mn,ε
2 (t) =M ε

2 (0) + 2

∫ t

0

∫

R4d

φ(x∗ − x)(v∗ − v) · vfn−1,ε
s (x∗, v∗)f

n,ε
s (x, v)dv∗dx∗dvdxds

+ 2σ2
∫ t

0
Mn,ε

2 (s)ds− 2σ

∫ t

0
Mn,ε

2 (s)dWs

≤M ε
2 (0) + 2

∫ t

0

∫

R4d

φ(x∗ − x)v∗ · vfn−1,ε
s (x∗, v∗)f

n,ε
s (x, v)dv∗dx∗dvdx

+ 2σ2
∫ t

0
Mn,ε

2 (s)ds− 2σ

∫ t

0
Mn,ε

2 (s)dWs

≤M ε
2 (0) + φM

∫ t

0
Mn−1,ε

2 (s)ds + (φM + 2σ2)

∫ t

0
Mn,ε

2 (s)ds− 2σ

∫ t

0
Mn,ε

2 (s)dWs,

where we used Young’s inequality on the second inequality. In differential form, we have

(3.8) dMn,ε
2 (t) ≤

{

φMM
n−1,ε
2 (t) + (φM + 2σ2)Mn,ε

2 (t)
}

dt− 2σMn,ε
2 (t)dWt.

Then, it follows from (3.8) and comparison theorem (in Lemma A.2 ) that

Mn,ε
2 (t) ≤ Xt,

where the process Xt satisfies
{

dXt =
{

φMM
n−1,ε
2 (t) + (φM + 2σ2)Xt

}

dt− 2σXtdWt, t > 0,

X0 =M ε
2 (0).

It follows from Lemma A.1 that Xt can be represented as

Xt = X0 exp(φM t− 2σWt) + φM

∫ t

0
exp{φM (t− s)− 2σ(Wt −Ws)}Mn−1,ε

2 (s)ds.

This implies

Mn,ε
2 (t) ≤M ε

2 (0) exp(φM t− 2σWt) + φM

∫ t

0
exp{φM (t− s)− 2σ(Wt −Ws)}Mn−1,ε

2 (s)ds.

Now, we set

an(t) :=Mn,ε
2 (t) exp{−φM t+ 2σWt}.
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Then, it satisfies

an+1(t) ≤M ε
20 + φM

∫ t

0
an(s)ds.

We use Lemma 3.1 in the way from Remark 3.1 to get

an(t) ≤ (γ +Kt)e
γt, t ∈ (0, T ).

This yields the desired result. �

We also provide uniform estimates for the stochastic characteristic flows.

Proposition 3.2. For each n ∈ N and T ∈ (0,∞), let (Xn,ε
t , V n,ε

t ) be the stochastic char-
acteristic flow for (3.2) with this initial data:

(Xn,ε
0 , V n,ε

0 ) = (x, v) ∈ suppf in,ε.

Then for t ∈ (0, T ), we have

(i) |V n,ε
t |2 ≤

{

|v|2 + φM

∫ t

0
(γ +Ks) exp(γs)ds

}

exp(φM t− 2σWt).

(ii) |Xn,ε
t |2 ≤ 2

(

|x|2 + t

∫ t

0

{

|v|2 + φM

∫ s

0
(γ +Kτ ) exp(γτ)dτ

}

exp(φMs− 2σWs)ds

)

.

Proof. (i) It follows from Itô’s lemma and (3.4) that

d|V n,ε
t |2 = 2V n,ε

t · dV n,ε
t + dV n,ε

t · dV n,ε
t

= 2
(

Fa[f
n−1,ε
t ](Xn,ε

t , V n,ε
t ) · V n,ε

t + σ2|V n,ε
t |2

)

dt− 2σ|V n,ε
t |2dWt

≤
(

2

∫

R2d

φ(x∗ −Xn,ε
t )(v∗ · V n,ε

t )fn−1,ε
t (x∗, v∗)dv∗dx∗ + σ2|V n,ε

t |2
)

dt− 2σd|V n,ε
t |2dWt

≤
(

φMM
n−1,ε
2 (t) + (φM + 2σ2)|V n,ε

t |2
)

dt− 2σ|V n,ε
t |2dWt,

where dV n,ε
t · dV n,ε

t denotes a handy notation for a quadratic variation of V n,ε
t .

We use Lemma A.1 to get

|V n,ε
t |2 ≤ |v|2 exp(φM t− 2σWt) + φM

∫ t

0
exp{φM (t− s)− 2σ(Wt −Ws)}Mn−1,ε

2 (s)ds

≤
{

|v|2 + φM

∫ t

0
(γ +Ks) exp(γs)ds

}

exp(φM t− 2σWt).

(ii) For the estimate of spatial process, we use Cauchy-Schwarz inequality to get

|Xn,ε
t |2 ≤

(

|x|2 +
∫ t

0
|V n,ε

s |2ds
)2

≤ 2

(

|x|2 + t

∫ t

0
|V n,ε

s |2ds
)

≤ 2

(

|x|2 + t

∫ t

0

{

|v|2 + φM

∫ s

0
(γ +Kτ ) exp(γτ)dτ

}

exp(φMs− 2σWs)ds

)

.

This yields the desired result.
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�

As a corollary of Proposition 3.2, we have estimates for the sizes of velocity and spatial
supports: We set

X n,ε(t) := sup{|x| : fn,εt (x, v) 6= 0 for some v ∈ R
d},

Vn,ε(t) := sup{|v| : fn,εt (x, v) 6= 0 for some x ∈ R
d}.

Corollary 3.1. For each n ∈ N and T ∈ (0,∞], let (Xn,ε
t , V n,ε

t ) be the stochastic charac-
teristic flow for (3.2) with the initial data:

(Xn,ε
0 , V n,ε

0 ) = (x, v) ∈ suppf in,ε.

Then for t ∈ (0, T ), we have

|Vn,ε(t)| ≤ |V∞(t)| and |X n,ε(t)| ≤ |X∞(t)|,
where X∞(t) and V∞(t) are given by the following relations:

|X∞(t)|2

:= 2

(

(R0 + 1)2 + t

∫ t

0

{

(R0 + 1)2 + φM

∫ s

0
(γ +Kτ ) exp(γτ)dτ

}

exp(φMs− 2σWs)ds

)

,

|V∞(t)|2 :=

{

(R0 + 1)2 + φM

∫ t

0
(γ +Ks) exp(γs)ds

}

exp(φM t− 2σWt).

Proof. It follows from Proposition 3.2 that

|Vn,ε(t)|2 ≤
{

|Vn,ε(0)|2 + φM

∫ t

0
(γ +Ks) exp(γs)ds

}

exp(φM t− 2σWt)

≤
{

(R0 + 1)2 + φM

∫ t

0
(γ +Ks) exp(γs)ds

}

exp(φM t− 2σWt) = |V∞(t)|2.

This yields the first estimate for velocity support. On the other hand, we also use Proposi-
tion 3.2 to get

|X n,ε(t)|2

≤ 2

(

|X n,ε(0)|2 + t

∫ t

0

{

|Vn,ε(0)|2 + φM

∫ s

0
(γ +Kτ ) exp(γτ)dτ

}

exp(φMs− 2σWs)ds

)

≤ 2

(

(R0 + 1)2 + t

∫ t

0

{

(R0 + 1)2 + φM

∫ s

0
(γ +Kτ ) exp(γτ)dτ

}

exp(φMs− 2σWs)ds

)

=: |X∞(t)|2.
�

Remark 3.2. Note that fn,εt has compact supports in x and v for every sample path which
are bounded uniformly in n and ε.

Now, we are ready to state the results on the uniform bound for the sequence {fn,εt }.
Proposition 3.3. For every n, m ∈ N and t ∈ (0, T ), there exists a nonnegative process
Am

t which has continuous sample paths and is independent of n and ε such that

‖fn,εt ‖Wm,∞ ≤ Am
t · ‖f in,ε‖Wm,∞ .
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Proof. Since the proof is rather lengthy, we postpone it to Appendix B. �

Remark 3.3. It is easy to see that for fixed t and ω, Am
t is monotonically increasing with

respect to m.

Next, we prove that the sample paths of approximate solutions become a Cauchy sequence
in a suitable functional space. For this, we set

‖ϕn,ε
t ‖L∞ := sup

(x,v)∈suppf in,ε

|ϕn,ε
t (x, v)|.

Proposition 3.4. For every n and t ∈ (0, T ), there exists a nonnegative process Bt which
has continuous sample paths and is independent of n and ε such that

‖fn,εt − fn−1
t ‖2L∞ + ‖ϕn,ε

t − ϕn−1,ε
t ‖2L∞

≤ Bt

[ ∫ t

0

(

‖ϕn,ε
s − ϕn−1,ε

s ‖2L∞ + ‖fn−1,ε
s − fn−2,ε

s ‖2L∞

)

ds

]

, n ≥ 2.
(3.9)

Proof. For the estimate (3.9), we claim:

(i) ‖fn,εt − fn−1,ε
t ‖2L∞

≤ B1
t

[

‖ϕn,ε
t − ϕn−1,ε

t ‖2L∞ +

∫ t

0
C1
s

(

‖ϕn,ε
s − ϕn−1,ε

s ‖2L∞ + ‖fn−1,ε
s − fn−2,ε

s ‖2L∞

)

ds
]

.

(ii) ‖ϕn,ε
t − ϕn−1,ε

t ‖2L∞

≤ B2
t

( ∫ t

0
C2
s (‖ϕn,ε

s − ϕn−1,ε
s ‖2L∞ + ‖fn−1,ε

s − fn−2,ε
s ‖2L∞)ds

)

,

(3.10)

where Bi
t and Ci

t (i = 1, 2) are nonnegative processes which has continuous sample paths
and is independent of n and ε, respectively.

• (Estimate for (i)): By direct estimates, we have

fn,εt (ϕn,ε
t )− fn−1,ε

t (ϕn,ε
t )

= {fn,εt (ϕn,ε
t )− fn−1,ε

t (ϕn−1,ε
t )} − {fn−1,ε

t (ϕn,ε
t )− fn−1,ε

t (ϕn−1,ε
t )}

=: I21 + I22.
Below, we estimate the terms I2i separately.

⋄ (Estimate on I21): We use mean-value theorem, unit mass, (Fε1) and Corollary 3.1 to
obtain
∣
∣
∣I21

∣
∣
∣ = |f in,ε exp(dσWt)|

×
∣
∣
∣ exp

(

−
∫ t

0
∇v · Fa[f

n−1,ε
s ](ϕn,ε

s )ds

)

− exp

(

−
∫ t

0
∇v · Fa[f

n−2,ε
s ](ϕn−1,ε

s )ds

) ∣
∣
∣

≤ ‖f in,ε‖L∞ exp(dφM t+ dσWt)

×
∣
∣
∣
∣

∫ t

0

(

∇v · Fa[f
n−1,ε
s ](ϕn,ε

s )−∇v · Fa[f
n−2,ε
s ](ϕn−1,ε

s )
)

ds

∣
∣
∣
∣

≤ d‖f in‖L∞ exp(dφM t+ dσWt)
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×
∫ t

0

∫

R2d

∣
∣φ(x∗ −Xn,ε

s )fn−1,ε
s − φ(x∗ −Xn−1,ε

s )fn−2,ε
s

∣
∣ dv∗dx∗ds

≤ d‖f in‖L∞ exp(dφM t+ dσWt)

×
[ ∫ t

0

∫

R2d

∣
∣φ(x∗ −Xn,ε

s )− φ(x∗ −Xn−1,ε
s )

∣
∣ fn−1,ε

s

+ φ(x∗ −Xn−1,ε
s )|fn−1,ε

s − fn−2,ε
s |dv∗dx∗ds

]

≤ d‖φ‖C1‖f in‖L∞ exp(dφM t+ dσWt)

×
[ ∫ t

0
|Xn,ε

s −Xn−1,ε
s |ds+

∫ t

0
(4X∞(s)V∞(s))d‖fn−1,ε

s − fn−2,ε
s ‖L∞ds

]

.

⋄ (Estimate on I22): By the mean-value theorem, we have

|I22| ≤ ‖fn−1,ε
t ‖W 1,∞‖ϕn,ε

t − ϕn−1,ε
t ‖L∞ ≤ ‖f in,ε‖W 1,∞A1

t‖ϕn,ε
t − ϕn−1,ε

t ‖L∞

≤ ‖f in‖W 1,∞A1
t‖ϕn,ε

t − ϕn−1,ε
t ‖L∞ .

Now, we collect the estimates for I21 and I22, use Young’s inequality, Cauchy-Schwarz
inequality and take a supremum over all characteristic flows to get

‖fn,εt − fn−1,ε
t ‖2L∞

≤ 2 sup
ϕn,ε
t

(|I21|2 + |I22|2)

≤ 2
(

d‖φ‖C1‖f in,ε‖L∞ exp(dφM t+ dσWt)
)2

×
[ ∫ t

0
|Xn,ε

s −Xn−1,ε
s |ds+

∫ t

0
(4X∞(s)V∞(s))d‖fn−1,ε

s − fn−2,ε
s ‖L∞ds

]2

+ 2
(

‖f in‖W 1,∞A1
t‖ϕn,ε

t − ϕn−1,ε
t ‖L∞

)2

≤ 4
(

d‖φ‖C1‖f in,ε‖L∞ exp(dφM t+ dσWt)
)2

×
[( ∫ t

0
|Xn,ε

s −Xn−1,ε
s |ds

)2
+

( ∫ t

0
(4X∞(s)V∞(s))d‖fn−1,ε

s − fn−2,ε
s ‖L∞ds

)2
]

+ 2
(

‖f in‖W 1,∞A1
t‖ϕn,ε

t − ϕn−1,ε
t ‖L∞

)2

≤ 4T
(

d‖φ‖C1‖f in,ε‖L∞ exp(dφM t+ dσWt)
)2

×
[ ∫ t

0
|Xn,ε

s −Xn−1,ε
s |2ds+

∫ t

0
(4X∞(s)V∞(s))2d‖fn−1,ε

s − fn−2,ε
s ‖2L∞ds

]

+ 2
(

‖f in‖W 1,∞A1
t‖ϕn,ε

t − ϕn−1,ε
t ‖L∞

)2

≤ B1
t

[

‖ϕn,ε
t − ϕn−1,ε

t ‖2L∞ +

∫ t

0
C1
s

(

‖ϕn,ε
s − ϕn−1,ε

s ‖2L∞ + ‖fn−1,ε
s − fn−2,ε

s ‖2L∞

)

ds
]

,
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where B1
t and C1

t are given by

B1
t := 4T

{
d‖φ‖1‖f in‖L∞ exp(dφM t+ σdWt)

}2
+ 2

(
‖f in‖W 1,∞A1

t

)2
,

C1
t := 1 + (4X∞(t)V∞(t))2d.

• (Estimate for (ii)): We use (3.3) and Itô’s lemma to see

d|V n,ε
t − V n−1

t |2

= 2(V n,ε
t − V n−1,ε

t )d(V n,ε
t − V n−1,ε

t ) + d(V n,ε
t − V n−1,ε

t ) · d(V n,ε
t − V n−1,ε

t )

= 2







(Fa[f
n−1,ε
t ](ϕn,ε

t )− Fa[f
n−2,ε
t ](ϕn−1,ε

t )) · (V n,ε
t − V n−1,ε

t )
︸ ︷︷ ︸

=:I31

+σ2|V n,ε
t − V n−1,ε

t |2






dt

− 2σ|V n,ε
t − V n−1,ε

t |2dWt.

Next, we estimate the term I31 as follows.

I31 =
(

Fa[f
n−1,ε
t ](ϕn,ε

t )− Fa[f
n−2,ε
t ](ϕn−1,ε

t )
)

· (V n,ε
t − V n−1,ε

t )

≤
∫

R2d

[(

φ(x∗ −Xn,ε
t )− φ(x∗ −Xn−1,ε

t )
)

(v∗ − V n,ε
t )fn−1,ε

t

− φ(x∗ −Xn−1,ε
t )(V n,ε

t − V n−1,ε
t )fn−1,ε

t

+ φ(x∗ −Xn−1,ε
t )(v∗ − V n−1,ε

t )(fn−1,ε
t − fn−2,ε

t )

]

· (V n,ε
t − V n−1,ε

t )dv∗dx∗

≤
(

‖φ‖C1 + (2V∞(t))d+1(2X∞(t))d + 2V∞(t)
)

× (|V n,ε
t − V n−1,ε

t |2 + |Xn,ε
t −Xn−1,ε

t |2 + ‖fn−1,ε
t − fn−2,ε

t ‖2L∞).

This implies

d|V n,ε
t − V n−1,ε

t |2 ≤ B̃t

(

|V n,ε
t − V n−1,ε

t |2 + |Xn,ε
t −Xn−1,ε

t |2 + ‖fn−1,ε
t − fn−2,ε

t ‖2L∞

)

dt

− 2σ|V n,ε
t − V n−1,ε

t |2dWt,

where the process B̃t is defined as follows.

B̃t := 2
(

‖φ‖C1 + (2V∞(t))d+1(2X∞(t))d + V∞(t) + σ2
)

.

We apply Lemma A.1 and Lemma A.2 to get

|V n,ε
t − V n−1,ε

t |2 ≤
∫ t

0
exp

{∫ t

s
B̃τdτ − 2σ2(t− s)− 2σ(Wt −Ws)

}

× B̃s

(

|Xn,ε
s −Xn−1,ε

s |2 + ‖fn−1,ε
s − fn−2,ε

s ‖2L∞

)

ds.

(3.11)

On the other hand, it is easy to see that

(3.12) |Xn,ε
t −Xn−1,ε

t |2 ≤
∫ t

0
|Xn

s −Xn−1,ε
s |2ds+

∫ t

0
|V n,ε

s − V n−1,ε
s |2ds.
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We combine all estimates (3.11) and (3.12) to derive (ii), which is satisfied by the following
processes:

B2
t := 1 + exp

(∫ t

0
B̃τdτ − 2σ2t− 2σWt

)

,

C2
t := 1 + (B2

t − 1)−1.

Finally, for (i) and (ii) in (3.10), the combination (i) + (B1
t + 1) · (ii) gives

‖fn,εt − fn−1,ε
t ‖2L∞ + ‖ϕn,ε

t − ϕn−1,ε
t ‖2L∞

≤ B1
t

(∫ t

0
C1
s (‖ϕn,ε

s − ϕn−1,ε
s ‖2L∞ + ‖fn−1,ε

s − fn−2,ε
s ‖2L∞)ds

)

+ (B1
t + 1)B2

t

(∫ t

0
C2
s (‖ϕn,ε

s − ϕn−1,ε
s ‖2L∞ + ‖fn−1,ε

s − fn−2,ε
s ‖2L∞)ds

)

≤ Bt

(∫ t

0
(‖ϕn,ε

s − ϕn−1,ε
s ‖2L∞ + ‖fn−1,ε

s − fn−2,ε
s ‖2L∞)ds

)

,

where the process Bt is defined as follows.

Bt :=
(
B1
t + (B1

t + 1)B2
t

)
( sup
0≤s≤t

C1
s + sup

0≤s≤t
C2
s ).

This implies our desired result. �

For each t and ω ∈ Ω, we define

∆ε
n(t, ω) := ‖fn,εt − fn−1,ε

t ‖2L∞ + ‖ϕn,ε
t − ϕn−1,ε

t ‖2L∞ .

Corollary 3.2. The functional ∆ε
n(t) satisfies

∆ε
n(t, ω) ≤

(K(ω)t)n

n!
, for each t ∈ [0, T ] and a.s. ω ∈ Ω,

where K = K(ω) is a nonnegative random variable.

Proof. It follows from Proposition 3.4 that

∆ε
n+1(t) ≤ Bt

(∫ t

0
(∆ε

n(s) + ∆ε
n+1(s))ds

)

.

Since Bt is a nonnegative process with continuous sample paths, there exists a nonnegative
random variable B = B(ω) such that

sup
0≤t≤T

Bt(ω) ≤ B(ω) <∞, for each ω ∈ Ω.

Thus, we can use the Grönwall-type lemma in Lemma 3.1 to deduce

∆n(t, ω) ≤
(K(ω)t)n

n!
, for each t ∈ [0, T ], ω ∈ Ω,

where K = K(ω) depends on B(ω). �

Remark 3.4. Corollary 3.2 implies that for every ω, fn,εt (ω) → f εt (ω) in C([0, T ];L∞(R2d)).
Since fn,εt is Ft-adapted (where Ft is a filtration generated by the Wiener process) and f εt
is a pointwise limit of fn,ε over Ω, we have f is Ft-adapted. Moreover, we have a uniform
boundedness of fn,εt in L∞([0, T ];Wm,p(R2d)) for any p ∈ [1,∞).
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By the property of reflexive Banach space, there exists a subsequence {fnk,ε(ω)} ⊆ {fn,ε(ω)}
which is weakly convergent to f̃t(ω) in L∞([0, T ];Wm,p(R2d)) for each ω ∈ Ω and every
p ∈ [1,∞). Since we have already a strong convergence in the lower order, we can conclude

that f εt (ω) = f̃t(ω).
However, we can not proceed further, since it is not clear whether f εt satisfies the equation

(1.3) at this moment. This is due to the noise term in the right-hand side of (3.2). It is
not certain whether the Stratonovich integral of f εt can be defined or not. In addition, even
if the noise term can be well-defined, it is also not clear whether the Stratonovich integral
of fn,ε converges to that of f εt or not.

3.3. Convergence estimate. In this subsection, we provide a global existence of solution
to system (3.2) by showing that the limit of the sequence {fn,εt } exists as n → ∞ for each
ε, and this limit is indeed a strong solution to (2.8) corresponding to the regularized initial
datum f in,ε.

Theorem 3.1. Suppose that f in and φ satisfy the framework (F) in Section 2. Then, for
given T ∈ (0,∞), there exists a strong solution f εt to (3.2).

Proof. In order to cope with problems discussed in Remark 3.4, we employ the stopping
time argument. First, for each m ≥ max{4, k}, we define a sequence of stopping times
{τM,m}M∈N as follows:

τ1M,m(ω) := inf{t ≥ 0 | Am
t (ω) > M} ∧ T,

τ2M,m(ω) := inf{t ≥ 0 | Bt(ω) > M} ∧ T,
τM,m := τ1M,m ∧ τ2M,m.

Next, we verify the existence of solutions step by step.

• (Step A: Extracting a limit function): We can find out that for each n ∈ N,

(i) ‖fn,εt∧τM,m
‖Wm,∞ ≤M‖f in,ε‖Wm,∞ .

(ii) ‖fn,εt∧τM,m
− fn−1,ε

t∧τM,m
‖2L∞ + ‖ϕn,ε

t∧τM,m
− ϕn−1,ε

t∧τM,m
‖2L∞

≤M
[ ∫ t

0

(

‖ϕn,ε
s∧τM,m

− ϕn−1,ε
s∧τM,m

‖2L∞ + ‖fn−1,ε
s∧τM,m

− fn−2,ε
s∧τM,m

‖2L∞

)

ds
]

.

Thus, we can use the same argument as in Corolllary 3.2 to yield that as n → ∞, there
exists a limit function f εt∧τM,m

such that

fn,εt∧τM,m
→ f εt∧τM,m

in L∞(Ω; C([0, T ];L∞(R2d))),

fnk,ε
t∧τM,m

⇀ f εt∧τM,m
in L∞(Ω× [0, T ];Wm,p(R2d)), ∀ p ∈ [1,∞).

• (Step B: Verification of relation (2.2)): Now, we need to show that f εt∧τM,m
satisfies (3.2)

in the sense of Definition 2.1. Since fn,εt∧τM,m
satisfies (3.6) and conditions of Lemma 2.2, it

satisfies the following relation:
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∫

Σ
fn,εt∧τM,m

ψdz

=

∫

Σ
f in,εψdz +

∫ t

0

∫

Σ
fn,εs∧τM,m

(

v · ∇xψ +

(

Fa[f
n−1,ε
s∧τM,m

] +
1

2
σ2v

)

· ∇vψ

)

dzds

+
1

2
σ2

∫ t

0

∫

Σ
vfn,εs∧τM,m

· (D2
vψ)vdzds − σ

∫ t

0

∫

Σ
fn,εs∧τM,m

v · ∇vψdzdWs,

(3.13)

where Σ := R
2d and dz = dvdx. Next, our job is to pass n → ∞ in the integral

relation (3.13) to derive an integral relation (2.2) for f εt∧τM,m
. For this, note that the x-

and v-supports of fn,εt∧τM,m
and f εt∧τM,m

are uniformly bounded by |X∞
t∧τM

| and |V∞
t∧τM

| (see
Corollary 3.1). Moreover, we can find out that |X∞

t∧τM | and |V∞
t∧τM | are bounded by Am

t∧τM ,
and hence by M . We combine the strong convergence on the lower order with these facts
to yield

(i)

∫

Σ
(fn,εt∧τM,m

− f εt∧τM,m
)ψdz −→ 0.

(ii)

∫ t

0

∫

Σ
(fn,εs∧τM,m

− f εs∧τM,m
)

(

v · ∇xψ +

(

Fa[f
n−1,ε
s∧τM,m

] +
1

2
σ2v

)

· ∇vψ

)

dzds −→ 0.

(iii)

∫ t

0

∫

Σ
f εs∧τM,m

(

Fa[f
n−1,ε
s∧τM,m

]− Fa[f
ε
s∧τM,m

]
)

∇vψdzds −→ 0.

(iv)
1

2
σ2

∫ t

0

∫

Σ
v(fn,εs∧τM,m

− f εs∧τM,m
) · (D2

vψ)vdzds −→ 0,

uniformly in ω, as n goes to infinity.

Now it remains to check with the stochastic integral term in (3.13). For this term, one
has

E

[(∫ t

0

∫

Σ
(fn,εs∧τM,m

− f εs∧τM,m
)v · ∇vψdzdWs

)2
]

= E

[
∫ t

0

(∫

Σ
(fns∧τM − f εs∧τM,m

)v · ∇vψdz

)2

ds

]

≤ E

[∫ t

0
‖fn,εs∧τM,m

− f εs∧τM,m
‖2L∞ds

](∫

Σ
|v · ∇vψ|dz

)2

−→ 0, as n→ ∞.

This L2-convergence over Ω implies that there exists a subsequence {fnl,ε
t∧τM,m

} such that
(∫ t

0

∫

Σ
fnl,ε
s∧τM,m

v · ∇vψdzdWs

)

(ω) −→
(∫ t

0

∫

Σ
f εs∧τM,m

v · ∇vψdzdWs

)

(ω),

for a.s. ω, as l goes to infinity. Thus, we can conclude that for a.s. ω ∈ Ω, f εs∧τM,m
satisfies

∫

Σ
f εt∧τM,m

ψdz =

∫

Σ
f in,εψdz −

∫ t

0

∫

Σ
f εs∧τM,m

(

v · ∇xψ +

(

Fa[f
ε
s∧τM,m

] +
1

2
σ2v

)

· ∇vψ

)

dzds

− 1

2
σ2

∫ t

0

∫

Σ
vf εs∧τM,m

· (D2
vψ)vdzds +

∫ t

0

∫

Σ
f εs∧τM,m

v · ∇vψdzdWs,
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for every ψ ∈ D(R2d). One also has f εt∧τM,m
is a Ft-semimartingale. Here, we use Lemma

2.1 to obtain that f εt∧τM,m
satisfies (1.3) in the sense of distribution.

• (Step C): Due to the continuity in time of the involved processes Am
t and Bt, it is obvious

that

τM,m(ω) → T as M → ∞ for a.s. ω.

Thus, if we choose M sufficiently large for each ω ∈ Ω, f εt∧τM,m
satisfies relation (2.2) on

[0, T ]. Here, note that the strong convergence and (B.2) give

‖f εt∧τM,m
‖L∞ ≤ ‖f in,ε‖L∞ exp(dφM t ∧ τM,m + dσWt∧τM,m

).

Sincem ≥ 4, one uses Sobolev embedding theorem to get f εt∧τM,m
∈ L∞(Ω; C([0, T ]; C3,δ(R2d))).

Thus, it follows from Remark 2.1 that f εt∧τM,m
becomes a classical solution to (3.1) corre-

sponding to the regularized initial datum f in,ε. Hence, we can also obtain

M ε
2 (t ∧ τM,m) ≤M2(0) exp(−2φmt ∧ τM,m − 2σWt∧τM,m

).

�

4. Global existence of strong solutions

In this section, we study properties of classical solutions to (1.3) which could be obtained
in Section 3. Moreover, as a corollary, we provide the uniqueness of regularized solutions
and the existence of a solution to (1.3) corresponding to the original initial datum.

4.1. Quantitative estimates for classical solutions. We provide several properties of
classical solutions f to (1.3). Here we recall that a stopped, regularized solution f εt∧τM,m

becomes a classical solution to (1.3). From now on, without further mentioning, we will
denote f εt by a classical solution to (1.3), corresponding to the initial datum f in,ε.

First, we discuss the size of spatial and velocity supports of f εt . We define

X ε(t) := sup{|x| : f εt (x, v) 6= 0 for some v ∈ R
d},

Vε(t) := sup{|v| : f εt (x, v) 6= 0 for some x ∈ R
d}.

Lemma 4.1. The support functionals X ε and Vε satisfy the following estimates:

(1) If φm = 0, then,

X ε(t) ≤ X ε
0 + (Vε

0 +
√

M ε
2 (0))

∫ t

0
exp

(
φM
2
s− σWs

)

ds, t ≥ 0,

Vε(t) ≤
(

Vε
0 +

√

M ε
2 (0)

)

exp

(
φM
2
t− σWt

)

.

(2) If φm > 0, then

X ε(t) ≤ X ε
0 +

{

Vε
0 +

√

M ε
2 (0)

(
φM
φm

)}∫ t

0
exp

(

−φm
2
s− σWs

)

ds,

Vε(t) ≤
{

Vε
0 +

√

M ε
2 (0)

(
φM
φm

)}

exp

(

−φm
2
t− σWt

)

.
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Proof. (i) Consider the case φm = 0.

⋄ (Estimate of Vε): Note that the stochastic characteristics (Xε
t , V

ε
t ) starting from (x, v) ∈

suppf in,ε satisfies

(4.1)







dXε
t = V ε

t dt,

dV ε
t =

(

Fa[f
ε
t ](X

ε
t , V

ε
t ) +

1

2
σ2V ε

t

)

dt− σV ε
t dWt.

Now, we use Itô’s lemma and (4.1) to get

d|V ε
t |2 = 2V ε

t · dV ε
t + dV ε

t · dV ε
t

≤ 2

(∫

R2d

φ(x∗ −Xt)(v∗ − V ε
t ) · V ε

t ft(x∗, v∗)dv∗dx∗ + σ2|V ε
t |2

)

dt

− 2σ|V ε
t |2dWt

≤ 2

(∫

R2d

φ(x∗ −Xε
t )v∗ · V ε

t f
ε
t (x∗, v∗)dv∗dx∗ + σ2|V ε

t |2
)

dt− 2σ|V ε
t |2dWt

≤
(

φMM
ε
2 (t) + (φM + 2σ2)|V ε

t |2
)

dt− 2σ|V ε
t |2dWt.

(4.2)

It follows from the same argument in Proposition 3.1 to get the desired estimate for V ε
t :

|V ε
t |2 ≤ |v|2 exp(φM t− 2σWt) + φM

∫ t

0
exp{φM (t− s)− 2σ(Wt −Ws)}M ε

2 (s)ds

≤
{

|v|2 + φMM
ε
2 (0)

∫ t

0
exp(−φMs)ds

}

exp(φM t− 2σWt)

= (|v|2 +M ε
2 (0)(1 − exp(−φM t))) exp(φM t− 2σWt)

≤ ((Vε
0)

2 +M ε
2 (0)) exp(φM t− 2σWt),

(4.3)

i.e., we have

Vε(t) ≤
√

((Vε
0)

2 +M ε
2 (0)) exp(

φM t

2
− σWt) ≤

(

Vε
0 +

√

M ε
2 (0)

)

exp(
φM t

2
− σWt).

This yields the desired estimate.

⋄ (Estimate of X ε): We use Itô’s formula and Cauchy-Schwarz inequality to get

d|Xε
t |2 = 2Xε

t · dXε
t + dXε

t · dXε
t = 2Xε

t · V ε
t dt ≤ 2|Xε

t | · |V ε
t |dt.

This and (4.3) yield

d|Xε
t |

dt
≤ |V ε

t | ≤
(

Vε
0 +

√

M ε
2 (0)

)

exp(
φM t

2
− σWt).

We integrate the above differential inequality to get

|Xε
t | ≤ |Xε

0 |+
(

Vε
0 +

√

M ε
2 (0)

) ∫ t

0
exp

(
φM
2
s− σWs

)

ds.

(ii) Now we consider the case φm > 0.
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In this case, we use the first line relation in (4.2) and Young’s inequality to get

d|V ε
t |2 ≤ 2

(∫

R2d

φ(x∗ −Xt)(v∗ − V ε
t ) · V ε

t ft(x∗, v∗)dv∗dx∗ + σ2|V ε
t |2

)

dt− 2σ|V ε
t |2dWt

≤ 2

(∫

R2d

φ(x∗ −Xt)v∗ · V ε
t ft(x∗, v∗)dv∗dx∗ + (−φm + σ2)|V ε

t |2
)

dt− 2σ|V ε
t |2dWt

≤
[

(−φm + 2σ2)|V ε
t |2 +

φ2M
φm

M ε
2 (t)

]

dt− 2σ|V ε
t |2dWt.

Again, we use Lemma A.1 and Lemma A.2 to obtain

|V ε
t |2 ≤ |v|2 exp(−φmt− 2σWt) +

φ2M
φm

∫ t

0
exp{−φm(t− s)− 2σ(Wt −Ws)M

ε
2 (s)ds

≤
{

|v|2 +M ε
2 (0)

φ2M
φm

∫ t

0
exp(−φms)ds

}

exp(−φmt− 2σWt)

≤
{

|v|2 +M ε
2 (0)

(
φM
φm

)2
}

exp(−φmt− 2σWt).

This gives the desired estimate for Vε. For X ε, we use the same argument as above to
conclude the proof. �

Remark 4.1. If we apply Proposition 3.2 to the regularized solution we obtained in Section
3, it is not difficult to find out that

X ε(t) . X∞(t), Vε(t) . V∞(t),

where X∞ and V∞ are defined in Corollary 3.1.

Lemma 4.2. Let ft be a classical solution to (1.3). Then, one has

‖ft‖W 1,∞ ≤ ‖f in‖W 1,∞A1
t ,

where A1
t is a nonnegative process defined in Theorem 3.1.

Proof. The proof is similar to that of Theorem 3.1. So we omit its details. �

Now, we are ready to state the stability results for (1.3), where the pathwise uniqueness
result can be obtained.

Theorem 4.1. (L∞-stability) Let ft and f̃t be two classical solutions to (1.3) corresponding

to regular initial data f in and f̃ in, respectively, which are compactly supported in x and v.
Then, we have

‖ft − f̃t‖L∞ ≤ Dt‖f in − f̃ in‖L∞ ,

where Dt is a non-negatvie process with continuous sample paths:

Dt := exp
[

dφM t+ dσWt

+ 2φM max{‖f in‖W 1,∞ , ‖f̃ in‖W 1,∞}
∫ t

0

(

(2R(s))d(2P(s))d+1 + d(4R(s)P(s))d
)

ds
]

,

and R(t) and P(t) denotes, respectively,

R(t) := sup
{

|x| : ft(x, v) 6= 0 or f̃t(x, v) 6= 0 for some v ∈ R
d
}

,

P(t) := sup
{

|v| : ft(x, v) 6= 0 or f̃t(x, v) 6= 0 for some x ∈ R
d
}

.
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Proof. It follows from (1.3) that

(ft − f̃t)− (f in − f̃ in)

+

∫ t

0

[

v · ∇x(fs − f̃s) + Fa[fs] · ∇v(fs − f̃s)
]

ds

= σ

∫ t

0
∇v · (v(fs − f̃s)) ◦ dWs −

∫ t

0

[

∇v · Fa[fs]((fs − f̃s) +∇v · ((Fa[fs]− Fa[f̃s])f̃s)
]

ds.

We integrate the above relation along the characteristic flow ϕt of f to yield

(ft − f̃t)(ϕt)

= (f in − f̃ in) exp

{

−
∫ t

0
∇v · Fa[fs](ϕs)ds+ dσWt

}

−
∫ t

0
∇v · ((Fa[fs]− Fa[f̃s])f̃s) exp

{

−
∫ t

s
∇v · Fa[fτ ](ϕτ )dτ + σd(Wt −Ws)

}

ds.

On the other hand, note that

|Fa[ft]− Fa[f̃t]| ≤ 2φM‖ft − f̃t‖L∞(2R(t))d(2P(t))d+1,

|∇v · (Fa[ft]− Fa[f̃t])| ≤ 2dφM‖ft − f̃t‖L∞(4R(t)P(t))d.

We combine the above estimates with Lemma 4.1 and take supremum over the characteristic
flow as in Appendix B to get

‖ft − f̃t‖L∞ ≤ ‖f in − f̃ in‖L∞ exp(dφM t+ σdWt)

+

∫ t

0
D̃s‖fs − f̃s‖L∞ exp(dφM (t− s) + σd(Wt −Ws))ds,

where D̃t is a nonnegative process with continuous sample paths:

D̃t := 2φM max{‖f0‖W 1,∞ , ‖f̃0‖W 1,∞}
(

(2R(t))d(2P(t))d+1 + d(4R(t)P(t))d
)

.

We set

a(t) := exp(−dφM t− σdWt)‖ft − f̃t‖L∞ .

Then, we have

a(t) ≤ a0 +

∫ t

0
D̃sa(s)ds.

Finally, we use Grönwall’s lemma to complete the proof. �

Remark 4.2. We comment on several remarks.

(1) Theorem 4.1 gives a uniqueness result for classical solutions to (1.3).
(2) Using the relation

sup
ε∈(0,1)

‖f in,ε‖W 1,∞ ≤ ‖f in‖W 1,∞ ,

the following modified process Dt can be used in the statement of Theorem 4.1 when
we estimate ‖f εt∧τM,m

− f ε
′

t∧τM,m
‖L∞:

Dt := exp

[

dφM t+ dσWt
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+ 2φM

∫ t

0
‖f in‖W 1,∞

(

(2X∞(s))d(2V∞(s))d+1 + d(4X∞(s)V∞(s))d
)

ds

]

.

4.2. Proof of Theorem 2.1. In this subsection, we proceed to the proof of the existence
of a strong solution to (1.3) corresponding to the original initial data f in and its emergent
dynamics.

• (Existence part): For this, we define a sequence of stopping times {τM}M∈N as follows:

τ1M (ω) := inf{t ≥ 0 | Am∗

t (ω) > M} ∧ T, τ2M (ω) := inf{t ≥ 0 | Bt(ω) > M} ∧ T,
τ3M (ω) := inf{t ≥ 0 | Dt(ω) > M} ∧ T, τM := τ1M ∧ τ2M ∧ τ3M ,

where m∗ := max{k, 4}. Then, we provide a global existence of a strong solution in three
steps:

⋄ (Step A: Passing n → ∞). Let fn,εt∧τM
(ω) := fn,ε(t ∧ τM , ω). In this case, we proceed as

Section 3.2 to derive a limit function:

fn,εt∧τM
→ f εt∧τM in L∞(Ω; C([0, T ] × L∞(R2d))),

fnk,ε
t∧τM

⇀ f εt∧τM in L∞(Ω× [0, T ];Wm∗,p(R2d)), ∀p ∈ [1,∞),

and f εt∧τM is a strong solution to (1.3) on the interval [0, τM ]. Moreover, it can be shown
that f εt∧τM is a classical solution to (1.3) on [0, τM ] which is compactly supported in x and v.

⋄ (Step B: Passing ε→ 0): We use the stability estimate in Theorem 4.1 to get

(4.4) ‖f εt∧τM − f ε
′

t∧τM ‖L∞ ≤ Dt∧τM ‖f in,ε − f in,ε
′‖L∞ ≤M‖f in,ε − f in,ε

′‖L∞ .

Since f in,ε converges uniformly to f in, it follows from the stability estimate (4.4) that there
exists ft∧τM such that

f εt∧τM → ft∧τM in L∞(Ω; C([0, T ];L∞(R2d))).

Moreover, it follows from Theorem 4.1 and (A1) that

‖f εt∧τM ‖W k,∞ ≤ Ak
t ‖f in,ε‖W k,∞ ≤M‖f in‖W k,∞ .

This implies

f εkt∧τM ⇀ ft∧τM , in L∞(Ω× [0, T ];W k,p(R2d)), ∀ p ∈ [1,∞).

Hence, we can follow the arguments in Section 3 to yield that ft∧τM satisfies (2.3) with the
desired regularity for the strong solution, corresponding to initial data f in, and hence (2.2).
Moreover, ft∧τM is compactly supported in x and v.

⋄ (Step C): It is obvious that

τM (ω) → T as M → ∞ for a.s. ω.

Thus, choosing a sufficiently large M for each ω ∈ Ω gives ft∧τM (ω) satisfies the relation
(2.2) on [0, T ] and the strong convergence implies

‖ft∧τM ‖L∞ ≤ ‖f in‖L∞ exp(dφM t ∧ τM + dσWt∧τM ),

M2(t ∧ τM) ≤M2(0) exp(−2φmt ∧ τM − 2σWt∧τM ).
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For the L∞-estimate of solution, we use Fatou’s lemma to get, for any p ∈ (1,∞),

E‖ft‖L∞

≤ lim inf
M→∞

E‖ft∧τM‖L∞

≤ lim inf
M→∞

‖f in‖L∞E

[

exp(dφM t ∧ τM + dσWt∧τM )
]

= lim inf
M→∞

‖f in‖L∞E

[

exp

((

dφM +
(dσ)2

2

)

t ∧ τM
)]

= lim inf
M→∞

‖f in‖L∞E

[

exp

(

dσWt∧τM − p(dσ)2

2
t ∧ τM

)

exp

((

dφM +
p(dσ)2

2

)

t ∧ τM
)]

≤ lim inf
M→∞

‖f in‖L∞E

[

exp

(
p

p− 1

(

dφM +
p(dσ)2

2

)

t ∧ τM
)](p−1)/p

= ‖f in‖L∞ exp

((

dφM +
p(dσ)2

2

)

t

)

,

where we used the fact Xt = exp(aWt− a2t/2) is a martingale and Hölder inequality. Then
we take the limit p → 1 on both sides to yield the desired result. For the dissipation of
second velocity moment, we use a similar argument to get the desired estimate.

5. Conclusion

In this paper, we presented a global well-posedness of strong solutions and their asymp-
totic emergent dynamics for the stochastic kinetic Cucker-Smale equation perturbed by a
multiplicative white noise. For a global well-posedness, we first derive a sequence of clas-
sical solutions to the stochastic kinetic C-S equation with regularized initial data. Then,
using the properties of classical solutions, we obtained the existence of a strong solution
corresponding to the original initial data and asymptotic emergent stochastic dynamics of
strong solutions. Of course, there are lots of interesting issues to be addressed in a future
work, e.g., a global existence of weak solutions, emergent dynamics under other types of
random perturbations and zero noise limit, etc. These topics will be discussed in future
works.



COLLECTIVE DYNAMICS FOR THE STOCHASTIC KINETIC CUCKER-SMALE EQUATION 27

Appendix A. Elementary lemmas

In this appendix, we provide two useful lemmas used in previous sections. First, we begin
with estimate on a variant of geometric brownian motion.

Lemma A.1. Let {Xt}t≥0 be a solution satisfying the following Cauchy problem:
{

dXt = (at + btXt)dt+ cXtdWt, t > 0,

X0 = x ≥ 0,

where {at}t≥0 and {bt}t≥0 are stochastic processes with continuous sample paths, and c is
a constant. Then one has

Xt = x exp
[ ∫ t

0

(

bs −
c2

2

)

ds+ cWt

]

+

∫ t

0
as exp

[ ∫ t

s

(

bτ −
c2

2

)

dτ + c(Wt −Ws)
]

ds.

Proof. The proof is exactly given in Example 19.7 from [33]. So, we refer to [33] for its
proof.

�

Lemma A.2. (Comparision principle) Suppose that two stochastic proceeses {Xt}t≥0 and
{Yt}t≥0 satisfy

dXt ≤ (at + bXt)dt+ cXtdWt, X0 = x ≥ 0,

dYt = (at + bYt)dt+ cYtdWt, Y0 = x,

where {at}t≥0 is a stochastic process with continuous sample paths. Then, we have

Xt ≤ Yt, ∀t ≥ 0.

Proof. Let {Y δ
t }t≥0, (δ > 0) be a stochastic process satisfying

{

dY δ
t = (at + bY δ

t )dt+ cY δ
t dWt, t > 0,

Y δ
0 = x+ δ,

and we set

Zδ
t := Y δ

t −Xt.

Then, we have

dZδ
t ≥ bZδ

t dt+ cZδ
t dWt, t > 0 and Z0 = δ, t = 0.

We use Itô’s lemma to get

d(lnZδ
t ) =

dZδ
t

Zδ
t

− 1

2

1

(Zδ
t )

2
(dZδ

t ) · (dZδ
t ) ≥

(

bt −
c2

2

)

dt+ c dWt.

Again, we integrate the above relation to get

Zδ
t ≥ δ exp

{∫ t

0

(

bs −
c2

2

)

ds+ cWt

}

≥ 0.

This yields

Xt ≤ Y δ
t for all t ≥ 0.
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It follows from the representation formula in Lemma A.1 that

Y δ
t = (x+ δ) exp

{∫ t

0

(

bs −
c2

2

)

ds+ cWt

}

+

∫ t

0
as exp

[ ∫ t

s

(

bτ −
c2

2

)

dτ + c(Wt −Ws)
]

ds,

Yt = x exp

{∫ t

0

(

bs −
c2

2

)

ds+ cWt

}

+

∫ t

0
as exp

[ ∫ t

s

(

bτ −
c2

2

)

dτ + c(Wt −Ws)
]

ds.

This yields the desired result:

Yt = lim inf
δ→0

Y δ
t ≥ Xt.

�

Appendix B. A proof of Proposition 3.3

Recall that fn,εt satisfies a differential form:

∂tf
n,ε
t = −v · ∇xf

n,ε
t −∇v · (Fa[f

n−1,ε
t ]fn,εt ) + σ∇v · (vfn,εt ) ◦ Ẇt,

i.e., it satisfies

fn,εt = f in,ε −
∫ t

0
v · ∇xf

n,ε
s ds −

∫ t

0
∇v · (Fa[f

n−1,ε
t ]fn,εt )ds

+ σ

∫ t

0
∇v · (vfn,εt ) ◦ dWs.

(B.1)

Next, we claim: there exists a nonnegative process Am
t with continuous sample paths and

independent of n and ε such that

‖fn,εt ‖Wm,∞ ≤ ‖f in,ε‖Wm,∞Am
t .

In the sequel, we provide L∞-estimate of ft and its derivatives to provide a proof of Propo-
sition 3.3.

• (Zeroth-order estimate): It follows the formula (3.5) that

fn,εt (ϕn,ε
t (x, v)) = f in,ε(x, v) exp

{

−
∫ t

0
∇v · Fa[f

n−1,ε
s ](ϕn,ε

s (x, v))ds + dσWt

}

≤ ‖f in,ε‖L∞ exp(dφM t+ dσWt).

This implies zeroth-order estiamte:

(B.2) ‖fn,εt ‖L∞ ≤ ‖f in,ε‖L∞ exp(dφM t+ dσWt).

• (Higher-order estimates): Let α and β be multi-indices satisfying

1 ≤ |α|+ |β| ≤ m.
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Then, we apply ∂αx ∂
β
v to the relation (B.1) using Theorem 3.1.2 in [24]:

∂αx ∂
β
v f

n,ε
t = ∂αx ∂

β
v f

in,ε −
∑

|µ1|≤1

(
β

µ1

)∫ t

0
∂µ1

v (v) · ∇x(∂
α
x ∂

β−µ1

v fn,εs )ds

−
∑

µ2≤α
|µ3|≤1

(
α

µ2

)(
β

µ3

)∫ t

0
∇v · (∂µ2

x ∂µ3

v Fa[f
n−1,ε
s ]∂α−µ2

x ∂β−µ3

v fn,εs )ds

+ σ
∑

|µ4|≤1

(
β

µ4

)∫ t

0
∇v · (∂µ4

v (v)∂αx ∂
β−µ4

v fn,εs ) ◦ dWs,

(B.3)

where we used the relation:

∂µ3

v Fa[f
n−1,ε
t ] = 0, for |µ3| ≥ 2.

Note that the differentiation equality (B.3) is only true outside a P-zero set in Ω which
depends on (x, v), according to Theorem 3.1.2 in [24]. However, we can use the argument
in Lemma 2.2 to obtain that the equality also holds P⊗ dx⊗ dv-a.s. Now, we rearrange the
previous relation to obtain

∂αx∂
β
v f

n,ε
t

= ∂αx ∂
β
v f

in,ε −
∫ t

0

[

v · ∇x(∂
α
x ∂

β
v f

n,ε
s ) + Fa[f

n−1,ε
s ] · ∇v(∂

α
x ∂

β
v f

n,ε
s )

]

ds

+ σ

∫ t

0
v · ∇v(∂

α
x ∂

β
v f

n,ε
s ) ◦ dWs −

d+ |β|
d

∫ t

0
∇v · Fa[f

n−1,ε
s ]∂αx ∂

β
v f

n,ε
s ds

+ σ(d+ |β|)
∫ t

0
∂αx ∂

β
v f

n,ε
s ◦ dWs −

∫ t

0
Lα,β(s)ds, P⊗ dx⊗ dv-a.s.,

(B.4)

where the process Lα,β is given by the following relation:

Lα,β :=
∑

|µ1|=1

(
β

µ1

)

∂µ1

v (v) · ∇x(∂
α
x ∂

β−µ1

v fn,εs )

+
∑

06=µ2≤α

(
α

µ2

)

∇v · (∂µ2

x Fa[f
n−1,ε
s ])∂α−µ2

x ∂βv f
n,ε
s

+
∑

06=µ2≤α
|µ3|=1

(
α

µ2

)(
β

µ3

)

∂µ2

x ∂µ3

v Fa[f
n−1,ε
s ] · ∇v(∂

α−µ2

x ∂β−µ3

v fn,εs )

+
∑

06=µ2≤α

(
α

µ2

)

∂µ2

x Fa[f
n−1,ε
s ] · ∇v(∂

α−µ2

x ∂βv f
n,ε
s ).

Next, we define λ and λ̃ as follows:

λt(x, v) := ∂αx ∂
β
v f

in,ε(x, v) − d+ |β|
d

∫ t

0
λs(x, v)(∇v · Fa[f

n−1,ε
s ])(ϕn,ε

s )ds

+ σ(d+ |β|)
∫ t

0
λs(x, v) ◦ dWs −

∫ t

0
Lα,β(ϕ

n,ε
s )ds,

λ̃t(x, v) := λt((ϕ
n,ε
t )−1).
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By using generalized Itô’s formula from Theorem 3.3.2 in [24], λ̃t satisfies the relation (B.4).
Thus, by the uniqueness,

λ̃t = ∂αx ∂
β
v f

n,ε
t ,

and we use Itô’s formula on λt to get

∂αx ∂
β
v f

n,ε
t (ϕn,ε

t )

= ∂αx ∂
β
v f

in,ε(x, v) exp
[

− d+ |β|
d

∫ t

0
∇v · Fa[f

n−1,ε
s ](ϕn,ε

s )ds+ σ(d+ |β|)Wt

]

−
∫ t

0
exp

[

− d+ |β|
d

∫ t

s
∇v · Fa[f

n−1,ε
τ ](ϕn,ε

τ )dτ + σ(d+ |β|)(Wt −Ws)
]

× Lα,β(s, ϕ
n,ε
s )ds.

For detailed explanation for the above realtion, we refer to the proof of Theorem 3.2 in [8].

Note that the following estimates hold:

• If |β| = 1, one has

|∂αx ∂βv Fa[f
n−1,ε
t ]| ≤ ‖φ‖Cm .

• If |α| ≥ 1, one gets

|∂αxFa[f
n−1,ε
t ](ϕn,ε

t )|

≤ ‖φ‖Cm

∫

R2d

|v∗ · V n,ε
t |fn−1,ε

t (x∗, v∗)dv∗dx∗ ≤ ‖φ‖Cm

(

|V n,ε
t |2 +Mn−1,ε

2 (t)
)

≤ ‖φ‖Cm

(

(R0 + 1)2 + φM

∫ t

0
(γ +Ks) exp(γs)ds + (γ +Ks) exp(γt)

)

exp(φM t− 2σWt).

We set Cα,β(t) to be

Cα,β(t) :=







∑

|µ1|=1

(
β

µ1

)

+
∑

06=µ2≤α

(
α

µ2

)

+
∑

0≤µ2≤α
|µ3|=1

(
α

µ2

)(
β

µ3

)







×
[

1 + 2‖φ‖Cm + ‖φ‖Cm(R0 + 1)2 exp(φM t− 2σWt)

+
(

φM

∫ t

0
(γ +Ks) exp(γs)ds + (γ +Kt) exp(γt)

)

exp(φM t− 2σWt)

]

.

This yields

|Lα,β(t, ϕ
n,ε
t )| ≤ Cα,β(t)‖fn,εt ‖Wm,∞ .

Thus, we have

∂αx ∂
β
v f

n,ε
t (ϕn,ε

t )

≤ ‖∂αx ∂βv f in,ε‖L∞ exp((d + |β|)(φM t+ σWt)

+

∫ t

0
exp((d+ |β|){φM (t− s) + σ(Wt −Ws)}Cα,β(s)‖fn,εs ‖Wm,∞ds.

(B.5)



COLLECTIVE DYNAMICS FOR THE STOCHASTIC KINETIC CUCKER-SMALE EQUATION 31

Now, we take the supremum over all characteristic flow, sum (B.5) over all 1 ≤ |α|+ |β| ≤ m
and combine this with (B.2) to obtain

‖fn,εt ‖Wm,∞ ≤ ‖f in,ε‖Wm,∞Mm
t +Mm

t

∫ t

0

[

exp(−(d+m)φMs)

×
∑

|α|+|β|≤m

exp(−σ(d + |β|)Ws)Cα,β(s)‖fn,εs ‖Wm,∞

]

ds,

where the process Mm
t is given by the following relation:

Mm
t := exp((d+m)φM t)

∑

|β|≤m

exp(σ(d + |β|)Wt).

Note that Mm
t is independent of n and ε. We set

bn(t) := ‖fn,εt ‖Wm,∞(Mm
t )−1.

Then, one gets

bn+1(t) ≤ b0 +

∫ t

0
Ñm

s bn+1(s)ds,

where the process Ñm
s is

Ñm
s :=







∑

|β|≤m

exp(σ(N + |β|)Ws)













∑

|β|≤m

exp(−σ(N + |β|)Ws)










∑

|α|+|β|≤m

Cα,β(s)



 .

Thus, we can use Grönwall’s lemma to obtain

‖fn,εt ‖Wm,∞ ≤ ‖f in,ε‖Wm,∞Am
t ,

where the process Am
t is given by the following relation:

Am
t := exp((d+m)φM t)

∑

|β|≤m

exp(σ(d+ |β|)Wt)

× exp











∑

|β|≤m

exp(σ(d+ |β|)Ws)













∑

|β|≤m

exp(−σ(d+ |β|)Ws)










∑

|α|+|β|≤m

Cα,β(s)







 .
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