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Abstract. We prove maximal regularity results in Hölder and Zygmund spaces for linear sta-
tionary and evolution equations driven by a class of differential and pseudo-differential operators
L, both in finite and in infinite dimension. The assumptions are given in terms of the semigroup
generated by L. We cover the cases of fractional Laplacians and Ornstein-Uhlenbeck operators with
fractional diffusion in finite dimension, and several types of local and nonlocal Ornstein-Uhlenbeck
operators, as well as the Gross Laplacian and its fractional powers, in infinite dimension.

1. Introduction

This paper is devoted to maximal regularity results in Hölder and Zygmund spaces for linear
stationary and evolution equations driven by a class of differential and pseudo-differential operators
L, both in finite and in infinite dimension. The underlying space X is any separable real Banach
space, that may be either RN or infinite dimensional.

The operators L under consideration are the generators of the so called generalized Mehler
semigroups, namely semigroups of operators in the space Cb(X) of the continuous and bounded
functions from X to R that may be represented as

Ptf(x) =

∫
X
f(Ttx+ y)µt(dy), t ≥ 0, f ∈ Cb(X). (1.1)

Here Tt is a strongly continuous semigroup of bounded operators on X, and {µt : t ≥ 0} is a family
of Borel probability measures in X such that µ0 = δ0 (the Dirac measure at 0 ∈ X), t 7→ µt is
weakly continuous in [0,+∞) and

µt+s = (µt ◦ T−1
s ) ∗ µs, t, s > 0. (1.2)

Such a condition is necessary and sufficient for Pt be a semigroup (namely, Pt+s = Pt ◦ Ps for t,
s ≥ 0), even in the space Bb(X) of the bounded, Borel measurable functions f : X → R.

Then for every f ∈ Cb(X) the function (t, x) 7→ Ptf(x) is continuous in [0,+∞)×X 7→ R, and
this allows to define a closed operator L in Cb(X) through its resolvent,

R(λ, L)f(x) =

∫ ∞
0

e−λtPtf(x) dt, λ > 0, f ∈ Cb(X), x ∈ X. (1.3)

L is called the generator of Pt, although it is not the infinitesimal generator in the standard sense
since Pt is not strongly continuous in Cb(X), in general.

Though this paper’s results and techniques of proof are purely analytic, let us briefly recall
the probabilistic framework in which generalized Mehler semigroups occur. In fact, they are the
transition semigroups of solution processes to the following type of stochastic differential equations
(meant in the weak or mild sense) on X:

dX(t) = AX(t)dt+ dY (t), t > 0; X(0) = x, (1.4)
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where A : D(A) ⊂ X → X is the infinitesimal generator of Tt, and Y (t), t ≥ 0, is a Levy process
in X, i.e. a stochastic process in X with cadlag paths starting at 0, defined on a probability space
(Ω,F,P), and having stationary and independent increments. It is characterized by a negative
definite function λ : X∗ → C (where X∗ is the dual space of X), satisfying∫

Ω
eiξ(Y (t)(ω))P(dω) = exp(−tλ(ξ)), ξ ∈ X∗, t > 0. (1.5)

Then the transition semigroup for the solution X(t, x) of (1.5) (called “Ornstein-Uhlenbeck process
onX” in the case that Y (t) is a Wiener process, and “Ornstein-Uhlenbeck process onX with jumps”
if Y (t) is a more general Levy process) is given by Pt as in (1.1), i.e., for f ∈ Bb(X), x ∈ X, t > 0,∫

Ω
f(X(t, x)(ω))P(dω) = Ptf(x), (1.6)

where X(t, x), t ≥ 0, denotes the (weak or mild) solution of (1.5) with X(0, x) = x P-a.s.
We then have an explicit formula for the Fourier transforms of µt, t > 0, in terms of λ and Tt,
namely

µ̂t(ξ) :=

∫
X

exp(iξ(z))µt(dz) = exp

(
−
∫ t

0
λ(T ∗s ξ) ds

)
, ξ ∈ X∗, t > 0, (1.7)

where T ∗t denotes the dual semigroup of Tt.
There have been a number of papers on generalized Mehler semigroups and their related Ornstein-

Uhlenbeck processes with jumps. We refer e.g. to [9, 20, 30, 31, 33, 40, 41, 42, 48, 49, 54] and the
references therein.
Now let us come back to the main results of this paper, which are purely analytic. What we prove
are maximal Hölder and Zygmund regularity results both for the stationary equation

λu(x)− Lu(x) = f(x), x ∈ X, (1.8)

namely for the function u = R(λ, L)f defined in (1.3), and for the mild solutions of evolution
problems, given by

v(t, x) = Ptf(x) +

∫ t

0
Pt−sg(s, ·)(x) ds, 0 ≤ t ≤ T, x ∈ X, (1.9)

with continuous and bounded f , g.
Of course, we need some “regularity” hypothesis on the measures µt in connection with the

semigroup Tt. Specifically, we assume that there exists a Banach spaceH ⊂ X such that Tt(H) ⊂ H,
and such that each µt is Fomin differentiable along Tt(H), namely for every h ∈ H, t > 0 there
exists βt,h ∈ L1(X,µt) such that∫

X

∂f

∂(Tth)
(x)µt(dx) = −

∫
X
βt,h(x)f(x)µt(dx), f ∈ C1

b (X). (1.10)

Moreover we assume that there exist C > 0, ω ∈ R, θ > 0 such that

‖Tth‖H ≤ Ceωt‖h‖H , ‖βt,h‖L1(X,µt) ≤
Ceωt

tθ
‖h‖H , t > 0, h ∈ H. (1.11)

These assumptions are satisfied in several remarkable examples. We consider the following ones.

(a) In finite dimension, with X = H = RN , they are satisfied by the heat semigroup with
θ = 1/2, by the semigroups generated by the powers −(−∆)s for s ∈ (0, 1), and more generally by
Ornstein-Uhlenbeck semigroups with fractional diffusion,

Lu(x) =
1

2
(Trs(QD2u))(x)− 〈Bx,∇u(x)〉, x ∈ RN ,
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where Q is any symmetric positive definite matrix, B is any matrix, and Trs(QD2) is the pseudo-
differential operator with symbol 〈Qξ, ξ〉s, s ∈ (0, 1). The semigroup Tt is now e−tB, and the
measures µt are given by µt(dx) = gt(x)dx, with gt ∈W 1,1(RN ), so that µt is Fomin differentiable
along all directions, and (1.11) holds with H = RN and θ = 1/(2s). See Sections 4.1, 4.2.

(b) In infinite dimension they are satisfied by a class of smoothing (strong Feller) Ornstein-
Uhlenbeck semigroups, still with H = X, that includes the ones considered in [29], and by a class
of not strong Feller Ornstein-Uhlenbeck semigroups, that includes the classical Ornstein-Uhlenbeck
semigroup used in the Malliavin Calculus, and other non symmetric Ornstein-Uhlenbeck semigroups
such as in [59, 60]; here H is the Cameron-Martin space of a reference Gaussian measure µ. In all
these cases the measures µt are Gaussian, and we have θ = 1/2, see Section 5.1. In Section 5.2
we consider nonlocal perturbations of the generator of a specific strong Feller Ornstein-Uhlenbeck
semigroup and show that (1.10) and (1.11) also hold in such a case, still with H = X and θ = 1/2.
Moreover, when X is a Hilbert space endowed with a centered Gaussian measure µ and H is the
Cameron-Martin space of µ, (1.10) and (1.11) are satisfied by the semigroup generated by the Gross
Laplacian G, again with θ = 1/2, and by the semigroups generated by −(−G)s with s ∈ (0, 1) and
θ = 1/(2s), in which case the measures µt are mixtures of measures. See Section 5.3. In Section 5.4
we show that some nonlocal versions of the classical Ornstein-Uhlenbeck semigroup from Malliavin
calculus still satisfy our assumptions.

Our techniques are independent of the dimension of the state space X, and the most important
and newest part of the paper is in the infinite dimensional case. Indeed, several familiar tools
in finite dimension, such as Calderon-Zygmund theory, Fourier transform, and the uncountable
consequences of local compactness, are not available in infinite dimension, as well as any translation
invariant reference measure such as the Lebesgue measure.

Needless to say, maximal regularity results are very rare in infinite dimension. A few Lp maximal
regularity results, with p ∈ (1,+∞), have been proved for certain Ornstein-Uhlenbeck stationary
equations; in these cases the solution to (1.8) belongs to a suitable W 2,p space with respect to
an invariant Gaussian measure µ whenever f ∈ Lp(X,µ). After the pioneering Meyer inequalities
for the classical Ornstein-Uhlenbeck operator ([47], see also [5, Sect. 5.6]), maximal Lp regularity
for a more general class of Ornstein-Uhlenbeck equations was proved in [21, 22, 46]. Concerning
non Gaussian measures, the only available results are for p = 2, about (nontrivial) perturbations of
certain Ornstein-Uhlenbeck equations ([26, 14]); here µ is an invariant Gibbs (= weighted Gaussian)
measure. For p = 2 some of the above results have been extended to the case where the whole X
is replaced by a good domain O ⊂ X, with generalized Dirichlet or Neumann boundary conditions
([27, 28, 13, 15]).

Also the literature about maximal Hölder regularity in infinite dimension is very scarce, dealing
mainly with Ornstein-Uhlenbeck equations or with equations driven by the Gross Laplacian, see e.g.
[29, 16, 18] and the references therein. More details are in Sections 5.1, 5.3. Moreover, Schauder
estimates for some nontrivial perturbations of a specific Ornstein-Uhlenbeck operator in the space
X = C([0, 1]) were proved in [17].

In our general setting, Pt is smoothing along H: for every f ∈ Cb(X) and t > 0, Ptf has
continuous Gateaux derivatives of any order along H, and for every (h1, . . . , hn) ∈ Hn we have

∣∣∣∣ ∂nPtf

∂h1 . . . ∂hn
(x)

∣∣∣∣ ≤ Cn(1 +
1

tnθ

) n∏
j=1

‖hj‖H‖f‖∞, t > 0, x ∈ X. (1.12)

On the other hand, in general Ptf is not Gateaux differentiable along other subspaces than H.
Therefore, any regularity result is expressed in terms of regularity along H. The Hölder spaces
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that we use are in fact defined by

CαH(X) =

{
f ∈ Cb(X) : [f ]CαH(X) := sup

x∈X,h∈H\{0}

|f(x− h)− f(x)|
‖h‖αH

< +∞

}
,

‖f‖CαH(X) = ‖f‖∞ + [f ]CαH(X),

for α ∈ (0, 1). In the case H = X this is the usual space of bounded and α-Hölder continuous
functions from X to R.

The Schauder type regularity results for (1.8) are the following,

(i) If 1/θ /∈ N, for every λ > 0 and f ∈ Cb(X) the solution u to (1.8) belongs to C
1/θ
H (X), and

there is C(λ) independent of f such that ‖u‖
C

1/θ
H (X)

≤ C(λ)‖f‖∞.

(ii) If α ∈ (0, 1) and α+ 1/θ /∈ N, for every λ > 0 and f ∈ CαH(X) the solution u to (1.8) belongs

to C
α+1/θ
H (X) and there is C(λ, α) independent of f such that ‖u‖

C
α+1/θ
H (X)

≤ C(λ, α)‖f‖CαH(X).

Here, for σ ∈ (0, 1) and k ∈ N, Cσ+k
H (X) denotes the space of all continuous and bounded

functions from X to R that possess continuous and bounded Gateaux derivatives of any order ≤ k
along H, and such that all the k-th order derivatives belong to CσH(X), endowed with its natural
norm. If H = X this is the space of the k times Gateaux differentiable functions with continuous
and bounded Gateaux derivatives of any order ≤ k, and such that all the k-th order derivatives are
α-Hölder continuous.

The exponents 1/θ in (i), and α + 1/θ in (ii) are optimal, in the sense that they cannot be
replaced by 1/θ + ε, α+ 1/θ + ε respectively, for any ε > 0.

In the critical cases α + 1/θ = k ∈ N (with α = 0 in statement (i), α ∈ (0, 1) in statement (ii))
we do not expect that the solution to (1.8) has bounded partial derivatives of order k, in general.
The simplest counterexample is given by the Laplacian in finite dimension. The heat semigroup
in RN has the representation (1.1) with Tt = I, µt(dx) = (4πt)−N/2 exp(−|x|2/4t)dx, so that it
satisfies (1.10) and (1.11) with X = H = RN and θ = 1/2; however it is well known that for every
λ > 0 the solution to λu −∆u = f with f ∈ Cb(RN ) is not twice continuously differentiable and
its first order derivatives are not Lipschitz continuous in general, if N > 1. They belong to the
Zygmund space Z1(RN ), namely they satisfy |Dku(x + 2h) − 2Dku(x + h) + Dku(x)| ≤ C|h| for
every k = 1, . . . , N , x, h ∈ RN , with C independent of x and h. We extend this result to our
general setting, introducing the Zygmund spaces ZnH(X) for n ∈ N and showing that in the above

critical cases the solution to (1.8) belongs to ZkH(X).
Similar results are proved for the mild solutions to Cauchy problems with continuous and bounded

data,  vt(t, x) = Lv(t, ·)(x) + g(t, x), t ∈ [0, T ], x ∈ X,

v(0, ·) = f,
(1.13)

namely for the functions v defined by

v(t, x) = Ptf(x) +

∫ t

0
Pt−sg(s, ·)(x) ds, t ∈ [0, T ], x ∈ X,

with f ∈ Cb(X), g ∈ Cb([0, T ]×X). Our assumptions are not strong enough to guarantee that v is
differentiable with respect to t, so it is just a mild solution and not a classical one. Moreover, time-
space Schauder estimates such as the standard ones for the heat equation are not available in general.
For instance, they are not available when L is the classical one-dimensional Ornstein-Uhlenbeck
operator Lu(x) = u′′(x)−xu′(x), as a consequence of [25]. So, our Schauder and Zygmund regularity

results concern only space regularity. More precisely, we introduce the space C0,α+k
H ([0, T ]×X) for
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α ∈ (0, 1), k ∈ N∪{0}, consisting of the bounded continuous functions g : [0, T ]×X 7→ R such that

g(t, ·) ∈ Cα+k
H (X) for every t ∈ [0, T ], ‖g‖

C0,α+k
H ([0,T ]×X)

:= supt∈[0,T ] ‖g(t, ·)‖Cα+k
H (X) < +∞, and if

k 6= 0, all the Gateaux derivatives ∂jg/∂h1 . . . ∂hj with j ≤ k and h1, . . . , hj ∈ H are continuous in
[0, T ]×X. We prove that

(i) If 1/θ /∈ N, for every f ∈ C
1/θ
H (X) and g ∈ Cb([0, T ] × X), the function v belongs to

C
0,1/θ
H ([0, T ] ×X), and there is C(T ) independent of f and g such that ‖v‖

C
0,1/θ
H ([0,T ]×X)

≤ C(T )

(‖f‖
C

1/θ
H (X)

+ ‖g‖∞).

(ii) If α ∈ (0, 1) and α + 1/θ /∈ N, for every f ∈ C
α+1/θ
H (X) and g ∈ C0,α

H ([0, T ] × X) the

function v belongs to C
0,α+1/θ
H ([0, T ] ×X) and there is C(T, α) independent of f and g such that

‖v‖
C

0,α+1/θ
H ([0,T ]×X)

≤ C(T, α)(‖f‖
C
α+1/θ
H (X)

+ ‖g‖
C0,α
H ([0,T ]×X)

).

In the critical cases α+1/θ ∈ N we obtain Zygmund space regularity results, as in the stationary
case.

The proofs rely on estimates (1.12) and on the better estimates for α ∈ (0, 1),∣∣∣∣ ∂nPtf

∂h1 . . . ∂hn
(x)

∣∣∣∣ ≤ Cn,α(1 +
1

t(n−α)θ

) n∏
j=1

‖hj‖H‖f‖CαH(X), t > 0, x ∈ X, f ∈ CαH(X), (1.14)

through a procedure that employs interpolation techniques such as in the recent paper [18] where
the classical Ornstein-Uhlenbeck operator in infinite dimension is considered.

Both in the stationary and in the evolution case the general results are applied to the above
mentioned examples, and yield old and new maximal regularity results. Comparisons with the
literature dealing with Hölder and Zygmund maximal regularity for such examples are given in
Sections 4.1, 4.2, 5.1, 5.3. To give a complete account on all the contributions to Schauder theory
in finite dimension is beyond the scope of this paper.

Finally, we would like to explain the motivation to study Schauder estimates for this class of
partial (pseudo-) differential equations in infinitely many variables. The interest in such PDEs
has risen enormously in recent years, because they occur as forward and backward Kolmogorov
equations for stochastic PDEs, an area that has become one of the major directions of research
in probability theory and, in particular, in stochastic analysis. See e.g. [29, 16, 23, 7, 8] and the
references therein. Solving any of the two provides a way to obtain the time marginal laws of
the solution to the SPDE in a purely analytic way, without having to solve the SPDE itself. In
many important cases the time marginal laws determine the solutions to the SPDE completely
and the latter can be reconstructed from the former. Hence to understand such PDEs in infinite
dimensions becomes important and regularity results for their solutions mandatory. In particular,
because of the already mentioned lack of a Lebesgue measure on infinite dimensional spaces and
since high order Sobolev spaces are not embedded in spaces of continuous functions (even for
Gaussian measures), Schauder regularity appears to be more feasible here.

In the evolutionary case the class of PDEs considered in this paper are just (after time reversal)
the Kolmogorov backward equations corresponding to SPDEs of type (1.4), whose solutions are
infinite dimensional Ornstein-Uhlenbeck processes with Lévy noise, as explained above. These
have been used as model cases in many other aspects and are used in our paper as a model case to
understand Schauder theory in infinite dimension. It turns out that already in this case new and
typical infinite dimensional phenomena occur, as e.g. regularity of solutions can only hold along
subspaces, which are intrinsically linked to the type of noise in equation (1.4) and its relation to the
possibly unbounded operator A in its drift. This is expressed in pure analytical language through
the differentiability properties of the measures µt in relation to the semigroup generated by A; see
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conditions (1.10) and (1.11) above. Clearly, if one does not fully understand such phenomena in this
model case, one has no chance to develop a Schauder theory for more general Kolmogorov equations
in infinite dimension. The next step would then be to look at perturbations of the situation studied
in this paper, for example by adding a first order part to the Ornstein-Uhlenbeck type Kolmogorov
operators considered here, which is given by a nonlinear vector field in the Banach space X. This
is the object of a paper already in preparation by the two authors. A further step would then be
to perturb the higher order part in a “geometrically comparable” way, similarly to what is usually
done in finite dimension, in going from the Laplacian to strictly elliptic operators.

The structure of this paper is as follows. In Section 2 we mainly fix notations. In Section 3
we introduce our hypotheses, state and prove our main results described above. In particular, we
prove an explicit formula for the n-th Gâteaux derivative of Ptg for g ∈ Cb(X) in Proposition 3.3.
Sections 4 and 5 are devoted to examples in finite and infinite dimensions respectively.

2. Notation and preliminaries

Below, X, Y are Banach spaces. If we write X ⊂ Y this means that X is contained in Y with
continuous embedding. By L(X), L(X,Y ) we denote the spaces of the linear bounded operators
from X to X, from X to Y , respectively.

Let Bb(X;Y ) and Cb(X;Y ) denote the space of all bounded Borel measurable (resp. bounded
continuous) functions F : X 7→ Y , endowed with the sup norm ‖F‖∞ := supx∈X ‖F (x)‖Y . If
X = R we set Bb(X;R) = Bb(X) and Cb(X;R) := Cb(X).

We use the standard notation for partial derivatives along elements of X: for any fixed v,
x ∈ X and F : X 7→ Y , we say that F is differentiable along v at x if there exists the limit
limt→0(F (x+ tv)− F (x))/t. In this case the limit is denoted by ∂F (x)/∂v.

In this paper we shall consider spaces of functions that enjoy regularity properties only along
certain directions. They are defined as follows.

Let H ⊂ X be a Banach space. If F : X 7→ Y is differentiable along every h ∈ H, and the
mapping h 7→ ∂F/∂h(x) belongs to L(H,Y ), F is called H-Gateaux differentiable at x. Such a
mapping is called H-Gateaux derivative of F at x, and denoted by DHF (x). If in addition

lim
‖h‖H→0

‖F (x+ h)− F (x)−DHF (x)(h)‖Y
‖h‖H

= 0,

F is called H-Fréchet differentiable at x.
Note that in the case H = X, these are the usual notions of Gateaux and Fréchet differentiable

functions at x.
We shall consider also higher order derivatives. We identify L(H,L(H,R)) with the space of the

bilinear continuous functions from H2 to R; more generally, denoting by Ln(H) the space of all
n-linear continuous mappings from Hn to R, we identify L(H,Ln−1(H)) with Ln(H).

Let f : X 7→ R be H-Gateaux (resp. H-Fréchet) differentiable at every x ∈ X. If the mapping
DHf : X 7→ L(H,R) is in turn H-Gateaux (resp. H-Fréchet) differentiable at x0, its H-Gateaux
(resp. H-Fréchet) derivative belongs to L(H,L(H,R)) = L2(H) and is denoted by D2

Hf(x0).
For n ∈ N, n ≥ 2, n times H-Gateaux (resp. H-Fréchet) differentiable functions are defined by
recurrence. If f : X 7→ R is n−1 times H-Gateaux (resp. H-Fréchet) differentiable at every x ∈ X,
and the mapping Dn−1

H f : X 7→ Ln−1(H) is H-Gateaux (resp. H-Fréchet) differentiable at x0,
we say that f is n times H-Gateaux (resp. H-Fréchet) differentiable at x0, and the derivative of
Dn−1
H f at x0 is denoted by Dn

Hf(x0).
The space CnH(X) consists of all continuous and bounded functions f : X 7→ R having H-Gateaux

derivatives up to the order n, such that for every k = 1, . . . n and for every (h1, . . . , hk) ∈ Hk, the
mapping X 7→ R, x 7→ Dk

Hf(x)(h1, . . . , hk) is continuous and bounded. It is endowed with the
6



norm

‖f‖CnH(X) = ‖f‖∞ +
n∑
k=1

sup
x∈X
‖Dk

Hf(x)‖Lk(H),

where, for every n-linear continuous function T : Hk 7→ R,

‖T‖Lk(H) := sup

{
|T (h1, . . . , hk)|
‖h1‖H · · · ‖hk‖H

: hi ∈ H \ {0}
}
.

We note that by the multilinear version of the uniform boundedness principle (see [52], [4]) we have
that if f ∈ CnH(X), then indeed ‖f‖CnH(X) < ∞. Furthermore, we remark that if f ∈ CnH(X), for

every x ∈ X and h ∈ H the function t 7→ f(x+ th) is in Cn(R), and we have

(i) if n = 1, f(x+ h)− f(x) =

∫ 1

0
DHf(x+ σh)(h) dσ, and therefore

|f(x+ h)− f(x)| ≤ supy∈X ‖DHf(y)‖H∗‖h‖H ;

(ii) if n > 1, (Dn−1
H f(x+ h)−Dn−1

H f(x))(h1, . . . , hn−1) =

∫ 1

0
Dn
Hf(x+ σh)(h1, . . . , hn−1, h)dσ.

(2.1)
For α ∈ (0, 1) we set

CαH(X;Y ) :=

{
F ∈ Cb(X;Y ) : [F ]CαH(X,Y ) := sup

x∈X,h∈H\{0}

‖F (x+ h)− F (x)‖Y
‖h‖αH

< +∞
}

and we endow CαH(X;Y ) with the norm

‖F‖CαH(X;Y ) := ‖F‖∞ + [F ]CαH(X,Y )

For α = 1, instead of Lipschitz continuity we shall consider a weaker condition, called Zygmund
continuity. We set

Z1
H(X,Y ) :={
F ∈ Cb(X;Y ) : [F ]Z1

H(X,Y ) := sup
x∈X,h∈H\{0}

‖F (x+ 2h)− 2F (x+ h) + F (x)‖Y
‖h‖H

< +∞
}

and we endow Z1
H(X;Y ) with the norm

‖F‖Z1
H(X,Y ) := sup

x∈X
‖F (x)‖Y + [F ]Z1

H(X,Y ).

If H = X we drop the subindex H and we use the more standard notations Cnb (X,Y ) for n ∈ N,
Cαb (X,Y ) for α ∈ (0, 1), Z1

b (X,Y ).
If Y = R, we set CnH(X;R) =: CnH(X) for n ∈ N, CαH(X;R) =: CαH(X) for α ∈ (0, 1), Z1

H(X;R) =:
Z1
H(X). Higher order Hölder and Zygmund spaces of real valued functions will also be used; they

are defined in a natural way, as follows.
For α ∈ (0, 1) and n ∈ N we set

Cα+n
H (X) := {f ∈ CnH(X) : Dn

Hf ∈ CαH(X,Ln(H))},

‖f‖Cα+n
H (X) := ‖f‖CnH(X) + [Dn

Hf ]CαH(X,Ln(H))

(2.2)
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and for n ∈ N, n ≥ 2,

ZnH(X) := {f ∈ Cn−1
H (X) : Dn−1

H f ∈ Z1
H(X,Ln−1(H))},

‖f‖ZnH(X) := ‖f‖Cn−1
H (X): + [Dn−1

H f ]Z1
H(X,Ln−1(H))

(2.3)

In the next lemma we collect some properties of the above defined spaces, that are easy extensions
of known properties in the case H = X, and that will be used later.

Lemma 2.1. Let X, Y be Banach spaces.

(i) For every α ∈ (0, 1) and F ∈ C1
H(X;Y ) we have

[F ]CαH(X;Y ) ≤ 21−α sup
z∈X
‖DHF (z)‖αL(H,Y )‖F‖

1−α
Cb(X;Y ). (2.4)

(ii) If F : X 7→ Y is H-Gateaux differentiable and DHF is continuous at x ∈ X, then F is
H-Fréchet differentiable at x.

(iii) If f ∈ C2
H(X) we have

|f(x+ 2h)− 2f(x+ h) + f(x)| ≤ sup
y∈X
‖D2

Hf(y)‖L2(H)‖h‖2H , x ∈ X, h ∈ H. (2.5)

Proof. Let F ∈ C1
H(X;Y ). For every x ∈ X, h ∈ H, the function ψ : R 7→ Y , ψ(t) := F (x+ th) is

continuously differentiable, and ψ′(t) = DHF (x+ th)(h). Therefore we have

F (x+ h)− F (x) =

∫ 1

0
DHF (x+ σh)(h)dσ (2.6)

so that

‖F (x+ h)− F (x)‖Y ≤ sup
z∈X
‖DHF (z)‖L(H,Y )‖h‖H . (2.7)

Of course, we also have

‖F (x+ h)− F (x)‖Y ≤ 2 sup
z∈X
‖F (z)‖Y .

Consequently,

‖F (x+ h)− F (x)‖Y ≤ (sup
z∈X
‖DHF (z)‖L(H,Y )‖h‖H)α(2 sup

z∈X
‖F (z)‖Y )1−α

and statement (i) follows.
Let us prove (ii). Using again (2.6) we get, for every h ∈ H,

‖F (x+ h)− F (x)−DHF (x)(h)‖Y =

∥∥∥∥∫ 1

0
(DHF (x+ σh)−DHF (x))(h)dσ

∥∥∥∥
Y

≤ supv∈H, ‖v‖H≤‖h‖H ‖DHF (x+ v)−DHF (x)‖L(X,Y )‖h‖H
so that, recalling that H ⊂ X, ‖F (x+ h)− F (x)−DHF (x)(h)‖Y = o(‖h‖H) as ‖h‖H → 0, and F
is H-Fréchet differentiable at x.

Let now f ∈ C2
H(X). Applying thrice (2.6), for every x ∈ X and h ∈ H we get

f(x+ 2h)− 2f(x+ h) + f(x) =

∫ 1

0
(DHf(x+ (1 + σ)h)−DHf(x+ σh))(h)dσ

=

∫ 1

0

∫ 1

0
D2
Hf(x+ (τ + σ)h)(h, h)dτ dσ

and estimating in an obvious way statement (iii) follows. �
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A Borel probability measure µ in X is called Fomin differentiable along v ∈ X if for every Borel
set A the incremental ratio (µ(A + tv) − µ(A))/t has finite limit as t → 0. Such a limit is called
dvµ(A); dvµ is a signed measure and denoting the translated measure µv(A) := µ(A+ v) by µv we
have

lim
s→0

∥∥∥∥µsv − µs
− dvµ

∥∥∥∥ = 0, (2.8)

where ‖ · ‖ denotes the total variation norm.
Moreover, dvµ is absolutely continuous with respect to µ. The density βµv ∈ L1(X,µ) is called

Fomin derivative or logarithmic derivative of µ along v, and it satisfies∫
X

∂f

∂v
µ(dx) = −

∫
X
βµv f µ(dx), f ∈ C1

b (X). (2.9)

By [6, Thm. 3.6.8], this equality characterizes Fomin differentiability, in the sense that if (2.9)
holds for some βµv ∈ L1(X,µ) and for every f ∈ C1

b (X), then µ is Fomin differentiable along v.
If µ is Fomin differentiable along two vectors v, w, then it is Fomin differentiable along any linear

combination of v and w, and we have dλ1v+λ2wµ = λ1dvµ+ λ2dwµ; therefore

βµλ1v+λ2w
= λ1β

µ
v + λ2β

µ
w, λ1, λ2 ∈ R. (2.10)

The proofs of these statements may be found in [6, Chapter 3]. We refer to [6] for the general
theory of differentiable measures µ, and to the basic properties of the measures dvµ.

3. Schauder and Zygmund regularity

Under the only assumptions that Tt ∈ L(X) and µt is a Borel probability measure for every t,
the operators Pt defined in (1.1) map Cb(X) into itself and we have

‖Ptf‖∞ ≤ ‖f‖∞, t > 0, f ∈ Cb(X). (3.1)

The weak continuity of t 7→ µt yields that for every f ∈ Cb(X) the function [0,+∞)×X, (t, x) 7→
Ptf(x) is continuous, by [9, Lemma 2.1]. Consequently, the operators Fλ in right-hand side of
(1.3) are one to one, and since Pt is a semigroup they satisfy the resolvent identity F (λ)− F (µ) =
(µ−λ)F (λ)F (µ). By the general spectral theory, there exists a unique closed operator L : D(L) ⊂
Cb(X) 7→ Cb(X) such that F (λ) = R(λ, L). The domain D(L) is just the range of F (λ), for every
λ > 0.

The leading assumptions of the paper are the following.

Hypothesis 3.1. For every t > 0 there exists a subspace {0} 6= Ht ⊂ X such that µt is Fomin
differentiable along every h ∈ Ht.

According to the notation of Section 2, for every v ∈ Ht we denote by βµtv the Fomin derivative
of µt along v.

Hypothesis 3.2. There exists a Banach space H ⊂ X, and constants M , C, θ > 0, ω ∈ R such
that 

(i) Tt(H) ⊂ H , ‖Tth‖H ≤Meωt‖h‖H , t > 0, h ∈ H,

(ii) Tt(H) ⊂ Ht, ‖βµtTth‖L1(X,µt) ≤
Ceωt

tθ
‖h‖H , t > 0, h ∈ H.

(3.2)
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3.1. Properties of Pt and estimates. The starting point of our analysis is the next proposition,
which shows that each Pt is smoothing along suitable directions.

Proposition 3.3. (i) Let g ∈ Bb(X) and t > 0. Then Ptg is H-Gateaux differentiable with
bounded H-Gateaux derivative, and

DHPtg(x)(h) = −
∫
X
g(Ttx+ y)βµtTth(y)µt(dy), t > 0, h ∈ H. (3.3)

(ii) Let g ∈ Cb(X) and t > 0, n ∈ N. Then Ptg ∈ CnH(X); for all h1, ..., hn ∈ H we have

Dn
HPtg(x)(h1, ..., hn) (3.4)

= (−1)n
∫
X
· · ·
∫
X
g(Ttx+ Tn−1

n
ty1 + · · ·+ T t

n
yn−1 + yn)

β
µt/n
Tt/nhn

(yn) · · · βµt/nTt/nh1
(y1)µt/n(dyn) · · · µt/n(dy1),

and

‖Dn
HPtg(x)‖Ln(H) ≤ Kn

eωt

tnθ
‖g‖∞, (3.5)

with Kn := Cnnθ. If ω > 0 a better estimate than (3.5) holds for large t, namely there
exists K ′n > 0 such that

‖Dn
HPtg(x)‖Ln(H) ≤ K ′n max{1, t−nθ}‖g‖∞, t > 0, x ∈ X, g ∈ Cb(X). (3.6)

(iii) Let g ∈ C1
H(X) and t > 0. Then

DHPtg(x)(h) =

∫
X

∂g

∂(Tth)
(Ttx+ y)µt(dy) = Pt

(
∂g

∂(Tth)

)
(x), t > 0, x ∈ X, h ∈ H. (3.7)

If even g ∈ CnH(X) for some n ∈ N, then for all t > 0, x ∈ X and hj ∈ H, j = 1, . . . , n, we
have

Dn
HPtg(x)(h1, . . . , hn) =

∫
X
Dn
Hg(Ttx+ y)(Tth1, . . . , Tthn)µt(dy) = Pt

(
∂ng

∂(Tthn) . . . ∂(Tth1)

)
(x),

(3.8)
and the function (t, x) 7→ Dn

HPtg(x)(h1, . . . , hn) is continuous in [0,+∞)×X. Moreover,

‖Pt‖L(CnH(X)) ≤ max{1,Mnenωt}, t > 0, n ∈ N. (3.9)

Proof. (i) For every x ∈ X, h ∈ H and s 6= 0 we have

Ptg(x+ sh)− Ptg(x)

s
=

1

s

∫
X

(g(Ttx+ sTth+ y)− g(Ttx+ y))µt(dy)

=
1

s

(∫
X
g(Ttx+ z)(µt)sTth(dz)−

∫
X
g(Ttx+ y)µt(dy)

)
so that∣∣∣∣Ptg(x+ sh)− Ptg(x)

s
+

∫
X
g(Ttx+ y)βµtTth(y)µt(dy)

∣∣∣∣ ≤ ‖g‖∞ ∥∥∥∥(µt)sTth − µt
s

− dTthµt
∥∥∥∥

that vanishes as s → 0 by (2.8). Therefore, Ptg is differentiable along h at x, with derivative
∂Ptg(x)/∂h given by the right-hand side of (3.3). Such a derivative is linear in h by (2.10) and
by the linearity of Tt, and by Hypothesis 3.2(ii) it modulus is bounded by ‖g‖∞Ceωtt−θ‖h‖H .
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Therefore, Ptg is H-Gateaux differentiable at x and (3.3) holds. If g ∈ Cb(X), then for every x,
x0 ∈ X, and h ∈ H,

|(DHPtg(x)−DHPtg(x0))(h)| ≤
∫
X
|g(Ttx+ y)− g(Ttx0 + y)| |βµtTth(y)|µt(dy) (3.10)

where the right-hand side vanishes as x → x0 by the Dominated Convergence Theorem. So,
DHPtg(·)h is continuous on X, hence Ptg ∈ C1

H(X).

(ii) Now let us prove (3.4) for g ∈ Cb(X), t > 0, by induction over n ∈ N. We have just proved
(3.4) for n = 1 above. Suppose that (3.4) holds for n ∈ N. By the induction hypothesis applied to
the n-step equipartition 0 < 1

n+1 < · · · <
n
n+1 of [0, n

n+1 ] for h1, ..., hn+1 ∈ H we have

Dn
HPtg(x)(h1, ..., hn) = Dn

HP n
n+1

t(P t
n+1

g)(x)(h1, ..., hn)

= (−1)n
∫
X
· · ·
∫
X
P t
n+1

g(T n
n+1

tx+ Tn−1
n+1

ty1 + · · ·T t
n+1

yn−1 + yn)

β
µt/(n+1)

Tt/(n+1)hn
(yn) · · · βµt/(n+1)

Tt/(n+1)h1
(y1)µt/(n+1)(dyn) · · · µt/(n+1)(dy1).

Since we already know that P t
n+1

g ∈ C1
H(X), by Hypothesis 3.2(ii), (2.7) and the Dominated

Convergence Theorem we can differentiate the right-hand side along hn+1 interchanging the partial
derivative with the multiple integrals, and using (3.3) we obtain

∂

∂hn+1
Dn
HPtg(x)(h1, ..., hn) = (−1)(n+1)

∫
X
· · ·
∫
X
g(Ttx+ T nt

n+1
y1 + · · ·+ T t

n+1
yn + z)

β
µt/(n+1)

Tt/(n+1)hn+1
(z)β

µt/(n+1)

Tt/(n+1)hn
(yn) · · · βµt/(n+1)

Tt/(n+1)h1
(y1)µt/(n+1)(dz)µt/(n+1)(dyn) · · · µt/(n+1)(dy1).

The right-hand side is just Dn+1
H Ptg(x)(h1, ..., hn+1), so that (3.4) holds for n+ 1.

The continuity and boundedness on X of the map x 7→ Dn
HPtg(x)(h1, ..., hn) is obvious by (3.4),

Hypothesis 3.2(ii) and the Dominated Convergence Theorem. Then also (3.5) follows immediately
by Hypothesis 3.2(ii).

Assume now that ω > 0. Using (3.5) we get for 0 < t ≤ 2

‖Dn
HPtg(x)‖Ln(H) ≤ Kn

e2ω

tnθ
‖g‖∞,

while for t ≥ 2, writing Dn
HPtg = Dn

HP1(Pt−1g) and using (3.1) and (3.5) with t = 1, we get

‖Dn
HPtg(x)‖Ln(H) ≤ Kne

ω‖Pt−1g‖∞ ≤ Kne
ω‖g‖∞.

Putting together such estimates, we get (3.6).

(iii) Now we prove (3.7). If g ∈ C1
H(X), for every s 6= 0 and x ∈ X, as before,

Ptg(x+ sh)− Ptg(x)

s
=

∫
X

g(Ttx+ sTth+ y)− g(Ttx+ y)

s
µt(dy)

and the right-hand side converges to
∫
X

∂g
∂Tth

(Ttx+y)µt(dy) =
∫
X DHg(Ttx+y)(h)µt(dy) as s→ 0,

by (2.7) and the Dominated Convergence Theorem. By the definition of Pt, such limit coincides
with Pt(∂g/∂(Tth))(x).

If g ∈ CnH(X), formula (3.8) follows applying several times (3.7). The proof of the continuity
of (t, x) 7→ Dn

HPtg(x)(h1, . . . , hn) is similar to the proof of the continuity of (t, x) 7→ Ptf(x) of [9,
Lemma 2.1]. Here is the argument:
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Let tk → t ∈ [0,+∞), xk → x ∈ X. Then,

Dn
HPtkg(xk)(h1, . . . , hn)−Dn

HPtg(x)(h1, . . . , hn)

=

∫
X

(Dn
Hg(Ttkxk + y)(Ttkh1, . . . , Ttkhn)−Dn

Hg(Ttx+ y)(Tth1, . . . , Tthn))µtk(dy)

+

∫
X
Dn
Hg(Ttx+ y)(Tth1, . . . , Tthn))(µtk(dy)− µt(dy)) =: I1,k + I2,k

Since µtk weakly converges to µt as k → ∞ and Dn
Hg(Ttx + ·)(Tth1, . . . , Tthn) is continuous and

bounded, I2,k → 0 as k →∞. Still by the weak convergence, the measures µtk are uniformly tight,
namely for every ε > 0 there is a compact set Kε ⊂ X such that µtk(X \Kε) ≤ ε for every k ∈ N.
Splitting I1,k into the sum of the integral over K and the integral over X \ Kε, and using the
uniform continuity of (t, z) 7→ Dn

Hg(z)(Tth1, . . . , Tthn) on compact sets, one gets limk→∞ I1,k = 0,
too.

By (3.8) and Hypothesis 3.2(i) we have, for every natural number j ≤ n and x ∈ X, h1, . . . hj ∈ H,

|(Dj
HPtg(x))(h1, . . . , hj)| ≤ sup

y∈X
‖Dj

Hg(y)‖Lj(H)

j∏
l=1

‖Tthl‖H ≤M jejωt
j∏
l=1

‖hl‖H sup
y∈X
‖Dj

Hg(y)‖Lj(H),

which yields (3.9). �

Remark 3.4. Under our general assumptions we cannot prove that DHPtg is continuous with
values in H∗ (and therefore that Ptg is H-Fréchet differentiable, by Lemma 2.1(ii)) for every t > 0
and g ∈ Cb(X). (3.10) implies immediately thatDHPtg is continuous for every uniformly continuous
and bounded g, but we prefer to deal with merely continuous rather than uniformly continuous
functions.

If in addition the functions βµtTth belong to Lp(X,µt) for some p > 1, and for every t > 0 there

exists Ct > 0 such that ‖βµtTth‖Lp(X,µt) ≤ Ct‖h‖H for every h ∈ H, using the Hölder inequality in

the right-hand side of (3.10) and then the Dominated Convergence Theorem yields that DHPtg
is continuous with values in H∗. In this case, throughout the paper we could use stronger higher
order Hölder and Zygmund spaces, obtained replacing the condition of H-Gateaux differentiability
by H-Fréchet differentiability in the definition of the CnH spaces.

The behavior of Pt in the Hölder spaces CαH(X) and in the Zygmund spaces ZkH(X) is coherent
with its behavior in Cb(X), as the next lemma shows.

Lemma 3.5. For every t > 0 and α ∈ (0,+∞), k ∈ N ∪ {0}, Pt ∈ L(Ck+α
H (X)) and there exists

c = c(k + α) > 0 such that

‖Ptf‖Ck+α
H (X) ≤ c‖f‖Ck+α

H (X), t > 0, f ∈ Ck+α
H (X). (3.11)

Moreover, for every t > 0 and k ∈ N , Pt ∈ L(ZkH(X)) and there exists c = c(k) > 0 such that

‖Ptf‖ZkH(X) ≤ c‖f‖ZkH(X), t > 0, f ∈ ZkH(X). (3.12)

Proof. Let α ∈ (0, 1) and f ∈ CαH(X), t > 0. From the representation formula (1.1) and Hypothesis
3.2(i) we get, for every x ∈ X and h ∈ H,

|Ptf(x+ h)− Ptf(x)| =

∣∣∣∣ ∫
X

(f(Ttx+ Tth+ y)− f(Ttx+ y))µt(dy)

∣∣∣∣
≤ [f ]CαH(X)‖Tth‖αH ≤Mαeαωt[f ]CαH(X)‖h‖αH ,

(3.13)
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so that

‖Ptf‖CαH(X) ≤ ‖f‖∞ +Mαeαωt[f ]CαH(X).

This proves (3.11) for k = 0, in the case ω ≤ 0.

If f ∈ Ck+α
H (X) for some k ∈ N, we use (3.8) and again Hypothesis 3.2(i), that give, for every

x ∈ X and h, h1, . . . hk ∈ H,

|(Dk
HPtf(x+ h)−Dk

HPtf(x))(h1, . . . , hn)| =

=

∣∣∣∣ ∫
X

(Dk
Hf(Ttx+ Tth+ y)−Dk

Hf(Ttx+ y))(Tth1, . . . , Tthk)µt(dy)

∣∣∣∣
≤ [Dk

Hf ]CαH(X;Lk(H))‖Tth‖αH
∏k
j=1 ‖Tthj‖H ≤Mk+αe(k+α)ωt[Dk

Hf ]CαH(X;Lk(H))‖h‖αH
∏k
j=1 ‖hj‖H .

This estimate and (3.9) yield (3.11) for k ∈ N, in the case ω ≤ 0.
For ω > 0 we argue as follows. For every f ∈ Ck+α(X) with α ∈ (0, 1) and k ∈ N ∪ {0} the

above estimates yield

‖Ptf‖Ck+α(X) ≤Mk+αe(k+α)ω‖f‖Ck+α(X), t ≤ 1,

while for t > 1 we write Ptf = P1Pt−1f , so that ‖Ptf‖Ck+α
H (X) ≤ ‖P1‖L(Cb(X),Ck+α

H (X))‖f‖∞ by

(3.1) (P1 belongs to L(Cb(X), Ck+α
H (X)) because it belongs to L(Cb(X), Ck+1

H (X)) by Proposition

3.3, and Ck+1
H (X) ⊂ Ck+α

H (X)).
The proof of estimates (3.12) is similar, and it is left to the reader. �

If f is H-Hölder continuous estimates (3.5) may be improved near t = 0. Such improvements
are crucial in the proof of our Schauder theorems.

Proposition 3.6. For every α ∈ (0, 1) and n ∈ N there are constants Kn,α > 0 such that

‖Dn
HPtf(x)‖Ln(H) ≤ Kn,α

eωt

t(n−α)θ
[f ]CαH(X), t > 0, x ∈ X, f ∈ CαH(X). (3.14)

Proof. The key step is to prove that (3.14) holds for n = 1. We use the same argument of [18]. Let
t > 0, f ∈ CαH(X), h ∈ H \ {0}. For every s > 0 we have

DHPtf(x)(h) =

(
DHPtf(x)(h)− Ptf(x+ sh)− Ptf(x)

s

)
+
Ptf(x+ sh)− Ptf(x)

s

=

(
1

s

∫ s

0
(DHPtf(x)(h)−DHPtf(x+ σh)(h))dσ

)
+
Ptf(x+ sh)− Ptf(x)

s

=: I1(s) + I2(s).

To estimate I1(s) we remark that for every k ∈ H, by (3.3) we have

|(DHPtf(x+ k)−DHPtf(x))(h)| =
∣∣∣∣∫
X

(f(Ttx+ Ttk + y)− f(Ttx+ y))βµtTth(y)µt(dy)

∣∣∣∣
≤ [f ]CαH(X)‖Ttk‖αH‖β

µt
Tth
‖L1(X,µt) ≤ [f ]CαH(X)M

αeαωt‖k‖αH
Ceωt

tθ
‖h‖H .

Using this estimate with k = σh we get

|I1(s)| ≤ 1

s

∫ s

0
|DHPtf(x+ σh)(h)−DHPtf(x)(h)|dσ ≤ 1

s

CMα

tθ
e(α+1)ωt

∫ s

0
σαdσ ‖h‖α+1

H [f ]CαH(X).
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On the other hand, by (3.13) we get

|I2(s)| ≤Mαeαωtsα−1‖h‖αH [f ]CαH(X).

Summing up,

|DHPtf(x)(h)| ≤
(
CMα

α+ 1
e(α+1)ωt‖h‖α+1

H

sα

tθ
+Mαeαωtsα−1‖h‖αH

)
[f ]CαH(X), s > 0.

Choosing now s = tθe−ωt/‖h‖H we get

|DHPtf(x)(h)| ≤
(
CMα

α+ 1
+Mα

)
1

t(1−α)θ
eωt‖h‖H [f ]CαH(X),

which yields (3.14) for n = 1.
For n > 1 we have Dn

HPtf = Dn
HPt/2g, with g = Pt/2f . By (3.7),

∂nPtf

∂hn · · · ∂h1
=

∂n−1

∂hn−1 · · · ∂h1
Pt/2

(
∂Pt/2f

∂(Tt/2hn)

)
so that (3.14) follows from (3.5) and (3.14) with n = 1. �

3.2. Schauder and Zygmund estimates: stationary equations. In this section we use the
smoothing properties of Pt to deduce regularity results for the elements of D(L), namely for the
functions u given by (1.3) for some λ > 0 and f ∈ Cb(X). Estimate (3.1) yields immediately

‖u‖∞ ≤
1

λ
‖f‖∞. (3.15)

The first (not optimal) regularity result is a standard consequence of Propositions 3.3 and 3.6.

Proposition 3.7. Given λ > 0 and f ∈ Cb(X), let u = R(λ, L)f .

(i) Let θ < 1. For every n ∈ N such that n < 1/θ, u ∈ CnH(X). There exists C = C(λ) > 0,
independent of f , such that

‖u‖CnH(X) ≤ C‖f‖∞ (3.16)

(ii) Let α ∈ (0, 1) be such that α + 1/θ > 1. For every f ∈ CαH(X) and for every n ∈ N such
that n < α+ 1/θ, u ∈ CnH(X). There exists C = C(λ, α) > 0, independent of f , such that

‖u‖CnH(X) ≤ C‖f‖CαH(X) (3.17)

Proof. The proof is in two steps. First we consider the case λ > ω, and then, if ω > 0, the case
λ ∈ (0, ω].
First step: λ > ω. Estimate (3.5) yields, for every k ∈ {1, . . . , n},

e−λt‖Dk
HPtf(x)‖Lk(H) ≤ e−λtKk

eωt

tkθ
‖f‖∞, t > 0, x ∈ X, f ∈ Cb(X), (3.18)

and if α ∈ (0, 1), (3.14) yields, for every k ∈ {1, . . . , n},

e−λt‖Dk
HPtf(x)‖Lk(H) ≤ e−λtKk,α

eωt

t(k−α)θ
[f ]CαH(X), t > 0, x ∈ X, f ∈ CαH(X). (3.19)

The right-hand sides of (3.18) and (3.19) belong to L1(0,+∞) because λ > ω, and kθ ∈ (0, 1) in
(3.18), (k−α)θ ∈ (0, 1) in (3.19). Therefore u is n times H-Gateaux differentiable at every x ∈ X,
and for every h1, . . . , hk ∈ H with k ∈ {1, . . . , n} we have

Dk
Hu(x)(h1, . . . , hk) =

∫ ∞
0

e−λtDk
HPtf(x)(h1, . . . , hk)dt.
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(3.18) and (3.19) imply respectively, for every x ∈ X and k ∈ {1, . . . , n},

‖Dk
Hu(x)‖Lk(H) ≤ Kk

∫ ∞
0

eωt−λt

tkθ
dt ‖f‖∞ ≤

KkΓ(1− kθ)
(λ− ω)1−kθ ‖f‖∞,

and

‖Dk
Hu(x)‖Lk(H) ≤ Kk,α

∫ ∞
0

eωt−λt

t(k−α)θ
dt [f ]CαH(X) ≤

Kk,αΓ(1− (k − α)θ)

(λ− ω)1−(k−α)θ
[f ]CαH(X),

for α > 0, f ∈ CαH(X) (here, Γ is the Euler function). In both cases, since for every t > 0

the function x 7→ Dk
HPtf(x)(h1, . . . , hk) is continuous by Proposition 3.3, estimates (3.18), (3.19)

and the Dominated Convergence Theorem imply that x 7→ Dk
Hu(x)(h1, . . . , hk) is continuous for

k = 1, . . . , n. Therefore, u ∈ CnH(X) and

‖u‖CnH(X) ≤
‖f‖∞
λ

+

( n∑
k=1

Kk
Γ(1− kθ)

(λ− ω)1−kθ

)
‖f‖∞, (3.20)

so that (3.16) holds with C = 1 +
∑n

k=1KkΓ(1− kθ)/(λ− ω)1−kθ. In the case that α ∈ (0, 1) and
f ∈ CαH(X), we get

‖u‖CnH(X) ≤
‖f‖∞
λ

+

( n∑
k=1

Kk,α
Γ(1− (k − α)θ)

(λ− ω)1−(k−α)θ

)
[f ]CαH(X), (3.21)

so that (3.17) holds with C = 1/λ+
∑n

k=1Kk,αΓ(1− (k − α)θ)/(λ− ω)1−(k−α)θ.

Second step: ω > 0, λ ∈ (0, ω].
In this case the statement follows from Step 1 by a perturbation argument. Indeed, since λu−

Lu = f , we have (ω+ 1)u−Lu = (ω+ 1− λ)u+ f . The right-hand side belongs to Cb(X), and its
sup norm is bounded by ((ω+ 1−λ)/λ+ 1)‖f‖∞, by (3.15). So, statement (i) follows from Step 1.

Concerning statement (ii), it is sufficient to prove that u ∈ CαH(X), with ‖u‖CαH(X) ≤ C‖f‖CαH(X)

for some C > 0, and to use Step 1 as above. This is a simple consequence of Lemma 3.5. Indeed,
using (3.11) with k = 0 we get

|u(x+h)−u(x)| ≤
∫ ∞

0
e−λt|Ptf(x+h)−Ptf(x)| dt ≤

∫ ∞
0

e−λtc‖h‖αH [f ]CαH(X)dt =
c

λ
‖h‖αH [f ]CαH(X).

�

Notice that for n ≥ 1/θ in case (i) and for n ≥ α+ 1/θ in case (ii), the arguments used above do

not work, since the functions t 7→ t−nθ, t 7→ t−(n−α)θ, respectively, are not integrable near 0, and
(3.18), (3.19) are not helpful to conclude that Dn

Hu(x) exists.
Optimal regularity results are provided by the next theorems. The first one deals with Hölder

regularity, and the second one with Zygmund regularity.

Theorem 3.8. Let λ > 0, f ∈ Cb(X) and let u = R(λ, L)f . The following statements hold.

(i) If 1/θ /∈ N then u ∈ C1/θ
H (X). There exists C = C(λ) > 0, independent of f , such that

‖u‖
C

1/θ
H (X)

≤ C‖f‖∞. (3.22)

(ii) If α ∈ (0, 1) with α + 1/θ /∈ N and f ∈ CαH(X) then u ∈ C
α+1/θ
H (X) and there exists

C = C(λ, α) > 0, independent of f , such that

‖u‖
C
α+1/θ
H (X)

≤ C‖f‖CαH(X). (3.23)
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Proof. Let n ∈ N∪ {0} be the integral part of α+ 1/θ, with α = 0 in the case of statement (i) and
α ∈ (0, 1) in the case of statement (ii). If n = 0, u ∈ Cb(X) and (3.15) holds. If n > 0, we already
know, by Proposition 3.7, that u ∈ CnH(X), and that estimate (3.20) (resp. estimate (3.21)) holds.

We have to prove that Dn
Hu belongs to C

α+1/θ−n
H (X,Ln(H)). As in Proposition 3.7, it is sufficient

to consider the case λ > ω. If ω > 0, the case λ ∈ (0, ω] is recovered by the same argument used in
Step 2 of Proposition 3.7.

We treat separately the cases n > 0 and n = 0.
Let n = 0. This implies that θ > 1 in statement (i), and (1 − α)θ > 1 in statement (ii). For

every fixed h, we split u = ah + bh, where

ah(y) =

∫ ‖h‖1/θH

0
e−λtPtf(y) dt, bh(y) =

∫ ∞
‖h‖1/θH

e−λtPtf(y) dt, y ∈ X. (3.24)

So, for every x ∈ X we have

|ah(x+ h)− ah(x)| ≤
∫ ‖h‖1/θH

0
e−λt|Ptf(x+ h)− Ptf(x)| dt ≤

∫ ‖h‖1/θH

0
2‖f‖∞dt = 2‖h‖1/θH ‖f‖∞.

To estimate |bh(x+ h)− bh(x)| we remark that by (2.1)(i) and (3.5) with n = 1 for every t > 0
we have

‖Ptf(x+ h)− Ptf(x)‖ ≤ sup
y∈X
‖DHPtf(y)‖H∗‖h‖H ≤ K1

eωt

tθ
‖h‖H‖f‖∞, (3.25)

which yields

|bh(x+ h)− bh(x)| ≤
∫ ∞
‖h‖1/θH

e−λt|Ptf(x+ h)− Ptf(x)| dt ≤
∫ ∞
‖h‖1/θH

K1

tθ
dt ‖h‖H‖f‖∞

≤ K1

θ − 1
‖h‖1/θH ‖f‖∞.

Summing up, u ∈ C1/θ
H (X), and

[u]
C

1/θ
H (X)

≤
(

2 +
K1

θ − 1

)
‖f‖∞.

This estimate and (3.15) give (3.22) with C(λ) = 2 +K1/(θ − 1) + 1/λ, in the case that θ > 1.
If α ∈ (0, 1) and f ∈ CαH(X) we use (3.13) and we get

|ah(x+ h)− ah(x)| ≤
∫ ‖h‖1/θH

0
e−λt|Ptf(x+ h)− Ptf(x)| dt

≤
∫ ‖h‖1/θH

0
e−(λ−αω)tMα‖h‖αH [f ]CαH(X)dt ≤Mα‖h‖α+1/θ

H [f ]CαH(X).

To estimate |bh(x+ h)− bh(x)| we use (3.14) with n = 1, that gives

‖Ptf(x+ h)− Ptf(x)‖ ≤ sup
y∈X
‖DHPtf(y)‖H∗‖h‖H ≤ K1,α

eωt

t(1−α)θ
‖h‖H [f ]CαH(X), (3.26)

which yields

|bh(x+ h)− bh(x)| ≤
∫ ∞
‖h‖1/θH

K1,α

t(1−α)θ
dt ‖h‖H [f ]CαH(X) ≤

K1,α

(1− α)θ − 1
‖h‖1/θ+αH [f ]CαH(X).
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Summing up, we obtain u ∈ Cα+1/θ
H (X), and

[u]
C
α+1/θ
H (X)

≤
(
Mα +

K1,α

(1− α)θ − 1

)
[f ]CαH(X).

This estimate, together with (3.15), yield (3.23), with C(λ) = Mα +K1,α/((1− α)θ − 1) + 1/λ, in
the case that α+ 1/θ < 1.

For n = [α + 1/θ] ≥ 1 the procedure is similar, just with different notations and constants.
We already know from Proposition 3.7 that u ∈ CnH(X), and we have to show that Dn

Hu ∈
C
α+1/θ−n
H (X,Ln(H)), with α = 0 as far as statement (i) is concerned, and α ∈ (0, 1) as far as

statement (ii) is concerned.
For every fixed h, h1, . . . , hn ∈ H we split Dn

Hu(y)(h1, . . . , hn) = ah(y) + bh(y), where now
ah(y) :=

∫ ‖h‖1/θH

0
e−λtDn

HPtf(y)(h1, . . . , hn) dt, y ∈ X,

bh(y) :=

∫ ∞
‖h‖1/θH

e−λtDn
HPtf(y)(h1, . . . , hn) dt, y ∈ X.

(3.27)

Let us prove that statement (i) holds. In this case we have f ∈ Cb(X), nθ ∈ (0, 1), (n + 1)θ > 1.
Recalling that ω − λ < 0, estimate (3.5) yields

|ah(x+ h)− ah(x)| ≤ |ah(x+ h)|+ |ah(x)| ≤ 2Kn

∫ ‖h‖1/θH

0

e(ω−λ)t

tnθ
dt

n∏
j=1

‖hj‖H‖f‖∞

≤ 2Kn

1− nθ
‖h‖(1−nθ)/θH

n∏
j=1

‖hj‖H‖f‖∞.

To estimate |bh(x+ h)− bh(x)| we apply (2.1)(ii) to the function Ptf , and using (3.5) we get

‖Dn
HPtf(x+ h)−Dn

HPtf(x)‖Ln(H) ≤ sup
y∈X
‖Dn+1

H Ptf(y)‖Ln(H)‖h‖H ≤ Kn+1
eωt

t(n+1)θ
‖f‖∞‖h‖H ,

(3.28)
which yields (since ω − λ < 0)

|bh(x+ h)− bh(x)| ≤
∫ ∞
‖h‖1/θH

Kn+1‖h‖H
t(n+1)θ

dt
n∏
j=1

‖hj‖H‖f‖∞ ≤
Kn+1‖h‖1/θ−nH

(n+ 1)θ − 1

n∏
j=1

‖hj‖H‖f‖∞.

Summing up we get

|(Dn
Hu(x+ h)−Dn

Hu(x))(h1, . . . , hn)| ≤ C1‖h‖1/θ−nH

n∏
j=1

‖hj‖H‖f‖∞ (3.29)

with

C1 =
2Kn

1− nθ
+

Kn+1

(n+ 1)θ − 1
.

Therefore, Dn
Hu ∈ C

1/θ−n
H (X;Ln(H)) and [Dn

Hu]
C

1/θ−n
H (X;Ln(H))

≤ C1‖f‖∞. This estimate and

(3.20) give (3.22) for n ≥ 1.
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Let us prove that statement (ii) holds. Now we have f ∈ CαH(X) with α ∈ (0, 1), (n−α)θ ∈ (0, 1),
(n+ 1− α)θ > 1. Estimate (3.14) yields

|ah(x+ h)− ah(x)| ≤ |ah(x+ h)|+ |ah(x)| ≤ 2Kn,α

∫ ‖h‖1/θH

0

e(ω−λ)t

t(n−α)θ
dt

n∏
j=1

‖hj‖H [f ]CαH(X)

=
2Kn,α

1− (n− α)θ
‖h‖(1−(n−α)θ)/θ

H

n∏
j=1

‖hj‖H [f ]CαH(X).

To estimate |bh(x+ h)− bh(x)| we use again (2.1)(ii) and by (3.5) we get

‖Dn
HPtf(x+ h)−Dn

HPtf(x)‖Ln(H) ≤ sup
y∈X
‖Dn+1

H Ptf(y)‖Ln(H)‖h‖H ≤
Kn+1,αe

ωt

t(n+1−α)θ
[f ]CαH(X)‖h‖H ,

(3.30)
which yields

|bh(x+ h)− bh(x)| ≤
∫ ∞
‖h‖1/θH

Kn+1,α

t(n+1−α)θ
dt ‖h‖H

n∏
j=1

‖hj‖H [f ]CαH(X)

≤ Kn+1

(n+ 1− α)θ − 1
‖h‖1/θ−n+α

H

n∏
j=1

‖hj‖H [f ]CαH(X).

Summing up we get

|(Dn
Hu(x+ h)−Dn

Hu(x))(h1, . . . , hn)| ≤ C2‖h‖1/θ−n+α
H

n∏
j=1

‖hj‖H [f ]CαH(X) (3.31)

with

C2 =
2Kn,α

1− (n− α)θ
+

Kn+1,α

(n+ 1− α)θ − 1
.

Therefore, Dn
Hu ∈ C

1/θ−n+α
H (X;Ln(H)) and [Dn

Hu]
C

1/θ−n+α
H (X;Ln(H))

≤ C2[f ]CαH(X). This estimate

and (3.21) give (3.23) in the case n ≥ 1. �

If 1/θ = k ∈ N we do not expect that u ∈ C
1/θ
H (X) whenever f ∈ Cb(X). The simplest

counterexample is X = H = RN with N > 1, L = ∆. In this case (3.2) is satisfied with θ = 1/2
(see Sect. 4.1) and it is well known that the equation λu −∆u = f has not solutions in C2

b (RN )

(and even not in C1
b (RN ) with Lipschitz gradient) for every f ∈ Cb(RN ). The best regularity result

in this scale of spaces is in Zygmund spaces.

Theorem 3.9. Let λ > 0, f ∈ Cb(X) and let u = R(λ, L)f . Then

(i) If 1/θ = k ∈ N, u ∈ ZkH(X), and there exists C = C(λ) > 0, independent of f , such that

‖u‖ZkH(X) ≤ C‖f‖∞. (3.32)

(ii) If α ∈ (0, 1) and α+ 1/θ = k ∈ N, for every f ∈ CαH(X) the function u belongs to ZkH(X),
and there exists C = C(λ, α) > 0, independent of f , such that

‖u‖ZkH(X) ≤ C‖f‖CαH(X). (3.33)

Proof. We proceed as in the proof of Theorem 3.8, with due modifications. So, it is enough to
prove that the statement holds if λ > ω. The case where ω > 0 and λ ∈ (0, ω] will follow as in Step
2 of Proposition 3.7.
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First we prove statements (i) and (ii) in the case k = 1.
We already know that u ∈ Cb(X), with ‖u‖∞ ≤ ‖f‖∞/λ. To show that u ∈ Z1

H(X), for every
fixed h ∈ H we consider again the functions ah and bh defined in (3.24), such that u = ah + bh.

Let us prove statement (i), in the case θ = k = 1. For every x ∈ X we have

|ah(x+ 2h)− 2ah(x+ h) + ah(x)| ≤
∫ ‖h‖H

0
e−λt|Ptf(x+ 2h)− 2Ptf(x+ h) + Ptf(x)| dt

≤ 4

∫ ‖h‖H
0

e−λt‖f‖∞dt = 4‖h‖H‖f‖∞.

To estimate bh(x+ 2h)− 2bh(x+ h) + bh(x) we use (2.1) twice, that gives

Ptf(x+ 2h)− 2Ptf(x+ h) + Ptf(x) =

∫ 1

0
DHPtf(x+ (1 + σ)h)(h)dσ −

∫ 1

0
DHPtf(x+ σh)(h)dσ

=

∫ 1

0

∫ 1

0
D2
HPtf(x+ (τ + σ)h)(h, h)dτ dσ

so that, by (3.5) with n = 2,

|Ptf(x+ 2h)− 2Ptf(x+ h) + Ptf(x)| ≤ sup
y∈X
‖D2

HPtf(y)‖L2(H)‖h‖2H ≤ K2
eωt

t2
‖f‖∞‖h‖2H . (3.34)

Therefore,

|bh(x+ 2h)− 2bh(x+ h) + bh(x)| ≤
∫ ∞
‖h‖H

e−λt|Ptf(x+ 2h)− 2Ptf(x+ h) + Ptf(x)| dt

≤
∫ ∞
‖h‖H

e−λtK2
eωt

t2
‖f‖∞‖h‖2Hdt ≤ K2‖h‖H‖f‖∞.

Summing up,

|u(x+ 2h)− 2u(x+ h) + u(x)| ≤ (4 +K2)‖h‖H‖f‖∞,

so that u ∈ Z1
H(X) and (3.32) holds with C = 1/λ+ 4 +K2. So, statement (i) is proved for θ = 1.

Concerning statement (ii), when α+ 1/θ = 1 and f ∈ CαH(X) we have by (3.13)

|ah(x+ 2h)− 2ah(x+ h) + ah(x)|

≤
∫ ‖h‖1/θH

0
e−λt(|Ptf(x+ 2h)− Ptf(x+ h)|+ |Ptf(x+ h)− Ptf(x)|) dt

≤ 2

∫ ‖h‖1/θH

0
e−λtMαeαωt[f ]CαH(X)‖h‖αHdt ≤ 2Mα‖h‖H [f ]CαH(X)

while (3.34) has to be replaced (using (3.14) with n = 2) by

|Ptf(x+2h)−2Ptf(x+h)+Ptf(x)| ≤ sup
y∈X
‖D2

HPtf(y)‖L2(H)‖h‖2H ≤
K2,αe

ωt

t(2−α)θ
[f ]CαH(X)‖h‖2H , (3.35)
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and therefore, recalling that (2− α)θ = 1 + θ,

|bh(x+ 2h)− 2bh(x+ h) + bh(x)| ≤
∫ ∞
‖h‖1/θH

e−λt|Ptf(x+ 2h)− 2Ptf(x+ h) + Ptf(x)| dt

≤
∫ ∞
‖h‖1/θH

e−λtK2,α
eωt

t(2−α)θ
[f ]CαH(X)‖h‖2Hdt ≤

K2,α

θ
‖h‖H [f ]CαH(X).

Summing up,

|u(x+ 2h)− 2u(x+ h) + u(x)| ≤
(

2Mα +
K2,α

θ

)
‖h‖H [f ]CαH(X),

so that u ∈ Z1
H(X) and (3.33) holds with C = 1/λ + 2Mα + K2,α/θ. So, statement (ii) is proved

for α+ 1/θ = 1.
In the case that k > 1 (we recall that k = 1/θ in statement (i), k = α+1/θ in statement (ii)), we

know from Proposition 3.7 that u ∈ Ck−1
H (X) and that estimates (3.16), (3.17) hold with n = k−1.

What we have to prove is that Dk−1
H u ∈ Z1(X,Lk−1(H)), and to estimate its Z1 norm in terms of

f . To this aim, fixed any h, h1, . . . , hk−1 ∈ H, for every y ∈ X we split Dk−1
H u(y)(h1, . . . , hk−1) as

ah(y) + bh(y), where now

ah(y) :=

∫ ‖h‖1/θH

0
e−λtDk−1

H Ptf(y)(h1, . . . , hk−1) dt, y ∈ X,

bh(y) :=

∫ ∞
‖h‖1/θH

e−λtDk−1
H Ptf(y)(h1, . . . , hk−1) dt, y ∈ X.

(3.36)

So, for every x ∈ X we have

|(Dk−1
H u(x+ 2h)− 2Dk−1

H u(x+ h) +Dk−1
H u(x))(h1, . . . , hk−1)| ≤

= |ah(x+ 2h)− 2ah(x+ h) + ah(x)|+ |bh(x+ 2h)− 2bh(x+ h) + bh(x)|.
(3.37)

By the definition of ah we get

|ah(x+ 2h)− 2ah(x+ h) + ah(x)|

≤
∫ ‖h‖1/θH

0
e−λt|(Dk−1

H Ptf(x+ 2h)− 2Dk−1
H Ptf(x+ h) +Dk−1

H Ptf(x))(h1, . . . , hk−1) dt,

(3.38)

To estimate the right-hand side we observe that

|(Dk−1
H Ptf(x+ 2h)− 2Dk−1

H Ptf(x+ h) +Dk−1
H Ptf(x))(h1, . . . , hk−1)|

≤ 4 supy∈X ‖Dk−1
H Ptf(y)‖Lk−1(H)

∏k−1
j=1 ‖hj‖H ,

which is bounded by 4Kk−1e
ωtt−(k−1)θ

∏k−1
j=1 ‖hj‖H‖f‖∞ thanks to (3.5), and by 4Kk−1,α eωt

t−(k−1−α)θ
∏k−1
j=1 ‖hj‖H [f ]CαH(X) thanks to (3.14) if f ∈ CαH(X) with α ∈ (0, 1). Therefore, the

right-hand side of (3.38) is bounded by∫ ‖h‖1/θH

0

4Kk−1

t(k−1)θ
dt

k−1∏
j=1

‖hj‖H‖f‖∞ = 4kKk−1‖h‖
k−1∏
j=1

‖hj‖H‖f‖∞
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if k = 1/θ, and by∫ ‖h‖1/θH

0

4Kk−1,α

t(k−1−α)θ
dt

k−1∏
j=1

‖hj‖H [f ]CαH(X) = 4(k − α)Kk−1,α‖h‖H
k−1∏
j=1

‖hj‖H [f ]CαH(X),

if f ∈ CαH(X) with α ∈ (0, 1) and k = α+ 1/θ. Moreover, by the definition of bh we get

|bh(x+ 2h)− 2bh(x+ h) + bh(x)|

≤
∫ ∞
‖h‖1/θH

e−λt|(Dk−1
H Ptf(x+ 2h)− 2Dk−1

H Ptf(x+ h) +Dk−1
H Ptf(x))(h1, . . . , hk−1) dt.

(3.39)

To estimate the right-hand side we recall that for every t > 0, x ∈ X, h ∈ H, by (2.5) we have

|(Dk−1
H Ptf(x+ 2h)− 2Dk−1

H Ptf(x+ 2h) +Dk−1
H Ptf(x))(h1, . . . , hk−1)|

≤ supy∈X ‖Dk+1
H Ptf(y)‖L2(H)‖h‖2H

∏k−1
j=1 ‖hj‖H

which is respectively bounded by Kk+1e
ωtt−(k+1)θ‖h‖2H

∏k−1
j=1 ‖hj‖H‖f‖∞ due to (3.5), and by

Kk+1,αe
ωtt−(k+1−α)θ‖h‖2H

∏k−1
j=1 ‖hj‖H [f ]CαH(X) if f ∈ CαH(X), due to (3.14). Therefore, the right-

hand side of (3.39) is bounded by∫ ∞
‖h‖1/θH

Kk+1

t(k+1)θ
dt‖h‖2H

k−1∏
j=1

‖hj‖H‖f‖∞ = kKk+1‖h‖
k−1∏
j=1

‖hj‖H‖f‖∞,

if k = 1/θ, and by∫ ∞
‖h‖1/θH

Kk+1,α

t(k+1−α)θ
dt‖h‖2H

k−1∏
j=1

‖hj‖H [f ]CαH(X) = (k − α)Kk+1,α‖h‖H
k−1∏
j=1

‖hj‖H [f ]CαH(X),

if f ∈ CαH(X) with α ∈ (0, 1) and k = α+1/θ. Summing up, the left-hand side of (3.37) is bounded
by

k(4Kk−1 +Kk+1)

k−1∏
j=1

‖hj‖H‖f‖∞‖h‖,

if 1/θ = k, and by

(k − α)(4Kk−1,α +Kk+1,α)

k−1∏
j=1

‖hj‖H [f ]CαH(X)‖h‖,

if f ∈ CαH(X) with α ∈ (0, 1) and α + 1/θ = k. In both cases, this implies that Dk−1u ∈
Z1
H(X,Lk−1(H)) (so that u ∈ ZkH(X)) with Zygmund seminorm bounded by k(4Kk−1+Kk+1)‖f‖∞in

the first case, and by (k − α)(4Kk−1,α + Kk+1,α)[f ]CαH(X), in the second case. Such estimates and

(3.16), (3.17) with n = k − 1 yield (3.32) and (3.33), respectively. �

3.3. Schauder and Zygmund estimates: evolution equations. This section deals with mild
solutions to Cauchy problems, vt(t, x) = Lv(t, x) + g(t, x), t ∈ [0, T ], x ∈ X,

v(0, ·) = f,
(3.40)
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where L is the operator defined in (1.3), and f : X 7→ R, g : [0, T ]×X 7→ R are bounded continuous
functions. Mild solutions are defined by

v(t, x) = Ptf(x) +

∫ t

0
Pt−sg(s, ·)(x)ds, t ∈ [0, T ], x ∈ X. (3.41)

We already know that (t, x) 7→ Ptf(x) is continuous and bounded in [0,+∞) × X; if in addition
f ∈ CnH(X) for some n ∈ N all the derivatives ∂k/∂h1 . . . ∂hk(Ptf) with k ≤ n enjoy the same
property, by Proposition 3.3. We still have to study the function

v0(t, x) :=

∫ t

0
Pt−sg(s, ·)(x)ds =

∫ t

0
Psg(t− s, ·)(x)ds, t ∈ [0, T ], x ∈ X, (3.42)

with g ∈ Cb([0, T ] × X). Our final aim are maximal regularity results in Hölder and Zygmund
spaces with respect to the x variable, so we introduce the relevant functional spaces.

Definition 3.10. Let T > 0, α > 0. We denote by C0,α
H ([0, T ] × X) the space of the bounded

continuous functions g : [0, T ]×X 7→ R such that g(t, ·) ∈ CαH(X) for every t ∈ [0, T ] and

‖g‖
C0,α
H ([0,T ]×X)

:= sup
t∈[0,T ]

‖g(t, ·)‖CαH(X) < +∞,

and moreover, if α ≥ 1 , for every (h1, . . . , hk) ∈ Hk, with k ≤ [α], the functions (t, x) 7→
(∂kg/∂h1 . . . ∂hk)(t, x) are continuous in [0, T ]×X.

For k ∈ N we denote by Z0,k
H ([0, T ] × X) the space of the bounded continuous functions g :

[0, T ]×X 7→ R such that g(t, ·) ∈ ZkH(X) for every t ∈ [0, T ] and

‖g‖
Z0,k
H ([0,T ]×X)

:= sup
t∈[0,T ]

‖g(t, ·)‖ZkH(X) < +∞,

and, if k ≥ 2, g ∈ C0,k−1
H ([0, T ]×X).

If H = X we drop the subindex H, setting C0,α
b ([0, T ]×X) := C0,α

X ([0, T ]×X), Z0,k
b ([0, T ]×X) :=

Z0,k
X ([0, T ]×X).

The next proposition is the evolution counterpart of Proposition 3.7.

Proposition 3.11. For every g ∈ Cb([0, T ] ×X) the function v0 defined in (3.42) is continuous,
and we have

‖v0‖∞ ≤ T‖g‖∞. (3.43)

Moreover the following statements hold.

(i) Let θ < 1. For every n ∈ N such that n < 1/θ, v0 ∈ C0,n
H ([0, T ] × X). There exists

C = C(T ) > 0, independent of g, such that

‖v0‖C0,n
H ([0,T ]×X)

≤ C‖g‖∞. (3.44)

(ii) Let α ∈ (0, 1) be such that α + 1/θ > 1. For every f ∈ CαH(X) and for every n ∈ N such

that n < α + 1/θ, v0 ∈ C0,n
H ([0, T ] ×X). There exists C = C(T, α) > 0, independent of g,

such that
‖v0‖C0,n

H ([0,T ]×X)
≤ C‖g‖

C0,α
H ([0,T ]×X)

(3.45)

Proof. Fix t, t0 ∈ [0, T ] and x, x0 ∈ X. If t > t0 we have

|v0(t, x)− v0(t0, x0)| ≤
∫ t0

0
|Pt−sg(s, ·)(x)− Pt0−sg(s, ·)(x0)| ds+

∫ t

t0

|Pt−sg(s, ·)(x)| ds.

Since for every s ≥ 0 the function (t, x) 7→ Pt−sg(s, ·)(x) is continuous in [s,+∞) × X, and
|Pt−sg(s, ·)(x) − Pt0−sg(s, ·)(x0)| ≤ 2‖g‖∞, by the Dominated Convergence Theorem the first in-
tegral vanishes as t → t0, x → x0. The second integral is bounded by (t − t0)‖g‖∞, so that it
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vanishes too as t → t0, x → x0. If t < t0 we split v0(t, x) − v0(t0, x0) =
∫ t

0 (Pt−sg(s, ·)(x) −
Pt0−sg(s, ·)(x0)) ds +

∫ t0
t Pt0−sg(s, ·)(x0) ds and we argue in the same way. So, v0 is continuous.

Estimate (3.43) is immediate.
Concerning statements (i) and (ii), the proof of the fact that v0(t, ·) ∈ CnH(X) for every t ∈ [0, T ],

and that

∂kv0

∂h1 . . . ∂hk
(t, x) =

∫ t

0
Dk
HPt−sg(s, ·)(x)(h1, . . . , hk) ds, k ∈ {1, . . . , n}, t ∈ [0, T ], x ∈ X,

is quite analogous to the corresponding proof of Proposition 3.7, and it is omitted. Estimates (3.44)
and (3.45) follow as well as in the proof of Proposition 3.7.

It remains to prove that (t, x) 7→ Dk
Hv0(t, ·)(x)(h1, . . . , hk) is continuous in [0, T ] ×X for every

k ∈ {1, . . . , n}, h1, . . . hk ∈ H, and this is similar to the proof of the continuity of v0. For t > t0 ∈
[0, T ] and x, x0 ∈ X we split ∂kv0

∂h1...∂hk
(t, x)− ∂kv0

∂h1...∂hk
(t0, x0) = I1 + I2, where

I1 =

∫ t0

0
(Dk

HPt−sg(s, ·)(x)−Dk
HPt0−sg(s, ·)(x0))(h1, . . . , hk) ds,

I2 =

∫ t

t0

Dk
HPt−sg(s, ·)(x)(h1, . . . , hk) ds.

Concerning I1, by Proposition 3.3 for every s ∈ [0, T ] the function (t, x) 7→ Dk
HPt−sg(s, ·)(x)(h1, . . . , hk)

is continuous in (s,+∞)×X, moreover for 0 < s < t0 we have

|Dk
HPt−sg(s, ·)(x)−Dk

HPt0−sg(s, ·)(x0))(h1, . . . , hk)| ≤ ϕ(s),

where ϕ(s) = 2Kk max{eωT , 1}(t0 − s)−kθ‖g‖∞
∏k
j=1 ‖hj‖H if g ∈ Cb([0, T ] × X) by (3.5), and

ϕ(s) = 2Kk,α max{eωT , 1}(t0 − s)−(k−α)θ‖g‖
C0,α
H ([0,T ]×X)

∏k
j=1 ‖hj‖H if g ∈ C0,α

H ([0, T ] × X) by

(3.14). Both in case of statement (i) and of statement (ii), ϕ ∈ L1(0, t0) and the Dominated
Convergence Theorem yields that I1 vanishes as t→ t0, x→ x0.

Moreover we have |I2| ≤
∫ t
t0
ψ(s)ds, where ψ(s) = Kk max{eωT , 1}(t− s)−kθ ‖g‖∞

∏k
j=1 ‖hj‖H if

g ∈ Cb([0, T ]×X) by (3.5), and ψ(s) = Kk,α max{eωT , 1}(t−s)−(k−α)θ‖g‖
C0,α
H ([0,T ]×X)

∏k
j=1 ‖hj‖H if

g ∈ C0,α
H ([0, T ]×X), by (3.14). So we get |I2| ≤ C(t−t0)1−kθ in the first case, |I2| ≤ C(t−t0)1−(k−α)θ

in the second case; in both cases I2 vanishes as t→ t0, x→ x0.
If t < t0 ∈ [0, T ] and x, x0 ∈ X we split Dk

Hv0(t, ·)(x)(h1, . . . , hk) −Dk
Hv0(t0, ·)(x0)(h1, . . . , hk)

as above, replacing
∫ t0

0 ,
∫ t
t0

by
∫ t

0 ,
∫ t0
t , respectively, and arguing in the same way. This ends the

proof. �

Theorem 3.12. Let f ∈ Cb(X), g ∈ Cb([0, T ] ×X) and let v be defined by (3.41). The following
statements hold.

(i) If 1/θ /∈ N and f ∈ C1/θ
H (X), g ∈ Cb([0, T ]×X), then v ∈ C0,1/θ

H ([0, T ]×X). There exists
C = C(T ) > 0, independent of f and g, such that

‖v‖
C

0,1/θ
H ([0,T ]×X)

≤ C(‖f‖
C

1/θ
H (X)

+ ‖g‖∞). (3.46)

(ii) If α ∈ (0, 1) and α + 1/θ /∈ N, f ∈ C
α+1/θ
H (X) and g ∈ C0,α

H ([0, T ] × X), then v ∈
C

0,α+1/θ
H ([0, T ]×X). There exists C = C(T, α) > 0, independent of f and g, such that

‖v‖
C

0,α+1/θ
H ([0,T ]×X)

≤ C(‖f‖
C
α+1/θ
H (X)

+ ‖g‖
C0,α
H ([0,T ]×X)

). (3.47)

Proof. Both for α = 0 and for α ∈ (0, 1), for f ∈ Cα+1/θ
H (X) the function (t, x) 7→ Ptf(x) belongs

to C
0,α+1/θ
H ([0, T ] × X). Indeed, by Proposition 3.3(iii), it belongs to C0,n

H ([0, T ] × X) with n =
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[α+1/θ], while Lemma 3.5 yields Ptf ∈ Cα+1/θ
H (X) for every t ≤ T , and sup0≤t≤T ‖Ptf‖Cα+1/θ

H (X)
≤

C‖f‖
C
α+1/θ
H (X)

.

Therefore it is sufficient to prove that the statements hold in the case f ≡ 0, namely when
v = v0. Taking proposition 3.11 into account, it remains to be checked that for every t ∈ [0, T ],

v(t, ·) ∈ C1/θ
H (X) in case of statement (i), v0(t, ·) ∈ Cα+1/θ

H (X) in case of statement (ii), with Hölder
norm bounded by a constant independent of t. The proof is quite similar to the proof of Theorem
3.8. Let n ∈ N ∪ {0} be the integral part of α + 1/θ, with α = 0 in the case of statement (i) and
α ∈ (0, 1) in the case of statement (ii); we treat separately the cases n > 0 and n = 0.

Let n = 0. For every fixed h, we split v = ah + bh, where for every t ∈ [0, T ], y ∈ X

ah(t, y) =

∫ ‖h‖1/θH ∧t

0
Psg(t− s, y) ds, bh(t, y) =

∫ t

‖h‖1/θH ∧t
Psg(t− s, y) ds. (3.48)

So, for every x ∈ X and t ∈ [0, T ] we have

|ah(t, x+ h)− ah(t, x)| ≤
∫ ‖h‖1/θH

0
|Psg(t− s, x+ h)− Psg(t− s, x)| ds

≤
∫ ‖h‖1/θH

0
2‖g‖∞dt = 2‖h‖1/θH ‖g‖∞.

If ‖h‖1/θH ≥ t, we have bh(t, x + h) − bh(t, x) = 0. If ‖h‖1/θH < t to estimate |bh(t, x + h) − bh(t, x)|
we use (3.25), which yields

|bh(t, x+ h)− bh(t, x)| ≤
∫ t

‖h‖1/θH

|Psg(t− s, x+ h)− Psg(t− s, x)| ds

≤
∫ ∞
‖h‖1/θH

K1

sθ
ds ‖h‖H‖g‖∞ ≤

K1

θ − 1
‖h‖1/θH ‖g‖∞.

Summing up, v(t, ·) ∈ C1/θ
H (X), and

[v0(t, ·)]
C

1/θ
H (X)

≤
(

2 +
K1

θ − 1

)
‖g‖∞, 0 ≤ t ≤ T.

This estimate and (3.43) give (3.46) with C(T ) = 2 +K1/(θ − 1) + T , in the case that θ > 1.

If α ∈ (0, 1), α+ 1/θ < 1, and g ∈ C0,α
H ([0, T ]×X), we use (3.13) and we get

|ah(t, x+ h)− ah(t, x)| ≤
∫ ‖h‖1/θH ∧t

0
|Psg(t− s, x+ h)− Psg(t− s, x)| ds

≤
∫ ‖h‖1/θH ∧t

0
eαωsMα‖h‖αH [g(t− s, ·)]CαH(X)ds

≤ max{eαωT , 1}Mα‖h‖α+1/θ
H sup

0≤r≤T
[g(r, ·)]CαH(X).
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As before, if ‖h‖1/θH ≥ t we have bh(t, x+ h)− bh(t, x) = 0. If ‖h‖1/θH < t, to estimate |bh(t, x+ h)−
bh(t, x)| we use (3.26), that yields

|bh(t, x+ h)− bh(t, x)| ≤
∫ t

‖h‖1/θH

K1,αe
ωs

s(1−α)θ
[g(t− s, ·)]CαH(X)ds ‖h‖H

≤ max{eαωT , 1} K1,α

(1− α)θ − 1
‖h‖1/θ+αH sup

0≤r≤T
[g(r, ·)]CαH(X).

Summing up, we obtain v(t, ·) ∈ Cα+1/θ
H (X), and

[v0(t, ·)]
C
α+1/θ
H (X)

≤ max{eαωT , 1}
(
Mα +

K1,α

(1− α)θ − 1

)
sup

0≤r≤T
[g(r, ·)]CαH(X), 0 ≤ t ≤ T.

This estimate, together with (3.43), yields (3.23), with C(T ) = T +max{eαωT , 1}(Mα+K1,α/((1−
α)θ − 1)), in the case that α+ 1/θ < 1.

Let us consider now the case n > 0. By Proposition 3.11 we already know that v0 ∈ C0,n
H ([0, T ]×

X). It remains to prove that Dn
Hv(t, ·) is H-Hölder continuous with values in Ln(H), with exponent

1/θ − n as far as statement (i) is concerned, and with exponent α + 1/θ − n as far as statement
(ii) is concerned. Once again, this is done as in Theorem 3.8, splitting every partial derivative
Dn
Hv(t, y)(h1, . . . , hn) = ah(t, y) + bh(t, y), where now we set

ah(t, y) :=

∫ ‖h‖1/θH ∧t

0
Dn
HPsg(t− s, ·)(y)(h1, . . . , hn) ds, t ∈ [0, T ], y ∈ X, (3.49)

bh(t, y) =

∫ t

‖h‖1/θH ∧t
Dn
HPsg(t− s, ·)(y)(h1, . . . , hn) ds, t ∈ [0, T ], y ∈ X. (3.50)

Let us consider statement (i). We recall that in this case we have g ∈ Cb([0, T ]×X), nθ ∈ (0, 1),
(n+ 1)θ > 1. Estimate (3.5) yields

|ah(t, x+ h)− ah(t, x)| ≤ |ah(t, x+ h)|+ |ah(t, x)| ≤ 2Kn

∫ ‖h‖1/θH ∧t

0

eωs

snθ
ds

n∏
j=1

‖hj‖H‖g‖∞

≤ max{eωT , 1} 2Kn

1− nθ
‖h‖(1−nθ)/θH

n∏
j=1

‖hj‖H‖g‖∞.

To estimate |bh(t, x+ h)− bh(t, x)| when ‖h‖1/θH < t we use (3.28), which yields

|bh(t, x+ h)− bh(t, x)| ≤
∫ t

‖h‖1/θH

Kn+1e
ωs

s(n+1)θ
ds ‖h‖H

n∏
j=1

‖hj‖H‖g‖∞

≤ max{eωT , 1} Kn+1

(n+ 1)θ − 1
‖h‖1/θ−nH

n∏
j=1

‖hj‖H‖g‖∞.

Summing up we get

|(Dn
Hv0(t, x+ h)−Dn

Hv0(t, x))(h1, . . . , hn)| ≤ C3‖h‖1/θ−nH

n∏
j=1

‖hj‖H‖f‖∞, 0 ≤ t ≤ T,
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with

C3 = max{eωT , 1}
(

2Kn

1− nθ
+

Kn+1

(n+ 1)θ − 1

)
.

Therefore, [Dn
Hv0(t, ·)]

C
1/θ−n
H (X;Ln(H))

≤ C3‖f‖∞ for every t ∈ [0, T ]. This estimate and (3.43) give

(3.46) for n ≥ 1.

Let us consider statement (ii). Now we have g ∈ C0,α
H ([0, T ]×X) with α ∈ (0, 1), (n−α)θ ∈ (0, 1),

(n+ 1− α)θ > 1. Estimate (3.14) yields

|ah(t, x+ h)− ah(t, x)| ≤ 2Kn,α

∫ ‖h‖1/θH ∧t

0

eωs

s(n−α)θ
[g(t− s, ·)]CαH(X)ds

n∏
j=1

‖hj‖H

= max{eωT , 1} 2Kn,α

1− (n− α)θ
‖h‖(1−(n−α)θ)/θ

H

n∏
j=1

‖hj‖H sup
0≤r≤T

[g(r, ·)]CαH(X).

To estimate |bh(t, x+ h)− bh(t, x)| for ‖h‖1/θH < t we use (3.30), which yields

|bh(t, x+ h)− bh(t, x)| ≤
∫ t

‖h‖1/θH

Kn+1,αe
ωs

s(n+1−α)θ
[g(t− s, ·)]CαH(X)ds ‖h‖H

n∏
j=1

‖hj‖H

≤ max{eωT , 1} Kn+1

(n+ 1− α)θ − 1
‖h‖1/θ−n+α

H

n∏
j=1

‖hj‖H sup
0≤r≤T

[g(r, ·)]CαH(X).

Summing up we get

|(Dn
Hv0(t, x+ h)−Dn

Hv0(t, x))(h1, . . . , hn)| ≤ C4‖h‖1/θ−n+α
H

n∏
j=1

‖hj‖H sup
0≤r≤T

[g(r, ·)]CαH(X)

with

C4 = max{eωT , 1}
(

2Kn,α

1− (n− α)θ
+

Kn+1,α

(n+ 1− α)θ − 1

)
.

Therefore, [Dn
Hv0(t, ·)]

C
1/θ−n+α
H (X;Ln(H))

≤ C4[f ]CαH(X) for every t ∈ [0, T ]. This estimate and (3.43)

give (3.47) in the case n ≥ 1. �

Theorem 3.13. Let f ∈ Cb(X), g ∈ Cb([0, T ] ×X) and let v be defined by (3.41). The following
statements hold.

(i) If 1/θ = k ∈ N and f ∈ ZkH(X), then v ∈ Z0,k
H ([0, T ]×X) and there exists C = C(T ) > 0,

independent of f and g, such that

‖v‖
Z0,k
H ([0,T ]×X)

≤ C(‖f‖ZkH(X) + ‖g‖∞). (3.51)

(ii) If α ∈ (0, 1), α+ 1/θ = k ∈ N, f ∈ ZkH(X) and g ∈ C0,α
H ([0, T ]×X), then v ∈ Z0,k

H ([0, T ]×
X), and there exists C = C(T, α) > 0, independent of f and g, such that

‖v‖
Z0,k
H ([0,T ]×X)

≤ C(‖f‖ZkH(X) + ‖g‖
C0,α
H ([0,T ]×X)

. (3.52)

Proof. We know by Lemma 3.5 that for every f ∈ ZkH(X) the function (t, x) 7→ Ptf(x) belongs to

Z0,k
H ([0, T ] ×X), and estimate (3.12) holds. So it is enough to prove that the statements hold for

f ≡ 0, in which case v = v0 defined by (3.42).
First we prove statements (i) and (ii) in the case k = 1.
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By Proposition 3.11 we already know that v0 ∈ Cb([0, T ]×X), with ‖v0‖∞ ≤ T‖g‖∞. To show
that v0(t, ·) ∈ Z1

H(X) for every t ∈ [0, T ], for every fixed h ∈ H we consider again the functions ah
and bh defined in (3.48), such that v0 = ah + bh.

Let us prove statement (i), in the case θ = k = 1. For every x ∈ X we have

|ah(t, x+ 2h)− 2ah(t, x+ h) + ah(t, x)|

≤
∫ ‖h‖H∧t

0
|Psg(t− s, ·)(x+ 2h)− 2Psg(t− s, ·)(x+ h) + Psg(t− s, ·)(x)| dt

≤ 4

∫ ‖h‖H
0

‖g‖∞dt = 4‖h‖H‖g‖∞.

We recall that bh(t, x + 2h)− 2bh(t, x + h) + bh(t, x) = 0 if ‖h‖H ≥ t. To estimate bh(t, x + 2h)−
2bh(t, x+ h) + bh(t, x) if ‖h‖H < t we use (3.34), that yields

|bh(t, x+ 2h)− 2bh(t, x+ h) + bh(t, x)|

≤
∫ t

‖h‖H
|Psg(t− s, ·)(x+ 2h)− 2Psg(t− s, ·)(x+ h) + Psg(t− s, ·)(x)| ds

≤
∫ t

‖h‖H
K2

eωs

s2
‖g‖∞|h‖2Hds ≤ max{e2ωT , 1}K2‖h‖H‖g‖∞.

Summing up,

|v0(t, x+ 2h)− 2v0(t, x+ h) + v0(t, x)| ≤ (4 + max{eωT , 1}K2)‖h‖H‖g‖∞,

so that v0 ∈ Z1
H(X) and (3.51) holds with C = T + 4 + max{eωT , 1}K2. So, statement (i) is proved

for θ = 1. Concerning statement (ii), when α+ 1/θ = 1 and g ∈ C0,α
H ([0, T ]×X) we have by (3.13)

|ah(t, x+ 2h)− 2ah(t, x+ h) + ah(t, x)|

≤
∫ ‖h‖1/θH ∧t

0
|Psg(t− s, ·)(x+ 2h)− 2Psg(t− s, ·)(x+ h) + Psg(t− s, ·)(x)| ds

≤ 2

∫ ‖h‖1/θH ∧t

0
Mαeαωs[g(t− s, ·)]CαH(X)‖h‖αHdt ≤ 2 max{eαωT , 1}Mα‖h‖H sup

0≤r≤T
[g(r, ·)]CαH(X)

while to estimate |bh(t, x + 2h) − 2bh(t, x + h) + bh(t, x)| for ‖h‖1/θH < t we use (3.35), that gives
(recalling that (2− α)θ = 1 + θ),

|bh(t, x+ 2h)− 2bh(t, x+ h) + bh(t, x)|

≤
∫ t

‖h‖1/θH

|Psg(t− s, ·)(x+ 2h)− 2Psg(t− s, ·)(x+ h) + Psg(t− s, ·)(x)| ds

≤
∫ t

‖h‖1/θH

K2,α
eωs

s(2−α)θ
[g(t− s, ·)]CαH(X)‖h‖2Hds ≤ max{eωT , 1}K2,α

θ
‖h‖H sup

0≤r≤T
[g(r, ·)]CαH(X).
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Summing up,

|v0(t, x+ 2h)− 2v0(t, x+ h) + v0(t, x)| ≤

≤
(

2 max{eαωT , 1}Mα + max{eωT , 1}K2,α

θ

)
‖h‖H sup

0≤r≤T
[g(r, ·)]CαH(X),

so that u ∈ Z1
H(X) and (3.33) follows. So, statement (ii) is proved for α+ 1/θ = 1.

In the case that k > 1 (we recall that k = 1/θ in statement (i), k = α + 1/θ in statement (ii)),

Proposition 3.11 yields v0 ∈ C0,k−1
H ([0, T ] ×X). We have to prove that [Dk−1

H v0(t, ·)]Z1(X,Lk−1(H))

is bounded by a constant independent of t. To this aim, fixed any h, h1, . . . , hk−1 ∈ H, for every

t ∈ [0, T ] and y ∈ X we split Dk−1
H v0(t, y)(h1, . . . , hk−1) as ah(t, y) + bh(t, y), where now

ah(t, y) =

∫ ‖h‖1/θH ∧t

0
Dk−1
H Psg(t− s, ·)(y)(h1, . . . , hk−1) ds

bh(t, y) =

∫ t

‖h‖1/θH ∧t
Dk−1
H Psg(t− s, ·)(y)(h1, . . . , hk−1) ds.

We have
|ah(t, x+ 2h)− 2ah(t, x+ h) + ah(t, x)|

≤
∫ ‖h‖1/θH ∧t

0
|(Dk−1

H Psg(t− s, ·)(x+ 2h)− 2Dk−1
H Psg(t− s, ·)(x+ h)

+Dk−1
H Psg(t− s, ·)(x))(h1, . . . , hk−1)| dt,

and arguing as in the proof of Theorem 3.9, we see that the right-hand side is bounded by∫ ‖h‖1/θH

0
eωs

4Kk−1

s(k−1)θ
ds

k−1∏
j=1

‖hj‖H‖g‖∞ ≤ max{eωT , 1}4kKk−1‖h‖
k−1∏
j=1

‖hj‖H‖g‖∞

if k = 1/θ, and by∫ ‖h‖1/θH

0
eωs

4Kk−1,α

s(k−1−α)θ
[g(t− s, ·]CαH(X)ds

k−1∏
j=1

‖hj‖H

≤ max{eωT , 1}4(k − α)Kk−1,α‖h‖H
k−1∏
j=1

‖hj‖H sup
0≤r≤1

[g(r, ·)]CαH(X),

if g ∈ C0,α
H ([0, T ]×X) with α ∈ (0, 1) and k = α+ 1/θ. If ‖h‖1/θH < t, we estimate

|bh(t, x+ 2h)− 2bh(t, x+ h) + bh(t, x)| ≤∫ t

‖h‖1/θH

e−λt|(Dk−1
H Psg(t− s, x+ 2h)− 2Dk−1

H Psg(t− s, x+ h) +Dk−1
H Psg(t− s, x))(h1, . . . , hk−1)| dt

and arguing again as in the proof of Theorem 3.9 we see that the right-hand side is bounded by∫ t

‖h‖1/θH

eωs
Kk+1

s(k+1)θ
ds‖h‖2H

k−1∏
j=1

‖hj‖H‖g‖∞ ≤ max{eωT , 1}kKk+1‖h‖
k−1∏
j=1

‖hj‖H‖g‖∞,
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if k = 1/θ, and by∫ t

‖h‖1/θH

eωs
Kk+1,α

s(k+1−α)θ
[g(t− s, ·)]CαH(X)ds‖h‖2H

k−1∏
j=1

‖hj‖H

≤ max{eωT , 1}(k − α)Kk+1,α‖h‖H
k−1∏
j=1

‖hj‖H sup
0≤r≤1

[g(r, ·)]CαH(X),

if g ∈ C0,α
H ([0, T ]×X) with α ∈ (0, 1) and k = α+ 1/θ. Summing up, we estimate [Dk−1

H v0(t, ·)(x+

2h)− 2Dk−1
H v0(t, ·)(x+ h) +Dk−1

H v0(t, ·)(x)](h1, . . . hk−1) by

max{eωT , 1}k(4Kk−1 +Kk+1)
k−1∏
j=1

‖hj‖H‖g‖∞‖h‖,

if 1/θ = k, and by

max{eωT , 1}(k − α)(4Kk−1,α +Kk+1,α)

k−1∏
j=1

‖hj‖H sup
0≤r≤1

[g(r, ·)]CαH(X)‖h‖,

if g ∈ C0,α
H ([0, T ] × X) with α ∈ (0, 1) and α + 1/θ = k. This implies that v0(t, ·) ∈ ZkH(X)

with Zygmund seminorm bounded by max{eωT , 1}k (4Kk−1 +Kk+1)‖f‖∞ in the first case, and by
max{eωT , 1}(k − α)(4Kk−1,α +Kk+1,α)[f ]CαH(X)‖h‖, in the second case. Such estimates and (3.12)

yield (3.51) and (3.52), respectively. �

4. Examples in finite dimension

In this section X = RN and Tt = etB for every t, where B is any N ×N matrix, so that

Ptf(x) =

∫
RN

f(etBx+ y)µt(dy), t > 0, f ∈ Cb(RN ), x ∈ RN . (4.1)

The measures µt are given by
µt(dy) = gt(y)dy, t > 0, (4.2)

where the nonnegative functions gt ∈ L1(RN ) satisfy gt+s(x) =
∫
RN gs(x−e

sBy)gt(y)dy for t, s > 0,

a.e. x ∈ RN , and ‖gt‖L1(RN ) = 1, for every t > 0. If B = 0 this condition is simply gt+s = gt ? gs
for s, t > 0.

Hypotheses 3.1 and 3.2 are satisfied with H = Ht = RN provided gt is weakly differentiable in
all directions and

sup
t>0

tθ
∥∥∥∥ ∂gt∂xk

∥∥∥∥
L1(RN )

< +∞, k = 1, . . . , n. (4.3)

4.1. The Laplacian and the fractional Laplacian. Strictly speaking, the results of this section
are contained in the ones of both sections 4.2 and 5.3, but we prefer to isolate them because checking
our assumptions is particularly simple in this case and does not involve the technicalities needed
in the more complicated situations of the next sections.

We recall that the heat semigroup is given by (1.1), with Tt = I for every t (namely, B = 0) and
µt(dx) = gt(x)dx, where gt is the Gaussian kernel

gt(x) =
1

(4πt)N/2
e−
|x|2
4t , x ∈ RN , t > 0,

that satisfies (4.3) with θ = 1/2. The operator L is the realization of the Laplacian in Cb(RN ), whose

domain is {f ∈ Cb(RN )∩p>1W
2,p
loc (RN ) : ∆f ∈ Cb(RN )}. Schauder and Zygmund regularity results
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have several independent proofs by now, the present approach was outlined in [45]. Concerning the
fractional Laplacian −(−∆)s, s ∈ (0, 1), Schauder and Zygmund regularity results for stationary
equations are already available. The first proof of the Schauder estimates seems to be in [55,
Cor. 2.9]. Up-to-date references may be found in the survey paper [56]; for more general classes
of pseudodifferential operators including the fractional Laplacian see [32, 39] and the references
therein. However, a proof through our approach is very simple. Indeed, the associated semigroup
is given by the classical subordination formula,

e−t(−∆)sf(x) =

∫ ∞
0

Tσf(x)η
(s)
t (σ)dσ, t > 0, x ∈ RN ,

where Tσ is now the heat semigroup, and η
(s)
t is the inverse Laplace transform of λ 7→ e−tλ

s
. Setting

η(s) := η
(s)
1 , we get

η
(s)
t (σ) = t−1/sη(s)(t−1/sσ), t, σ > 0.

Moreover, η(s) is smooth in (0,+∞), it has positive values and it belongs to L∞(0,+∞)∩W 1,1(0,+∞).

This is easily seen modifying the integral that defines η(s), to get (see e.g. [62])

η(s)(σ) =
1

π

∫ ∞
0

e−σr−r
s cos(sπ) sin(rs sin(sπ))dr, σ > 0. (4.4)

Therefore, e−t(−∆)s takes the form (4.1), with B = 0 and

µt(dy) = ps,t(y)dy,

where

ps,t(y) =
1

t1/s

∫ ∞
0

gξ(y)η(s)(t−1/sξ)dξ, y ∈ RN , t > 0, (4.5)

By homogeneity, we get

ps,t(y) = t−N/(2s)ps,1(t−1/(2s)y), t > 0, y ∈ RN ,

and such equality easily yields that t 7→ µt is weakly continuous in [0,+∞). Moreover,

∂

∂yk
ps,t(y) = t−(N+1)/(2s) ∂

∂yk
ps,1(t−1/(2s)y), t > 0, y ∈ RN ,

which implies∫
RN

∣∣∣∣ ∂∂yk ps,t(y)

∣∣∣∣ dy = t−(N+1)/(2s)

∫
RN

∣∣∣∣ ∂∂yk ps,1(t−1/(2s)y)

∣∣∣∣ dy = t−1/(2s)

∫
RN

∣∣∣∣ ∂∂zk ps,1(z)

∣∣∣∣ dz.
From the representation formula (4.5) we get∫

RN

∣∣∣∣ ∂∂zk ps,1(z)

∣∣∣∣ dz =

∫
RN

∣∣∣∣ ∫ ∞
0

zke
−|z|2/4ξ

2ξ(4πξ)N/2
η(s)(ξ) dξ

∣∣∣∣ dz
=

∫ ∞
0

η(s)(ξ)

2ξ(4πξ)N/2

∫
RN
|zk|e−|z|

2/4ξdz dξ =
1√
π

∫ ∞
0

η(s)(ξ)√
ξ

dξ.

The last integral is finite, since η(s) is bounded and it belongs to L1(0,+∞). Therefore, there is
C > 0 such that ∥∥∥∥ ∂

∂yk
ps,t

∥∥∥∥
L1(RN )

≤ C

t1/(2s)
, t > 0, k = 1, . . . , N,

so that Hypotheses 3.1 and 3.2 are satisfied with X = H = RN and ω = 0, θ = 1/(2s). Theorems
3.8 and 3.9 yield
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Theorem 4.1. Let f ∈ Cb(RN ) and λ > 0, s ∈ (0, 1) \ {1/2}. Then the equation

λu+ (−∆)su = f (4.6)

has a unique solution u ∈ C2s
b (RN ), and there is C > 0, independent of f , such that

‖u‖C2s
b (RN ) ≤ C‖f‖∞.

If s = 1/2, equation (4.6) has a unique solution in Z1(RN ), and there is C > 0, independent of f ,
such that

‖u‖Z1(RN ) ≤ C‖f‖∞.
If in addition f ∈ Cαb (RN ) with α ∈ (0, 1) and α + 2s /∈ {1, 2}, then u ∈ Cα+2s

b (RN ) and there is
C > 0, independent of f , such that

‖u‖Cα+2s
b (RN ) ≤ C‖f‖Cαb (RN ).

If α+ 2s = k ∈ {1, 2}, then u ∈ Zkb (RN ) and there is C > 0, independent of f , such that

‖u‖Zkb (RN ) ≤ C‖f‖Cαb (RN ).

Theorems 3.12 and 3.13 yield

Theorem 4.2. Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s /∈ {1, 2}, and let f ∈ Cα+2s
b (RN ),

g ∈ C0,α
b ([0, T ]× RN ) (1). The mild solution to vt(t, x) + (−∆)sv(t, ·)(x) = g(t, x), 0 ≤ t ≤ T, x ∈ RN ,

v(0, x) = f(x), x ∈ RN ,
(4.7)

belongs to C0,α+2s
b ([0, T ]× RN ), and there is C > 0, independent of f and g, such that

‖v‖
C0,α+2s
b ([0,T ]×RN )

≤ C(‖f‖Cα+2s
b (RN ) + ‖g‖

C0,α
b ([0,T ]×RN )

).

Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s := k ∈ {1, 2}. Then for every f ∈ Zkb (RN ),

g ∈ C0,α
b ([0, T ] × RN ) the mild solution to (4.7) belongs to Z0,k

b ([0, T ] × RN ), and there is C > 0,
independent of f , such that

‖v‖
Z0,k
b (RN )

≤ C(‖f‖Zkb (RN ) + ‖g‖
C0,α
b ([0,T ]×RN )

).

In the non-fractional case s = 1 the first part of the theorem is known since many years ([38]).
For s ∈ (0, 1) it seems to be new.

4.2. Ornstein-Uhlenbeck operators with fractional diffusion. Ornstein-Uhlenbeck operators
are expressed by

(Lu)(x) =
1

2
(Tr(QD2u))(x)− 〈Bx,∇u(x)〉, x ∈ RN ,

where Q is a symmetric nonnegative definite matrix and B is any matrix. Under ellipticity or

hypoellipticity conditions (respectively, detQ > 0 or det
∫ t

0 e
−sBQe−sB

∗
ds > 0 for every t > 0) we

already have maximal Hölder and Zygmund regularity results, first proved in [25] in the elliptic
case and then in [44] in the hypoelliptic case.

Here we consider modified Ornstein-Uhlenbeck operators which are the object of very recent
studies (e.g., [36, 3, 19]), heuristically given by

(Lu)(x) =
1

2
(Trs(QD2u))(x)− 〈Bx,∇u(x)〉, x ∈ RN .

with s ∈ (0, 1) and Q > 0. Trs(QD2) is the pseudo-differential operator with symbol −〈Qξ, ξ〉s.

(1)For α = 0 we mean C0,0
b ([0, T ] × RN ) = Cb([0, T ] × RN ).
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The realization of L in L2(RN ) has been studied in [3] even in the hypoelliptic case, using
smoothing properties of the relevant semigroup, expressed through Fourier and inverse Fourier
transform as

P̂tf = etTrB exp

(
−1

2

∫ t

0
|Q1/2eτB

∗ · |2sdτ
)
f̂(etB

∗ ·), t > 0,

where ̂ denotes the Fourier transform F,

f̂(ξ) = (Ff)(ξ) =

∫
RN

e−i〈x,ξ〉f(x)dx.

Now we rewrite Pt in the form (4.1). Applying the inverse Fourier transform we get, for every
f ∈ L2(RN ),

Ptf = etTrBF−1

(
exp

(
−1

2

∫ t

0
|Q1/2eτB

∗ · |2sdτ
))
∗ F−1(Ff(etB

∗ ·))

where

F−1(g(etB
∗ ·))(y) =

1

(2π)N

∫
RN

g(etB
∗
ξ)ei〈ξ,y〉dξ = e−tTrB(F−1g)(e−tBy),

so that

Ptf(x) =

∫
RN

f(e−tBx− e−tBy)F−1
(
e−

1
2

∫ t
0 |Q

1/2eτB
∗ ·|2sdτ

)
(y) dy

= etTrB
∫
RN

f(e−tBx− z)F−1
(
e−

1
2

∫ t
0 |Q

1/2eτB
∗ ·|2sdτ

)
(etBz) dz

=

∫
RN

f(e−tBx+ z)gt(z)dz,

with

gt(z) = etTrBF−1
(
e−

1
2

∫ t
0 |Q

1/2eτB
∗ ·|2sdτ

)
(−etBz) = F−1

(
e−

1
2

∫ t
0 |Q

1/2e(τ−t)B
∗ ·|2sdτ

)
(−z)

=
1

(2π)N

∫
RN

e−
1
2

∫ t
0 |Q

1/2e−σB
∗
ξ|2sdσe−i〈ξ,z〉dξ,

so that Pt is represented in the form (1.1), with µt(dx) := gt(x)dx.
Setting

ϕt(ξ) = e−
1
2

∫ t
0 |Q

1/2e−σB
∗
ξ|2sdσ, ξ ∈ RN ,

we have gt = (2π)−NF(ϕt). Since ϕt(ξ) = exp(−
∫ t

0 λ(e−σB
∗
ξ)dσ), where λ(ξ) = |Q1/2ξ|2s/2 is a

continuous negative definite function such that λ(0) = 0, then µt is a probability measure, see e.g.
[33, sect. 2.1]. Moreover, since the function (t, ξ) 7→ ϕt(ξ) is continuous in [0,+∞) × RN , with
ϕ0(ξ) = 1 for every ξ, by the Lévy Theorem t 7→ µt is weakly continuous, and it weakly converges to
δ0 as t→ 0. Therefore, Pt is well defined in Cb(RN ) and satisfies our assumptions with θ = 1/(2s)
provided there exist ∂gt/∂xk ∈ L1(RN ), for each k = 1, . . . N , and there are C > 0, ω ∈ R such

that ‖∂gt/∂xk‖L1(RN ) ≤ Ct−1/(2s)eωt for every t > 0. This is shown in the next lemma.

Lemma 4.3. gt ∈W 1,1(RN ) for every t > 0, and we have

sup
0<t≤1

t1/(2s)
∥∥∥∥ ∂gt∂xk

∥∥∥∥
L1(RN )

< +∞, k = 1, . . . , N, (4.8)

sup
t>1

∥∥∥∥ ∂gt∂xk

∥∥∥∥
L1(RN )

< +∞, k = 1, . . . , N. (4.9)
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Proof. The main step is to prove that gt ∈W 1,1(RN ) for every t ∈ (0, 1] and that (4.8) holds. The
remaining part of the statement will be a consequence, thanks to the algebraic relations among the
functions gt.

It is convenient to rewrite gt as

gt(x) =
1

tN/(2s)
1

(2π)N

∫
RN

e−
1
2t

∫ t
0 |Q

1/2e−σB
∗
η|2sdσe−i〈t

−1/(2s)η,x〉dη =
1

tN/2s
g̃t

( x

t1/(2s)

)
, (4.10)

where

g̃t :=
1

(2π)N
F
(
e−

1
2t

∫ t
0 |Q

1/2e−σB
∗ ·|2sdσ

)
=

1

(2π)N
F(ϕ̃t), t > 0,

with ϕ̃t = (ϕt)
1/t. Our aim is now to show that g̃t is C1, and that supt∈(0,1] ‖∂g̃t/∂xk‖L1(RN ) < +∞.

In this case, by (4.10) gt is C1 too, and ∂gt/∂xk(x) = t−(N+1)/(2s)∂g̃t/∂xk(t
−1/(2s)x), which yields

(4.8).
To prove that g̃t is continuously differentiable and it has L1 derivatives it is enough to show that

ξ 7→ ξkϕ̃t(ξ) belongs to L1(RN ) ∩Hm(RN ) for every k = 1, . . . , N , with m > N/2. Indeed, in this
case ∂g̃t/∂xk = iF−1ψt with

ψt(ξ) := ξkϕ̃t(ξ),

and ∫
RN

∣∣∣∣ ∂g̃t∂xk

∣∣∣∣dx =

∫
RN
|F−1ψt(x)|dx =

1

(2π)N
|Fψt(−x)|dx

=
1

(2π)N

∫
RN
|Fψt(x)|(1 + |x|2)m/2

1

(1 + |x|2)m/2
dx

≤ 1

(2π)N
‖Fψt(1 + | · |2)m/2‖L2(RN )

(∫
RN

1

(1 + |x|2)m
dx

)1/2

≤ CN‖ψt‖Hm(RN ).

So, the rest of the proof of the differentiability of g̃t for t ∈ (0, 1] and of (4.8) is devoted to show that
ψt ∈ L1(RN ) ∩Hm(RN ) with m > N/2, and with Hm norm bounded by a constant independent
of t. As a first step, we observe that there exists c > 0 such that

ϕ̃t(ξ) ≤ e−c|ξ|
2s
, 0 < t ≤ 1, ξ ∈ RN . (4.11)

Indeed, let MB > 0, ωB ∈ R be such that ‖etB∗‖ ≤MBe
ωBt for every t > 0. For every ξ ∈ RN and

σ ∈ [0, 1] we have ξ = eσB
∗
Q−1/2Q1/2e−σB

∗
ξ, so that ‖ξ‖ ≤ MBe

ωBσ‖Q−1/2‖ ‖Q1/2e−σB
∗
ξ‖, and

therefore ‖Q1/2e−σB
∗
ξ‖ ≥ ‖ξ‖/κ, with κ = minτ∈[0,1]MBe

ωBτ‖Q−1/2‖. Estimate (4.11) holds with

c = 1/(2κ2s); it implies that ψt ∈ L1(RN ) ∩ L2(RN ), with L1 and L2 norms bounded by constants
independent of t.

To estimate the derivatives of ψt we write it as ψt(ξ) = ξke
ft(ξ), where

ft(ξ) := − 1

2t

∫ t

0
|Q1/2e−σB

∗
ξ|2sdσ, ξ ∈ RN .

The function θ(σ, ξ) := |Q1/2e−σB
∗
ξ|2s belongs to C∞(R×(RN \{0})), and therefore ft ∈ C∞(RN \

{0}) for every t > 0, and for every multi-index α we have

Dαft = − 1

2t

∫ t

0
Dα(|Q1/2e−σB

∗ · |2s)dσ.
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Since for every σ ∈ R the function θ(σ, ·) is homogeneous with degree 2s, its j-th order derivatives
are homogeneous with degree 2s− j; therefore for every multi-index α and ξ 6= 0 we have

|Dα
ξ θ(σ, ξ)| =

∣∣∣∣Dα
ξ θ

(
σ,

ξ

|ξ|

) ∣∣∣∣ |ξ|2s−|α| ≤ max{|Dα
ξ θ(σ, y)| : |y| = 1}|ξ|2s−|α|,

and consequently, for every t ∈ (0, 1],

|Dαft(ξ)| ≤
1

2
sup

0≤σ≤1
|Dα

ξ θ(σ, ξ)| ≤
1

2
max{|Dα

ξ θ(σ, y)| : σ ∈ [0, 1], |y| = 1}|ξ|2s−|α| =: Kα|ξ|2s−|α|.

For every multi-index α, Dαϕ̃t = Dαeft is a linear combination of functions such as eftDα1ft · . . . ·
Dαjft, where j ∈ {1, . . . , |α|}, α1, . . . , αj ∈ N and

∑
αj = |α|. By the above estimates,

eft(ξ)Dα1f(ξ) · . . . ·Dαjft(ξ) ≤ Kα1 |ξ|2s−α1 · . . . ·Kαj |ξ|2s−αj ϕ̃t(ξ)
and therefore

|Dαϕ̃t(ξ)| ≤
|α|∑
j=1

cj |ξ|2sj−|α|e−c|ξ|
2s
, ξ 6= 0,

with suitable coefficients cj . It follows that for every ε ∈ (0, c) there exists cε,|α| > 0 such that

|Dαϕ̃t(ξ)| ≤ cε,|α|e−ε|ξ|
2s |ξ|2s−|α|, ξ 6= 0. (4.12)

Now, Dαψt(ξ) is equal to ξkD
αϕ̃t(ξ) plus a linear combination of derivatives of ϕ̃t of order |α| − 1.

Therefore,

|Dαψt(ξ)| ≤ cε,|α|e−ε|ξ|
2s |ξ|2s−|α|+1 + Ce−ε|ξ|

2s |ξ|2s−|α||ξ| = C̃ε,|α|e
−ε|ξ|2s |ξ|2s−|α|+1.

Consequently, Dαψt ∈ L2(RN ) provided ξ 7→ e−ε|ξ|
2s |ξ|2s−|α|+1 ∈ L2(RN ), which is satisfied if

2(2s−|α|+1) > −N . It follows that ψt ∈ Hm(Rn) if 2(2s−m+1) > −N , namely m < 2s+1+N/2.
We recall that we need m > N/2. Since 2s+1 > 1, the interval (N/2, 2s+1+N/2) contains at least
one integer m. For such m, ψt ∈ Hm(Rn) and ‖ψt‖Hm(RN ) is bounded by a constant independent

of t ∈ (0, 1], so that (4.8) follows.

To prove (4.9) we argue as in the proof of estimates (3.6), (3.11) for large t. We use the semigroup
property Pt ◦ Ps = Pt+s for t, s > 0, which may be rewritten as

gt+s(x) =

∫
RN

gs(x− e−sBy)gt(y)dy, t, s > 0, x ∈ RN .

In particular, for t > 1 we get

gt(x) =

∫
RN

g1(x− e−By)gt−1(y)dy, x ∈ RN .

From the first part of the proof we know that g1 is continuously differentiable. So, gt is continuously
differentiable and for every k = 1, . . . , N we have

∂gt
∂xk

(x) =

∫
RN

∂g1

∂xk
(x− e−By)gt−1(y)dy, x ∈ RN ,

which implies (recalling that ‖gt−1‖L1(RN ) = 1)∥∥∥∥ ∂gt∂xk

∥∥∥∥
L1(RN )

≤
∥∥∥∥ ∂g1

∂xk

∥∥∥∥
L1(RN )

, t > 1,

and (4.9) follows.

�
34



Applying Theorems 3.8 and 3.9 we extend the results of Theorem 4.1.

Theorem 4.4. Let f ∈ Cb(RN ) and λ > 0, s ∈ (0, 1) \ {1/2}. Then the equation

λu− Lu = f (4.13)

has a unique solution u ∈ C2s
b (RN ), and there is C > 0, independent of f , such that

‖u‖C2s
b (RN ) ≤ C‖f‖∞.

If s = 1/2, equation (4.13) has a unique solution in Z1(RN ), and there is C > 0, independent of
f , such that

‖u‖Z1(RN ) ≤ C‖f‖∞.
If in addition f ∈ Cαb (RN ) with α ∈ (0, 1) and α + 2s /∈ {1, 2}, then u ∈ Cα+2s

b (RN ) and there is
C > 0, independent of f , such that

‖u‖Cα+2s
b (RN ) ≤ C‖f‖Cαb (RN ).

If α+ 2s = k ∈ {1, 2}, then u ∈ Zkb (RN ) and there is C > 0, independent of f , such that

‖u‖Zkb (RN ) ≤ C‖f‖Cαb (RN ).

Applying Theorems 3.12 and 3.13 we extend the results of Theorem 4.2.

Theorem 4.5. Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s /∈ {1, 2}, and let f ∈ Cα+2s
b (RN ),

g ∈ C0,α
b ([0, T ]× RN ). The mild solution to vt(t, x) = Lv(t, ·)(x) + g(t, x), 0 ≤ t ≤ T, x ∈ RN ,

v(0, x) = f(x), x ∈ RN ,
(4.14)

belongs to C0,α+2s
b ([0, T ]× RN ), and there is C > 0, independent of f and g, such that

‖v‖
C0,α+2s
b ([0,T ]×RN )

≤ C(‖f‖Cα+2s
b (RN ) + ‖g‖

C0,α
b ([0,T ]×RN )

).

Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s := k ∈ {1, 2}. Then for every f ∈ Zkb (RN ),

g ∈ C0,α
b ([0, T ]× RN ) the mild solution to (4.14) belongs to Z0,k

b ([0, T ]× RN ), and there is C > 0,
independent of f , such that

‖v‖
Z0,k
b (RN )

≤ C(‖f‖Zkb (RN ) + ‖g‖
C0,α
b ([0,T ]×RN )

).

The results of Theorem 4.4 seem to be new. A part of them, in the case α ∈ (0, 1), s ≥ 1/2,
1 < α+ 2s < 2, was proved in [50] for a similar operator L, with Bx replaced by b(x) in the drift,
b ∈ Cαb (RN ;RN ). Concerning Theorem 4.5, in the case that α ∈ (0, 1), s < 1/2, α + 2s ∈ (1, 2), a
similar result has been recently obtained in [19] for a more general class of operators with suitable
nonlinear and time dependent drift coefficients.

5. Examples in infinite dimension

5.1. Ornstein-Uhlenbeck operators. In this section we deal with the case that X is an infinite
dimensional separable Banach space and the measures µt are Gaussian and centered (i.e. with zero
mean).

For the general theory of Gaussian measures in Banach spaces we refer to [5]. In particular,
we recall that every centered Gaussian measure γ is Fomin differentiable along every h in the
Cameron-Martin space Hγ , and the Fomin derivative βγh belongs to Lp(X, γ) for every p ∈ [1,+∞)
and satisfies

‖βγh‖Lp(X,γ) =

(
1√
2π

∫
R
|ξ|pe−ξ

2‖h‖2Hγ /2dξ

)1/p

=: cp‖h‖Hγ , (5.1)
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with c1 =
√

2/π.
The first Schauder type theorems in the literature are in [11], [29, Ch. 6], concerning smoothing

Ornstein-Uhlenbeck operators in a Hilbert setting. We recall that if X is a Hilbert space, for every
centered Gaussian measure γ with covariance Q, the relevant Cameron-Martin space Hγ is the

range of Q1/2, with norm ‖h‖Hγ = ‖Q−1/2h‖ where Q−1/2 is the pseudo-inverse of Q1/2.
The assumptions to obtain (in all directions) smoothing Ornstein-Uhlenbeck semigroups are the

following.

Hypothesis 5.1. X is a separable Hilbert space, A : D(A) ⊂ X 7→ X is the infinitesimal generator
of a strongly continuous semigroup etA, and Q ∈ L(X) is a self-adjoint nonnegative operator, such
that the operators defined by

Qt :=

∫ t

0
esAQesA

∗
ds, t > 0 (5.2)

have finite trace for every t > 0. Moreover, etA maps X into Q
1/2
t (X) for every t > 0.

The relevant Ornstein-Uhlenbeck semigroup is given by

Ptf(x) =

∫
X
f(etAx+ y)µt(dy), f ∈ Bb(X), x ∈ X, (5.3)

where

µt = N(0, Qt), t > 0,

is the Gaussian measure in X with mean 0 and covariance Qt. In this case Pt is strong Feller,
namely it maps Bb(X) into Cb(X). In fact, it maps Bb(X) into Ckb (X) for every k ∈ N ([29, Thm.
6.2.2]). Our L is a realization of the operator L defined by

Lu(x) =
1

2
Tr(QD2u(x)) + 〈x,A∗∇u(x)〉, (5.4)

see [29, Sect. 6.1].

Under Hypothesis 5.1, Hypothesis 3.1 is satisfied with H = X, Ht = Q
1/2
t (X), and Hypothesis

3.2(i) holds, since etA is a strongly continuous semigroup on X. But also Hypothesis 3.2(ii) is
satisfied provided there exist ω ∈ R, C, M , θ > 0 such that

‖Q−1/2
t etA‖L(X) ≤

Ceωt

tθ
, t > 0. (5.5)

Indeed, in this case for every h ∈ X and t > 0, p ≥ 1 we have ‖βµt
etAh
‖Lp(X,µt) ≤ cp‖etAh‖Q1/2

t (X)
≤

cpCe
ωtt−θ‖h‖, thanks to (5.1) and (5.5). Taking p = 1 yields that Hypothesis 3.2(ii) is satisfied;

taking p > 1 by Remark 3.4 the space derivatives in the statements of next Theorems 5.2 and 5.3
are Fréchet derivatives instead of mere Gateaux derivatives.

Examples where (5.5) is satisfied are in [29] (see Appendix B and Example 6.2.11). One of them
is considered in the next subsection.

The corresponding Schauder and Zygmund regularity results in the stationary case are the fol-
lowing.

Theorem 5.2. Let Hypotheses 5.1 and (5.5) hold, and assume that 1/θ /∈ N. For every f ∈ Cb(X)
and λ > 0, the equation

λu− Lu = f (5.6)

has a unique solution u ∈ C1/θ
b (X), and there is C > 0, independent of f , such that

‖u‖
C

1/θ
b (X)

≤ C‖f‖∞.
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If Hypotheses 5.1 and (5.5) hold and 1/θ ∈ N, equation (5.6) has a unique solution in Z1/θ(X),
and there is C > 0, independent of f , such that

‖u‖Z1/θ(X) ≤ C‖f‖∞.

If in addition f ∈ Cαb (X) with α ∈ (0, 1) and α+ 1/θ /∈ N, then u ∈ Cα+1/θ
b (X) and there is C > 0,

independent of f , such that

‖u‖
C
α+1/θ
b (X)

≤ C‖f‖Cαb (X).

If α+ 1/θ = k ∈ N, then u ∈ Zkb (X) and there is C > 0, independent of f , such that

‖u‖Zkb (X) ≤ C‖f‖Cαb (X).

The Schauder part of this result was stated in [11], [29, Sect. 6.4.1] in the case Q = I, A of
negative type, and θ = 1/2; see also [24] for further estimates in such a case. It was extended in
[16] to Ornstein-Uhlenbeck semigroups arising as transition semigroups of some stochastic PDEs,
with X = L2(Ω), Ω being a bounded open set in RN . In this case, A is the realization of a second
order elliptic differential operator in X and θ = 1/2.

In the evolution case Theorems 3.12 and 3.13 yield

Theorem 5.3. Let Hypotheses 5.1 and (5.5) hold, and let T > 0. For every f ∈ Cb(X), g ∈
Cb([0, T ]×X) let v be the mild solution to vt(t, x) = Lv(t, x) + g(t, x), t ∈ [0, T ], x ∈ X,

v(0, ·) = f.

(i) If 1/θ /∈ N and f ∈ C
1/θ
b (X) then v ∈ C

0,1/θ
b ([0, T ] × X). There exists C = C(T ) > 0,

independent of f and g, such that

‖v‖
C

0,1/θ
b ([0,T ]×X)

≤ C(‖f‖
C

1/θ
b (X)

+ ‖g‖∞).

(ii) If α ∈ (0, 1) and α + 1/θ /∈ N, f ∈ C
α+1/θ
b (X) and g ∈ C0,α([0, T ] × X) then v ∈

C
0,α+1/θ
b ([0, T ]×X). There exists C = C(T, α) > 0, independent of f and g, such that

‖v‖
C

0,α+1/θ
b ([0,T ]×X)

≤ C(‖f‖
C
α+1/θ
b (X)

+ ‖g‖
C0,α
b ([0,T ]×X)

).

Let us go back to the case where X is a Banach space. The classical Ornstein-Uhlenbeck semi-
group,

Ptf(x) =

∫
X
f(e−tx+

√
1− e−2ty)µ(dy), t > 0, f ∈ Cb(X), x ∈ X, (5.7)

where µ is any centered Gaussian measure in X, is not strong Feller. It is smoothing only along
the directions of the Cameron-Martin space Hµ. However, by the changement of variables z =√

1− e−2ty in the integral it may be rewritten in the form (1.1), with Tt = e−tI and µt = µ ◦
(
√

1− e−2tI)−1, which is the centered Gaussian measure in X with covariance Qt = (1− e−2t)Q, if
Q : X∗ 7→ X is the covariance of µ. For the case where µ is non-Gaussian see Subsection 5.4 below.

The generator L of Pt is a realization of divµ∇Hµ , where divµ is the Gaussian divergence and
∇Hµ is the gradient along Hµ, see [5, Sect. 5.8].

As we mentioned at the beginning of the section, µt is Fomin differentiable along every h ∈ Hµt ,
and Hypothesis 3.1 is satisfied with Ht = Hµt . Since Qt is a multiple of Q, the elements of Hµt

coincide with those of Hµ, but the norms of these spaces are different, and precisely we have

‖h‖Hµt =
1√

1− e−2t
‖h‖Hµ , h ∈ Hµ, t > 0.
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The semigroup Tt = e−tI maps obviously Hµ into itself and into Hµt for every t > 0; moreover by
(5.1) we have

‖βγTth‖L1(X,µt) =

√
2

π
‖e−th‖Hµt =

√
2

π

e−t√
1− e−2t

‖h‖Hµ ≤
c e−t

t1/2
‖h‖Hµ , t > 0, h ∈ Hµ,

with c = (2/π)1/2 supt>0 t
1/2/
√

1− e−2t. Therefore, Hypothesis 3.2 is satisfied with H = Hµ,
ω = −1, θ = 1/2. Applying Theorems 3.8 and 3.9 gives the same results of [18], namely

Theorem 5.4. Let λ > 0, f ∈ Cb(X), and set H = Hµ. Then the unique solution to

λu− Lu = f

belongs to Z2
H(X), and there is C > 0 such that

‖u‖Z2
H(X) ≤ C‖f‖∞.

If in addition f ∈ CαH(X) with 0 < α < 1, u belongs to C2+α
H (X), and there is C > 0 such that

‖u‖C2+α
H (X) ≤ C‖f‖CαH(X).

Let now T > 0, f ∈ Z2
H(X), g ∈ Cb([0, T ]×X). Then the mild solution to vt(t, x) = Lv(t, x) + g(t, x), t ∈ [0, T ], x ∈ X,

v(0, ·) = f,

belongs to Z0,2
H ([0, T ]×X), and there exists C = C(T ) > 0 such that ‖v‖

Z0,2
H ([0,T ]×X)

≤ C(‖f‖Z2
H(X)+

‖g‖∞).

If in addition f ∈ C2+α
H (X), g ∈ C0,α

H ([0, T ] × X) with α ∈ (0, 1), then v ∈ C0,2+α
H ([0, T ] × X)

and there exists C = C(T, α) > 0 such that ‖v‖
C0,2+α
H ([0,T ]×X)

≤ C(‖f‖C2+α
H (X) + ‖g‖

C0,α
H ([0,T ]×X)

).

Theorem 5.4 can be extended to the wider class of Ornstein-Uhlenbeck operators considered in
[59, 34]. Here, A : D(A) ⊂ X 7→ X is the infinitesimal generator of a strongly continuous semigroup
etA, and Q ∈ L(X∗, X) is a non-negative (namely, x∗(Qx∗) ≥ 0 for every x∗ ∈ X∗) and symmetric
(namely, y∗(Qx∗) = x∗(Qy∗) for every x∗, y∗ ∈ X∗) operator. Moreover, the operators Qt defined
through a Pettis integral,

Qtx
∗ :=

∫ t

0
esAQesA

∗
x∗ds, x∗ ∈ X∗, t > 0,

are assumed to be the covariances of centered Gaussian measures µt in X. We recall that if X is a
Hilbert space, Qt is the covariance operator of a Gaussian measure if and only if its trace is finite.
If X is just a Banach space, (necessary and) sufficient conditions for Qt to be the covariance of a
Gaussian measure are in [60, Thm. 7.1]. References for sufficient conditions are also in [61, Remark
2].

Here we choose as H the reproducing kernel Hilbert space HQ associated to the operator Q, see

[34] and [58, Chapter III]. If B ∈ L(H,X) and Q = BB∗, Pt defined by (1.1) with Tt = etA is the
transition semigroup of a stochastic evolution equation, dX(t) = AX(t)dt+BdWH(t), t > 0,

X(0) = x

where WH(t) is a cylindrical Wiener process with Cameron-Martin space H, see [10] for precise
definitions and more details. Moreover, it was proved in [34, Thm. 6.2] that the semigroup Pt is
strongly continuous in the mixed topology on Cb(X), which is the finest locally convex topology on
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Cb(X) which agrees on every bounded set with the topology of uniform convergence on compact
sets.

Hypothesis 3.1 is satisfied with Tt = etA, H = HQ ([34, Thm. 3.4]) if there exists ω ∈ R such
that for every x∗ ∈ D(A∗) we have (A∗ − ωI)x∗(Qx∗) ≤ 0, or equivalently if for every x∗ ∈ X∗ the
function t 7→ ‖i∗e−ωt(etA)∗x∗‖H is nonincreasing in [0,+∞) (here i is the embedding i : H 7→ X).
In this case, by [34, Thm. 3.5], all the Cameron-Martin spaces Hµt coincide and have equivalent
norms for every t > 0, and etA maps H into Hµt , with

‖etAh‖2Hµt ≤
1

t2

∫ t

0
‖esAh‖2Hds, t > 0.

Therefore, if M , ω are such that ‖etA‖L(H) ≤Meωt for t > 0, we get

‖etAh‖Hµt ≤
M

t1/2
emax{ω,0}t‖h‖H , t > 0.

Recalling (5.1), we obtain that Hypothesis 3.2 is satisfied with θ = 1/2 and ω replaced by max{ω, 0}.
The statements of Theorem 5.4 hold in this case too. Notice that, still by (5.1) and Remark 3.4,
the space derivatives in the statements are in fact Fréchet derivatives.

5.2. Nonlocal Ornstein-Uhlenbeck operators. As mentioned in the introduction, semigroups
of type (1.1) arise as transition semigroups of Ornstein–Uhlenbeck processes with Levy noise (see
[33], [40], [41]) in finite or infinite dimensional state spaces, i.e., a stochastic process X(t), t ≥ 0,
solving a stochastic differential equation on X of type

dX(t) = AX(t)dt+ dY (t),

where Y (t), t ≥ 0, is a Levy process. We have seen examples of this type to which our results
apply in finite dimensions in Subsection 4.2. In this subsection we shall discuss such a “nonlocal”
example in infinite dimensions. More precisely, in the situation of the previous subsection we take
X = L2(0, 1) := L2((0, 1), dt), where dt denotes Lebesgue measure on (0, 1). Let A be the Laplace
operator ∆ on L2(0, 1) with Dirichlet boundary conditions. Since we do not want to use too much
theory of Levy processes (see [1, 43, 53]), we just mention here that such a process is determined
by a negative definite function λ : L2(0, 1) −→ C, which in our case we take concretely to be

λ(x) := ‖x‖2L2(0,1) + c‖x‖2sL2(0,1), x ∈ L2(0, 1), (5.8)

where c ≥ 0 and s ∈ (0, 1). The first summand corresponds to the Wiener process part and the
second to the pure jump part of Y (t), t ≥ 0, in its Levy-Itô-decomposition (see [1, 43, 53]). The
corresponding transition semigroup of X(t), t ≥ 0, is then given by

Ptf(x) =

∫
f(et∆x+ y)µt(dy), t > 0, f ∈ Bb(L

2(0, 1)), x ∈ L2(0, 1),

where µt, t ≥ 0, are probability measures with µ0 = δ0 and with Fourier transforms given by

µ̂t(x) :=

∫
L2(0,1)

e
i〈x,y〉L2(0,1)µt(dy)

= exp

{
−
∫ t

0
‖er∆x‖2L2(0,1) + c‖er∆x‖2sL2(0,1) dr

}
,

(5.9)

for t > 0 and x ∈ L2(0, 1); see Section 8 in [41].
In fact, it follows from the proof of Proposition 8.1 in [41] that there exists probability measures

µct on L2(0, 1) such that

µ̂ct(x) = exp
{
−
∫ t

0
c‖er∆x‖2sL2(0,1) dr

}
, t > 0,
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while exp{−
∫ t

0 ‖e
r∆x‖2L2(0,1) dr} is the Fourier transform of the Gaussian measure N0,Qt , where

Qt = 2

∫ t

0
e2r∆ dr = (−∆)−1

(
I − e2t∆), t > 0, (5.10)

has finite trace, because the eigenvalues λk, k ∈ N, of ∆ are proportional to −k2. Therefore,

µt = N(0, Qt) ∗ µct , t > 0. (5.11)

Furthermore, it follows immediately from the proof of Proposition 8.1 in [41] that the functions in
(5.9) are equicontinuous in 0 with respect to the Sazonov topology on L2(0, 1) (namely, the topology
generated by the seminorms x 7→ Tx, where T is any Hilbert-Schmidt operator in L2(0, 1)). This
implies that t 7→ µt is weakly continuous (see e.g. Proposition 1.1 in [58, Chap. IV.1.2]).

The generator L of Pt is a realization in Cb(L
2(0, 1)) of the operator L that reads as

Lu(x) =

∫
L2(0,1)

(
i〈x,∆y〉L2(0,1) − λ(y)

)
e
i〈x,y〉L2(0,1) ν(dy), (5.12)

for all smooth cylindrical functions u such that u = ν̂ for some probability measure ν on L2(0, 1).
We refer to [40] for details and a rigorous analysis.

Clearly, if c = 0, µt is the Gaussian measure N(0, Qt) above, which is given by (5.2) with Q = 2I

and A = ∆. In this case, et∆ maps L2(0, 1) into Q
1/2
t (L2(0, 1)), and by elementary spectral theory

we get

‖Q−1/2
t et∆‖L(L2(0,1)) ≤

c

t1/2
, t > 0,

so (5.5) holds. So, Pt is just the semigroup (5.3) with Q = 2I and A = ∆, and L has the
representation (5.4).

For c > 0 we can apply our approach to our realization L of the operator L in (5.12). So, let

us check our Hypotheses 3.1 and 3.2 with H = X = L2(0, 1), Ht = Q
1/2
t (L2(0, 1)), and θ = 1/2.

Obviously the only thing to check is Hypothesis 3.2(ii).
Let us start with proving the Fomin differentiability of µt along et∆h, for every h ∈ L2(0, 1) and

t > 0. By the previous subsection we know that N(0, Qt) is Fomin differentiable along et∆h for
every t > 0 and h ∈ L2(0, 1), with

∥∥βN(0,Qt)

et∆h

∥∥
L1(L2(0,1),N(0,Qt))

≤ c

t1/2
‖h‖L2(0,1), t > 0, h ∈ L2(0, 1).

Now (5.11) and the following lemma ensure that Hypothesis 3.2(ii) also holds for the measures µt,
still with θ = 1/2.

Lemma 5.5. Let µ, ν be probability measures on a separable Banach space X, such that µ is Fomin
differentiable along v ∈ X. Then µ ∗ ν is Fomin differentiable along v and∥∥βµ∗νv

∥∥
L1(X,µ∗ν)

≤
∥∥βµv ∥∥L1(X,µ)
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Proof. Let f ∈ C1
b (X). Then, defining Ad: X×X −→ X by Ad(x, y) := x+y and π1 : X×X → X

by π1(x, y) = x, we have∫
X

∂f

∂v
d(µ ∗ ν) =

∫
X

∫
X

∂f

∂v
(x+ y)µ(dx)ν(dy)

=

∫
X

∫
X
f(x+ y)βµv (x)µ(dx)ν(dy)

=

∫
X

∫
X
f(Ad(x, y))Eµ⊗ν

[
βµv ◦ π1

∣∣∣σ(Ad)
]
µ(dx)ν(dy)

=

∫
X
f(z)Eµ⊗ν

[
βµv ◦ π1

∣∣∣ Ad = z
]

(µ ∗ ν)(dz),

where Eµ⊗ν [ϕ |σ(g)] denotes the conditional expectation of ϕ ∈ L1(X ×X,µ⊗ ν) with respect to
the sigma-algebra generated by g : X ×X 7→ X. Furthermore,∫

X

∣∣∣Eµ⊗ν[βµv ◦ π1

∣∣∣ Ad = z
]∣∣∣ (µ ∗ ν)(dz) ≤

∫
X
Eµ⊗ν

[∣∣βµv ◦ π1

∣∣ ∣∣∣ Ad = z
]

(µ ∗ ν)(dz)

=

∫
X

∫
X
Eµ⊗ν

[∣∣βµv ◦ π1

∣∣ ∣∣∣σ(Ad)
]
dµ⊗ ν

=

∫
X

∣∣βµv ∣∣ dµ.
The statement follows, with βµ∗νv (z) = Eµ⊗ν

[
βµv ◦ π1

∣∣∣ Ad = z
]
. �

Applying Theorems 3.8 and 3.9 yields

Theorem 5.6. For every f ∈ Cb(L2(0, 1)) and λ > 0, the equation

λu− Lu = f (5.13)

has a unique solution u ∈ Z2
b (L2(0, 1)), and there is C > 0, independent of f , such that

‖u‖Z2
b (L2(0,1)) ≤ C‖f‖∞.

If in addition f ∈ Cαb (L2(0, 1)) with α ∈ (0, 1), then u ∈ C2+α
b (X) and there is C > 0, independent

of f , such that

‖u‖C2+α
b (L2(0,1)) ≤ C‖f‖Cαb (L2(0,1)).

Applying Theorems 3.12 and 3.13 yields

Theorem 5.7. Let T > 0. For every f ∈ Cb(L2(0, 1)), g ∈ Cb([0, T ]× L2(0, 1)), let v be the mild
solution to  vt(t, x) = Lv(t, x) + g(t, x), t ∈ [0, T ], x ∈ L2(0, 1),

v(0, ·) = f.

(i) If f ∈ Z2
b (L2(0, 1)) and g ∈ Cb([0, T ]× L2(0, 1)), then v ∈ Z0,2

b ([0, T ]× L2(0, 1)), and there
exists C = C(T ) > 0, independent of f and g, such that

‖v‖
Z0,2
b ([0,T ]×L2(0,1))

≤ C(‖f‖Z2
b (L2(0,1)) + ‖g‖∞).
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(ii) If α ∈ (0, 1) and f ∈ C2+α
b (L2(0, 1)), g ∈ C0,α

b ([0, T ] × L2(0, 1)), then v ∈ C0,2+α
b ([0, T ] ×

L2(0, 1)). There exists C = C(T, α) > 0, independent of f and g, such that

‖v‖
C0,2+α
b ([0,T ]×L2(0,1))

≤ C(‖f‖C2+2α
b (L2(0,1)) + ‖g‖

C0,α
b ([0,T ]×L2(0,1))

).

5.3. The Gross Laplacian and its powers. Here X is a separable Hilbert space and Q ∈ L(X)
is a self-adjoint positive operator with finite trace. The semigroup Pt is defined by (1.1) with
Tt = I for every t > 0, and µt = N(0, tQ) is the centered Gaussian measure in X with covariance
tQ. Therefore we have

Ptf(x) =

∫
X
f(x+ y)µt(dy) =

∫
X
f(x+

√
tz)µ(dz), f ∈ Cb(X), t > 0. (5.14)

with µ = µ1 = N(0, Q). That Pt is a semigroup (namely, µt ? µs = µt+s for every s, t > 0) is a
consequence of standard properties of Gaussian measures, e.g. [5, Prop. 2.2.10]. The operator L
defined in (1.3) is a realization of the differential operator

Lu(x) =
1

2
Tr (QD2u(x)).

See [35], [29, Ch. 3] and the references therein. We choose as Ht the Cameron-Martin space of µt.
So, Hypothesis 3.1 is satisfied. Moreover we take H = H1 = the Cameron-Martin space of µ. We
have Ht = Q1/2(X) = H for every t > 0, with norm depending on t,

‖h‖Ht =
1

t1/2
‖h‖H , h ∈ H, t > 0.

Consequently, by (5.1),

‖βµtTth‖Lp(X,µt) ≤
cp

t1/2
‖h‖H , h ∈ H, t > 0, (5.15)

and taking p = 1, Hypothesis 3.2 is satisfied with θ = 1/2, ω = 0. Therefore Theorems 3.8 and
3.9 yield that the statement of Theorem 5.4 holds in this case too, and in this case too the space
derivatives in the statement are Fréchet derivatives, by (5.15) and Remark 3.4.

The Schauder part of Theorem 5.4 in the stationary case was already stated in [12, 29]; see also
[2] for a related result.

Now let us consider the powers (−L)s with s ∈ (0, 1). As in the finite dimensional case (see
(4.5)) we define it as minus the generator of the subordinated semigroup St of Pt on Cb(X) with

subordinator {η(s)
t (r)dr, t > 0}, where as in Subsection 4.1, η

(s)
t (r), r > 0, is given as the inverse

Laplace transform of [0,∞) 3 λ 7→ e−tλ
s
, i.e.

Stf(x) =

∫ ∞
0

(Pσf)(x)η
(s)
t (σ)dσ =

∫ ∞
0

∫
X
f(x+y)N(0, σQ)(dy) η

(s)
t (σ)dσ =

∫
X
f(x+y)νt(dy), t > 0,

where Pt is the semigroup in (5.14), and the measures νt are defined by

ν0(B) = δ0(B); νt(B) =

∫ ∞
0

N(0, σQ)(B)η
(s)
t (σ)dσ =

∫ ∞
0

N(0, Q)(B/σ1/2)η
(s)
t (σ)dσ, t > 0, B ∈ B(X),

(5.16)
where B(X) denotes the Borel σ-algebra of X. According to the terminology of [6, Ch. 4], νt is
called “mixture of measures”.

Lemma 5.8. t 7→ νt is weakly continuous in [0,+∞). The generator of St is the operator whose
resolvent is given by

sin(sπ)

π

∫ ∞
0

R(ξ, L)
ξs

λ2 − 2ξs cos(sπ) + ξ2s
dξ, λ > 0. (5.17)
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Proof. Let us check that t 7→ νt is weakly continuous. For every f ∈ Cb(X) and t > 0 we have∫
X
f(x)νt(dx) =

∫
X

∫ +∞

0
f(x)N(0, σQ)(dx)η

(s)
t (σ)dσ =

∫
X

∫ +∞

0
f(t1/2sτ1/2z)N0,Q(dz)η(s)(τ)dτ

For t0 > 0 the right-hand side goes to
∫
X f(x)νt0(dx) as t → t0, by the Dominated Convergence

Theorem. The same holds for t0 = 0, recalling that
∫ +∞

0 η(s)(τ)dτ = 1.
Concerning the second assertion, using (4.4) for every λ > 0 and f ∈ Cb(X) we get∫ ∞

0
e−λtStf(x)dt =

∫ ∞
0

e−λt
∫ ∞

0
Pσf(x)

t−1/s

π

∫ ∞
0

e−σt
−1/sr−rs cos(sπ) sin(rs sin(sπ))dr dσ dt

=
1

π

∫ ∞
0

dξ

(∫ ∞
0

e−λt−tξ
s cos(sπ) sin(tξs sin(sπ))dt

∫ ∞
0

Pσf(x)e−σξdσ

)

=
sin(sπ)

π

∫ ∞
0

R(ξ, L)f(x)
ξs

λ2 − 2ξs cos(sπ) + ξ2s
dξ

(the last equality follows from
∫∞

0 e−at sin(bt)dt = b/(b2 + a2)). �

We recall that if L is the infinitesimal generator of a bounded strongly continuous semigroup in
a Banach space, formula (5.17) coincides with the Kato representation formula for the resolvent of
−(−L)s for s ∈ (0, 1), which may be taken as a definition of −(−L)s ([37]). In our case Pt is a
contraction semigroup in Cb(X) but it is not strongly continuous, whereas it is strongly continuous
in BUC(X). Therefore, the operator whose resolvent is given by (5.17) is an extension to Cb(X)
of −(−L0)s, where L0 is the part of L in BUC(X), and it may be called −(−L)s, although our
case is not covered by the standard theory of powers of (noninvertible) operators.

The following easy lemma will be used here and in the following.

Lemma 5.9. Let ν be a probability measure in a Banach space X that is Fomin differentiable along
some h, and let c > 0. Then the measure νc := ν ◦ (cI)−1 (namely, νc(A) = ν(A/c)) is Fomin
differentiable along h, and

(i) βνch (y) =
1

c
βνh

(y
c

)
, νc − a.e. y ∈ X;

(ii) ‖βνch ‖L1(X,νc) =
1

c
‖βνh‖L1(X,ν).

(5.18)

Proof. For every f ∈ C1
b (X) and t > 0 we have∫

X

∂f

∂h
(y)νc(dy) =

∫
X

∂f

∂h
(cz)ν(dz) =

∫
X

1

c

∂

∂h
f(c ·)(z) ν(dz)

=
1

c

∫
X
f(cz)βνh(z)ν(dz) =

1

c

∫
X
f(y)βνh

(y
c

)
νc(dy),

and (5.18)(i) follows. Moreover,

‖βνch ‖L1(X,νc) =
1

c

∫
X

∣∣∣βνh (yc)∣∣∣ νc(dy) =
1

c

∫
X
|βνh(y)|ν(dy)

which is (5.18)(ii). �

Proposition 5.10. Let H = Q1/2(X), Tt = I for every t > 0. The measures νt defined in (5.16)
satisfy Hypothesis 3.2, with ω = 0 and θ = 1/(2s).
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Proof. We have to check that νt is Fomin differentiable along every h ∈ H, and that there exists
C > 0 such that

‖βνth ‖L1(X,νt) ≤
C

t1/(2s)
, t > 0, h ∈ H. (5.19)

Setting as before µt := N(0, tQ) = µ ◦ (t1/2I)−1, µ := N(0, Q) we get from Lemma 5.9

βµth (y) =
1

t1/2
βµh

( y

t1/2

)
, t > 0, h ∈ H, y ∈ X.

Consequently, we get∫
X

∂f

∂h
(y)νt(dy) =

∫
X

∂f

∂h
(y)

∫ ∞
0

N(0, σQ)(dy)η
(s)
t (σ)dσ =

∫ ∞
0

∫
X

∂f

∂h
(y)N(0, σQ)(dy)η

(s)
t (σ)dσ

=

∫ ∞
0

∫
X
f(y)

1

σ1/2
βµh

( y

σ1/2

)
µσ(dy)η

(s)
t (σ)dσ =

∫
X
f(y)γt(dy)

where the measures γt are defined by

γt(A) :=

∫ ∞
0

1

σ1/2

(∫
A
βµh

( y

σ1/2

)
µσ(dy)

)
η

(s)
t (σ)dσ,

=

∫ ∞
0

1

σ1/2

(∫
A/σ1/2

βµh (z)µ(dz)

)
η

(s)
t (σ)dσ, A ∈ B(X).

Now we prove that each γt is absolutely continuous with respect to νt. This will be done showing
that the positive and negative parts of γt are respectively given by

γ+
t (A) =

∫ ∞
0

1

σ1/2

(∫
A/σ1/2

(βµh )+(z)µ(dz)

)
η

(s)
t (σ)dσ, A ∈ B(X), (5.20)

γ−t (A) =

∫ ∞
0

1

σ1/2

(∫
A/σ1/2

(βµh )−(z)µ(dz)

)
η

(s)
t (σ)dσ, A ∈ B(X). (5.21)

Such representations yield that both γ+
t and γ−t are absolutely continuous with respect to νt, because

for every νt-negligible A we have by definition
∫∞

0 µ(A/σ1/2)η
(s)
t (σ)dσ = 0, and since η

(s)
t (σ) > 0

for every σ > 0 we get µ(A/σ1/2) = 0 for a.e. σ > 0 and therefore γ+
t (A) = γ−t (A) = 0.

By [5, Sect. 2.10] there exists a µ-version f0 of βµh which is linear on a full measure subspace of
X. We set

X+ := {x ∈ X : f0(x) ≥ 0}, X− := {x ∈ X : f0(x) < 0},
and we check that X = X+∪X− is a Hahn decomposition of (X, γt), namely X+∩X− = ∅ (which
is obvious) and

γt(A ∩X+) ≥ 0, γt(A ∩X−) ≤ 0, A ∈ B(X).

Indeed, for every A ∈ B(X) we have

γt(A ∩X+) =

∫ ∞
0

1

σ1/2

(∫
(A∩X+)/σ1/2

(βµh )+(z)µ(dz)

)
η

(s)
t (σ)dσ

=

∫ ∞
0

1

σ1/2

(∫
(A∩X+)/σ1/2

f0(z)µ(dz)

)
η

(s)
t (σ)dσ.

Since f0 is linear on a µ-full measure subspace, then for every σ > 0 the sets X+/σ1/2 and X+

may differ only by a µ-negligible set. Therefore, f0(z) ≥ 0 for µ-a.e. z ∈ X+/σ1/2, so that
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∫
(A∩X+)/σ1/2 f0(z)µ(dz) ≥ 0 and therefore γt(A∩X+) ≥ 0. The same argument yields γt(A∩X−) ≤

0, and (5.20), (5.21) follow.
Therefore, γt is absolutely continuous with respect to νt and its density is the Fomin derivative

βνth of νt along h. Let us estimate its L1(X, νt) norm. We have

‖βνth ‖L1(X,νt) = sup

{
1

‖f‖∞

∫
X
f(y)βνth (y)νt(dy), f ∈ L∞(X, νt) \ {0}

}
,

and for every f ∈ L∞(X, νt) we have∫
X
f(y)βνth (y)νt(dy) =

∫
X
f(y)γt(dy) =

∫
X
f(y)

∫ ∞
0

1

σ1/2
βµh

( y

σ1/2

)
µσ(dy)η

(s)
t (σ)dσ

=

∫ ∞
0

(
1

σ1/2

∫
X
f(σ1/2x)βµh (x)µ(dx)

)
η

(s)
t (σ)dσ

≤
∫ ∞

0

1

σ1/2
‖f‖∞‖βµh‖L1(X,µ)η

(s)
t (σ)dσ ≤ ‖f‖∞‖h‖H

∫ ∞
0

1

σ1/2
η

(s)
t (σ)dσ,

where ∫ ∞
0

1

σ1/2
η

(s)
t (σ)dσ =

∫ ∞
0

1

σ1/2
η(s)

( σ

t1/s

)
dσ =

1

t1/2s

∫ ∞
0

η(s)(τ)

τ1/2
dτ.

Therefore, (5.19) follows with C =
∫∞

0 η(τ)τ−1/2dτ . �

Thanks to Lemma 5.8 and Proposition 5.10 we can apply Theorems 3.8 and 3.9, that give

Theorem 5.11. Let f ∈ Cb(X) and λ > 0, s ∈ (0, 1) \ {1/2}. Then the equation

λu+ (−L)su = f (5.22)

has a unique solution u ∈ C2s
H (X), and there is C > 0, independent of f , such that

‖u‖C2s
H (X) ≤ C‖f‖∞.

If s = 1/2, equation (5.22) has a unique solution in Z1
H(X), and there is C > 0, independent of f ,

such that

‖u‖Z1
H(X) ≤ C‖f‖∞.

If in addition f ∈ CαH(X) with α ∈ (0, 1) and α + 2s /∈ {1, 2}, then u ∈ Cα+2s
H (X) and there is

C > 0, independent of f , such that

‖u‖Cα+2s
H (X) ≤ C‖f‖CαH(X).

If α+ 2s = k ∈ {1, 2}, then u ∈ ZkH(X) and there is C > 0, independent of f , such that

‖u‖ZkH(X) ≤ C‖f‖CαH(X).

Applying Theorems 3.12 and 3.13 we obtain

Theorem 5.12. Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s /∈ {1, 2}, and let f ∈ Cα+2s
H (X),

g ∈ C0,α
H ([0, T ]×X) (2). The mild solution to vt(t, x) + (−L)sv(t, ·)(x) + g(t, x), 0 ≤ t ≤ T, x ∈ X,

v(0, x) = f(x), x ∈ X,
(5.23)

(2)For α = 0 we mean C0,0
H ([0, T ] ×X) = Cb([0, T ] ×X).
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belongs to C0,α+2s
H ([0, T ]×X), and there is C > 0, independent of f and g, such that

‖v‖
C0,α+2s
H ([0,T ]×X)

≤ C(‖f‖Cα+2s
H (X) + ‖g‖

C0,α
H ([0,T ]×X)

).

Let s ∈ (0, 1), α ∈ [0, 1) be such that α + 2s =: k ∈ {1, 2}. Then for every f ∈ ZkH(X),

g ∈ C0,α
H ([0, T ] × X) the mild solution to (5.23) belongs to Z0,k

H ([0, T ] × X), and there is C > 0,
independent of f , such that

‖v‖
Z0,k
H (X)

≤ C(‖f‖ZkH(X) + ‖g‖
C0,α
H ([0,T ]×X)

).

5.4. Non-Gaussian classical Ornstein-Uhlenbeck semigroups. In this section, as announced
earlier, we come back to (5.7), more precisely to its non-Gaussian analogue considered in [33, Sect.
7], for which the semigroup Pt is given by

Ptf(x) =

∫
X
f(e−tx+ (1− e−pt)1/py)µ(dy), t > 0, f ∈ Cb(X), x ∈ X, (5.24)

where µ is a suitable Borel probability measure in a Hilbert space X. Pt may be written in the
form (1.1), with Tt = e−tI and

µt = µ ◦ [(1− e−pt)1/pI]−1, t > 0. (5.25)

If µ is a centered Gaussian measure and p = 2, Pt is the classical Ornstein-Uhlenbeck semigroup
considered before in (5.7). For Pt to be a semigroup, µ cannot be any Borel measure: indeed, we
need that condition (1.2) is satisfied. It is satisfied provided

µ̂(a) = e−λ(a)/p, a ∈ X∗,

and λ : X∗ 7→ C is a negative definite function, which is Sazonov continuous, and such that

λ(ta) = tpλ(a), a ∈ X∗, t > 0.

The weak continuity of t 7→ µt follows immediately from the equality
∫
X f(y)µt(dy) =

∫
X f((1 −

e−pt)1/py)µ(dy), for every f ∈ Cb(X) and t ≥ 0.
We fix now a Banach space H ⊂ X such that µ is Fomin differentiable along every h ∈ H. (H

may be the whole space D(µ) of all h ∈ X such that µ is Fomin differentiable along h, or a smaller
space continuously embedded in D(µ)). In the case where X is e.g. a separable real Hilbert space,

an easy example for such a probability measure µ with D(µ) ⊃ Q
1
2 (X) is the measure νt defined

in (5.16) with t = 1
p and s = p

2 (recall that νt in (5.16) also depends on s); in this case it is easy to

check that λ(a) = 〈Qa, a〉p/2/2 and it is convenient to take H = Q
1
2 (X) .

Going back to the general case , Tt = e−tI maps obviously H into itself. Moreover, by Lemma 5.9
µt is Fomin differentiable along every h ∈ H and we have ‖βµth ‖L1(X,µt) = (1−e−pt)−1/p‖βµh‖L1(X,µ).
Therefore, for every t > 0 and h ∈ D(µ) we have

‖βµTth‖L1(X,µt) =
e−t

(1− e−pt)1/p
‖βµh‖L1(X,µ) =

e−t

(1− e−pt)1/p
‖h‖D(µ) ≤ C

e−t

t1/p
‖h‖D(µ),

with C = supt>0 t
1/p(1− e−pt)−1/p. Since H is continuously embedded in D(µ), Hypothesis 3.2 is

satisfied with ω = −1, θ = 1/p and our approach applies. Hence Theorems 3.8 and 3.9 hold for the
generator L of the semigroup in (5.24), with θ = 1/p, as well as Theorems 3.12 and 3.13.
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