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Abstract. We prove the superposition principle for probability measure-valued

solutions to non-local Fokker-Planck-Kolmogorov equations, which in turn

yields the equivalence between martingale problems for SDEs with jumps and

such non-local PDEs with rough coefficients. As an application, we obtain

a probabilistic representation for weak solutions of fractional porous media

equations.
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1. Introduction

1.1. Background. Let P(Rd) be the space of all probability measures on Rd en-
dowed with the weak convergence topology. Let b : R+×Rd → Rd be a measurable
vector field. In [2], Ambrosio studied the connection between the continuity equa-
tion

∂tµt = div(bµt), (1.1)
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and the ordinary differential equation (ODE for short)

dωt = bt(ωt)dt. (1.2)

The following superposition principle was proved therein: Suppose that t 7→ µt ∈
P(Rd) is a solution of (1.1) and satisfies∫ T

0

∫
Rd

|bt(x)|
1 + |x|

µt(dx)dt <∞, ∀T > 0,

then there exists a probability measure η on the space C of continuous functions
from R+ to Rd, which is concentrated on the set of all ω such that ω is an absolutely
continuous solution of (1.2), and for every function f ∈ Cb(Rd) and all t > 0,∫

Rd
f(x)µt(dx) =

∫
C
f
(
ωt
)
η(dω).

In other words, the measure µt coincides with the image of η under the evaluation
map ω 7→ ωt. Consequently, the well-posedness of ODE (1.2) is equivalent to
the existence and uniqueness of solutions for the continuity equation (1.1). In
particular, the well-posedness of ODE (1.2) with BV drift whose distributional
divergence belongs to L∞ was obtained in a generalized sense. See also [3, 4, 5, 29]
and the references therein for further developments.

The stochastic counterpart of the above superposition principle was established
by Figalli [15]. In this situation, the continuity equation becomes the Fokker-
Planck-Kolmogorov equation, while the ODE becomes a stochastic differential equa-
tion (SDE for short). More precisely, let Xt solve the following SDE in Rd:

dXt = bt(Xt)dt+ σt(Xt)dWt, (1.3)

where b : R+×Rd → Rd and σ : R+×Rd → Rd⊗Rd are measurable functions, Wt

is a standard Brownian motion defined on some probability space (Ω,F ,P). Let
µt ∈ P(Rd) be the marginal law of Xt. By Itô’s formula, µt solves the following
Fokker-Planck-Kolmogorov equation in the distributional sense

∂tµt =
(
At + Bt

)∗
µt, (1.4)

where for f ∈ C2
b (Rd),

Atf(x) := tr(at(x) · ∇2f(x)), Btf(x) := bt(x) · ∇f(x) (1.5)

with at(x) = 1
2 (σtσ

T
t )(x), and A ∗t and B∗t stand for the adjoint operators of At

and Bt, respectively. When the coefficients a and b are bounded measurable, the
superposition principle for equation (1.4) was proved by Figalli [15, Theorem 2.6],
which says that every probability measure-valued solution to the Fokker-Planck-
Kolmogorov equation (1.4) yields a martingale solution for the operator At+Bt on
the path space C (or equivalently, a weak solution for SDE (1.3)). We would like
to mention that Kurtz in [20, Theorem 2.7] has already proven such a principle if
a and b are time-independent and bounded measurable (see [20, Remark 2.8(a)]).
In [32], Trevisan extended it to the following natural integrability assumption:∫ T

0

∫
Rd

(
|bt(x)|+ |at(x)|

)
µt(dx)dt <∞, ∀T > 0. (1.6)
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More precisely, for any probability measure-valued solution µ of (1.4), under (1.6),
there is a weak solution X to SDE (1.3) so that for each t > 0,

µt = Law of Xt. (1.7)

It should be noticed that if µt does not have finite first moment, then (1.6) may
not be satisfied for b and σ with at most linear growth. Recently, in [12], Bogachev,
Röckner and Shaposhnikov obtained the superposition principle under the following
more natural assumption:∫ T

0

∫
Rd

|〈x, bt(x)〉|+ |at(x)|
1 + |x|2

µt(dx)dt <∞, ∀T > 0. (1.8)

The proofs in [12] depend on quite involved uniqueness results for Fokker-Planck-
Kolmogorov equations obtained in [11]. The superposition principle obtained in [15,
32] has been used in the study of the uniqueness of FPKEs with rough coefficients
(see e.g. [25, 36]), probabilistic representations for solutions to non-linear partial
differential equations (PDEs for short) [6] as well as distribution dependent SDEs
(see [7, 26]).

On the other hand, let (Xt)t>0 be a Feller process in Rd with infinitesimal
generator (L ,Dom(L )) (see [24, page 88]). One says that L satisfies a positive
maximum principle if for all 0 6 f ∈ Dom(L ) reaching a positive maximum at
point x0 ∈ Rd, then L f(x0) 6 0. Suppose that C∞c (Rd) ⊂ Dom(L ). The well-
known Courrège theorem states that L satisfies the positive maximum principle if
and only if L takes the following form

L f(x) =

d∑
i,j=1

aij(x)∂2
ijf(x) +

d∑
i=1

bi(x)∂if(x) + c(x)f(x)

+

∫
Rd

(
f(x+ z)− f(x)− 1|z|61z · ∇f(x)

)
νx(dz),

(1.9)

where a = (aij)16i,j6d is a d × d-symmetric positive definite matrix-valued mea-
surable function on Rd, b : Rd → Rd, c : Rd → (−∞, 0] are measurable functions
and νx(dz) is a family of Lévy measures (see [28]). In particular, if we let µt be the
marginal law of Xt, then by Dynkin’s formula,

∂tµt = L ∗µt.

We naturally ask that for any probability measure-valued solution µt to the above
Fokker-Planck-Kolmogorov equation, is it possible to find some process X so that
µt is just the law of Xt for each t > 0? In the next subsection, under some growth
assumptions on the coefficients, we shall give an affirmative answer.

1.2. Superposition principle for non-local operators. Our aim in this paper
is to develop a non-local version of the superposition principle. Let {νt,x}t>0,x∈Rd

be a family of Lévy measures over Rd, that is, for each t > 0 and x ∈ Rd,

gνt (x) :=

∫
B`

|z|2νt,x(dz) <∞, νt,x(Bc` ) <∞, (1.10)

where ` > 0 is a fixed number, and B` := {z ∈ Rd : |z| < `}. Without loss of
generality we may assume

` 6 1/
√

2.
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We introduce the following Lévy type operator: for any f ∈ C2
b (Rd),

Ntf(x) := N ν
t f(x) := N νt,xf(x) :=

∫
Rd

Θf (x; z)νt,x(dz), (1.11)

where

Θf (x; z) := f(x+ z)− f(x)− 1|z|6` · ∇f(x). (1.12)

Let us consider the following non-local Fokker-Planck-Kolmogorov equation ( FPKE
for short):

∂tµt = L ∗t µt, (1.13)

where Lt is a general diffusion operator with jumps, i.e.,

Lt := At + Bt + Nt

with At and Bt being defined by (1.5) and Nt being defined by (1.11). We introduce
the following definition of weak solution to equation (1.13).

Definition 1.1 (Weak solution). Let µ : R+ → P(Rd) be a continuous curve. We
call µ = (µt)t>0 a weak solution of the non-local FPKE (1.13) if for any R > 0 and
t > 0, 

∫ t

0

∫
Rd

1BR(x)
(
|as(x)|+ |bs(x)|+ gνs (x)

)
µs(dx)ds <∞,∫ t

0

∫
Rd

(
νs,x(Bc`∨(|x|−R)) + 1BR(x)νs,x(Bc` )

)
µs(dx)ds <∞,

 (1.14)

and for all f ∈ C2
c (Rd) and t > 0,

µt(f) = µ0(f) +

∫ t

0

µs(Lsf)ds, (1.15)

where µt(f) :=
∫
Rd f(x)µt(dx).

We point out that unlike the local case considered in [2, 12, 15, 32], where
the local integrability of the coefficients with respect to µt(dx)dt implies the well-
definedness of the integrals in (1.15), it is even not clear whether the above integral
in (1.15) makes sense in the non-local case since in general N ν

t f does not have
compact support for f ∈ C2

c (Rd). This is the reason why we need the second
assumption in (1.14).

Remark 1.2. Under (1.14), one has
∫ t

0
µs(|Lsf |)ds <∞ for any f ∈ C2

c (Rd). Let
us only show ∫ t

0

µs(|N ν
s f |)ds <∞.

Note that for x, z ∈ Rd, by Taylor’s expansion, there is a θ ∈ [0, 1] such that

f(x+ z)− f(x)− z · ∇f(x) =
∑

i,j=1,··· ,d

zizj∂i∂jf(x+ θz)/2. (1.16)

Suppose that the support of f is contained in a ball BR. By definition we have

|Θf (x; z)| 6 ‖f‖∞1|z|>`(1|x+z|<R + 1|x|<R) + ‖∇2f‖∞1|z|6`|z|21|x|<R+`.
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Hence,∫ t

0

µs(|N ν
s f |)ds .

∫ t

0

∫
Rd

[
νs,x(Bc`∨(|x|−R)) + 1BR(x)νs,x(Bc` )

]
µs(dx)ds

+

∫ t

0

∫
Rd

1BR+`
(x)gνs (x)µs(dx)ds <∞.

Let D be the space of all Rd-valued càdlàg functions on R+, which is endowed
with the Skorokhod topology so that D becomes a Polish space. Let Xt(ω) = ωt be
the canonical process. For t > 0, let B0

t (D) denote the natural filtration generated
by (Xs)s∈[0,t], and let

Bt := Bt(D) := ∩s>tB0
t (D), B := B(D) := B∞(D).

Now we recall the notion of martingale solutions associated with Lt in the sense of
Stroock-Varadhan [31].

Definition 1.3 (Martingale Problem). Let µ0 ∈ P(Rd), s > 0 and τ > s be a
Bt-stopping time. We call a probability measure P ∈ P(D) a martingale solution
(resp. a “stopped” martingale solution) of Lt with initial distribution µ0 at time s
if

(i) P(Xt = Xs, t ∈ [0, s]) = 1 and P ◦X−1
s = µ0.

(ii) For any f ∈ C2
c (Rd), Mf

t (resp. Mf
t∧τ ) is a Bt-martingale under P, where

Mf
t := f(Xt)− f(Xs)−

∫ t

s

Lrf(Xr)dr, t > s. (1.17)

All the martingale solutions (resp. “stopped” martingale solutions) associated with
Lt with initial law µ0 at time s will be denoted by Mµ0

s (L ) (resp. Mµ0
s,τ (L )).

In particular, if µ0 = δx (the Dirac measure concentrated on x), we shall write
Mx

s (L ) =Mδx
s (L ) for simplify.

Remark 1.4. Under (1.18) below, (ii) in Definition 1.3 is equivalent to that for

any f ∈ C2(Rd) with |f(x)| 6 C log(2 + |x|), Mf
t is a local Bt-martingale under

P. Indeed, let χ ∈ C∞c (Rd) be a smooth function with χ(x) = 1 for |x| < 1
and χ(x) = 0 for |x| > 2. For each n,m ∈ N, define fn(x) := f(x)χ(x/n) and
τm := inf{t > s : |Xt| ∨ |Xt −Xt−| > m}. By (ii) of Definition 1.3, one knows that

Mfn
t∧τm is a Bt-martingale. Since |f(x)| 6 C log(2 + |x|), by definition (1.11) and

(1.18) below, it is easy to see that for each fixed m ∈ N,

sup
n

sup
r∈[0,t]

sup
|x|6m

|Lrfn(x)| <∞.

Thus, for each t > s, by the dominated convergence theorem, we have

lim
n→∞

E
(∫ t∧τm

s

|Lrfn(Xr)−Lrf(Xr)|dr
)

= 0.

Therefore, for each t > s,

lim
n→∞

E|Mfn
t∧τm −M

f
t∧τm | = 0,

which implies that Mf
t∧τm is a Bt-martingale for each m ∈ N, and also Mf

t is a local
Bt-martingale since τm →∞ as m→∞.
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Throughout this paper, we make the following assumption:

Γνa,b := sup
t,x

[
|at(x)|+ gνt (x)

1 + |x|2
+
|bt(x)|
1 + |x|

+ ~νt (x)

]
<∞, (1.18)

where gνt (x) is defined by (1.10) and

~νt (x) :=

∫
Bc`

log
(

1 + |z|
1+|x|

)
νt,x(dz), (1.19)

and if νt,x is symmetric, then we define

~νt (x) :=

∫
|z|>1+|x|

log
(

1 + |z|
1+|x|

)
νt,x(dz). (1.20)

The main result of this paper is as follows.

Theorem 1.5 (Superposition principle). Under (1.18), for any weak solution
(µt)t>0 of FPKE (1.13) in the sense of Definition 1.1, there is a martingale solution
P ∈Mµ0

0 (Lt) such that
µt = P ◦X−1

t , ∀t > 0.

Remark 1.6. Under (1.18), condition (1.14) holds. In fact, it suffices to check
that

sup
t,x

(
νt,x(Bc`∨(|x|−R)) + 1BR(x)νt,x(Bc` )

)
<∞, ∀R > 0. (1.21)

By definition we have

νt,x(Bc`∨(|x|−R)) 6
∫
Bc`

log
(

1 + |z|
1+|x|

)
/ log

(
1 + `∨(|x|−R)

1+|x|

)
νt,x(dz)

= hνt (x)/ log
(

1 + `∨(|x|−R)
1+|x|

)
6 hνt (x)/ log

(
1 + `

1+`+R

)
,

and

1BR(x)νt,x(Bc` ) 6 1BR(x)

∫
Bc`

log
(

1 + |z|
1+|x|

)
/ log

(
1 + `

1+|x|

)
νt,x(dz)

= 1BR(x)hνt (x)/ log
(

1 + `
1+|x|

)
6 hνt (x)/ log

(
1 + `

1+R

)
.

Hence, (1.21) follows by (1.18).

Remark 1.7. Note that our result does not cover the one in [12] (see the above
(1.8)). The results in [12] allow to treat SDEs with singular and linear growth
coefficients, while our assumption (1.18) only allows the coefficients being of linear
growth. Here the main issue is that the elegant push-forward method used in [32]
seems not valid in the non-local case. Moreover, in our proof, we borrow some
technique from [12] to construct the approximation sequence (see Proposition 3.2
below).

Example 1.8. Let νt,x(dz) = κt(x, z)dz/|z|d+α with α ∈ (0, 2), that is, Nt is an
α-stable like operator.

(i) If |κt(x, z)| 6 c(1+|x|)α∧1/(1+1α=1 log(1+|x|)), then supt,x ~νt (x) <∞. Indeed,
by definition we have

~νt (x) .
(1 + |x|)α∧1

1 + 1α=1 log(1 + |x|)

∫
Bc`

log
(

1 + |z|
1+|x|

) dz

|z|d+α
.
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We calculate the right hand integral which is denoted by I as follows: using polar
coordinates and integration by parts,

I = c

∫ ∞
`

log
(

1 + r
1+|x|

)
r−1−αdr

. log
(

1 + `
1+|x|

)
+

∫ ∞
`

r−α (1 + |x|+ r)
−1

dr

. (1 + |x|)−1 + (1 + |x|)−1

∫ 1+|x|

`

r−αdr +

∫ ∞
1+|x|

r−1−αdr

. (1 + |x|)−1 + (1 + |x|)−(α∧1)(1 + 1α=1 log(1 + |x|)) + (1 + |x|)−α

. (1 + |x|)−(α∧1)(1 + 1α=1 log(1 + |x|)).

Thus, we have ~νt (x) 6 C.

(ii) If κt(x, z) is symmetric, that is, κt(x, z) = κt(x,−z), and |κt(x, z)| 6 c(1+|x|)α,
α ∈ (0, 2). Then supt,x ~νt (x) <∞. In fact, by (1.20) we have for any β ∈ (0, α∧1),

~νt (x) . (1 + |x|)α
∫
|z|>1+|x|

(
1 + |z|

1+|x|

)β dz

|z|d+α

. (1 + |x|)α−β
∫
|z|>1+|x|

dz

|z|d+α−β ,

which in turn yields supt,x ~νt (x) <∞.

As far as we know, there are very few results concerning the superposition prin-
ciple for non-local operators. In the constant non-local case, the third author of
the present paper [36] used the superposition principle to show the uniqueness of
non-local FPKEs. Recently, Fournier and Xu [16] proved a non-local version to the
superposition principle in a special case, that is,

N ν
t f(x) =

∫
Rd

[f(x+ z)− f(x)]νt,x(dz),

and (µt)t>0 have finite first order moments, i.e.,∫
Rd
|x|µt(dx) <∞, ∀t > 0.

These two assumptions rule out the interesting α-stable processes (see Example 1.8
above). To drop these two limitations, we employ some techniques from [12]. It
should be emphasized that the elegant push-forward method used in [32] does not
seem to work in the non-local case. Here the main obstacles are to show the tight-
ness and taking limits. One important motivation for studying the superposition
principle for nonlocal operators is to solve the Boltzman equation as explained in
Subsection 1.2 of [16] (see also [17]).

1.3. Equivalence between FPKEs and martingale problems. The following
corollary is a direct consequence of Theorem 1.5 and [14, Theorem 4.4.2] (see also
[21, Corollary 1.3] and [32, Lemma 2.12]). For the readers’ convenience, we provide
a detailed proof here.
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Corollary 1.9. Under (1.18), the well-posedness of the Fokker-Planck-Kolmogorov
equation (1.13) is equivalent to the well-posedness of the martingale problem asso-
ciated with L . More precisely, we have the following equivalences:

• (Existence) For any ν ∈ P(Rd), the non-local FPKE (1.13) admits a solution
(µt)t>0 with initial value µ0 = ν if and only if Mν

0(L ) has at least one element.

• (Uniqueness) The following two statements are equivalent.
(i) For each (s, ν) ∈ R+ ×P(Rd), the non-local FPKE (1.13) has at most one

solution (µt)t>s with µs = ν.
(ii) For each (s, ν) ∈ R+ × P(Rd), Mν

s (L ) has at most one element.

Proof. We only prove the uniqueness part. (ii)⇒(i) is easy by Theorem 1.5. We
show (i)⇒(ii). For given (s, ν) ∈ R+ × P(Rd) and let P1,P2 ∈ Mν

s (L ). To show
P1 = P2, it suffices to prove the following claim by induction:

(Cn) for given n ∈ N, and for any s 6 t1 < t2 < tn and strictly positive and
bounded measurable functions f1, · · · , fn on Rd,

EP1(f1(Xt1) · · · fn(Xtn)) = EP2(f1(Xt1) · · · fn(Xtn)). (1.22)

First of all, by Theorem 1.5 and the assumption, one sees that (C1) holds. Next
we assume (Cn) holds for some n > 2. For simplicity we write

η := f1(Xt1) · · · fn(Xtn),

and for i = 1, 2, we define new probability measures

dP̃i := ηdPi/
∫

Ω

ηdPi ∈ P(D), ν̃i := P̃i ◦X−1
tn ∈ P(Rd).

Now we show
P̃i ∈Mν̃i

tn(L ), i = 1, 2.

Let Mf
t be defined by (1.17). We only need to prove that for any t′ > t > tn and

bounded Bt-measurable ξ,

EP̃i
(
Mf
t′ξ
)

= EP̃i
(
Mf
t ξ
)
⇔ EPi(Mf

t′ξη) = EPi(Mf
t ξη),

which follows since Pi ∈Mν
s (L ). Thus, by induction hypothesis and Theorem 1.5,

ν̃1 = ν̃2 ⇒ P̃1 ◦X−1
tn+1

= P̃2 ◦X−1
tn+1

, ∀tn+1 > tn.

which in turn implies that (Cn+1) holds. The proof is complete. �

1.4. Fractional porous media equation. Probabilistic representation of solu-
tion to PDEs is a powerful tool to study their analytic properties (well-posedness,
regularity, etc) since it allows us to use many probabilistic tools (see [7], [8], [9]). As
an application of the superposition principle obtained in Theorem 1.5, we intend to
derive a probabilistic representation for the weak solution of the following fractional
porous media equation (FPME for short):

∂tu = ∆α/2(|u|m−1u), u(0, x) = ϕ(x), (1.23)

where the porous media exponent m > 1, α ∈ (0, 2) and ∆α/2 := −(−∆)α/2 is the
usual fractional Laplacian with, up to a constant, alternative expression

∆α/2f(x) = P.V.

∫
Rd

(f(x+ z)− f(x))dz/|z|d+α, (1.24)
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where P.V. stands for the Cauchy principal value. This equation is a typical non-
linear, degenerate and non-local parabolic equation, which appears naturally in
statistical mechanics and population dynamics in order to describe the hydrody-
namic limit of interacting particle systems with jumps or long-range interactions. In
the last decade, there are many works devoted to the study of equation (1.23) from
the PDE point of view, see [23] and the recent survey paper [33], the monograph
[34] and the references therein.

Let Ḣα/2(Rd) be the homogeneous fractional Sobolev space defined as the com-
pletion of C∞0 (Rd) with respect to

‖f‖Ḣα/2 :=

(∫
Rd
|ξ|α|f̂(ξ)|2dξ

)1/2

= ‖(−∆)α/4f‖2,

where f̂ is the Fourier transform of f . The following notion about the weak solution
of FPME is introduced in [22, Definition 3.1].

Definition 1.10. A function u is called a weak or L1-energy solution of FPME
(1.23) if

• u ∈ C([0,∞);L1(Rd)) and |u|m−1u ∈ L2
loc((0,∞); Ḣα/2(Rd));

• for every f ∈ C1
0 (R+ × Rd),∫ ∞

0

∫
Rd
u · ∂tfdxdt =

∫ ∞
0

∫
Rd

(|u|m−1u) ·∆α/2fdxdt;

• u(0, x) = ϕ(x) almost everywhere.

The following result was proved in [22, Theorem 2.1, Theorem 2.2].

Theorem 1.11. Let α ∈ (0, 2) and m > 1. For every ϕ ∈ L1(Rd), there exists
a unique weak solution u for equation (1.23). Moreover, u enjoys the following
properties:

(i) if ϕ > 0, then u(t, x) > 0 for all t > 0 and x ∈ Rd;
(ii) ∂tu ∈ L∞((s,∞);L1(Rd)) for every s > 0;

(iii) for all t > 0,
∫
Rd u(t, x)dx =

∫
Rd ϕ(x)dx;

(iv) if ϕ ∈ L∞(Rd), then for every t > 0,

‖u(t, ·)‖∞ 6 ‖ϕ‖∞;

(v) for some β ∈ (0, 1), u ∈ Cβ((0,∞)× Rd).

Our aim in this subsection is to represent the above solution u as the distribu-
tional density of the solution to a nonlinear stochastic differential equation driven
by the α-stable process Lt with Lévy measure dz/|z|d+α. More precisely, consider
the following distribution dependent stochastic differential equation (DDSDE for
short) driven by the d-dimensional isotropic α-stable process Lt:

dYt = ρYt
(
Yt−
)m−1

α dLt, ρY0(x) = ϕ(x), (1.25)

where ρYt(x) := (dLYt/dx)(x) denotes the distributional density of Yt with respect
to Lebesgue measure. We introduce the following notion about the above DDSDE
(1.25).
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Definition 1.12. Let (Ω,F ,P; (Ft)t>0) be a stochastic basis and (Y,L) two Ft-
adapted càdlàg processes. For µ ∈ P(Rd), we call (Ω,F ,P; (Ft)t>0;Y,L) a solution
of (1.25) with initial law µ if

(i) L is an α-stable process with Lévy measure dz/|z|d+α;
(ii) for each t > 0, P ◦ Y −1

t (dx) = ρYt(x)dx;
(iii) Yt solves the following SDE:

Yt = Y0 +

∫ t

0

ρYs
(
Ys−

)m−1
α dLs.

The following is the second main result of this paper.

Theorem 1.13. Let ϕ > 0 be bounded and satisfy
∫
Rd ϕ(x)dx = 1. Let u be the

unique weak solution to FPME (1.23) given by Theorem 1.11 with initial value ϕ.
Then there exists a weak solution Y to DDSDE (1.25) such that

ρYt(x) = u(t, x), ∀t > 0.

Remark 1.14. Here an open question is to show the uniqueness of weak solutions
to the nonlinear SDE (1.25), which can not be derived from the uniqueness of
FPME (1.23). We will study this in a future work.

We mention that in the 1-dimensional case, such kind of probabilistic representa-
tion for the classical porous media equation (i.e., α = 2) was obtained in [8], see also
[10] and [6, 7] and for the generalization to the multi-dimensional case and more
general non-linear equations. We also mention that there has been an increasing
interest in DDSDEs driven by Brownian motion in the last decade, see [7, 26] and
in particular, [13] as well as the references therein. As far as we know, even the
weak existence result for DDSDE (1.25) driven by Lévy noise in Theorem 1.13 is
also new.

This paper is organized as follows: In Section 2, we study the equation (1.13)
with smooth and non-degenerate coefficients. Then we prove Theorem 1.5 and
Theorem 1.13 in Sections 3 and 4, respectively. Throughout this paper we shall use
the following conventions:

• The letter C denotes a constant, whose value may change in different places.
• We use A . B to denote A 6 CB for some unimportant constant C > 0.
• N0 := N ∪ {0}, R+ := [0,∞), a ∨ b := max(a, b), a ∧ b := min(a, b),
a+ := a ∨ 0.
• ∇x := ∂x := (∂x1

, · · · , ∂xd), ∂i := ∂xi := ∂/∂xi.
• Sd+ is the set of all d× d-symmetric and non-negative definite matrices.

2. Proof of Theorem 1.5: Smooth and nondegenerate coefficients

First of all, we show the following well-posedness result about the martingale
problem associated with Lt, which extends Stroock’s result [30] to unbounded
coefficients case, and is probably well-known at least to experts. However, since we
can not find it in the literature, we provide a detailed proof here.

Theorem 2.1. Suppose that the following conditions are satisfied:

(A) at(x) : R+ × Rd → Sd+ is continuous and at(x) is invertible;

(B) bt(x) : R+ × Rd → Rd is locally bounded and measurable;
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(C) for any A ∈ B(Rd), (t, x) 7→
∫
A

(1 ∧ |z|2)νt,x(dz) is continuous;
(D) the following global growth condition holds:

Γ̄νa,b := sup
t,x

(
|at(x)|+ 〈x, bt(x)〉+ + gνt (x)

1 + |x|2
+ 2~νt (x)

)
<∞,

where gνt (x) and ~νt (x) are defined by (1.10) and (1.19), respectively.

Then for each (s, x) ∈ R+ × Rd, there is a unique martingale solution Ps,x ∈
Mx

s (Lt). Moreover, the following assertions hold:

(i) For each A ∈ B(D), (s, x) 7→ Ps,x(A) is Borel measurable.
(ii) The following strong Markov property holds: for every bounded measurable f

and any finite stopping time τ ,

EP0,x(f(τ + t,Xτ+t)|Bτ ) =
(
EPs,y (f(s+ t,Xs+t))

)∣∣
(s,y)=(τ,Xτ )

.

Remark 2.2. Condition (D) ensures the non-explosion of the solution.

To prove this theorem we first show the following Lyapunov type estimate.

Lemma 2.3. Let ψ ∈ C2(R;R+) with limr→∞ ψ(r) =∞ and

0 < ψ′ 6 1, ψ′′ 6 0. (2.1)

Fix y ∈ Rd and define a Lyapunov function Vy(x) := ψ(log(1 + |x− y|2)). Then for
all t > 0 and x ∈ Rd, we have

LtVy(x) 6 2

(
|at(x)|+ 〈x− y, bt(x)〉+ + gνt (x)

1 + |x− y|2
+ 2Hν

t (x, y)

)
, (2.2)

where gνt (x) is defined by (1.10), and

Hν
t (x, y) :=

∫
Bc`

log
(

1 + |z|
1+|x−y|

)
νt,x(dz). (2.3)

Proof. By definition, it is easy to see that

∇Vy(x) =
2(x− y)

1 + |x− y|2
ψ′(log(1 + |x− y|2))

and

∇2Vy(x) =
4(x− y)⊗ (x− y)

(1 + |x− y|2)2
(ψ′′ − ψ′)(log(1 + |x− y|2))

+
2I

1 + |x− y|2
ψ′(log(1 + |x− y|2)).

Thus by (2.1), one gets that

A a
t Vy(x) 6

2|at(x)|
1 + |x− y|2

, Bb
tVy(x) 6

2〈x− y, bt(x)〉+

1 + |x− y|2
.

On the other hand, recalling (1.12), we have for |z| 6 ` 6 1/
√

2,

ΘVy (x; z) = Vy(x+ z)− Vy(x)− z · ∇Vy(x) = zizj∂i∂jVy(x+ θz)/2

=
2〈z, x− y + θz〉2

(1 + |x− y + θz|2)2
(ψ′′ − ψ′)(log(1 + |x− y + θz|2))

+
|z|2

1 + |x− y + θz|2
ψ′(log(1 + |x− y + θz|2))
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(2.1)

6
|z|2

1 + |x− y + θz|2
6

|z|2

1 + |x− y|2/2− |z|2
6

2|z|2

1 + |x− y|2
,

where θ ∈ [0, 1]. Similarly, by the mean value formula, we have

Vy(x+ z)− Vy(x) = ψ′(θ∗)
[

log
(
1 + |x− y + z|2

)
− log

(
1 + |x− y|2

)]
6 log

(
1 +

2|〈x− y, z〉|+ |z|2

1 + |x− y|2

)
6 log

(
1 +

|z|√
1 + |x− y|2

)2

6 log

(
1 +

2|z|
1 + |x− y|

)2

6 log

(
1 +

|z|
1 + |x− y|

)4

,

where θ∗ ∈ R. Hence,

N ν
t Vy(x) 6

∫
Rd

ΘVy (x; z)νt,x(dz) 6 2
gνt (x)

1 + |x− y|2
+ 4Hν

t (x, y).

Combining the above calculations, we obtain (2.2). �

The following stochastic Gronwall inequality for continuous martingales was
proved by Scheutzow [27], and for general discontinuous martingales in [35, Lemma
3.7].

Lemma 2.4 (Stochastic Gronwall inequality). Let ξ(t) and η(t) be two non-negative
càdlàg adapted processes, At a continuous non-decreasing adapted process with A0 =
0, Mt a local martingale with M0 = 0. Suppose that

ξ(t) 6 η(t) +

∫ t

0

ξ(s)dAs +Mt, ∀t > 0.

Then for any 0 < q < p < 1 and stopping time τ > 0, we have[
E(ξ(τ)∗)q

]1/q
6
(

p
p−q

)1/q(
EepAτ/(1−p)

)(1−p)/p
E
(
η(τ)∗

)
,

where ξ(t)∗ := sups∈[0,t] ξ(s).

The following localization lemma is well known (see e.g. [31, Theorem 1.3.5]).
Although it is only proved for the probability measures on the space of continuous
functions, by checking the proof therein, one sees that it also works for D.

Lemma 2.5. Let (Pn)n∈N ⊂ P(D) be a family of probability measures and (τn)n∈N
a non-decreasing sequence of stopping times with τ0 ≡ 0. Suppose that for each
n ∈ N, Pn equals Pn−1 on Bτn−1

(D), and for any T > 0,

lim
n→∞

Pn(τn 6 T ) = 0.

Then there is a unique probability measure P ∈ P(D) such that P equals Pn on
Bτn(D) and Pn weakly converges to P as n→∞.

We now use the above localization lemma to give

Proof of Theorem 2.1. Let χ ∈ C∞c (Rd) be a smooth function with

χ(x) = 1, |x| < 1, χ(x) = 0, |x| > 2.

For any n ∈ N, define

χn(x) := χ(x/n)
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and

ant (x) := at(xχn(x)), bnt (x) := χn(x)bt(x), νnt,x(dz) := χn(x)νt,x(dz).

By the assumptions (A)-(C), one can check that (an, bn, νn) satisfies for any T > 0,

(A′) ant (x) : [0, T ]× Rd → Sd+ is bounded continuous and ant (x) is invertible.

(B′) bnt (x) : [0, T ]× Rd → Rd is bounded measurable.
(C′) For any A ∈ B(Rd), (t, x) 7→

∫
A

(1 ∧ |z|2)νnt,x(dz) is bounded continuous.

Let L n
t be defined in terms of (an, bn, νn). For each n ∈ N and (s, x) ∈ R+×Rd, by

[19, Theorem 2.34, p.159], there is a unique martingale solution Pns,x ∈ Mx
s (L n

t ),
and the following properties hold:

(i) For each A ∈ B(D), (s, x) 7→ Pns,x(A) is Borel measurable.
(ii) The following strong Markov property holds: for any bounded measurable f

and finite stopping time τ ,

EPn0,x(f(τ + t,Xτ+t)|Bτ ) =
(
EPs,y (f(s+ t,Xs+t))

)∣∣
(s,y)=(τ,Xτ )

.

Moreover, if we define
τn := inf{t > s : |Xt| > n},

then by [19, Theorem 2.41, p.161], for any m > n, the “stopped” martingale prob-
lem Mx

s,τn(Lm
t ) admits a unique solution, that is,

Pms,x|Bτn (D) = Pns,x|Bτn (D).

To show the well-posedness, by Lemma 2.5, it suffices to show that for any T > 0,

lim
n→∞

Pns,x(τn 6 T ) = 0.

Let V (x) := log(1 + |x|2). By the definition of martingale solution (see Remark
1.4), there is a càdlàg local Pns,x-martingale Mt such that

V (Xt∧τn) = V (x) +

∫ t∧τn

s

L n
r V (Xr)dr +Mt

= V (x) +

∫ t∧τn

s

LrV (Xr)dr +Mt

(2.2)

6 V (x) + 2Γ̄νa,b · (t− s) +Mt,

where Γ̄νa,b is defined in (D). By Lemma 2.4 and condition (D), we obtain

sup
n

EPns,x

(
sup

t∈[s,T∧τn]

V
1
2 (Xt)

)
< +∞,

which in turn implies that

Pns,x(τn 6 T )= Pns,x

(
sup

t∈[s,T∧τn]

|Xt| > n

)
6

1

V
1
2 (n)

EPns,x

(
sup

t∈[s,T∧τn]

V
1
2 (Xt)

)
n→∞→ 0.

The proof is complete. �

Now we can give the proof of Theorem 1.5 under the assumptions (A)-(D).

Theorem 2.6. Assume that (A)-(D) hold. Then for any µ0 ∈ P(Rd), there
are a unique solution (µt)t>0 to FPKE (1.13) and a unique martingale solution

P0,µ0
∈Mµ0

0 (L ) so that µt = P0,µ0
◦X−1

t .



14 MICHAEL RÖCKNER, LONGJIE XIE AND XICHENG ZHANG

Proof. Let µ0 ∈ P(Rd) and P0,x ∈Mx
0(L ). Clearly,

P0,µ0 :=

∫
Rd

P0,xµ0(dx) ∈Mµ0

0 (L ),

and µt := P0,µ0
◦X−1

t solves FPKE (1.13). It remains to show the uniqueness for
(1.13). Following the same argument as in [16], due to Horowitz and Karandikar
[17, Theorem B1], we only need to verify the following five points:

(a) C2
c (Rd) is dense in C0(Rd) with respect to the uniform convergence.

(b) (t, x)→ Ltf(x) is measurable for all f ∈ C2
c (Rd).

(c) For each t > 0, the operator Lt satisfies the maximum principle.
(d) There exists a countable family (fk)k∈N ⊂ C2

c (Rd) such that for all t > 0,

{Ltf, f ∈ C2
c (Rd)} ⊂ {Ltfk, k ∈ N},

where the closure is taken in the uniform norm.
(e) For each x ∈ Rd, Mx

0(L ) has exactly one element.

Note that (a)-(c) are obvious and (e) is proven in Theorem 2.1. Thus we only
need to check (d). Let (fk)k∈N be a countable dense subset of C2

c (Rd), that is, for
any f ∈ C2

c (Rd) with support in BR, where R > 2, there is a subsequence fkn with
support in B2R such that

lim
n→∞

(
‖fkn − f‖∞ + ‖∇fkn −∇f‖∞ + ‖∇2fkn −∇2f‖∞

)
= 0.

We want to show

lim
n→∞

‖Lt(fkn − f)‖∞ = 0.

Without loss of generality, we may assume f = 0 and proceed to prove the following
limits:

lim
n→∞

‖Atfkn‖∞ = 0, lim
n→∞

‖Btfkn‖∞ = 0, lim
n→∞

‖N ν
t fkn‖∞ = 0.

The first two limits are obvious. Let us focus on the last one. By definition we have

|Θfkn
(x; z)| = |fkn(x+ z)− fkn(x)− 1|z|6`z · ∇fkn(x)|

6 1|z|>`|fkn(x+ z)|+ 1|z|>`1B2R
(x)‖fkn‖∞

+ 1|z|6`1B2R+2`
(x)‖∇2fkn‖∞|z|2.

Note that

1|z|>`1B5R
(x) 6

[
log(1 + `

1+5R )
]−1

log(1 + |z|
1+|x| ),

and if |x| > 5R, then for |x+ z| 6 2R,

|z|
1+|x| >

|x|−|x+z|
1+|x| >

|x|−2R
1+|x| >

1
2 ,

and thus,

1|z|>`1Bc5R(x)1Bc2R(x+ z) 6
[

log( 3
2 )
]−1

log(1 + |z|
1+|x| ).

Therefore,

|N ν
t fkn(x)| 6

∫
Rd
|Θfkn

(x; z)|νt,x(dz) 6 ‖∇2fkn‖∞ sup
x∈B2R+2

∫
B1

|z|2νt,x(dz)

+ C‖fkn‖∞
∫
Bc1

log(1 + |z|
1+|x| )νt,x(dz)



SUPERPOSITION PRINCIPLE FOR NON-LOCAL FPK OPERATORS 15

= ‖∇2fkn‖∞ sup
x∈B2R+2

gνt (x) + C‖fkn‖∞ sup
x∈Rd

~νt (x),

which in turn implies by (1.18) that

lim
n→∞

‖N ν
t fkn‖∞ = 0.

The proof is compete. �

3. Proof of Theorem 1.5: General case

Let µt be a solution of (1.13) in the sense of Definition 1.1. In order to show the
existence of a martingale solution P ∈Mµ0

0 (Lt) so that

µt = P ◦X−1
t ,

we shall follow the same lines of argument as in [15], [32] and [12]. Here and below
we use the following convention: for t 6 0,

µt(dx) := µ0(dx), at(x) = 0, bt(x) = 0, νt,x(dz) = 0.

3.1. Regularization. Let ρt ∈ C∞c ([0, 1];R+) with
∫ 1

0
ρt(s)ds = 1 and ρx ∈

C∞c (B1;R+) with
∫
Rd ρ

x(x)dx = 1. For ε > 0, define

ρt
ε(t) := ε−1ρt(t/ε), ρx

ε(x) := ε−dρx(x/ε), ρε(t, x) := ρt
ε(t)ρ

x
ε(x).

Given a locally finite signed measure ζt(dx)dt on Rd+1, we define

ρε ∗ ζ(t, x) :=

∫
Rd+1

ρε(t− s, x− y)ζs(dy)ds.

Throughout this section we shall fix

` ∈ (0, 1/
√

2).

We first show the following regularization estimate.

Lemma 3.1. Let a, b and ν be as in the introduction. For ε ∈ (0, `), we have

|ρε ∗ (aµ)|(t, x)

1 + |x|2
6 sup

s,y

2|as(y)|
1 + |y|2

(ρε ∗ µ)(t, x),

|ρε ∗ (bµ)|(t, x)

1 + |x|
6 sup

s,y

2|bs(y)|
1 + |y|

(ρε ∗ µ)(t, x).

Moreover, if we let

ν̄εt,x(dz) :=

∫
Rd+1

ρε(t− s, x− y)νs,y(dz)µs(dy)ds,

then we also have

gν̄
ε

t (x)

1 + |x|2
6 sup

s,y

2gνs (y)

1 + |y|2
(ρε ∗ µ)(t, x),

H ν̄ε

t (x, y) 6 2 sup
s,y′

Hν
s (y′, y)(ρε ∗ µ)(t, x),

where gνt (x) and Hν
t (x, y) are defined by (1.10) and (2.3), respectively.
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Proof. Note that for |x− y| 6 ` 6 1/
√

2,

(1 + |y|2)/2 6 1 + |x|2 6 2(1 + |y|2). (3.1)

Fix ε ∈ (0, `) below. By definition we have

|ρε ∗ (aµ)|(t, x)

1 + |x|2
6
∫
Rd+1

ρε(t− s, x− y)
|as(y)|
1 + |x|2

µs(dy)ds

6 2

∫
Rd+1

ρε(t− s, x− y)
|as(y)|
1 + |y|2

µs(dy)ds,

and

|ρε ∗ (bµ)|(t, x)

1 + |x|
6
∫
Rd+1

ρε(t− s, x− y)
|bs(y)|
1 + |x|

µs(dy)ds

6 2

∫
Rd+1

ρε(t− s, x− y)
|bs(y)|
1 + |y|

µs(dy)ds.

Similarly, by Fubini’s theorem and (3.1), we have

gν̄
ε

t (x)

1 + |x|2
=

∫
Rd+1

∫
B`

|z|2

1 + |x|2
ρε(t− s, x− y)νs,y(dz)µs(dy)ds

6 2

∫
Rd+1

∫
B`

|z|2

1 + |y|2
ρε(t− s, x− y)νs,y(dz)µs(dy)ds

= 2

∫
Rd+1

gνs (y)

1 + |y|2
ρε(t− s, x− y)µs(dy)ds,

and

H ν̄ε

t (x, y) =

∫
Rd+1

∫
Bc`

log
(

1 + |z|
1+|x−y|

)
ρε(t− s, x− y′)νs,y′(dz)µs(dy′)ds

6
∫
Rd+1

∫
Bc`

log
(

1 + 2|z|
1+|y′−y|

)
ρε(t− s, x− y′)νs,y′(dz)µs(dy′)ds

6 2

∫
Rd+1

Hν
s (y′, y)ρε(t− s, x− y′)µs(dy′)ds.

Combining the above calculations, we obtain the desired estimates. �

Let φ(x) := (2π)−de−|x|
2/2 be the normal density. For ε ∈ (0, `), as in [12], we

define the approximation sequence µεt ∈ P(Rd) by

µεt (x) := (1− ε)(ρε ∗ µ)(t, x) + εφ(x). (3.2)

We have the following easy consequence.

Proposition 3.2. (i) For each t > 0 and ε ∈ (0, `), we have

0 < µεt (x) ∈ C∞(R+;C∞b (Rd)),
∫
Rd
µεt (x)dx = 1.

(ii) For each t > 0, µεt weakly converges to µt, that is, for any f ∈ Cb(Rd),

lim
ε→0

∫
Rd
f(x)µεt (x)dx =

∫
Rd
f(x)µt(dx).
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(iii) µεt solves the following Fokker-Planck-Kolmogorov equation:

∂tµ
ε
t = (A ε

t + Bε
t + N ε

t )∗µεt =: (L ε
t )∗µεt ,

where A ε
t , Bε

t and N ε
t are defined as in the introduction in terms of

aεt (x) :=
(1− ε)[ρε ∗ (aµ)](t, x) + εφ(x)I

µεt (x)
, (3.3)

bεt (x) :=
(1− ε)[ρε ∗ (bµ)](t, x) + εφ(x)x

µεt (x)
, (3.4)

and

νεt,x(dz) :=
1− ε
µεt (x)

∫
Rd+1

ρε(t− s, x− y)νs,y(dz)µs(dy)ds. (3.5)

(iv) The following uniform estimates hold: for any ε ∈ (0, `),

sup
t,x

[
|aεt (x)|+ gν

ε

t (x)

1 + |x|2
+
|bεt (x)|
1 + |x|

]
6 1 + 2 sup

t,x

[
|at(x)|+ gνt (x)

1 + |x|2
+
|bt(x)|
1 + |x|

]
(3.6)

and

sup
t,x

Hνε

t (x, y) 6 sup
t,x

Hν
t (x, y), y ∈ Rd. (3.7)

Proof. The first two assertions are obvious by definition. Let us show (iii). By
definition, it suffices to prove that for any f ∈ C∞c (Rd) and t > 0,

µεt (f) = µε0(f) +

∫ t

0

µεs(L
ε
s f)ds, (3.8)

where

µεt (f) :=

∫
Rd
f(x)µεt (x)dx.

Note that for any f ∈ C∞c (Rd),

∆φ+ div(x · φ) ≡ 0⇒
∫
Rd
φ(x)(∆f(x)− x · ∇f(x))dx = 0.

By Fubini’s theorem and a change of variables, it is easy to see that (3.8) holds.
Finally, estimate (3.6) follows by Lemma 3.1. �

The following result follows by Theorem 2.6.

Lemma 3.3. For any ε ∈ (0, `) and (s, x) ∈ R+×Rd, there is a unique martingale
solution Pεs,x ∈ Mx

s (L ε
t ). In particular, there is also a martingale solution Qε ∈

Mµε0
0 (L ε

t ) so that for each t > 0,

µεt (x)dx = Qε ◦X−1
t (dx).

Proof. By Theorem 2.6, it suffices to check that (aε, bε, νε) satisfies conditions (A)-
(D). First of all, (A) and (B) are obvious, and (D) follows by (3.6). It remains to
check (C). We only check that for any ε ∈ (0, `), n ∈ N and x, x′ ∈ Bn, t, t′ ∈ [0, n],∫

Rd
(1 ∧ |z|2)|νεt,x − νεt′,x′ |(dz) 6 cn,ε(|t− t′|+ |x− x′|). (3.9)

Noting that

inf
t

inf
x∈Bn

µεt (x) > ε inf
x∈Bn

φ(x),
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we have by definition that for all x, x′ ∈ Bn and t, t′ ∈ [0, n],

|νεt,x − νεt′,x′ |(dz) 6
∫
Rd+1

∣∣∣∣ρε(t− s, x− y)

µεt (x)
− ρε(t

′ − s, x′ − y)

µεt′(x
′)

∣∣∣∣ νs,y(dz)µs(dy)ds

6 cn,ε(|t− t′|+ |x− x′|)
∫ n+1

0

∫
Bn+1

νs,y(dz)µs(dy)ds.

Estimate (3.9) then follows since sups,y∈[0,n+1]×Bn+1

∫
Rd(1∧ |z|2)νs,y(dz) <∞. �

3.2. Tightness. We first prepare the following result (cf. [11, Proposition 7.1.8]).

Lemma 3.4. For µε0 ∈ P(Rd) being defined by (3.2), there exits a function ψ ∈
C2(R+) with the properties

ψ > 0, ψ(0) = 0, 0 < ψ′ 6 1, −2 6 ψ′′ 6 0, lim
r→∞

ψ(r) = +∞,

and such that

sup
ε∈[0,`)

∫
Rd
ψ
(

log(1 + |x|2)
)
µε0(dx) <∞. (3.10)

Proof. Since µε0 weakly converges to µ0 as ε→ 0, we have

lim
n→∞

sup
ε∈[0,`)

µε0(Bcn) = 0.

In particular, we can find a subsequence nk such that for zk := log(1 + n2
k),

zk+1 − zk > zk − zk−1 > 1,

and

sup
ε∈[0,`)

∫
Rd

1[zk,∞)(log(1 + |x|2))µε0(dx) = sup
ε∈[0,`)

µε0(Bcnk) 6 2−k.

Let z0 = 0 and define

ψ0(s) :=

∞∑
k=0

1[zk,zk+1](s)

[
k − 1 +

s− zk
zk+1 − zk

]
.

Clearly, we have∫
Rd
ψ0(log(1 + |x|2))µε0(dx) 6

∞∑
k=0

k

∫
Rd

1[zk,∞)(log(1 + |x|2))µε0(dx) 6
∞∑
k=0

k

2k
.

However, ψ0 does not belong to the class C2(R+). Let us take

ψ(t) :=

∫ t

0

g(r)dr

with g ∈ C1(R+), 0 6 g 6 1, −2 6 g′ 6 0, and

g(z) = ψ′0(z) if z ∈ (zk, zk+1 − k−1).

It is easy to see that such a function g always exists. The proof is complete. �

Lemma 3.5. Let Hν
t (x, y) be defined by (2.3). We have

Hν
t (x, y) 6 2(1 + |y|)~νt (x), ∀t > 0, x, y ∈ Rd. (3.11)
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Proof. Recall that

Hν
t (x, y) =

∫
Bc`

log
(

1 + |z|
1+|x−y|

)
νt,x(dz).

If |x| 6 2|y|, then

Hν
t (x, y) 6

∫
Bc`

log (1 + |z|) νt,x(dz) 6
∫
Bc`

log
(

1 + (1+2|y|)|z|
1+|x|

)
νt,x(dz)

6
∫
Bc`

log
(

1 + |z|
1+|x|

)1+2|y|
νt,x(dz) = (1 + 2|y|)~νt (x).

If |x| > 2|y|, then 2|x− y| > 2|x| − 2|y| > |x| and

Hν
t (x, y) 6

∫
Bc`

log
(

1 + 2|z|
2+|x|

)
νt,x(dz) 6 2~νt (x).

The proof is complete. �

Now, we prove the following tightness result.

Lemma 3.6. The family of probability measures (Qε)ε∈(0,`) is tight in P(D).

Proof. By Aldous’ criterion (see [1] or [19, p.356]), it suffices to check the following
two conditions:

(i) For any T > 0, it holds that

lim
N→∞

sup
ε

Qε
(

sup
t∈[0,T ]

|Xt| > N

)
= 0.

(ii) For any T, δ0 > 0 and stopping time τ < T − δ0, it holds that

lim
δ→0

sup
ε

sup
τ

Qε (|Xτ+δ −Xτ | > λ) = 0, ∀λ > 0.

Verification of (i). Let ψ be as in Lemma 3.4 and V (x) := ψ(log(1 + |x|2)). By
the definition of martingale solution (see Remark 1.4), (2.2) and (3.6), there is a
càdlàg local Qε-martingale Mε

t and constant C independent of ε such that for all
t > 0,

V (Xt) = V (X0) +

∫ t

0

L ε
r V (Xr)dr +Mε

t 6 V (X0) + Ct+Mε
t .

By Lemma 2.4 , there is a constant C > 0 such that for all T > 0,

sup
ε∈(0,`)

EQε
(

sup
t∈[0,T ]

V
1
2 (Xt)

)
6 C sup

ε∈(0,`)

(EQεV (X0))
1
2

(3.10)
< ∞, (3.12)

which in turn implies that (i) is true.
Verification of (ii). Let τ 6 T − δ0 be a bounded stopping time. For any
δ ∈ (0, δ0), by the strong Markov property we have

Qε (|Xτ+δ −Xτ | > λ) = EQε
(
Pεs,y (|Xs+δ − y| > λ)

∣∣
(s,y)=(τ,Xτ )

)
. (3.13)

Recalling that Vy(x) := ψ(log(1 + |x − y|2), and by (2.2), (3.6), (3.7), (3.11) and
(1.18) we deduce that

L ε
t Vy(x) 6 2

(
|aεt (x)|+ 〈x− y, bεt (x)〉+ + gν

ε

t (x)

1 + |x− y|2
+ 2Hνε

t (x, y)

)
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6 C

(
1 + |x|2 + |x− y|(1 + |x|)

1 + |x− y|2
+Hν

t (x, y)

)
6 C(1 + |y|2),

where C > 0 is independent of t, x, y and ε. Furthermore, we have

Vy(Xt) = Vy(Xs) +

∫ t

s

L ε
r Vy(Xr)dr +Mε

t

6 Vy(Xs) + C(1 + |y|2)(t− s) +Mε
t ,

where (Mε
t )t>s is a local Pεs,y-martingale with Mε

s = 0. By Lemma 2.4 again and
since Vy(y) = 0, we obtain

EPεs,y
(
Vy(Xs+δ)

1/2
)
6 C(1 + |y|)δ1/2.

Hence,

Pεs,y (|Xs+δ − y| > λ) = Pεs,y
(
Vy(Xs+δ) > ψ(log(1 + λ2))

)
6 EPεs,y

(
Vy(Xs+δ)

1/2
)
/ψ1/2(log(1 + λ2))

6 C(1 + |y|)δ1/2/ψ1/2(log(1 + λ2)),

and by (3.13) and (3.12),

Qε (|Xτ+δ −Xτ | > λ) 6 Qε(|Xτ | > R) + C(1 +R)δ1/2/ψ1/2(log(1 + λ2))

6 C/ψ1/2(log(1 +R2)) + C(1 +R)δ1/2/ψ1/2(log(1 + λ2)).

Letting δ → 0 first and then R→∞, one sees that (ii) is satisfied. �

3.3. Limits. In order to take weak limits, we rewrite

Btf(x) + Ntf(x) = b̃t(x) · ∇f(x) +

∫
Rd

Θπ
f (x; z)νt,x(dz) =: B̃tf(x) + Ñtf(x),

where

b̃t(x) := bt(x) +

∫
Rd

[
π(z)− z1|z|6`

]
νt,x(dz), (3.14)

and

Θπ
f (x; z) := f(x+ z)− f(x)− π(z) · ∇f(x). (3.15)

Here, π : Rd → Rd is a smooth symmetric function satisfying

π(z) = z, |z| 6 `, π(z) = 0, |z| > 2`.

As in (1.11), we shall also write Ñtf(x) = Ñ ν
t f(x) = Ñ νt,xf(x). We have the

following result.

Lemma 3.7. For any f ∈ C2
c (Rd) with support in BR, there is a constant C =

C(f) > 0 such that for all x ∈ Rd and z, z′ ∈ Rd with |z′| 6 |z|,
|Θπ
f (x; z)−Θπ

f (x; z′)| 6 C(|z − z′| ∧ `)(1BR+`
(x)1|z|6`|z|+ 1|z|>`∨(|x|−R)).

Proof. Note that

Q := |Θπ
f (x; z)−Θπ

f (x; z′)| = |f(x+ z)− f(x+ z′)− (π(z)− π(z′)) · ∇f(x)|.
We make the following decomposition:

Q = Q · 1|z|6` + Q · 1|z|>`1|x|6R + Q · 1|z|>`1|x|>R =: Q1 + Q2 + Q3.
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For Q1, since supp(f) ⊂ BR and |z′| 6 |z|, we have by (1.16) that

|Q1| 6 |z − z′|2‖∇2f‖∞1BR+`
(x)1|z|6` 6 C(|z − z′| ∧ `)|z|1BR+`

(x)1|z|6`.

For Q2, we have

|Q2| 6
(
|f(x+ z)− f(x+ z′)|+ |π(z)− π(z′)| · ‖∇f‖∞

)
1|z|>`1|x|6R

6 C(|z − z′| ∧ `)1|z|>`1|x|6R.

As for Q3, we have

|Q3| = |f(x+ z)− f(x+ z′)| · 1|z|>`1|x|>R 6 C(|z − z′| ∧ `)1|z|>`∨(|x|−R),

where we have used that for |z′| 6 |z| 6 |x| −R,

f(x+ z) = f(x+ z′) = 0.

Combining the above calculations, we obtain the desired estimate. �

The following approximation result will be crucial for taking weak limits.

Lemma 3.8. For any δ ∈ (0, 1) and R, T > 0, there is a family of Lévy measures
ηt,x(dz) such that for any f ∈ C2

c (BR),∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ νs,yf(x)− Ñ ηs,yf(x)|µs(dy)ds 6 δ, (3.16)

and

sup
s,y
‖Ñ ηs,yf‖∞ <∞, (s, y, x) 7→ Ñ ηs,yf(x) is continuous.

Moreover, there are continuous functions ā : [0, T ]×Rd → Rd ⊗Rd and b̄ : [0, T ]×
Rd → Rd with compact supports such that∫ T

0

∫
Rd

(
|ās(x)− as(x)|

1 + |x|2
+
|b̄s(x)− b̃s(x)|

1 + |x|

)
µs(dx)ds 6 δ, (3.17)

where b̃ is defined by (3.14).

Proof. (i) By the randomization of kernel functions (see [18, Lemma 14.50, p.469]),
there is a measurable function

ht,x(θ) : [0, T ]× Rd × (0,∞)→ Rd ∪ {∞}

such that

νt,x(A) =

∫ ∞
0

1A(ht,x(θ))dθ, ∀A ∈ B(Rd).

In particular, we have

Ñ νs,yf(x) =

∫ ∞
0

Θπ
f (x;hs,y(θ))dθ =: Ñ hs,yf(x), (3.18)

and

gνt (x) =

∫ ∞
0

1B`(ht,x(θ))|ht,x(θ)|2dθ, νt,x(Bc` ) =

∫ ∞
0

1Bc` (ht,x(θ))dθ.

We introduce X := [0, T ]× Rd × (0,∞) and a locally finite measure γ over X by

γ(dθ,dx, dt) := %t,x(θ)dθµt(dx)dt
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with %t,x(θ) := 1B`(ht,x(θ))1BR+`+1
(x) + 1Bc

`∨(|x|−R−1)
(ht,x(θ)) so that∫

X

(
|ht,x(θ)|2 ∧ `2

)
γ(dθ,dx, dt) =

∫ T

0

∫
Rd
gνt (x)1BR+`+1

(x)µt(dx)dt

+ `2
∫ T

0

∫
Rd
νt,x(Bc`∨(|x|−R−1))µt(dx)dt

(1.14)
< ∞.

(3.19)

Claim: There is a sequence of measurable functions {h̄nt,x(θ), n ∈ N} so that for

each n ∈ N, (t, x, θ) 7→ h̄nt,x(θ) is continuous with compact support, and

|h̄nt,x(θ)| 6 |ht,x(θ)|, (3.20)

and

lim
n→∞

∫
X

(
|h̄nt,x(θ)− ht,x(θ)|2 ∧ `2

)
γ(dθ,dx, dt) = 0. (3.21)

Proof of Claim: Fix m ∈ N. Since 1(0,m)(θ)γ(dθ,dx, dt) is a finite measure over X,

by Lusin’s theorem, there exists a family of continuous functions {h̄εt,x(θ), ε ∈ (0, 1)}
with compact support in (t, x, θ) such that

|h̄εt,x(θ)| 6 |ht,x(θ)|, h̄εt,x(θ)→ ht,x(θ), ε→ 0, γ − a.s.

Thus by the dominated convergence theorem,

lim
ε→0

∫
X

(
|h̄εt,x(θ)− ht,x(θ)|2 ∧ `2

)
1(0,m)(θ)γ(dθ,dx, dt) = 0.

On the other hand, by (3.19) and the monotone convergence theorem, we have

lim
m→∞

∫
X

(
|ht,x(θ)|2 ∧ `2

)
1[m,∞)(θ)γ(dθ,dx, dt) = 0.

By a diagonalizaion argument, we obtain the desired approximation sequence. The
claim is proven.

(ii) Let f ∈ C2
c (BR). By (3.18), (3.20) and Lemma 3.7, we have for all x ∈ B1(y),

|Ñ hs,yf(x)− Ñ h̄ns,yf(x)| 6
∫ ∞

0

|Θπ
f (x;hs,y(θ))−Θπ

f (x; h̄ns,y(θ))|dθ

.
∫ ∞

0

(
|hs,y(θ)|1B`(hs,y(θ))1BR+`

(x) + 1Bc
`∨(|x|−R)

(hs,y(θ))
)

×
(
|hs,y(θ)− h̄ns,y(θ)| ∧ `

)
dθ

6

(∫ ∞
0

(
|hs,y(θ)|21B`(hs,y(θ))1BR+`+1

(y) + 1Bc
`∨(|y|−R−1)

(hs,y(θ))
)

dθ

) 1
2

×
(∫ ∞

0

(
|hs,y(θ)− h̄ns,y(θ)|2 ∧ `2

)
%s,y(θ)dθ

) 1
2

=
(
1BR+`+1

(y)gνs (y) + νs,y(Bc`∨(|y|−R−1))
) 1

2

×
(∫ ∞

0

(
|hs,y(θ)− h̄ns,y(θ)|2 ∧ `2

)
%s,y(θ)dθ

) 1
2

.



SUPERPOSITION PRINCIPLE FOR NON-LOCAL FPK OPERATORS 23

Hence, by (1.18) and (1.21) we further have∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ hs,yf(x)− Ñ h̄ns,yf(x)|µs(dy)ds

.

(∫ T

0

∫
Rd

∫ ∞
0

(
|hs,y(θ)− h̄ns,y(θ)|2 ∧ `2

)
%s,y(θ)dθµs(dy)ds

) 1
2

=

(∫
X

(|hs,y(θ)− h̄ns,y(θ)|2 ∧ `2)γ(dθ,dy,ds)

) 1
2 (3.21)→ 0.

(iii) For fixed n ∈ N, since f ∈ C2
c (BR), by the above claim that (s, y, θ) 7→ h̄ns,y(θ)

is continuous and has compact support, and the dominated convergence theorem,
we have that

(s, y, x) 7→ Ñ h̄ns,yf(x) =

∫ ∞
0

Θπ
f (x; h̄ns,y(θ))dθ is continuous.

Moreover, we have

|Ñ h̄ns,yf(x)| 6
∫ ∞

0

|Θπ
f (x; h̄ns,y(θ))|dθ 6 C

∫ ∞
0

(
|h̄ns,y(θ)|2 ∧ 1

)
dθ.

Since h̄ns,y(θ) has compact support in (s, y), we have

sup
s,y
‖Ñ h̄ns,yf‖∞ <∞.

Finally we only need to take n large enough and define

ηt,x(A) :=

∫ ∞
0

1A(h̄nt,x(θ))dθ.

(iv) Now let us show (3.17). By Lusin’s theorem, the set of continuous functions

with compact supports is dense in L1([0, T ]×Rd, µt(dx)dt). Since at(x)
1+|x|2 and b̃t(x)

1+|x|
are bounded by (1.18), the existence of ā and b̄ with property (3.17) follows. �

Now we are in a position to give:

Proof of Theorem 1.5. Let Q be any accumulation point of (Qε)ε∈(0,`) (see Lemma
3.6). By taking weak limits for

µεt = Qε ◦X−1
t ,

we obtain

µt = Q ◦X−1
t .

It remains to show that Q ∈Mµ0

0 (Lt). We need to show that for any f ∈ C2
c (Rd),

Mt := f(Xt)− f(X0)−
∫ t

0

Lsf(Xs)ds

is a Bt-martingale under Q. Let J := {t > 0 : Q(∆Xt 6= 0) > 0}, which is a
countable subset of R+. Since t 7→ Mt is right continuous and bounded, to show
that Mt is a Bt-martingale under Q, it suffices to prove that for any s < t /∈ J and
any bounded Bs-measurable continuous functional gs on D,

EQ(Mtgs) = EQ(Msgs).
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Since Qε ∈M
µε0
0 (L ε), by the definition of martingale solution, we have

EQε(Mε
t gs) = EQε(Mε

s gs),

where

Mε
t := f(Xt)− f(X0)−

∫ t

0

L ε
s f(Xs)ds.

Since limε→0 EQε(f(Xt)gs) = EQ(f(Xt)gs) for t /∈ J (see [19, Proposition 3.4, page
349]), we only need to show the following three limits:

lim
ε→0

EQε
(
gs

∫ t

s

A ε
r f(Xr)dr

)
= EQ

(
gs

∫ t

s

Arf(Xr)dr

)
, (3.22)

lim
ε→0

EQε
(
gs

∫ t

s

B̃ε
rf(Xr)dr

)
= EQ

(
gs

∫ t

s

B̃rf(Xr)dr

)
, (3.23)

lim
ε→0

EQε
(
gs

∫ t

s

Ñ νε

r f(Xr)dr

)
= EQ

(
gs

∫ t

s

Ñ ν
r f(Xr)dr

)
. (3.24)

Below we assume that the support of f is contained in the ball BR. Let us first
show (3.24). Fix δ ∈ (0, 1). Let ηt,x(dz) be as given by Lemma 3.8, and recall that
νε is defined by (3.5). We write∣∣∣∣EQε

(
gs

∫ t

s

Ñ νε

r f(Xr)dr

)
− EQ

(
gs

∫ t

s

Ñ ν
r f(Xr)dr

)∣∣∣∣
6

∣∣∣∣EQε
(
gs

∫ t

s

Ñ νε

r f(Xr)dr

)
− EQε

(
gs

∫ t

s

Ñ ηε
r f(Xr)dr

)∣∣∣∣
+

∣∣∣∣EQε
(
gs

∫ t

s

Ñ ηε

r f(Xr)dr

)
− EQε

(
gs

∫ t

s

Ñ η
r f(Xr)dr

)∣∣∣∣
+

∣∣∣∣EQε
(
gs

∫ t

s

Ñ η
r f(Xr)dr

)
− EQ

(
gs

∫ t

s

Ñ η
r f(Xr)dr

)∣∣∣∣
+

∣∣∣∣EQ
(
gs

∫ t

s

Ñ η
r f(Xr)dr

)
− EQ

(
gs

∫ t

s

Ñ ν
r f(Xr)dr

)∣∣∣∣ =:

4∑
i=1

Ii(ε),

where ηε is defined similarly as in (3.5) with ν being replaced by η. For I1(ε), by
definition, we have

I1(ε) 6 ‖gs‖∞EQε
(∫ t

s

|Ñ νε

r f(Xr)− Ñ ηε

r f(Xr)|dr
)

= ‖gs‖∞
∫ t

s

∫
Rd
|Ñ νε

r f(x)− Ñ ηε

r f(x)|µεr(x)dxdr

= (1− ε)‖gs‖∞
∫ t

s

∫
Rd
|Ñ ν̄ε

r f(x)− Ñ η̄ε

r f(x)|dxdr

= (1− ε)‖gs‖∞
∫ t

s

∫
Rd

∣∣∣∣∫
Rd

Θπ
f (x; z)(ν̄εr,x − η̄εr,x)(dz)

∣∣∣∣ dxdr,

where Θπ
f (x; z) is defined by (3.15) and

ν̄εr,x(dz) :=

∫
Rd+1

ρε(r − s, x− y)νs,y(dz)µs(dy)ds.
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By Fubini’s theorem we further have

I1(ε) 6 ‖gs‖∞
∫ t

s

∫
Rd

∣∣∣∣ ∫
Rd+1

ρε(r − s, x− y)

×
(
Ñ νs,yf(x)− Ñ ηs,yf(x)

)
µs(dy)ds

∣∣∣∣dxdr

6 ‖gs‖∞
∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ νs,yf(x)− Ñ ηs,yf(x)|µs(dy)ds
(3.16)

6 ‖gs‖∞δ.

For I2(ε), recalling (3.2), we have

I2(ε) 6 ‖gs‖∞EQε
(∫ t

s

|Ñ ηε

r f(Xr)− Ñ η
r f(Xr)|dr

)
= ‖gs‖∞

∫ t

s

∫
Rd
|Ñ ηε

r f(x)− Ñ η
r f(x)|µεr(x)dxdr

= ‖gs‖∞
∫ t

s

∫
Rd
|(1− ε)Ñ η̄ε

r f(x)− µεr(x)Ñ η
r f(x)|dxdr

6 (1− ε)‖gs‖∞
∫ t

s

∫
Rd

∫
Rd+1

ρε(r − s, x− y)

× |Ñ ηs,yf(x)− Ñ ηr,xf(x)|µs(dy)dsdxdr

+ ε‖gs‖∞
∫ t

s

∫
Rd
|φ(x)Ñ η

r f(x)|dxdr.

Since (s, y, x) 7→ Ñ ηs,yf(x) is continuous and ‖Ñ ηf‖∞ < ∞, by the dominated
convergence theorem, we get

lim
ε→0

I2(ε) = 0.

Concerning I3(ε), it follows by the definition of weak convergence that

lim
ε→0

I3(ε) = 0.

For I4(ε), we have

I4(ε) 6 ‖gs‖∞
∫ t

s

∫
Rd
|Ñ η

r f(x)− Ñ ν
r f(x)|µr(dx)dr

(3.16)

6 ‖gs‖∞δ.

Since δ is arbitrary, combining the above calculations, we obtain (3.24). The proofs
for (3.22) and (3.23), by (3.17), are completely the same as above. The proof is
complete. �

4. Proof of Theorem 1.13

Let u be the unique weak solution of FPME (1.23) given by Theorem 1.11 with
initial value ϕ > 0 being bounded and

∫
Rd ϕ(x)dx = 1. Let

σt(x) := |u(t, x)|
m−1
α , κt(x) := u(t, x)m−1, νt,x(dz) := κt(x)dz

|z|d+α .

By the change of variable we have

νt,x(A) =

∫
Rd

1A(σt(x)z)
dz

|z|d+α
, A ∈ B(Rd \ {0}), (4.1)
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and

Ntf(x) := P.V.

∫
Rd

(f(x+ σt(x)z)− f(x))
dz

|z|d+α
= κt(x)∆α/2,

where the second equality is due to (1.24). By Definition 1.10 it is easy to see that
u(t, x) solves the following non-local FPKE:

∂tu = N ∗
t u, u(0, x) = ϕ(x),

that is, for every t > 0 and f ∈ C2
0 (Rd),∫

Rd
f(x)u(t, x)dx =

∫
Rd
f(x)ϕ(x)dx+

∫ t

0

∫
Rd
κs(x)∆α/2f(x)u(s, x)dxds.

Note that for each t > 0,

|σt(x)| = |u(t, x)|
m−1
α 6 ‖ϕ‖

m−1
α∞ .

Thus, by Example 1.8 with the above νt,x and Theorem 1.5 with µ0(dx) = ϕ(x)dx,
there is a martingale solution P ∈M µ0

0 (Nt) so that

P ◦X−1
t (dx) = u(t, x)dx, t > 0.

By (4.1) and [19, Theorem 2.26, p.157] (see Remark 4.1 below), there are a sto-
chastic basis (Ω,F ,P; (Ft)t>0) and a Poisson random measure N on Rd × [0,∞)
with intensity |z|−d−αdzdt, as well as an Ft-adapted càdlàg process Yt such that

P ◦ Y −1
t (dx) = P ◦X−1

t (dx), t > 0,

and

dYt =

∫
|z|61

σt(Yt−)zÑ(dz,dt) +

∫
|z|>1

σt(Yt−)zN(dz,dt),

where Ñ(dz,dt) := N(dz,dt)− |z|−d−αdzdt. Finally we just need to define

Lt :=

∫ t

0

∫
|z|61

zÑ(dz,ds) +

∫ t

0

∫
|z|>1

zN(dz,ds),

then L is a d-dimensional isotropic α-stable process with Lévy measure dz/|z|d+α,
and

dYt = σt(Yt−)dLt.

The proof is finished.

Remark 4.1. For a more recent general analysis on the equivalence of stochastic
equations and martingale problem, we refer to [21].

Acknowledgement: The authors are very grateful to the referees for their quite
useful suggestions.
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32 (1975), 209–244.
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