
SDEs with singular drifts and multiplicative
noise on general space-time domains

Chengcheng Ling∗a,c, Michael Röcknerc, and Xiangchan Zhub,c
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Abstract

In this paper, we prove the existence and uniqueness of maximally defined strong solutions
to SDEs driven by multiplicative noise on general space-time domains Q ⊂ R+ × Rd, which
have continuous paths on the one-point compactification Q∪ ∂ of Q where ∂ /∈ Q and Q∪ ∂
is equipped with the Alexandrov topology. If the SDE is of gradient type (see (2.5) below)
we prove that under suitable Lyapunov type conditions the life time of the solution is infinite
and its distribution has sub-Gaussian tails. This generalizes earlier work [7] by Krylov and
one of the authors to the case where the noise is multiplicative.
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1 Introduction

Consider the following stochastic differential equation (abbreviated as SDE):

Xt = x+

∫ t

0

b(s+ r,Xr)dr +

∫ t

0

σ(s+ r,Xr)dWr, t ≥ 0, (1.1)
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in an open set Q ⊂ [0,∞) × Rd with measurable coefficients b = (bi)1≤i≤d : Q → Rd and
σ = (σij)1≤i,j≤d : Q → L(Rd) (:= d × d real valued matrices). Here (s, x) ∈ Q is the initial
point, and (Wt)t≥0 is a d-dimensional (Ft)-Wiener process defined on a complete filtered
probability space (Ω,F , (Ft)t≥0, P ). Define

ξ := inf {t ≥ 0 : (t+ s,Xt) /∈ Q} . (1.2)

ξ is called the explosion time (or life time) of the process (t+ s,Xt)t≥0 in the domain Q.
There are many known results on studying existence and uniqueness of strong solutions

to the SDE (1.1). In the seminal paper [16], Veretennikov proved that for Q = R+ × Rd, if
the coefficient σ is Lipschitz continuous in the space variable x uniformly with respect to the
time variable t, σσ∗ is uniformly elliptic, and b is bounded and measurable, then the SDE
(1.1) admits a unique global strong solution (i.e. ξ =∞ a.s. where ξ is defined in (1.2)). In
[7] under the assumptions that σ = Id×d (i.e. additive noise, Id×d denotes the unit matrix
in Rd) and |bIQn| ∈ Lq(n)(R;Lp(n)(Rd)) for p(n), q(n) ∈ (2,∞) and d/p(n) + 2/q(n) < 1,
where Qn are open bounded subsets of Q with Qn ⊂ Qn+1 and Q = ∪nQn, Krylov and
Röckner proved the existence of a unique maximal local strong solution to (1.1) when Q
is a subset of Rd+1, in the sense that there exists a unique strong solution (s + t,Xt)t≥0

solving (1.1) on [0, ξ) such that [0,∞) 3 t → (s + t,Xt) ∈ Q′ := Q ∪ ∂ (=Alexandrov
compactification of Q) is continuous and this process is defined to be in ∂ if t ≥ ξ. To
this end they applied the Girsanov transformation to get existence of a weak solution firstly
and then proved pathwise uniqueness of (1.1) by Zvonkin’s transformation invented in [24].
Then, the well-known Yamada-Watanabe theorem [21] yields existence and uniqueness of a
maximal local strong solution. Fedrizzi and Flandoli [4] introduced a new method to prove
existence and uniqueness of a global strong solution to the SDE (1.1) by using regularizing
properties of solutions to the Kolmogrov equation corresponding to (1.1), assuming that
σ = Id×d, |b| ∈ Lqloc(R+, L

p(Rd)) with p, q ∈ (2,∞) and d/p + 2/q < 1. This method was
extended by Von der Lühe to the multiplicative noise case in her work [17]. Zhang in [23]
proved existence and uniqueness of a strong solution to the SDE (1.1) on Q = R+ × Rd for
t < τ a.s., where τ is some stopping time, under the assumptions that σ is bounded and
uniformly continuous in x locally uniformly with respect to t, σσ∗ is uniformly elliptic, and
|b|, |∇σ| ∈ L

q(n)
loc (R+;Lp(n)(Bn)) (where ∇σ denotes the weak gradient of σ with respect to

x) with p(n), q(n) satisfying p(n), q(n) ∈ (2,∞) and d/p(n) + 2/q(n) < 1, where Bn is the
ball in Rd with radius n ∈ N centered at zero. Zvonkin’s transformation plays a crucial role
in Zhang’s proof (see also [16], [22], [20] for further interesting results on this topic, which
however do not cover our results in this paper). The above results include the case where the
coefficients of the SDE (1.1) are time dependent. For the time independent case, Wang [18]
and Trutnau [9] used generalized Dirichlet forms to get existence and uniqueness and also
non-explosion results for the SDE (1.1) on Q = Rd.

As mentioned in [7], there are several interesting situations arising from applications, say
diffusions in random media and particle systems, where the domain Q of (1.1) is not the full
space R× Rd but a subdomain (e.g. Q = R× (Rd\γρ), where γρ = {x ∈ Rd|dist(x, γ) ≤ ρ},
ρ > 0, and γ is a locally finite subset of Rd), where none of the above results mentioned can
be applied to get global solutions, except for the one in [7]. Moreover, Krylov and Röckner
in [7] not only proved the existence and uniqueness of a maximal local strong solution of
the equation on Q, but also they obtained that if b = −∇φ, i.e., b is minus the gradient in
space of a nonnegative function φ and if there exist a constant K ∈ [0,∞) and an integrable
function h on Q defined as above such that the following Lyapunov conditions hold in the
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distributional sense

2Dtφ ≤ Kφ, 2Dtφ+ ∆φ ≤ heεφ, ε ∈ [0, 2), (1.3)

the strong solution does not blow up, which means ξ =∞ a.s.. Here Dtφ denotes the deriva-
tive of φ with respect to t. This result can be applied to diffusions in random environment
and also finite interacting particle systems to show that if the above Lyapunov conditions
hold, the process does not exit from Q or go to infinity in finite time. However, [7] is restricted
to the case where the equation (1.1) is driven by additive noise, that is, the diffusion term is
a Brownian motion.

Our aim in this paper is to extend these results on existence and uniqueness of maximally
defined local solutions and also the non-explosion results in [7] to the multiplicative noise
case on general space-time domains Q. In order to prove the maximal local well-posedness
result, we use a localization technique and the well-posedeness result in [23]. We want to
point out that as Krylov and Röckner did in [7], we also prove the continuity of the paths
of the solution not only in the domain Q but also on Q′ = Q ∪ ∂, which essentially follows
from Lemmas 3.5 and 3.6 below. As far as the non-explosion result is concerned, we have
to take into account that having non-constant σ instead of Id×d in front of the Brownian
motion in (1.1) means that we have to consider a different geometry on Rd, and that this
effects the Lyapunov function type conditions which are to replace (1.3) and also the form
of the equation. In Remark 2.5 by comparing the underlying Kolmogrov operators, we ex-
plain why the SDE (2.5) should be considered and why (2.3) states the right Lyapunov type
conditions which are analog to the ones in (1.3). This leads to some substantial changes in
the proof of our non-explosion result in comparison with the one in [7]. In addition, we give
some examples to show our well-posedness and non-explosion results in Sections 6.1 and 6.2.
We also give two applications to diffusions in random media and particle systems. Both are
generalizations of the examples in [7, Section 9] to the case of multiplicative noise.

The organization of this paper is as follows: We state our notions and main results in
Section 2 . In Section 3 we prove that there exists a pathwise unique maximal strong solution
(s+t,Xt)t≥0 solving the SDE (1.1) on [0, ξ), and that the paths of (s+t,Xt)t≥0 are continuous
in Q′ = Q ∪ ∂. Section 4 is devoted to the preparation of the proof of our non-explosion
result, which is subsequently proved in Section 5. We discuss examples and applications of
our results in Section 6 . The Appendix contains technical lemmas used in the proofs of our
main results.

Acknowledgement

The authors are grateful to Prof. Fengyu Wang and Dr. Guohuan Zhao for helpful discus-
sions.

2 Main results

Let Q be an open subset of R+×Rd and Qn, n ≥ 1, be bounded open subsets of Q such that
Qn ⊂ Qn+1 and ∪nQn = Q. We add an object ∂ /∈ Q to Q and define the neighborhoods of
∂ as the complements in Q of closed bounded subsets. Then Q′ = Q∪ ∂ becomes a compact
topological space, which is just the Alexandrov compactification of Q. For p, q ∈ [1,∞) and
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0 ≤ S < T < ∞, let Lqp(S, T ) denote the space of all real Borel measurable functions on
[S, T ]× Rd with the norm

‖f‖Lqp(S,T ) :=

(∫ T

S

( ∫
Rd
|f(t, x)|pdx

)q/p
dt

)1/q

< +∞.

For simplicity, we write

Lqp = Lqp(0,∞), Lqp(T ) = Lqp(0, T ), Lq,locp = Llocq (R+, Lp(Rd)).

Let C([0,∞),Rd) denote the space of all continuous Rd-valued functions defined on [0,∞), by
C([0,∞), Q′) we denote all continuous Q′-valued paths, Cnb (Rd) denotes the set of all bounded
n times continuously differentiable functions on Rd with bounded derivatives of all orders.
Set (aij)1≤i,j≤d := σσ∗, where σ∗ denotes the transpose of σ. For f ∈ L1

loc(Rd) we define
∂jf(x) := ∂f

∂xj
(x) and ∇f := (∂if)1≤i≤d denotes the gradient of f . Here the derivatives are

meant in the sense of distributions. For a real valued function g ∈ C1([0,∞)), Dtg denotes
the derivative of g with respect to t. L(Rd) denotes all d× d real valued matrices in Rd.

We first state the result about maximally local well-posedness of the SDE (1.1) on a
domain Q ⊂ R+ × Rd.

Theorem 2.1. Let (Wt)t≥0 be an d-dimensional Wiener process defined on a complete prob-
ability space (Ω,F , P ), let (Ft)t≥0 = (FWt )t≥0 be the normal filtration generated by (Wt)t≥0.
Assume that for any n ∈ N and some pn, qn ∈ (2,∞), satisfying d/pn + 2/qn < 1,
(i) |bIQn|, |IQn∇σ| ∈ Lqnpn,
(ii) for all 1 ≤ i, j ≤ d, Q 3 (t, x) → σij(t, x) ∈ R is continuous in x uniformly with respect
to t on Qn, and there exists a positive constant δn such that for all (t, x) ∈ Qn,

|σ∗(t, x)λ|2 ≥ δn|λ|2, ∀λ ∈ Rd.

Then for any (s, x) ∈ Q, there exists an (Ft)-stopping time ξ := inf {t ≥ 0 : zt /∈ Q} and
an (Ft)-adapted, pathwise unique and Q′-valued process (zt)t≥0 := (s + t,Xt)t≥0 which is
continuous in Q′ such that

Xt = x+

∫ t

0

b(s+ r,Xr)dr +

∫ t

0

σ(s+ r,Xr)dWr, ∀t ∈ [0, ξ), a.s. (2.1)

and for any t ≥ 0, zt = ∂ on the set {ω : t ≥ ξ(ω)} a.s..

Remark 2.2. In above theorem the condition p, q ∈ (2,∞) is automatically fulfilled when
d ≥ 2 since we also assume d/p + 2/q < 1. When d = 1, we can refer to the result from
Engelbert and Schmidt [2] to obtain the existence and uniqueness of a strong solution to
homogeneous SDE on Rd. They proved that if σ(x) 6= 0 for all x ∈ R and b/σ2 ∈ L1

loc(R),
and there exists a constant C > 0 such that

|σ(x)− σ(y)| ≤ C
√
|x− y|, x, y ∈ R,

|b(x)|+ |σ(x)| ≤ C(1 + |x|),
then there exists a pathwise unique and (Ft)-adapted process (Xt)t≥0 such that the SDE Xt =

x+
∫ t

0
b(Xt)dt+

∫ t
0
σ(Xt)dWt holds a.s..
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Below we give the non-explosion result for the solution to an SDE which is in a special
form of (2.1) on a domain Q ⊂ R+ × Rd under the following assumptions.

Assumption 1. (i) φ is a nonnegative continuous function defined on Q.
(ii) For each n there exist p = p(n), q = q(n) satisfying

p, q ∈ (2,∞],
d

p
+

2

q
< 1 (2.2)

such that |IQn∇φ|, |IQn∇σ| ∈ Lqp.
(iii) For each 1 ≤ i, j ≤ d, Q 3 (t, x) → σij(t, x) ∈ R is uniformly continuous in x locally
uniformly with respect to t, and there exists a positive constant K such that for all (t, x) ∈ Q,

1

K
|λ|2 ≤ |σ∗(t, x)λ|2 ≤ K|λ|2, ∀λ ∈ Rd.

(iv) For some constants K1 ∈ [0,∞) and ε ∈ [0, 2), in the sense of distributions on Q we
have

2Dtφ ≤ K1φ, 2Dtφ+
d∑

i,j=1

∂j(aij∂iφ) ≤ heεφ, (2.3)

where h is a continuous nonnegative function defined on Q satisfying the following condition:
(H) For any a > 0 and T ∈ (0,∞) there is an r = r(T, a) ∈ (1,∞) such that

H(T, a, r) := HQ(T, a, r) :=

∫
Q

hr(t, x)I(0,T )(t)e
−a|x|2dtdx <∞.

(v) For all 1 ≤ i, j ≤ d, for all (t, x), (s, y) ∈ Q,

|aij(t, x)− aij(s, y)| ≤ K(|x− y| ∨ |t− s|1/2), (2.4)

and for all n ∈ N, and (t, x), (s, y) ∈ Qn, there exists Cn ∈ [0,∞) such that

|∂jaij(t, x)− ∂jaij(s, y)| ≤ Cn(|x− y| ∨ |t− s|1/2).

(vi) The function φ blows up near the parabolic boundary of Q, that is for any (s, x) ∈ Q,
τ ∈ (0,∞), and any continuous bounded Rd-valued function xt defined on [0, τ) and such that
(s+ t, xt) ∈ Q for all t ∈ [0, τ) and

lim inf
t↑τ

dist((s+ t, xt), ∂Q) = 0,

we have

lim sup
t↑τ

φ(s+ t, xt) =∞.

Remark 2.3. Observe that H(T, a, r) <∞ if h is just a constant. Furthermore, Assumption
1 (iii) shows that σ is bounded on Q, invertible for every (t, x) ∈ Q, and the inverse σ−1 is
also bounded on Q.
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Theorem 2.4. Let Assumption 1 be satisfied. Let (Ω,F , (Ft)t≥0, P ) and (Wt)t≥0 be as in
Theorem 2.1. Then for any (s, x) ∈ Q there exists a continuous Rd-valued and (Ft)-adapted
random process (Xt)t≥0 such that almost surely for all t ≥ 0, (s+ t,Xt) ∈ Q,

Xt = x+

∫ t

0

(−σσ∗∇φ)(s+r,Xr)dr+
1

2
(
d∑
j=1

∫ t

0

∂jaij(s+r,Xr)dr)1≤i≤d+

∫ t

0

σ(s+r,Xr)dWr.

(2.5)
Furthermore, for each T ∈ (0,∞) and m ≥ 1 there exists a constant N , depending only on
K, K1, d, p(m+ 1), q(m+ 1), ε, T , ‖IQm+1∇φ‖Lq(m+1)

p(m+1)

, dist(∂Qm, ∂Qm+1), supQm+1 {φ+ h},
and the function H, such that for (s, x) ∈ Qm, t ≤ T , we have

E sup
t≤T

exp(µφ(s+ t,Xt) + µν|Xt|2) ≤ N, (2.6)

where
µ = (δ/2)e−TK1/(2δ), δ = 1/2− ε/4, ν = µ/(12KT ). (2.7)

Remark 2.5. Obviously, the Kolmogrov operator L corresponding to (2.5) is given by

L = div(σσ∗∇)− 〈σ∗∇φ, σ∗∇〉, (2.8)

where 〈·, ·〉 denotes the inner product in Rd. Recalling that div◦σ is the adjoint of the ’geo-
metric’ gradient σ∗∇ (i.e. taking into account the geometry given to Rd through σ), we see
that (2.5) is the geometrically correct analogue of the SDE

dXt = −∇φ(Xt)dt+ dWt, t ≥ 0

studied in [7]. So, the Laplacian ∆ in [7] is replaced by the Laplace-Beltrami operator
div(σσ∗∇)(=

∑d
i,j=1 ∂j(aij∂i)) and the Euclidean gradient ∇ in [7] is replaced by the ’ge-

ometric’ gradient σ∗∇. Also condition (2.3) is then the exact analogue of condition (1.3)
above, which was assumed in [7].

3 Existence and uniqueness of a maximal local strong

solution to the SDE (1.1) on an arbitrary domain in

R+ × Rd

Theorem 2.1 says that there exists a unique maximally local strong solution to the SDE (1.1).
Before going to its proof we give some results as preparation.

3.1 Preparation

Consider the SDE (1.1) in [0,∞)× Rd. First we recall two results from [23].

Lemma 3.1. ([23, Theorem 1.1]) Assume that p, q ∈ (2,∞) satisfying d/p + 2/q < 1 and
the following conditions hold.
(i) |b|, |∇σ| ∈ Lq,locp .
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(ii) For all 1 ≤ i, j ≤ d, [0,∞) × Rd 3 (t, x) → σij(t, x) ∈ R is uniformly continuous in x
locally uniformly with respect to t ∈ [0,∞), and there exist positive constants K and δ such
that for all (t, x) ∈ [0,∞)× Rd

δ|λ|2 ≤ |σ∗(t, x)λ|2 ≤ K|λ|2, ∀λ ∈ Rd. (3.1)

Then for any (Ft)-stopping time τ and x ∈ Rd, there exists a unique (Ft)-adapted continuous
Rd-velued process (Xt)t≥0 such that

P

{
ω :

∫ T

0

|b(r,Xr(ω))|dr +

∫ T

0

|σ(r,Xr(ω))|2dr <∞,∀T ∈ [0, τ(ω))

}
= 1, (3.2)

and

Xt = x+

∫ t

0

b(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr, ∀t ∈ [0, τ) a.s, (3.3)

which means that if there is another (Ft)-adapted continuous stochastic process (Yt)t≥0 also
satisfying (3.2) and (3.3), then

P {ω : Xt(ω) = Yt(ω), ∀t ∈ [0, τ(ω))} = 1.

Moreover, for almost all ω and all t ≥ 0, x→ Xt(ω, x) is a homeomorphism on Rd and there
exists a function t → Ct ∈ (0,∞) such that Ct → ∞ as t → ∞ and for all t > 0 and all
bounded measurable function ψ, for x, y ∈ Rd,

|Eψ(Xt(x))− Eψ(Xt(y))| ≤ Ct‖ψ‖∞|x− y|.

Below we shall make essential use of Krylov’s estimate. Therefore, we recall them here
for readers’ convenience.

Lemma 3.2. ([23, Theorem 2.1, Theorem 2.2]) Suppose σ satisfies the conditions in Lemma
3.1 and let (Xt)t≥0 be continuous and (Ft)-adapted Rd-valued process satisfying (3.2) and
(3.3). Fix an (Ft)-stopping time τ and let T0 > 0.
(1) If b is Borel measurable and bounded, then for p, q ∈ (1,∞) with

d

p
+

2

q
< 2,

there exists a positive constant N = N(K, d, p, q, T0, ‖b‖∞) such that for all f ∈ Lqp(T0) and
0 ≤ S < T ≤ T0,

E

(∫ T∧τ

S∧τ
|f(s,Xs)|ds

∣∣∣∣FS) ≤ N‖f‖Lqp(S,T ). (3.4)

(2) If b ∈ Lqp provided with

d

p
+

2

q
< 1, p, q ∈ (1,∞), (3.5)

then there exists a positive constant N = N(K, d, p, q, T0, ‖b‖Lqp(T0)) such that for all f ∈
Lqp(T0) and 0 ≤ S < T ≤ T0,

E

(∫ T∧τ

S∧τ
|f(s,Xs)|ds

∣∣∣∣FS) ≤ N‖f‖Lqp(S,T ).
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We note that actually condition f ∈ Lqp(T0) with p, q ∈ (1,∞) and d
p

+ 2
q
< 1 in the above

Lemma 3.2 can be improved to f ∈ Lq
′

p′(T0) with p′, q′ ∈ (1,∞) and d
p′

+ 2
q′
< 2 without

assuming that b is bounded, which we shall prove in the following lemma. Let K0 and T0 be
some positive constants and we give the following assumption.

Assumption 2. (i) For all 1 ≤ i, j ≤ d, [0,∞) × Rd 3 (t, x) → σij(t, x) ∈ R is uniformly
continuous in x locally uniformly with respect to t ∈ [0,∞), and there exist positive constants
K and δ such that for all (t, x) ∈ [0,∞)× Rd

δ|λ|2 ≤ |σ∗(t, x)λ|2 ≤ K|λ|2, ∀λ ∈ Rd. (3.6)

And |∇σ| ∈ Lq,locp with p, q ∈ (2,∞) satisfying d/p+ 2/q < 1.
(ii) b(t, x) is Borel measurable with ‖b‖Lqp ≤ K0 and b(t, x) = 0 for t > T0.

Lemma 3.3. Let Assumption 2 hold. Let (Xt)t≥0 be a continuous (Ft)-adapted process

such that (3.2) and (3.3) are satisfied. Then for any Borel function f ∈ Lq
′

p′(S, T ) with
p′, q′ ∈ (1,∞) and d/p′ + 2/q′ < 2, and for 0 ≤ S < T ≤ T0, we have

E

∫ T

S

|f(t,Xt)|dt ≤ N(d, p′, q′, K, ‖b‖Lqp(T0))‖f‖Lq′
p′ (S,T )

. (3.7)

Furthermore, for any constant κ ≥ 0 and g ∈ Lqp(T0),

E exp(κ

∫ T0

0

|g(t,Xt)|2dt) <∞. (3.8)

Proof. By Lemma 3.1 we obtain that there exists a unique (Ft)-adapted Rd-valued process
(Mt)t≥0 such that Mt = x+

∫ t
0
σ(s,Ms)dWs, t ≥ 0. For any p1, q1 ∈ (1,∞) satisfying

d

p1

+
2

q1

< 2,

Lemma 3.2 implies that for 0 < S < T ≤ T0, and f ∈ Lq1p1(S, T )

E

(∫ T

S

|f(t,Mt)|dt
∣∣∣∣FS) ≤ N‖f‖Lq1p1 (S,T ), (3.9)

where N depends only on d, K, p1, q1, T0. Applying (3.9) to f = |g|2 we get

E

(∫ T

S

|g(t,Mt)|2dt
∣∣∣∣FS) ≤ N‖g2‖Lq/2

p/2
(S,T )

= N‖g‖2
Lqp(S,T ).

By Lemma A.1, for any κ ∈ [0,∞) we have

E exp(κ

∫ T0

0

|g(t,Mt)|2dt) ≤ N(κ,K, d, p, q, T0, ‖g‖Lqp(T0)). (3.10)

And also

E exp(κ

∫ T0

0

|b(t,Mt)|2dt) ≤ N(κ,K,K0, d, p, q, T0). (3.11)
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The integral over (0, T0) in (3.11) can be replaced with the one over (0,∞) since b(t, x) = 0
for t > T0. Thus for any κ ∈ [0,∞)

E exp(κ

∫ ∞
0

|b(t,Mt)|2dt) <∞, (3.12)

which and (3.6) implies that for any c ∈ [0,∞)

E exp(c

∫ ∞
0

(b∗(σσ∗)−1b)(t,Mt)dt) ≤ E exp(
c

δ

∫ ∞
0

|b(t,Mt)|2dt) <∞. (3.13)

For f ∈ Lq
′

p′(S, T ) with p′, q′ ∈ (1,∞), we can choose β > 1 sufficiently close to 1 such that

d

p′
+

2

q′
<

2

β
.

By Lemma 3.1 we obtain the existence and uniqueness of (Ft)-adapted process (Xt)t≥0 which
satisfies (3.2) and (3.3). By Lemma A.3, we have

E

∫ T

S

|f(t,Xt)|dt = E

∫ T

S

ρ|f(t,Mt)|dt ≤ (E

∫ T

S

ραdt)1/α(E

∫ T

S

|f(t,Mt)|βdt)1/β

≤ (E

∫ T0

0

ραdt)1/α(E

∫ T

S

|f(t,Mt)|βdt)1/β, (3.14)

where α, β > 1 satisfying 1/α + 1/β = 1, and

ρ := exp(−
∫ ∞

0

b∗(σ∗)−1(s,Ms)dWs −
1

2

∫ ∞
0

(b∗(σσ∗)−1b)(s,Ms)ds).

Since

Eρα = E
[(

exp(−2α

∫ ∞
0

b∗(σ∗)−1(s,Ms)dWs − 2α2

∫ ∞
0

(b∗(σσ∗)−1b)(s,Ms)ds)
)1/2

(
exp((2α2 − α)

∫ ∞
0

(b∗(σσ∗)−1b)(s,Ms)ds)
)1/2]

, (3.15)

by Hölder’s inequality and the fact that exponential martingale is a supermartingale and
(3.13), we get

Eρα ≤ N. (3.16)

Then

E

∫ T

S

|f(t,Xt)|dt ≤ N(T0)(E

∫ T

S

|f(t,Mt)|βdt)1/β

≤ N(d, p1, q1, K, ‖b‖Lqp(T0))‖fβ‖
1/β

Lq1p1 (S,T )

= N(d, p1, q1, K, ‖b‖Lqp(T0))‖f‖Lβq1βp1
(S,T )

for d/p1 + 2/q1 < 2, where p1 = p′/β, q1 = q′/β. Thus the above estimate implies (3.7).
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Furthermore, according to Lemma A.3 and (3.10),

E exp(κ

∫ T0

0

|g(t,Xt)|2dt) =E(ρ exp(κ

∫ T0

0

|g(t,Mt)|2dt))

≤(Eρ2)1/2(E exp(2κ

∫ T0

0

|g(t,Mt)|2dt))1/2 <∞.

Lemma 3.4. Let b(i)(t, x), i = 1, 2 and σ satisfy Assumption 2 and let |b(1)(t, x)−b(2)(t, x)| ≤
b(t, x), where b also satisfies Assumption 2. Let (X

(i)
t ,W

(i)
t )t≥0 satisfy

X
(i)
t = x+

∫ t

0

b(i)(s,X(i)
s )ds+

∫ t

0

σ(s,X(i)
s )dW (i)

s , t ≥ 0.

Then for any bounded Borel functions f (i), i = 1, 2 given on C := C([0,∞),Rd) we have

|Ef (1)(X(1)
· )− Ef (2)(X(2)

· )| ≤ N(E|f (1)(M·)− f (2)(M·)|2)1/2 +N sup
C
|f (1)|‖b‖Lqp (3.17)

where Mt =
∫ t

0
σ(s,Ms)dWs, t ≥ 0, and N is a constant independent of f .

Proof. According to Lemma A.3, we know that

Ef (2)(X(2)
· ) = Ef (2)(X(1)

· )ρ∞,

where for t ≥ 0, ∆b(t,X
(1)
t ) := b(2)(t,X

(1)
t )− b(1)(t,X

(1)
t ) and

ρ∞ := exp(

∫ ∞
0

∆b∗(σ∗)−1(s,X(1)
s )dW (1)

s −
1

2

∫ ∞
0

(∆b∗(σσ∗)−1∆b)(s,X(1)
s )ds),

also Eρ∞ = 1 by applying (3.8) and the fact that ∆b(t, x) = 0 for t > T0 and (3.6). Hence
the left-hand side of (3.17) is less than

E|f (1) − f (2)|(X(1)
· )ρ∞ + sup

C
|f (1)|E|ρ∞ − 1| =: I1 + I2 sup

C
|f (1)|.

Also we have that all moments of the exponential martingale

ρt = exp(

∫ t

0

∆b∗(σ∗)−1(s,X(1)
s )dW (1)

s −
1

2

∫ t

0

(∆b∗(σσ∗)−1∆b)(s,X(1)
s )ds)

are finite by the same argument as getting (3.16) in Lemma 3.3. Hence we get

I
3/2
1 ≤ NE|f (1) − f (2)|3/2(X(1)

· ) (3.18)

and right hand side of (3.18) is controled by the first term on the right hand side of (3.17) by
a similar argument as dealing with (3.14) in Lemma 3.3. To estimate I2, we use Itô’s formula
to get for any T ∈ [0,∞),

ρT = 1 +

∫ T

0

(∆b∗(σ∗)−1)(s,X(1)
s )ρsdW

(1)
s .
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It follows that for any β > 1

I2
2 ≤E|ρT0 − 1|2

≤E
∫ T0

0

(∆b∗(σσ∗)−1∆b)(s,X(1)
s )ρ2

sds

≤N(

∫ T0

0

Eρ2β/(β−1)
s ds)1−1/β(E

∫ T0

0

|∆b(s,X(1)
s )|2βds)1/β

≤N(

∫ T0

0

Eρ2β/(β−1)
s ds)1−1/β(E

∫ T0

0

|b(s,X(1)
s )|2βds)1/β. (3.19)

To estimate the second factor of the the right hand of (3.19) we use Lemma 3.3 with β > 1
close to 1 such that 2/q + d/p < 1/β. The first factor of the the right hand of (3.19) is

controlled by means of Eρ
2β/(β−1)
T0

. Thus the result follows.

3.2 Proof of Theorem 2.1

Now we are going to prove the maximal local well-posedness result on an arbitrary domain
Q ⊂ R+ × Rd by applying the localization technique, which is a modification of the proof of
Theorem 1.3 in [23]. Furthermore we will prove the continuity of the solution on the domain
Q′ = Q ∪ ∂, especially around the boundary ∂Q′.

Proof of Theorem 2.1. By Lemma A.2, for each n ∈ N, we can find a nonnegative smooth
function χn(t, x) ∈ [0, 1] in Rd+1 such that χn(t, x) = 1 for all (t, x) ∈ Qn and χn(t, x) = 0
for all (t, x) /∈ Qn+1. For any s, x ∈ Q, let

bns (t, x) := χn(t+ s, x)b(t+ s, x)

and

σns (t, x) := χn+1(t+ s, x)σ(t+ s, x) + (1− χn(t+ s, x))(1 + sup
(t+s,x)∈Qn+2

|σ(t+ s, x)|)Id×d.

By Lemma 3.1 there exists a unique (Ft)-adapted continuous solution (Xn
t )t≥0 satisfying

Xn
t = x+

∫ t

0

bns (r,Xn
r )dr +

∫ t

0

σns (r,Xn
r )dWr, ∀t ∈ [0,∞), a.s. (3.20)

More precisely, for condition (i) in Lemma 3.1, for any (t, x) ∈ [0,∞)× Rd,

|bns (t, x)| ≤ |(bIQn+2)(s+ t, x)|,

|∇σns (t, x)| ≤ |(∇χn+1σ)(t+ s, x)|+ |(χn+1∇σ)(t+ s, x)|+ c|∇χn(t+ s, x)|
≤ |(∇χn+1σIQn+2)(t+ s, x)|+ |(∇σIQn+2)(t+ s, x)|+ c|∇χn(t+ s, x)|,

with constant c > 0, which means that we can take p := pn+2, q := qn+2. The continuity
condition in Lemma 3.1 (ii) obviously holds. Further there exist constants K(n) and δn+1

such that for all (t, x) ∈ R+ × Rd and λ ∈ Rd,

|(σns )∗(t, x)λ|2 ≤ |(σ∗IQn+2 + (1 + sup
(s+t,x)∈Qn+2

|σ∗(s+ t, x)|)Id×d)(s+ t, x)λ|2 ≤ K(n)|λ|2,
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and

|(σns )∗(t, x)λ|2 ≥ |(σ∗IQn+1 + I(Qn+1)c∩Qn+2

+ I(Qn+2)c(1 + sup
(s+t,x)∈Qn+2

|σ∗(s+ t, x)|)Id×d)(s+ t, x)λ|2

≥ (δn+1 ∧ 1)|λ|2.

Thus equation (3.20) satisfies conditions (i) and (ii) in Lemma 3.1. For n ≥ k, define

τn,k := inf
{
t ≥ 0 : znt := (s+ t,Xn

t ) /∈ Qk
}
,

then it is easy to see that Xn
t , Xk

t , t ≥ 0, satisfy

Xt∧τn,k =x+

∫ t∧τn,k

0

bks(r,Xr)dr +

∫ t∧τn,k

0

σks (r,Xr)dWr, a.s..

By the local uniqueness of the solution in Lemma 3.1, we have

P
{
ω : Xn

t (ω) = Xk
t (ω), ∀t ∈ [0, τn,k(ω))

}
= 1,

which implies τk,k ≤ τn,k ≤ τn,n a.s.. Thus if we take ξk := τk,k, then ξk is an increasing
sequence of stopping times, and

P
{
ω : Xn

t (ω) = Xk
t (ω),∀t ∈ [0, ξk(ω))

}
= 1.

Now for each k ∈ N, the definitions

Xt(ω) := Xk
t (ω) for t < ξk, ξ := lim

k→∞
ξk,

and

zt = (s+ t,Xt), t < ξ, zt = ∂, ξ ≤ t <∞, (3.21)

make sense almost surely. We may throw the set of ω where the above definitions do not
make sense and work only on the remaining part of Ω. Then (Xt)t≥0 satisfies the SDE (2.1)
and ξ is the related explosion time.

The last thing is to prove that (zt)t≥0 from (3.21) is continuous on Q′. Since zt coincides
with (t,Xn

t ) before ξn, the continuity of zt before ξn follows from the continuity of (t,Xn
t ),

which can be obtained by Lemma 3.1. So we only need to show that zt is left continuous at
ξ a.s.. The argument essentially follows from [7].

We first show that (zt)t≥0 has strong Markov property. We use P n
s,x to denote the dis-

tribution of process (znt )t≥0 = (znt (s, x))t≥0 := (s + t,Xn
t (s, (0, x)))t≥0 on C([0,∞),Rd+1),

where (Xn
t (s, (0, x)))t≥0 means the solution (Xn

t )t≥0 to (3.20) defined above with initial point
(0, x) ∈ Rd+1. En

s,x denotes the expectation corresponding to P n
s,x. The following argument

is based on Proposition 4.3.3 of [10].
Define the space W0 :=

{
w ∈ C(R+,Rd)|w(0) = 0

}
equipped with the supremum norm

and Borel σ-algebra B(W0), the class E collects all the maps F : Rd ×W0 → C(R+,Rd)

such that for every probability measure µ on (Rd,B(Rd)) there exists a B(Rd)× B(W0)
µ×PW

/B(C(R+,Rd)) measurable map Fµ : Rd ×W0 → C(R+,Rd) such that for µ-a.e. x ∈ Rd we
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have F (x,w) = Fµ(x,w) for PW -a.e. w ∈ W0. Here B(Rd)× B(W0)
µ×PW

means the com-
pletion of B(Rd) × B(W0) with respect to µ × PW , and PW denotes the distribution of the
standard d-dimensional Wiener process (Wt)t≥0 on (W0,B(W0)). For each n ∈ N, since we
already have the pathwise uniqueness and existence of strong solution (Xn

t )t≥0 to (3.20), by
applying Theorem E.8 in [10], we obtain that there exists a map F ∈ E such that for u ≤ t we
have Xn

t (s, (0, x))(ω) = FP◦(Xn
u (s,(0,x)))−1(Xn

u (s, (0, x))(ω), (W· −Wu)(ω))(t) for P -a.e. ω ∈ Ω.
Then for every bounded measurable function h defined on Rd and all u, t ∈ [0,∞) with u ≤ t
we have for P -a.e. ω ∈ Ω

E[h(Xn
t (s, (0, x)))|Fu](ω) = E[h(FP◦(Xn

u (s,(0,x)))−1(Xn
u (s, (0, x))(ω),W· −Wu)(t))]

= E[h(FδXnu (s,(0,x))(ω)
(Xn

u (s, (0, x))(ω),W· −Wu)(t))]

= E[h(Xn
t (s, (u,Xn

u (s, (0, x))))(ω))], (3.22)

which shows the Markov property of the process (Xn
t )t≥0. HereXn

t (s, (u,Xn
u (s, (0, x)))) means

the solution (Xn
t )t≥0 to (3.20) with starting point (u,Xn

u (s, (0, x))) ∈ Rd+1. Combining with
the Feller property of (Xn

t )t≥0 yielding from the second statement of Lemma 3.1 and well
known results about Markov processes (see e.g. [1, Theorem 16.21]), we get that (Xn

t )t≥0 is
a strong Markov process.

Now we are going to prove that (znt )t≥0 is a strong Markov process. Observing that for

u ≥ 0, (Ŵt)t≥0 := (Wt+u −Wu)t≥0 is still a Brownian motion. For any (s, x) ∈ Q, and for
any Borel bounded function f on Rd+1, by (3.22), we have for any u, t ≥ 0, P -a.e.

Xn
t+u(s, (u,X

n
u (s, (0, x))))

= Xn
u (s, (0, x)) +

∫ u+t

u

σns (r,Xn
r (s, (0, x)))d(Wr −Wu)

+

∫ u+t

u

bns (r,Xn
r (s, (0, x)))dr

= Xn
u (s, (0, x)) +

∫ t

0

σns (r + u,Xn
u+r(s, (0, x)))dŴr

+

∫ t

0

bns (r + u,Xn
r+u(s, (0, x)))dr,

and

Xn
t (s+ u, (0, Xn

u (s, (0, x))))

= Xn
u (s, (0, x)) +

∫ t

0

σns (u+ r,Xn
r (u+ s, (0, Xn

u (s, (0, x)))))dŴr

+

∫ t

0

bns (u+ r,Xn
r (u+ s, (0, Xn

u (s, (0, x)))))dr

= Xn
u (s, (0, x)) +

∫ t

0

σns+u(r,X
n
r (u+ s, (0, Xn

u (s, (0, x)))))dŴr

+

∫ t

0

bns+u(r,X
n
r (u+ s, (0, Xn

u (s, (0, x)))))dr.

Since σns (u+ r, ·) = σns+u(r, ·), and bns (u+ r, ·) = bns+u(r, ·), by the pathwise uniqueness of the
the following equation

dXt = σns+u(t,Xt)dŴt + bns+u(t,Xt)dt, X0 = Xn
u (s, (0, x)),
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we have for arbitrary Borel bounded function h on Rd, Eh(Xn
t+u(s, (u,X

n
u (s, (0, x))))) =

Eh(Xn
t (s+u, (0, Xn

u (s, (0, x))))). Hence for arbitrary Borel bounded function f on Rd+1 and
for P − a.e. ω ∈ Ω,

E[f(znt+u(s, x))|Fu](ω) = E[f(s+ t+ u,Xn
t+u(s, (0, x)))|Fu](ω)

= E[f(s+ t+ u,Xn
t+u(s, (u,X

n
u (s, (0, x))))(ω))]

= E[f(s+ t+ u,Xn
t (s+ u, (0, Xn

u (s, (0, x)))))(ω))]

= En
znu (s,x)(ω)f(znt ).

So (znt )t≥0 is a Markov process. Furthermore, for any (s, x) ∈ Q, by applying Ito’s formula to
process Xn

r (s, (0, x)), we get that uns (t, x) = Eh(Xn
t (s, (0, x))) is the solution to the following

equation
Dru

n
s (r, x) =

1

2

d∑
i,j=1

ans,ij(r, x)∂i∂ju
n
s (r, x) + bns (r, x) · ∇uns (r, x) on (0,∞)× Rd,

uns (0, x) = h(x),

(3.23)

with (ans,ij)1≤i,j≤d = σns · (σns )∗, and Borel bounded continuous function h defined on Rd. Let
un(t, x) be the solution to the following equation

Dru
n(r, x) =

1

2

d∑
i,j=1

anij(r, x)∂i∂ju
n(r, x) + bn(r, x) · ∇un(r, x) on (s,∞)× Rd,

un(s, x) = h(x),

(3.24)

with (anij)1≤i,j≤d = σn · (σn)∗, and σn and bn are defined as following

bn(r, x) := bn0 (r, x), σn(r, x) := σn0 (r, x).

Then it is easy to see that un(s + t, x) also satisfies (3.23), which by using uniqueness of
solution to (3.23) implies uns (t, x) = un(s+ t, x) = Eh(Xn

t (s, (0, x))). By Remark 10.4 [7] (or
see Theorem 3.1 [19]), we know that the unique solution un(t, x) to the above equation (3.24)
is continuous on (t, x) ∈ [s,∞) × Rd, which yields the continuity of Eh(Xn

t (s, (0, x))) with
respect to (s, x) ∈ [0,∞)× Rd for any t ∈ [0,∞). Then the second statement of Lemma 3.1
and dominated convergence theorem imply that for any Borel bounded continuous function
g on Rd+1, and for any (s, x) ∈ [0,∞)× Rd

lim
(u,y)→(s,x)

En
u,yg(znt ) = lim

(u,y)→(s,x)
Eg(u+ t,Xn

t (u, (0, y)))

= lim
(u,y)→(s,x)

(
Eg(u+ t,Xn

t (u, (0, y)))− Eg(u+ t,Xn
t (u, (0, x)))

)
+ lim

(u,y)→(s,x)

(
Eg(u+ t,Xn

t (u, (0, x)))− Eg(s+ t,Xn
t (u, (0, x)))

)
+ lim

(u,y)→(s,x)
Eg(s+ t,Xn

t (u, (0, x)))

≤ lim
(u,y)→(s,x)

Ct‖g(u+ t, ·)‖∞|x− y|+ Eg(s+ t,Xn
t (s, (0, x)))

= Eg(t+ s,Xn
t (s, (0, x))) = En

s,xg(znt ).
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It shows that (znt )t≥0 also has Feller property, hence (znt )t≥0 is a strong Markov process. Then
for any (s, x) ∈ Q, for any (Ft)-adapted stopping time η and for any Borel bounded function
f on Rd+1,

Es,xf(zη+t) = f(∂) + Es,x(f(zη+t)− f(∂))Iξ>η+t. (3.25)

Since

Es,xf(zη+t)Iξ>η+t = lim
n→∞

Es,xf(zη+t)Iξn≥η+t

= lim
n→∞

En
s,xf(znη+t)Iξn≥η+tIξn≥η

= lim
n→∞

En
s,xf(η + t,Xn

η+t)Iξn≥η+tIξn≥η,

and {ξn ≥ η} ⊂ Fη, by the strong Markov property of (znt )t≥0, we get

lim
n→∞

En
s,xIξn≥ηE

n
(η,Xn

η )f(t,Xn
t )Iξn≥η = lim

n→∞
En
s,xIξn≥ηE

n
znη
f(znt )Iξn≥η

=Es,xIξ>ηE(η,Xη)f(t,Xt)Iξ>η.

=Es,xIξ>ηEzηf(zt)Iξ>η

Then (3.25) yields

Es,xf(zη+t) = Es,xEzηf(zt). (3.26)

We can find that (3.26) also holds if we replace (s, x) with ∂. Hence we get the strong Markov
property of the process (zt)t≥0.

In the following we will prove another two auxiliary lemmas in order to show that our
solution does not bounce back deep into the interior of Q from near ∂Q too often on any
finite interval of time, which is crucial for us to prove the desired continuity. By shifting the
origin in Rd+1, without losing generality, we assume (s, x) = (0, 0).

Lemma 3.5. For arbitrary n ≥ 0, define ν0 = 0,

µk = inf
{
t ≥ νk : (t,Xt) /∈ Qn+1

}
, νk+1 = inf

{
t ≥ µk : (t,Xt) ∈ Qn

}
. (3.27)

Then for any S ∈ (0,∞) there exists a constant N , depending only on d, p, q, S, ‖bIQn+1‖Lqp,
sup(t,x)∈Qn+1 |σ(t, x)|, and the diameter of Qn+1, such that

∞∑
k=0

(E|XS∧µk −XS∧νk |2)2 ≤ N,

∞∑
k=0

(E|S ∧ µk − S ∧ νk|2)2 ≤ S4.

Proof. We have E|XS∧µk −XS∧νk |2 ≤ 2Ik + 2Jk, where

Ik := E|
∫ S∧µk

S∧νk
σ(s,Xs)dWs|2, Jk := E|

∫ S∧µk

S∧νk
b(s,Xs)ds|2.

Observe that on the set {S ∧ νk < S ∧ µk} we have S ∧ νk = νk and (νk, Xνk) ∈ Qn ⊂ Qn+1.
Furthermore, (t,Xt) ∈ Qn+1 for S ∧ νk < t < S ∧ µk, and we have

E|
∫ S∧µk

S∧νk
σ(s,Xs)dWs|2 ≤

d∑
i,j=1

E|
∫ S∧µk

S∧νk
σ2
ij(s,Xs)ds| ≤ Cd2E|S ∧ µk − S ∧ νk|,
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I2
k ≤ Cd4E|S ∧ µk − S ∧ νk|2 =: Cd4Īk ≤ Cd4SE|S ∧ µk − S ∧ νk|,
∞∑
k=0

(E|
∫ S∧µk

S∧νk
σ(s,Xs)dWs|2)2 ≤ Cd4S2,

∞∑
k=0

(Īk)
2 ≤ (

∞∑
k=0

Īk)
2 ≤ S4.

Moreover, by Hölder’s inequality we have

Jk ≤ E|S ∧ µk − S ∧ νk|
∫ S∧µk

S∧νk
|b(s,Xs)|2ds, J2

k ≤ ĪkJ̄k,

where

J̄k := E(

∫ S∧µk

S∧νk
|b(s,Xs)|2ds)2.

Let τn := inf {t ≥ 0 : zt /∈ Qn}. By the strong Markov property of (zt)t≥0, it follows that

J̄k ≤ sup
(s,x)∈Qn+1

Es,x(

∫ S∧τn+1

0

|b(s+ t,Xt)|2dt)2 = sup
(s,x)∈Qn+1

Es,x(

∫ S

0

|bIQn+1(s+ t,Xt)|2dt)2,

(3.28)

Since for t ≤ τn+1, Xt = Xn+1
t , we see that the second right part of (3.28) will not change if

we change arbitrarily b outside of Qn+1 only preserving the property that new b belongs to
Lqp. We choose to let b be zero outside of Qn+1 and then get the desired estimate from (3.8).
The lemma is proved.

Following the same argument in [7, Corollary 4.3] and use Lemma 3.5 we get the following
result. In order to reduce duplicate, the proof is omitted.

Lemma 3.6. We say that on the time interval [νk, µk] the trajectory (t,Xt)t≥0 makes a run
from Qn to (Qn+1)c provided that µk <∞. Denote by ν(S) the number of runs which (t,Xt)t≥0

makes from Qn to (Qn+1)c before time S. Then for any α ∈ [0, 1/2), Eνα(S) is dominated
by a constant N , which depends only on α, d, p, q, S, ‖bIQn+1‖Lqp, sup(t,x)∈Qn+1 |σ(t, x)|, the
diameter of Qn+1, and the distance between the boundaries of Qn and Qn+1.

Now we go back to prove that zt is left continuous at ξ a.s.. We denote νk(S) the number
of runs of zt from Qk to (Qk+1)c before S ∧ ξ. For n > k + 1 obviously, νk(S ∧ ξn) is also the
number of runs that (t,Xn

t )t≥0 makes from Qk to (Qk+1)c before S∧ξn, since (t,Xt) coincides
with (t,Xn

t ) before ξn. νk(S ∧ ξn) increase if we increase the time interval to S. By Lemma

3.6 Eν
1/4
k (S∧ξn) is bounded by a constant independent of n. By Fatou’s Lemma Eν

1/4
k (S∧ξ)

is finite. In particular, on the set {ω : ξ(ω) <∞} a.s. we have νk(ξ) < ∞. The latter also
holds on the set {ω : ξ(ω) =∞} because zt is continuous on [0, ξ) and Qk is bounded. Thus
νk(ξ) < ∞ a.s. for any k. Since (ξn, Xn

ξn) ∈ ∂Qn we conclude that a.s. there can exist only

finitely many n such that zt visits Qk after exiting from Qn. This is the same as to say that
zt → ∂ as t ↑ ξ a.s..

About the uniqueness, if there is another continuous (Ft)-adapted Q′-valued solution
(z′t)t≥0 = (s+ t,X ′t)t≥0 to the SDE (2.1) with explosion time ξ′, and for t < ξ′ it is Q-valued.
Then for any n ≥ 1

τn(X ′· ) := inf {t ≥ 0 : (s+ t,X ′t) /∈ Qn} < ξ′ (3.29)
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and

ξ̄ := lim
n→∞

τn(X ′· ) = ξ′ a.s.. (3.30)

Precisely ξ̄ ≤ ξ′ by (3.29). On the other hand, on the set where ξ̄ < ξ′, we have z′
ξ̄
∈ Q

since ξ̄ < ξ′, we also have z′
ξ̄

= ∂ since z′
ξ̄

is the limit of points getting outside of any Qn.

Observe that before τn(X ′· ), X
′
t also satisfies the SDE (3.20), by the local strong uniqueness

of equation (3.20) proved by Lemma 3.1, we get Xn
t = X ′t for t ≤ τn(X ′· ), so τn(X ′· ) = τn,n.

And by (3.30) we see that

ξ′ = ξ̄ = lim
n→∞

τn(X ′· ) = lim
n→∞

τn,n = ξ a.s.,

which implies that for t ≤ ξ = ξ′, and z′t coincides with zt from our above construction
(3.21).

4 Preparations of the proof of Theorem 2.4

4.1 Probabilistic representation of solutions to parabolic partial
differential equations

In this subsection, we give a probabilistic representation of the solution to the following
backward parabolic partial differential equation with a potential term V (t, x) : [0, T ]×Rd →
R, {

Dtu(t, x) + Lu(t, x) + V (t, x)u(t, x) = 0, 0 ≤ t ≤ T,

u(T, x) = f(x).
(4.1)

Here T ∈ (0,∞) and

Lu(t, x) :=
1

2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
(t, x) + b(t, x) · ∇u(t, x), u ∈ C∞c (Rd+1),

where (aij)1≤i,j≤d = σσ∗. We first give the assumptions which make the representation
formula hold.

Assumption 3. (i) For all 1 ≤ i, j ≤ d, σij ∈ C([0, T ]× Rd),
(ii) There exist positive constants K and δ such that for all (t, x) ∈ [0, T ]× Rd,

δ|λ|2 ≤ |σ∗(t, x)λ|2 ≤ K|λ|2, ∀λ ∈ Rd,

(iii) b, V ∈ Cb([0, T ]× Rd),
(iv) For all (t, x), (s, y) ∈ [0, T ]× Rd, there exist constants C1, C2 and C3 such that

|aij(t, x)− aij(s, y)| ≤ C1(|x− y| ∨ |t− s|1/2),

|b(t, x)− b(s, y)| ≤ C2(|x− y| ∨ |t− s|1/2),

|V (t, x)− V (s, y)| ≤ C3(|x− y| ∨ |t− s|1/2).

(v) f ∈ C2
c (Rd).
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Theorem 4.1. If Assumption 3 holds, then there exists a unique solution u(t, x) to the
equation (4.1) and it can be represented by the following formula

u(t, x) = E
[
f(X(T, t, x))e

∫ T
t V (u,X(u,t,x))du

]
, (t, x) ∈ [0, T ]× Rd, (4.2)

where X(T, t, x) is the solution to the SDE (1.1) with initial point (t, x) ∈ [0, T ] × Rd.
Furthermore, for t ∈ [0, T ) we have

u(t, ·), Dtu(t, ·), ∇u(t, ·), ∇2u(t, ·) ∈ L1(Rd). (4.3)

Proof. On one hand by classical results of partial differential equation (see [8, Theorem 5.1]),
we know that under our assumption there exists a unique solution u(t, x) ∈ C1,2([0, T ],Rd)
to the equation (4.1), which can be written in the form of a potential with kernel k (see [8,
(14.2)]):

u(t, x) =

∫
Rd
k(T, y; t, x)f(y)dy, (t, x) ∈ [0, T ]× Rd

satisfying

lim
t→T

u(t, x) = lim
t→T

∫
Rd
k(T, y; t, x)f(y)dy = f(x),

and for s = 0, 1, 2 there exists a constant C such that for 0 ≤ t < T (see [8, (13.1)])

∂sxk(T, y; t, x) ≤ C(T − t)−
d+s
2 exp

(
− C |y − x|

2

T − t

)
.

Then for s = 0, 1, 2, for t ∈ [0, T ) we have∫
Rd
|∂sxu(t, x)|dx ≤

∫
Rd

∫
Rd
|f(y)∂sxk(T, y; t, x)|dydx

Fubini
=

∫
Rd
|f(y)|

∫
Rd
|∂sxk(T, y; t, x)|dxdy

≤C(T − t)−
s
2

∫
Rd
|f(y)|dy <∞,

which implies that for t ∈ [0, T ),

u(t, ·), ∇u(t, ·), ∇2u(t, ·) ∈ L1(Rd). (4.4)

Since b is bounded, we get Dtu(t, ·) ∈ L1(Rd) following from the equation (4.1) and (4.4).
On another hand, from our assumption we know that σσ∗ is uniformly elliptic, b(t, x) and
σij(t, x), 1 ≤ i, j ≤ d are bounded for (t, x) ∈ [0, T ) × Rd and continuous in t and Lipschitz
continuous in x, by a known result (eg. see [6, IV Theorem 2.2]) we get the existence and
uniqueness of the global solution (Xt)t≥0 to the SDE (1.1). Then by [12, Theorem 8.2.1] we
get that (4.2) solves the equation (4.1). Hence combining these two sides we get the desired
result and also (4.3) holds.
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4.2 Some auxiliary proofs

In order to show that under certain conditions our solutions will not blow up, we need some
auxiliary proofs which we collect in this subsection. We fix an T ∈ (0,∞), for t ∈ [0, T ]
define

QT := (0, T )× Rd, Br := {x ∈ Rd : |x| < r}, Qt,r := [0, t)×Br.

Assumption 4. (i) ψ is a nonnegative function defined on Rd+1 and ψ ∈ C∞b (Rd+1),
(ii) |∇ψ| ∈ Lq,locp with p, q ∈ (2,∞) and d/p+ 2/q < 1,
(iii) σ satisfies the conditions in Assumption 2 (i),
(iv) For all (t, x), (s, y) ∈ [0, T ]× Rd, there exist constants K0, K ∈ [0,∞) such that for all
1 ≤ i, j ≤ d,

|aij(t, x)− aij(s, y)| ≤ K(|x− y| ∨ |t− s|1/2),

|∂jaij(t, x)− ∂jaij(s, y)| ≤ K0(|x− y| ∨ |t− s|1/2).

Let (Wt)t≥0 be a d-dimensional Wiener process on a given complete probability space (Ω,F ,
(Ft)t≥0, P ), denote (aij)1≤i,j≤d = σσ∗. Let (s, x) ∈ [0,∞) × Rd, we introduce the process
(Y (t, s, x))t≥s, satisfying

Y (t, s, x) = x+

∫ t

s

σ(r, Y (r, s, x))dWr + (
1

2

d∑
j=1

∫ t

s

∂jaij(r, Y (r, s, x))dr)1≤i≤d, (4.5)

and process (X(t, s, x))t≥s satisfying

X(t, s, x) = x+

∫ t

s

σ(r,X(r, s, x))dWr+(
1

2

d∑
j=1

∫ t

s

∂jaij(r,X(r, s, x))dr)1≤i≤d

−
∫ t

s

(σσ∗∇ψ)(r,X(r, s, x))dr. (4.6)

Since for 1 ≤ i, j ≤ d, ∂jaij =
∑d

k=1 σik(∂jσjk) +
∑d

k=1(∂jσik)σjk, and |∇σ| ∈ Lq,locp , from

Assumption 4 (iii), we get
∑d

j=1 |∂jaij| ∈ Lq,locp . Then Lemma 3.1 can be applied here to
guarantee the existence and uniqueness of global (Ft)-adapted solutions (Y (t, s, x))t≥s and
(X(t, s, x))t≥s corresponding to SDEs (4.5) and (4.6) if Assumption 4 holds.

Lemma 4.2. Let Assumption 4 be satisfied. Take a nonnegative Borel function f on Rd+1.
For t ∈ [0, T ] introduce

βT (t, x) = exp(−
∫ T

t

∇ψ∗σ(s, Y (s, t, x))dWs −
1

2

∫ T

t

|∇ψ∗σσ∗∇ψ|(s, Y (s, t, x))ds

− 2

∫ T

t

Dtψ(s, Y (s, t, x)ds),

vT (t, x) = EβT (t, x)f(T, Y (T, t, x)), c(t) =

∫
Rd
e−2ψ(t,x)vT (t, x)dx.

Then c(t) is a constant for t ∈ [0, T ].
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Proof. Using a standard approximation argument it suffices to prove the result for f ∈
C∞c (Rd+1). First by Assumption 4 (i) and (iii), we have

E exp(
1

2

∫ T

t

|∇ψ∗σσ∗∇ψ|(s, Y (s, t, x))ds) <∞.

Girsanov transformation yields

vT (t, x) = E exp(−
∫ T

t

2Dtψ(s,X(s, t, x))ds)f(T,X(T, t, x)).

By Assumption 4 (i), (iii) and (iv), we get that (1
2

∑d
j=1 ∂jaij)1≤i≤d and −σσ∗∇ψ are

bounded and also satisfy Assumption 3 (iv). By Theorem 4.1, vT (t, x) is the solution to the
following Kolmogrov equation with a potential term −2Dtψ:

DtvT (t, x) +
1

2

d∑
i,j=1

∂j(aij∂ivT (t, x))− ((σσ∗∇ψ)∗∇vT )(t, x)

− vT (t, x)2Dtψ(t, x) = 0, (t, x) ∈ [0, T ]× Rd,

vT (T, x) = f(T, x).

(4.7)

And Theorem 4.1 shows that for t ∈ [0, T ), vT (t, ·), DtvT (t, ·), ∇vT (t, ·), ∇2vT (t, ·) ∈ L1(Rd),
also there exists a kernel k(T, y; t, x) such that

vT (t, x) =

∫
Rd
k(T, y; t, x)f(T, y)dy

and there exists a constant C such that ([8, (13.1)])

Dtk(T, y; t, x) ≤ C(T − t)−
d+2
2 exp

(
− C |y − x|

2

T − t

)
.

Then by mean value theorem for h ∈ R with t + h ∈ (0, T ) there exists an θ ∈ (0, 1) such
that

|k(T, y; t+ h, x)− k(T, y; t, x)|
h

= Dtk(T, y; t+θh, x) ≤ C(T−t−θh)−
d+2
2 exp

(
−C |y − x|2

T − t− θh

)
,

then∣∣∣vT (t+ h, x)− vT (t, x)

h

∣∣∣ ≤ ∫
Rd

∣∣∣k(T, y; t+ h, x)− k(T, y; t, x)

h

∣∣∣f(T, y)dy

≤ C(T − t− θh)−
d+2
2

∫
Rd

exp
(
− C |y − x|2

T − t− θh

)
f(T, y)dy

≤ C ′(T − t− θh)−
d+2
2

∫
Rd

exp
(
− C |y − x|

2

T − t

)
f(T, y)dy. (4.8)

Denote g(t, x) = e−2ψ(t,x)vT (t, x), we have for t ∈ [0, T ), t+ h ∈ (0, T ),∣∣∣g(t+ h, x)− g(t, x)

h

∣∣∣ =
∣∣∣e−ψ(t+h,x)(vT (t+ h, x)− vT (t, x))

h
+
vT (t, x)(e−ψ(t+h,x) − e−ψ(t,x))

h

∣∣∣
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≤
∣∣∣vT (t+ h, x)− vT (t, x)

h

∣∣∣+
∣∣∣vT (t, x)(e−ψ(t+h,x) − e−ψ(t,x))

h

∣∣∣
≤ C ′(T − t− θh)−

d+2
2

∫
Rd

exp
(
− C |y − x|

2

T − t

)
f(T, y)dy + C ′′vT (t, x)

=: GT (t, x),

the last inequality holds because of (4.8) and mean value theorem. Since for for t ∈ [0, T ),
vT (t, ·) ∈ L1(Rd) and∫

Rd
(T − t− θh)−

d+2
2

∫
Rd

exp
(
− C |y − x|

2

T − t

)
f(T, y)dydx

=

∫
Rd

( T − t
T − t− θh

) d+2
2

(T − t)−
d+2
2

∫
Rd

exp
(
− C |y − x|

2

T − t

)
f(T, y)dydx

≤ C(T − t)−1

∫
Rd
f(T, y)dy <∞

for |h| � 1, it yields that GT (t, ·) ∈ L1(Rd). Then by dominated convergence theorem, we
have

lim
h→0

∫
Rd g(t+ h, x)− g(t, x)dx

h
= lim

h→0

∫
Rd

g(t+ h, x)− g(t, x)

h
dx =

∫
Rd
Dtg(t, x)dx.

That is to say

Dt

∫
Rd
e−2ψ(t,x)vT (t, x)dx =

∫
Rd
Dt(e

−2ψvT )(t, x)dx. (4.9)

Besides, we can write the first equation in (4.7) in an equivalent form as

Dt(e
−2ψvT ) +

1

2

d∑
i,j=1

∂i(e
−2ψaij∂jvT ) = 0. (4.10)

Now we are going to prove∫
Rd
div(F )(t, x)dx :=

∫
Rd

d∑
i,j=1

∂i(e
−2ψaij∂jvT )(t, x)dx = 0, t ∈ [0, T ). (4.11)

Since ψ is nonnegative, ∂iψ and aij are bounded on [0,∞)× Rd for 1 ≤ i, j ≤ d, then there
exist constants C1 and C2 such that

Fi =
d∑
j=1

e−2ψaij∂jvT ≤ C1

d∑
j=1

|∂jvT |,

and

div(F ) =
d∑

i,j=1

∂i(e
−2ψaij∂jvT )
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=
d∑

i,j=1

(−2∂iψe
−2ψaij∂jvT + ∂iaije

−2ψ∂jvT + e−2ψaij∂i∂jvT )

≤ C2

d∑
i,j=1

(|∂jvT |+ |∂i∂jvT |).

According to (4.3) we know that F (t, ·), divF (t, ·) ∈ L1(Rd) for any t ∈ [0, T ). For n ∈ N,
take smooth function χn on Rd such that χn(x) = 1 when |x| ≤ n and χn(x) = 0 when
|x| > n + 2. Then by dominated convergence theorem and integration by parts formula for
t ∈ [0, T ),∫

Rd
div(F )(t, x)dx = lim

n→∞

∫
Rd
χn(x)div(F )(t, x)dx = − lim

n→∞

∫
Rd
∇χn(x) · F (t, x)dx = 0.

Hence from (4.10), (4.9) and (4.11) we get

Dt

∫
Rd
e−2ψ(t,x)vT (t, x)dx = 0.

This yields that c(t) is a constant for t ∈ [0, T ). Since c(t) is continuous for t ∈ [0, T ], it
shows that c(t) is a constant for t ∈ [0, T ].

Remark 4.3. As it was already pointed out in [7, Remark 7.3], the above lemma plays a
very important role in later proof. Instead of the probabilistic way used in [7] to obtain the
desired result, which is corresponding to [7, Lemma 7.1] and [7, Corollary 7.2], we applied
analytic method in the proof of Lemma 4.2. The original idea of the analytic method that we
used is inspired from [7, Remark 7.3] in which a rough outline of analytic proof was given.
Due to the fact that Bt =: WT−t −WT is still a Wiener process on [0, T ], the probabilistic
way and analytic method both work in [7]. However if we replace the Wiener process Wt with
a martingale Yt, neither can we make the stochastic integral with respect to B′t =: YT−t − YT
well-defined nor obtain a critical formula which is similar to [7, (7.1)]. This essentially
decides the form of the studied SDEs and also the type of the Lyapunov function in what
follows.

Theorem 4.1 talks about Cauchy problem with terminal data for the equation (4.1) in the
domain [0, T ]× Rd. In the cylindrical domain Qr2,r with surface ∂Qr2,r := ((0, r2)× ∂Br) ∪
({r2} × Br) for r ∈ (0, 1], we consider the first boundary value problem to the following

parabolic equation on Qr2,r with assuming that f is a continuous function on ∂Qr2,r:
Lu(t, x) = Dtu(t, x) +

1

2

d∑
i,j=1

∂i(aij(t, x)∂ju(t, x)) = 0 on Qr2,r,

u(t, x) = f(t, x) on ∂Qr2,r,

(4.12)

where (aij)1≤i,j≤d = σσ∗. If Assumption 4 (iii) and (iv) hold, from [14, Theorem 3.1] and [14,
Corollary 3.2] the solution u(t, x) to (4.12) has a representation as following:

u(t, x) =

∫
∂Qr2,r

f(s, y)p(s, y; t, x)dS(s, y),
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where dS denotes the surface measure on ∂Qr2,r, and p(s, y; t, x) is the Poisson kernel on
Qr2,r corresponding to (4.12), which has the following upper bound estimate on Qr2,r ([14])
with a constant c independent of f

p(s, y; t, x) ≤ c(s− t)−
(d+1)

2 exp(−c |y − x|
2

s− t
) (4.13)

for all (t, x) ∈ Qr2,r, (s, y) ∈ ∂Qr2,r, 0 ≤ t < s.

Besides, we also can represent the solution to the above equation (4.12) in a probabilistic
way. For (t, x) ∈ Qr2,r, let

τr := inf
{
s ≥ 0 : (s, Y (s, t, x)) /∈ Qr2,r

}
,

by applying Itô’s formula to u(s, Y (s, t, x)) and taking expectation, we have for (t, x) ∈ Qr2,r,

u(t, x) = E(t,x)[u(τr, Y (τr, t, x))]− E(t,x)[

∫ τr

t

Lu(s, Y (s, t, x))ds] = E(t,x)[f(τr, Y (τr, t, x))].

Hence

E(t,x)[f(τr, Y (τr, t, x))] =

∫
∂Qr2,r

f(s, y)p(s, y; t, x)dS(s, y).

We take (0, 0) as the start point of the process (s, Y (s, t, x)), then denote Ys := Y (s, 0, 0) and

E[f(τr, Yτr)] =

∫
∂Qr2,r

f(s, y)p(s, y; 0, 0)dS(s, y). (4.14)

Lemma 4.4. If Assumption 4 (iii) and (iv) hold, then on an extension of the probability
space there is a stopping time γ such that the distribution of (γ, Yγ) has a bounded density
concentrated on Q1,1.

Proof. Let n = d+3. On an extension of our probability space there exists a random variable
ρ with values in [0, 1] and density function h(r) = nrn−1 such that ρ is independent of all
(Ft)t≥0. Then ρ is also independent to (t, Yt)t≥0, since (Yt)t≥0 is adapted to (Ft)t≥0. Let

F̂t = Ft ∨ σ(ρ), t ≥ 0, and define γ as the first exit time of (t, Yt)t≥0 from Qρ2,ρ. Then γ is

a bounded (F̂t)t≥0 stopping time. We claim that γ is a random variable of the type that we
are looking for.

Actually, according to independence and (4.14), for a nonnegative continuous function
f(t, x) on [0,∞)× Rd we have

Ef(γ, Yγ) =E[Ef(τr, Yτr)

∣∣∣∣
ρ=r

] = E[

∫
∂Qr2,r

f(s, y)p(s, y; 0, 0)dS(s, y)

∣∣∣∣
ρ=r

]

=

∫ 1

0

h(r)dr

∫
∂Qr2,r

f(s, y)p(s, y; 0, 0)dS(s, y)

=

∫ 1

0

h(r)dr

∫
(0,r2)×∂Br

f(s, y)p(s, y; 0, 0)dS(s, y)

+

∫ 1

0

h(r)dr

∫
Br

f(r2, y)p(r2, y; 0, 0)dy =: I1 + I2.
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Then (4.13) and the fact that exp(−c |y|
2

s
)s−(d+1)/2 is bounded by Nr−d−1 on (0, r2) × ∂Br

yield

I1 ≤ k

∫ 1

0

h(r)dr

∫ r2

0

∫
∂Br

f(s, y)
exp(−c |y|

2

s
)

s(d+1)/2
dS(s, y)

≤ N

∫ 1

0

h(r)r−d−1dr

∫ r2

0

∫
∂Br

f(s, y)dS(s, y)

≤ N

∫ 1

0

∫ r2

0

∫
∂B1

r−d−1f(s, ry)h(r)rd−1d(∂B1)dsdr

≤ N

∫ 1

0

∫ 1

0

∫
∂B1

f(s, ry)rdd(∂B1)dsdr

≤ N

∫
Q1,1

f(s, y)dsdy,

and

I2 ≤ k

∫ 1

0

∫
Br

f(r2, y)h(r)
exp(−c |y|

2

r
)

rd+1
dydr

≤ N

∫ 1

0

∫
Br

f(r2, y)h(r)r−d−1dydr

= N

∫ 1

0

∫
Br

f(r2, y)rn−2−ddydr

≤ N

∫
Q1,1

f(s, y)dsdy.

Hence

Ef(γ, Yγ) ≤ N

∫
Q1,1

f(t, x)dxdt

and N is independent of f .
For arbitrary nonnegative function |fIQ1,1 | ∈ L1

1, we can use a standard method to ap-
proximate f via continuous functions. The conclusion is proved.

Lemma 4.5. Let Assumption 4 hold. Let K2 ∈ [0,∞) be a constant. Assume that

ψIQ1,1 ≤ K2, ‖∇ψIQ1,1‖Lqp ≤ K2.

Take an r ∈ (1,∞) and a nonnegative Borel function f = f(t, x) on (0,∞) × Rd such that
f(t, x) = 0 for t > T . For 0 ≤ s ≤ t ≤ T and x ∈ Rd introduce

ρt(s, x) = exp(−
∫ t

s

∇ψ∗σ(u, Y (u, s, x))dWs −
1

2

∫ t

s

|∇ψ∗σσ∗∇ψ|(u, Y (u, s, x))du),

αt(s, x) = exp(−2

∫ t

s

(Dtψ)+(u, Y (u, s, x))du),

ut(s, x) = Eρt(s, x)αt(s, x)f(t, Y (t, s, x)).

Then there is a constant N , depending only on K, r, p, q, K2 and T , such that∫ T

0

ut(0, 0)dt ≤ N(

∫
(0,∞)×Rd

f re−2ψdtdx)1/r +N(

∫
Q1,1

fd+3dtdx)1/(d+3). (4.15)
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Proof. By the strong Markov property of (Yt)t≥0, which can be obtained from the similar
argument as in the proof of Theorem 2.1, for any stopping time τ we have

EIτ≤tρt(0, 0)αt(0, 0)f(t, Yt) = EIτ≤tρτ (0, 0)ατ (0, 0)ut(τ, Yτ ).

Therefore, upon assuming without losing generality that T ≥ 1, for γ from Lemma 4.4,∫ T

0

ut(0, 0)dt = E

∫ γ

0

ρt(0, 0)αt(0, 0)f(t, Yt)dt+ Eργ(0, 0)αγ(0, 0)

∫ T

γ

ut(γ, Yγ)dt =: I1 + I2.

Observe that αt ≤ 1 and for t ≤ γ we have (t, Yt) ∈ Q1,1 so that, in particular, in the formula
defining ρt(0, 0) we can replace ∇ψ with ∇ψIQ1,1 and hence all moments of ρt(0, 0)It≤γ and
ργ(0, 0) are finite and uniformly bounded in t. Since by (3.7) we have

E[exp(
1

2

∫ t

0

|∇ψ∗σσ∗∇ψ|IQ1,1(u, Y (u, s, x))du)] <∞

for all t ∈ [0, T ]. For the moments of ρt(0, 0)It≤γ and ργ(0, 0), by using the same way of getting

(3.15) and (3.16) we get the desired results. We also can replace 1
2

∑d
j=1

∫ t
s
∂jaij(r, Y (r, s, x))dr

by 1
2

∑d
j=1

∫ t
s
IQ1,1∂jaij(r, Y (r, s, x))dr) in the SDE (4.5) for all 1 ≤ i, j ≤ d, it follows by

Hölder’s inequality and (3.8) that for any v ∈ (1,∞)

I1 ≤ N(E

∫ T

0

|f vIQ1,1|(t, Yt)dt)1/v ≤ N‖f vIQ1,1‖1/v

Ld+5/2 .

We can choose v so that v(d+ 5/2) = d+ 3, and get that I1 is less than the second term on
the right in (4.15).

In what concerns I2 we again use αγ(0, 0) ≤ 1 and the finiteness of all moments of ργ(0, 0).
Then we find

I2 ≤ N(

∫ 1

0

∫ T

s

(

∫
B1

urt (s, x)dx)dtds)1/r. (4.16)

To estimate the interior integral with respect to x we insert there exp(−2ψ(s, x)) and again
use Hölder’s inequality and the fact that Eρt(s, x) ≤ 1. This yields

I2(s, t) :=

∫
B1

urt (s, x)dx ≤ e2K2

∫
Rd
e−2ψ(s,x)v̂t(s, x)dx

where
v̂t(s, x) = Eρt(s, x)αt(s, x)f r(t, Y (t, s, x)) ≤ Eβt(s, x)f r(t, Y (t, s, x)).

Hence by Lemma 4.2,

I2(s, t) ≤ e2K2

∫
Rd
e−2ψ(t,x)f r(t, x)dx,

which and (4.16) show that I2 is less than the first term on the right in (4.15). The Lemma
is proved.

Lemma 4.6. Let the assumptions of Lemma 4.5 be satisfied and let ε ∈ [0, 2) be a constant
and h a nonnegative Borel function on bounded domain Q ⊂ [0,∞)× Rd such that on Q,

2Dtψ +
d∑

i,j=1

∂j(aij∂iψ) ≤ heεψ. (4.17)
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Then for any δ ∈ [0, 2 − ε), r ∈ (1, 2/(δ + ε)], there exists a constant N , depending only on
K, T , p, q, K2, ε, δ and r (but not Q) such that for any stopping time τ ≤ τQ(Y·) we have

EΦτ ≤ N +N(

∫
Q

hre−(2−rη)ψdtdx)1/r +N sup
Q1,1

h, (4.18)

where η = δ + ε so that rη ≤ 2 and

Φt := exp(−
∫ t

0

(∇ψ∗σ)(s, Ys)dWs −
1

2

∫ t

0

|∇ψ∗σσ∗∇ψ|(s, Ys)ds

− 2

∫ t

0

(Dtψ)+(s, Ys)ds+ δψ(t, Yt)).

Proof. By Itô’s formula,

Φτ =Φ0 +mτ +

∫ τ

0

Φt[δDtψ +
δ

2

d∑
i,j=1

∂j(aij∂iψ)− 2(Dtψ)+

+
1

2
(|δ − 1|2 − 1)|∇ψ∗σσ∗∇ψ|](t, Yt)dt

where mt is a local martingale starting at zero. By using (4.17), and the inequality |δ−1| ≤ 1
we obtain

Φτ ≤ Φ0 + δ

∫ τ

0

Φth(t, Yt) exp(εψ(t, Yt))dt+mτ . (4.19)

Since Φt ≥ 0 we take the expectations of both sides and drop Emτ . More precisely, we
introduce τn := inf {t ≥ 0 : |mt| ≥ n} and substitute τ ∧ τn in place of τ in (4.19). After
that we take expectations, use the fact that Emτ∧τn = 0, let n→∞, and finally use Fatou’s
Lemma with monotone convergence theorem. Furthermore, we denote f = IQh exp(ηψ) and
notice that τ ≤ T . Then in the notation of Lemma 4.5, we find that

EΦτ ≤ N +NE

∫ τ

0

ρt(0, 0)αt(0, 0)f(t, Yt)dt

≤ N +N

∫ T

0

Eρt(0, 0)αt(0, 0)f(t, Yt)dt = N +N

∫ T

0

ut(0, 0)dt.

It only remains to note that the first term in the right-hand side of (4.15) is just the sec-
ond one on the right in (4.18) and the second integral on the right in (4.15) is less than
volQ1,1 supQ1,1 hd+3 exp[ηK2(d+ 3)]. The Lemma is proved.

Theorem 4.7. Let Assumption 4 hold. Let K1, K2 ∈ [0,∞) and ε ∈ [0, 2) be some constants
and let Q be a bounded subdomain of QT and h be a nonnegative Borel function on Q. Assume
that

hIQ1,1 ≤ K2, ψIQ1,1 ≤ K2, ‖IQ1,1∇ψ‖Lqp ≤ K2.

Also assume that on Q

ψ ≥ 0, 2Dtψ ≤ K1ψ,
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2Dtψ +
d∑

i,j=1

∂j(aij∂iψ) ≤ heεψ.

Denote by Xt, t ∈ [0, T ], the solution of

Xt =

∫ t

0

σ(s,Xs)dWs +

∫ t

0

(−σσ∗∇ψ)(s,Xs)ds+ (
1

2

d∑
j=1

∫ t

0

∂jaij(s,Xs)ds)1≤i≤d.

Then for any r ∈ (1, 4/(2 + ε)] there exists a constant N , depending only on K, K1, K2, r,
d, T , p, q, and ε, such that

E sup
t≤τQ(X·)

exp[µ(ψ(t,Xt) + ν|Xt|2)] ≤ N +NHQ(T, a, r) (4.20)

where HQ is introduced in Assumption 1, a = (2 − rη)ν, η = 2δ + ε, µ, ν and δ are taken
from (2.7). Here τQ(X·) := inf {t ≥ 0 : (t,Xt) /∈ Q}.

Proof. Define ψ̂ = ψ + ν|x|2,

Mt = exp(δψ̂(t,Xt)−
K1

2

∫ t

0

ψ̂(s,Xs)ds), M∗ = sup
t≤τQ(X·)

Mt.

Then for t ≤ τQ(X·),

ψ̂(t,Xt) ≤ lnM1/δ
∗ +

K1

2δ

∫ t

0

ψ̂(s,Xs)ds

and hence by Gronwall’s inequality

ψ̂(t,Xt) ≤ etK1/(2δ) lnM1/δ
∗ ≤ eTK1/(2δ) lnM1/δ

∗ .

Take µ = δ
2
e−TK1/(2δ), then

exp(µψ̂(t,Xt)) ≤
√
M∗. (4.21)

Therefore, to prove (4.20), it suffices to prove that E
√
M∗ ≤ N . It turns by a well known

result on transformations of stochastic inequalities (see Lemma 3.2 in [5]), if EMτ ≤ N1 for
all stopping times τ ≤ τQ(X·). Then E

√
M∗ ≤ 3N1. Thus, it suffices to estimate EMτ .

On a probability space carrying a d-dimensional Wiener process (Ŵt)t≥0 introduce (X̂t)t≥0

as the solution of the equation

X̂t =

∫ t

0

σ(s, X̂s)dŴs −
∫ t∧τQ(X̂·)

0

σσ∗∇ψ̂(s, X̂s)ds+ (

∫ t∧τQ(X̂·)

0

1

2

d∑
j=1

∂jaij)(s, X̂s)ds)1≤i≤d.

(4.22)
Also set

M̂t = exp(2δψ̂(t, X̂t)− 2

∫ t

0

(Dtψ̂)+(s, X̂s)ds), t ≥ 0.

Write Ê for the expectation sign on the new probability space and observe that on Q

2Dtψ̂ +
d∑

i,j=1

∂j(aij∂iψ̂) = 2Dtψ +
d∑

i,j=1

∂j(aij∂iψ) + 2ν
d∑

i,j=1

xi∂jaij + 2ν
d∑

i,j=1

∂jaij
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≤ (h+ C)eεψ̂. (4.23)

Here 2ν
∑d

i,j=1 xi∂jaij + 2ν
∑d

i,j=1 ∂jaij ≤ (h + C)eεψ̂ holds because of Assumption 4, which
means that |∂jaij| is bounded. Then after an obvious change of measure (cf. Lemma A.3 )

inequality (4.18) with 2δ, Ê, ψ̂, and Ŵt in place of δ, E, ψ, and Wt, respectively, η = 2δ+ ε,
and r ∈ (1, 4/(2 + ε)] ⊂ (1, 2/(2δ + ε)] is written as

ÊM̂τ ≤ N +N(

∫
Q

hrI(0,T )e
−(2−rη)ψ̂dtdx)1/r

and since ψ̂ ≥ ν|x|2 on Q, we obtain

ÊM̂τ ≤ N +N(

∫
Q

hrI(0,T )e
−(2−rη)ν|x|2dtdx)1/r = N +NH

1/r
Q (T, (2− rη)ν, r) =: N0

for all stopping times τ ≤ τQ(X̂·), which yields

Ê

√
M̂∗ ≤ 3N0.

Combining this with the inequality

exp(2δψ̂(t, X̂t)−K1

∫ t

0

ψ̂(x, X̂s)ds) ≤ M̂t, t ≤ τQ(X̂·),

the left-hand side of which is quite similar to Mt but with 2ψ̂ in place of ψ̂, the above
argument deduce

Ê sup
t≤τQ(X̂·)

exp(2µν|X̂t|2) ≤ Ê sup
t≤τQ(X̂·)

exp(2µψ̂(t, X̂t)) ≤ NN0. (4.24)

We now estimate EMτ through ÊM̂τ by using Girsanov’s theorem and Hölder’s inequality.
We use a certain freedom in choosing X̂t and Ŵt and on the probability space where Wt and
Xt are given we introduce a new measure by the formula:

P̂ (dω) = exp(−2ν

∫ ∞
0

X∗t σ(t,Xt)It<τQ(X·)dWt − 2ν2

∫ ∞
0

X∗t (σσ∗)(t,Xt)XtIt<τQ(X·)dt)P (dω).

Since Q is a bounded domain, then we have

E exp
(

2ν2

∫ ∞
0

X∗t (σσ∗)(t,Xt)XtIt<τQ(X·)dt
)
≤ E exp

(
2ν2K

∫ T

0

X∗tXtIt<τQ(X·)dt
)
<∞,

which implies that P̂ is a probability measure. Furthermore, as is easy to see, for t ≤ τQ(X·)

X̂t := XtIt<τQ(X·) + (

∫ t

0

σ(s,Xs)dWs −
∫ τQ(X·)

0

σ(s,Xs)dWs +XτQ(X·))It≥τQ(X·)

coincides with Xt and satisfies (4.22) for t ≤ τQ(X·) with

Ŵt = Wt + 2ν

∫ t∧τQ(X·)

0

σ∗(s,Xs)Xsds
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which is a Wiener process with respect to P̂ . In this situation for τ ≤ τQ(X·) = τQ(X̂·)

EMτ ≤ ÊM̂1/2
τ exp(2ν

∫ ∞
0

X̂∗t σ(t, X̂t)It<τQ(X̂·)
dŴt − 2ν2

∫ ∞
0

X̂∗t (σσ∗)(t, X̂t)X̂tIt<τQ(X̂·)
dt)

≤ (ÊM̂τ )
1/2(Êρ1/2 exp(12v2

∫ ∞
0

X̂∗t (σσ∗)(t, X̂t)X̂tIt<τQ(X̂·)
dt))1/2

where

ρ = exp(8ν

∫ ∞
0

X̂∗t σ(t, X̂t)It<τQ(X̂·)
dŴt − 32ν2

∫ ∞
0

X̂∗t (σσ∗)(t, X̂t)X̂tIt<τQ(X̂·)
dt).

Observe that Êρ = 1 and ÊM̂τ ≤ N0. Therefore,

EMτ ≤ N
1/2
0 (Ê exp(24ν2

∫ τQ(X·)

0

(X̂∗t (σσ∗)(t, X̂t)X̂t)dt))
1/4.

It only remains to refer to (4.24) after noticing that

24ν2

∫ τQ(X·)

0

(X̂∗t (σσ∗)(t, X̂t)X̂t)dt ≤ 24ν2KT sup
t≤τQ(X·)

|Xt|2 = 2µν sup
t≤τQ(X·)

|Xt|2

and use the inequality ια ≤ 1 + ι if ι ≥ 0, 0 ≤ α ≤ 1, where ν = µ/(12KT ). The theorem is
proved.

5 Proof of Theorem 2.4

By Theorem 2.1 the strong solution (t,Xt)t≥0 to (2.5) is defined at least until the time ξ
when (s + t,Xt)t≥0 exits from all Qn. We claim that in order to prove ξ = ∞ a.s. and also
to prove the second assertions of the theorem, it suffices to prove that for each T ∈ (0,∞)
and m ≥ 1 there exists a constant N , depending only on K, K1, d, p(m + 1), q(m + 1), ε,
T , ‖IQm+1∇φ‖Lq(m+1)

p(m+1)

, dist(∂Qm, ∂Qm+1), supQm+1 {φ+ h}, and the function H, such that for

(s, x) ∈ Qm we have
E sup

t<ξ∧T
exp(µφ(s+ t,Xt) + µν|Xt|2) ≤ N. (5.1)

To prove the claim notice that (5.1) implies

sup
t<ξ∧T

(φ(s+ t,Xt) + |Xt|2) <∞ a.s.. (5.2)

It follows that a.s. there exists an n ≥ 1 such that up to time ξ ∧ T the trajectory (Zt)t≥0 =
(s+ t,Xt)t≥0 lies in Qn. Indeed, on the set of all ω where this is wrong, for the exit time ξn

of Zt from Qn we have ξn < T for all n. However owing to (5.2), the sequence Xξn should
be bounded, then the sequence Zξn has limit points on the boundary ∂Q. According to the
Assumption 1 (vi), it only happens with probability zero. Hence, a.s. there is n ≥ 1 such
that T ≤ ξn. Since this happens for any T and ξn < ξ we conclude that ξ = ∞ a.s., which
proves our intermediate claim.

Since dist(∂Qm, ∂Qm+1) > 0 we can find κ ∈ (0, 1] sufficiently small so that (s, x)+Qκ2,κ ⊂
Qm+1 for all (s, x) ∈ Qm. Therefore, by translation and dilation, without losing generality,
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we may assume that s = 0, x = 0 and Q1,1 ⊂ Qm.
Next we notice that obviously, to prove (5.1) it suffices to prove that with N of the same

kind as in (5.1) for any n ≥ m+ 2,

E sup
t<ξn∧T

exp(µφ(t,Xt) + µν|Xt|2) ≤ N. (5.3)

Fix an n ≥ m + 2. By virtue of Theorem 2.1, notice that the left-hand side of (5.3) will
not change if we change −σσ∗∇φ + (1

2

∑d
j=1 ∂jaij)1≤i≤d outside of Qn. Therefore we may

replace φ with φη and replace 1
2

∑d
j=1 ∂jaij with 1

2

∑d
j=1 ∂jaijη for each 1 ≤ i ≤ d, where η

is an infinitely differentiable function equal 1 on a neighborhood of Qn and equals 0 outside
of Qn+1. To simplify the notation we just assume that φ and 1

2

∑d
j=1 ∂jaij vanish outside of

Qn+1 and (2.3) holds in a neighborhood of Qn. This is harmless as long as we prove that N
depends appropriately on the data.

Now we mollify φ by convolving it with a δ-like nonnegative smooth function ζγ(t, x) =
γ−d−1ζ(t/γ, x/γ), ζ has compact support in Q1. Denote by φ(γ) the result of the convolution
and use an analogous notation for the convolution of ζγ(t, x) with other functions. Also
denote by (Xγ

t )t≥0 the solution of the following SDE

Xγ
t =

∫ t

0

σ(s,Xγ
s )dWs +

∫ t

0

(−σσ∗∇φ(γ))(s,Xγ
s )ds+ (

1

2

d∑
j=1

∫ t

0

∂jaij(s,X
γ
s )ds)1≤i≤d.

For x· ∈ C([0,∞),Rd) we define ξn(x·) := inf {t ≥ 0 : (t, xt) 6∈ Qn}. Consider the bounded
function f on C([0,∞),Rd) given by the formula

f(x·) = sup
t≤ξn(x·)∧T

exp(µφ(t, xt) + µν|xt|2),

and let fγ be defined by the same formula with φ(γ) in place of φ. Since σσ∗ is bounded, by
using Lemma 3.4 we conclude that the left-hand side of (5.3) is equal to the limit as γ ↓ 0 of

Efγ(Xγ
· ) = E sup

t<ξn(Xγ
· )∧T

exp(µφ(γ)(t,Xγ
t ) + µν|Xγ

t |2). (5.4)

In fact, if we denote Mt =
∫ t

0
σ(s,Ms)dWs, t ≥ 0, according to Lemma 3.4

|Ef(X·)− Efγ(Xγ
· )| ≤ N ′(E|f(M·)− fγ(M·)|2)1/2 +N ′‖f‖∞‖σσ∗(∇φ−∇φ(γ))IQn‖Lqp
≤ N ′(E|f(M·)− fγ(M·)|2)1/2 +KN ′‖(∇φ−∇φ(γ))IQn‖Lqp ,

which of course tends to 0 when γ → 0, since φ is continuous and bounded on Qn, |IQn∇φ| ∈
Lqp, then fγ → f and IQn∇φ(γ) → IQn∇φ in Lqp as γ → 0.

In the light of the fact that (2.3) holds in a neighborhood of Qn we have that on Qn for
sufficiently small γ

2Dtφ
(γ) +

d∑
i,j=1

∂j(aij∂iφ
(γ)) ≤ ((heεφ)(γ)e−εφ

(γ)

+
d∑

i,j=1

|∂j(aij∂iφ(γ))− (∂j(aij∂iφ))(γ)|)eεφ(γ)

=: hγeεφ
(γ)

. (5.5)
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Since h is continuous, then (heεφ)(γ)e−εφ
(γ) → h uniformly onQn. Besides

∑d
i,j=1 |∂j(aij∂iφ(γ))−

(∂j(aij∂iφ))(γ)|)→ 0 pointwise. Hence if we denote

Hγ
Qn(T, (2− rη)ν, r) :=

∫
Qn

(hγ)r(t, x)I(0,T )(t)e
−(2−rη)ν|x|2dtdx,

we have

lim
γ→0

Hγ
Qn(T, (2− rη)ν, r) ≤ HQn(T, (2− rη)ν, r).

Furthermore, the conditions 2Dtφ
(γ) ≤ K1φ

(γ) also hold in a neighborhood of Qn for suffi-
ciently small γ.

We now apply Theorem 4.7 for Qn ∩QT in place of Q to conclude that

E sup
t<ξn∧T

exp(µφ(t,Xt) + µν|Xt|2) = lim
γ↓0

E sup
t<ξn(Xγ

· )∧T
exp(µφ(γ)(t,Xγ

t ) + µν|Xγ
t |2)

≤ lim
γ↓0

(N +NHγ
Qn(T, (2− rη)ν, r))

≤ N +NHQn(T, (2− rη)ν, r)

≤ N +NHQ(T, (2− rη)ν, r),

where the values of all the parameters are specified in 4.7 and the constants N depend only
on r, d, p(m+ 1), q(m+ 1), ε, T , K, K1, ‖IQm+1∇φ‖

L
q(m+1)
p(m+1)

, and supQm+1 {φ+ h} .
We finally use condition (H) from Assumption 1 . Fix any r0 ∈ (1, 2/(2δ + ε)), set

a = (2 − r0η)ν (> 0) and take r = r(T, a) from condition (H). Hölder’s inequality shows
that if condition (H) is satisfied with r = r′ where r′ > 1, then it is also satisfied with any
r ∈ (1, r′]. Hence without losing generality we may assume that r = r(T, a) ∈ (1, r0]. Then
(2 − rη)ν ≥ a and HQ(T, (2 − rη)ν, r) ≤ HQ(T, a, r(T, a)) < ∞. Thus, Theorem 4.7 yields
(5.3). The theorem is proved.

�

Remark 5.1. We can add another drift term to (2.5), it does not have to be the gradient of
a function. Under Assumption 1 take a Borel measurable locally bounded Rd-valued function
b(t, x) defined on Rd+1 satisfying the condition |b(t, x)| ≤ c(1+ |x|), where c is a finite positive
constant, then it turns out that the first assertion of Theorem 2.4 still holds with the equation

Xt = x+

∫ t

0

σ(s+ r,Xr)dWr +

∫ t

0

(−σσ∗∇φ)(s+ r,Xr)dr +

∫ t

0

b(s+ r,Xr)dr

+ (

∫ t

0

1

2

d∑
j=1

∂jaij(s+ r,Xr)dr)1≤i≤d, t ≥ 0 (5.6)

in place of (2.5). To prove this we follow the proof in [7] Remark 8.2. The only needed
materials are the estimate (2.6) and the Markov property of solution to the equation (2.5),
which we already get from the proof of Theorem 2.1. By applying Girsanov theorem we get
the non-explosion result for the equation (5.6) from Theorem 2.4.

Further we can carry our results in Theorem 2.4 to the cases in which φ is not necessarily
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nonnegative but φ ≥ −C(1 + |x|2), C > 0. Since the equation (2.5) is equivalent to the
following

Xt = x+

∫ t

0

σ(s+ r,Xr)dWr + (
1

2

∫ t

0

d∑
j=1

∂jaij(s+ r,Xr)dr)1≤i≤d

+

∫ t

0

2Cσσ∗(s+ r,Xr)Xrdr −
∫ t

0

σσ∗∇[C(1 + |x|2) + φ](s+ r,Xr)dr, t ≥ 0,

obviously |σσ∗(t, x)x| ≤ K(1 + |x|). We conclude that the SDE (2.5) has a unique solution
defined for all times if (s, x) ∈ Q provided that φ + C(1 + |x|2) rather than φ satisfies
Assumption 1.

6 Examples and applications

In this section, we give several examples to show the local well-posedness and non-explosion
of solution to the SDE that our results are applied.

6.1 Examples-Maximal local well-posedness

Example 6.1. Consider the equation (1.1) when d = 1, Q = R+ × (0,∞), Qn = (0, n) ×
{x : 1/n < x < n} for n ∈ N, b(t, x) = −x−1, σ(t, x) = (1 + x2)−1.

For any (s, x) ∈ Q, for any n ∈ N, if we take q(n) = ∞ and p(n) ∈ (2,∞), then
1/p(n)+2/q(n) < 1. We can also easily check that ‖bIQn‖L∞

p(n)
<∞, and ‖IQn∇σ‖L∞

p(n)
<∞.

Furthermore, σ(t, x) is uniformly continuous in x uniformly with respect to t for (t, x) ∈ Qn,
and there exist positive constants δn(= (1 + n2)−2) such that for all (t, x) ∈ Qn,

|σ∗(t, x)λ|2 ≥ δn|λ|2, ∀λ ∈ Rd.

Hence by Theorem 2.1 there exists an (Ft)-stopping time ξ and a unique (Ft)-adapted solution
to the following equation

Xt = x−
∫ t

0

1

Xr

dr +

∫ t

0

(1 +X2
r )−1dWr, t ∈ [0, ξ).

Example 6.2. If d = 2 with b(t, x) = x ln |x(1)| = (x(1) ln |x(1)|, x(2) ln |x(1)|), σ(t, x) = I2 ·
ln(2+|x|2) on Q = R+×R2\

{
x(1) = 0

}
and Qn = (0, n)×

{
x ∈ R2 : 1/n < |x(1)| < n, |x(2)| < n

}
,

where x(i) denotes the i−th exponent of the vector x ∈ Rd and I2 is the identity matrix in R2.
Then by Theorem 2.1 for any (s, x) ∈ Q, there exist an (Ft)-stopping time ξ and a unique
(Ft)-adapted solution to the following SDE

X
(1)
t = x(1) +

∫ t

0

X(1)
r ln |X(1)

r |dr +

∫ t

0

ln(2 + |Xr|2)dW (1)
r ,

X
(2)
t = x(2) +

∫ t

0

X(2)
r ln |X(1)

r |dr +

∫ t

0

ln(2 + |Xr|2)dW (2)
r ,

which can be rewritten as

Xt = x+

∫ t

0

Xr ln |X(1)
r |dr +

∫ t

0

I2 ln(2 +X2
r )dWr, t ∈ [0, ξ).
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More precisely, for n ∈ N, we can take p(n) ∈ (2,∞) and q(n) = ∞, then ‖bIQn‖L∞
p(n)

< ∞,

and ‖∂σIQn‖L∞
p(n)

< ∞. Put 0 < δn < ln2 2, then condition (ii) in Theorem 2.1 also is

fulfilled.

6.2 Example-Non-explosion

Example 6.3. Consider d = 1, Q = R+ × (0,∞), and Qn = (0, n)× {x : 1/n < x < n}, for
δ > 0, let φ(t, x) = |x|−δ + |x|, σ(t, x) = 2 + sinx.

We can find that φ is a nonnegative continuous function on Q and blows up near the
parabolic boundary of Q. For n ∈ N, take q(n) =∞, p(n) ∈ (2,∞), then 1/p(n)+2/q(n) < 1
and ‖(−σ2∇φ+ σ∇σ)IQn‖L∞

p(n)
<∞. Besides,

∇(σ2∇φ)(t, x) ≤ Ce3/2φ(t,x)

with constant C ∈ (0,∞). For σ, it can be easily checked that the conditions in Assumption
1 are satisfied. Then by Theorem 2.4 the following SDE has a unique (Ft)-adapted solution
on Q:

Xt = x+

∫ t

0

(2 + sinXs)dWs +

∫ t

0

(δXs|Xs|−δ−2 − Xs

|Xs|
)(2 + sinXs)

2ds

+

∫ t

0

(2 + sinXs) cosXsds, t ≥ 0.

6.3 Diffusions in random media

We apply our results to a particle which performs a random motion in Rd, d ≥ 2, interacting
with impurities which are randomly distributed according to a Gibbs measure of Ruelle
type. So, the impurities form a locally finite subset γ = {xk|k ∈ N} ⊂ Rd. The interaction
is given by a pair potential V and diffusion coefficient σ to be specified below defined on{
x ∈ Rd : |x| > ρ

}
, where ρ ≥ 0 is a given constant. The stochastic dynamics of the particle

is then determined by a stochastic equation type (2.5) as in Theorem 2.4 above with

Q := R+ × (Rd\γρ), φ(t, x) :=
∑
y∈γ

V (x− y), (t, x) ∈ Q, (6.1)

where γρ is the closed ρ−neighborhood of the set γ, i.e., the random path (Xt)t≥0 of the
particle should be the strong solution of

Xt = x+

∫ t

0

σ(Xs)dWs + (
1

2

d∑
j=1

∫ t

0

∂jaij(Xs)ds)1≤i≤d −
∑
w∈γ

∫ t

0

(σσ∗)(Xs)∇V (Xs − w)ds.

(6.2)

Below we shall give conditions on the pair potential V and diffusion coefficient σ which
imply that this is indeed the case, i.e. that Theorem 2.4 above applies, for all γ outside a
set of measure zero for the Gibbs measure. Here the original case is from [7] section 9.1, we
generalize it to the multiplicative noise case. Similarly the set of admissible impurities γ we
can treat is

Γad :=
{
γ ⊂ Rd|∀r > 0∃c(γ, r) > 0 : |γ ∩Br(x)| ≤ c(γ, r) log(1 + |x|), ∀x ∈ Rd

}
, (6.3)

33



where Br(x) denotes the open ball with center x and radius r, |A| denotes the cardinality of
a set A. From [7] we know that for essentially all classes of Gibbs measure in equilibrium
statistical mechanics of interacting infinite particle systems in Rd the set Γad has measure
one, this is also true for Ruelle measures.

We fix a γ ∈ Γad. The necessary conditions on the pair potential V and diffusion coeffi-
cient σ go as follows (the typical case when ρ = 0 is also included):
(V1) The function V is positive and once continuously differentiable in Rd ∩ {|x| > ρ},
lim|x|↓ρ V (x) =∞.
(V2) There exist finite constants α > d/2, C ≥ 0, ε ∈ [1, 2) such that with U(x) =:
C(1 + |x|2)−α we have

|V (x)|+ |∇V (x)| ≤ U(x) for |x| > ρ, (6.4)

and for any |y| > ρ

d∑
i,j=1

(∂jaij(x)∂iV (y) + aij(x)∂i∂jV (y)) ≤ C(eε(V+U)(y) − 1) (6.5)

in the sense of distributions on
{
x ∈ Rd : |x| > ρ

}
where σ(x) = (σij(x))1≤i,j≤d : Rd → Rd×Rd

satisfies the following conditions:
(σ1) There exists a positive constant K such that for all x ∈ Rd

1

K
|λ|2 ≤ 〈(σσ∗)(x)λ, λ〉 ≤ K|λ|2, ∀λ ∈ Rd. (6.6)

(σ2) For 1 ≤ i, j ≤ d, σij ∈ C2
b (Rd).

We emphasize that above conditions are fulfilled for essentially all potentials of interests
in statistical physics.

Introduce V̄ (x) = V (x) + 2U(x), |x| > ρ, and for (t, x) ∈ Q let

φ̄(t, x) :=
∑
y∈γ

V̄ (x− y), (aij)1≤i,j≤d := σσ∗,

b(t, x) := 2
∑
w∈γ

(σσ∗)(x)∇U(x− w).

Owing to (6.4), (6.6) and the fact that γ ∈ Γad, the function φ is continuously differentiable
in Q and |b(t, x)| ≤ NK log(2 + |x|), where N is independent of (t, x) (See [7] Section 9.1).
Meanwhile for appropriate constants N on Q we have for |y| > ρ

2
d∑

i,j=1

(∂jaij(x)∂iU(y) + aij(x)∂j∂iU(y)) ≤ N(eεU(y) − 1)

because of conditions (σ1) and (σ2). Combing this with the fact that V + U is positive and∑
(eak − 1) ≤ e

∑
ak − 1, ak ≥ 0, we find that there exists a constant N ′ > 0 independent of

(t, x) such that

d∑
i,j=1

∂j(aij∂iφ̄)(x) =
d∑

i,j=1

∑
w∈γ

∂j(aij(x)∂i(V (x− w) + 2U(x− w)))
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≤ N
∑
w∈γ

(
(eε(V (x−w)+2U(x−w)) − 1) + (eεU(x−w) − 1)

)
≤ N ′(eεφ̄(x) − 1).

It shows that all conditions on φ̄ and σ in Theorem 2.4 are fulfilled and therefore by Remark
5.1 the equation

Xt = x+

∫ t

0

σ(Xs)dWs −
∫ t

0

(σσ∗∇φ̄)(Xs)ds+ (
1

2

d∑
j=1

∫ t

0

∂jaij(Xs)ds)1≤i≤d +

∫ t

0

b(Xs)ds

(6.7)

has a unique strong solution defined for all times if x ∈ Rd\γρ. Since equation (6.7) coincides
with SDE (6.2), we get the desired conclusion.

6.4 M-particle systems with gradient dynamics

In this subsection we consider a model of M particles in Rd interacting via a pair potential
V and diffusion coefficient σ satisfying the following conditions:
(V1) The function V is once continuously differentiable in Rd\ {0}, lim|x|→0 V (x) = ∞, and
on Rd\ {0} we assume that V ≥ −U , where U(x) := C(1 + |x|2), C is a constant.
(V2) There exists a constant ε ∈ [1, 2) such that for arbitrary x, y ∈ Rd\ {0},

d∑
i,j=1

(∂jai,j(x)∂iV (y) + ai,j(x)∂i∂jV (y)) ≤ Ceε(V+U)(y) (6.8)

in the sense of distributions.
Here (ai,j)1≤i,j≤d := σσ∗ and σ(x) = (σi,j(x))1≤i,j≤d : Rd → Rd×Rd is the diffusion coefficient
satisfying:
(σ1) There exists a positive constant K such that for all x ∈ Rd

1

K
|λ|2 ≤ 〈(σσ∗)(x)λ, λ〉 ≤ K|λ|2, ∀λ ∈ Rd,

(σ2) For 1 ≤ i, j ≤ d, σi,j ∈ C2
b (Rd).

Introduce V̄ := V + 2U ,

Q := R+ ×
(
RMd\ ∪1≤k<j≤M

{
x = (x(1), ..., x(M)) ∈ RMd : x(k) = x(j)

})
,

Qn := (0, n)×
{
x = (x(1), ..., x(M)) ∈ RMd : |x| < n, x(k) 6= x(j) for 1 ≤ k < j ≤M

}
,

and let the function φ, φ̄, σ̄, ā and b be defined on Q by

φ(t, x) :=
∑

1≤k<j≤M

V (x(k) − x(j)), φ̄(t, x) :=
∑

1≤k<j≤M

V̄ (x(k) − x(j)),

σ̄(t, x) :=


σ(x(1)) 0 0

0 σ(x(2)) 0
· · · · · · · · ·
0 0 σ(x(M))

 , ā(t, x) :=


(σσ∗)(x(1)) 0 0

0 (σσ∗)(x(2)) 0
· · · · · · · · ·
0 0 (σσ∗)(x(M))

 ,
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b := (b(1), ..., b(M)), b(k)(t, x) := 4C(σσ∗)(x(k))
∑

1≤j 6=k≤M

(x(k) − x(j)), k = 1, · · · ,M.

Observe that for arbitrary y, x ∈ Rd\ {0},

2
d∑

i,j=1

(∂jai,j(x)∂iU(y) + ai,j(x)∂j∂iU(y)) ≤ NeεU(y)

for an appropriate constant N which is independent of y, x. Besides φ and φ̄ are continuously
differentiable on Q. If we use the notation

∂kr f(x) := ∂kr f((x(1), · · · , x(M))) :=
∂f((x(1), · · · , x(M)))

∂x
(k)
r

for k = 1, · · · ,M and r = 1, · · · , d, then for x ∈ RMd,

āi,j(t, x) =
M∑
k=1

ai−(k−1)d,j−(k−1)d(x
(k))I(k−1)d<i,j≤kd, (6.9)

∂kr āi,j(t, x) = ∂kr ai−(k−1)d,j−(k−1)d(x
(k))I(k−1)d<i,j≤kd = ∂rai−(k−1)d,j−(k−1)d(x

(k))I(k−1)d<i,j≤kd,
(6.10)

where 1 ≤ i, j ≤Md, and

∂kr φ̄(t, x) =
∑

1≤q 6=k≤M

∂rV ((x(k) − x(q))sign(q − k))sign(q − k) + 4C
∑

1≤q 6=k≤M

(x(k)
r − x(q)

r ),

furthermore,

∂mn ∂
k
r φ̄(t, x) =

∑
1≤q 6=k≤M

(
Im=k∂n∂rV ((x(k) − x(q))sign(q − k))

− Im=q∂n∂rV ((x(k) − x(q))sign(q − k))
)

+ 4C(Im=k,n=r − Im 6=k,n=r).

Combining the above equalities with our assumptions of V and σ, by algebraic calculation we
get that on Q there exists a large number CM,d depending on Md and a constant C ′ ∈ (0,∞)
such that

2Dtφ̄(t, x) +
Md∑
i,j=1

∂j(āi,j∂iφ̄)(t, x)

=
d∑

i,j=1

M∑
k=1

(
∂kj ai,j(x

(k))∂ki φ̄(t, x) + ai,j(x
(k))∂kj ∂

k
i φ̄(t, x)

)
=

d∑
i,j=1

M∑
k=1

∑
1≤q 6=k≤M

(
∂jai,j(x

(k))[∂iV ((x(k) − x(q))sign(q − k))sign(q − k) + 4C(x
(k)
i − x

(q)
i )]

+ ai,j(x
(k))[∂j∂iV ((x(k) − x(q))sign(q − k))]

)
+

d∑
i,j=1

M∑
k=1

ai,j(x
(k))4CIi=j
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≤CM,d

∑
1≤q<g≤M

(Ceε(V (x(q)−x(g))+U(x(q)−x(g))) +Neε(U(x(q)−x(g))))

≤C ′eεφ̄(t,x).

The continuity of āi,j(t, x) on Q and ∂kj āi,j(t, x) on Qn can be easily checked from (6.9) and
(6.10) and the conditions about σ. In order to reduce the lengthy algebraic computation, we
only show the part for āi,j(t, x), similarly we can get the desired continuity for ∂kj āi,j(t, x) on
Qn. For any (t, x) and (s, y) ∈ Q, by (6.9) we have for 1 ≤ i, j ≤Md,

|āi,j(t, x)− āi,j(s, y)| ≤ CMd

M∑
k=1

|ai−(k−1)d,j−(k−1)d(x
(k))− ai−(k−1)d,j−(k−1)d(y

(k))|I(k−1)d<i,j≤kd

≤ CMd

M∑
k=1

|x(k) − y(k)|

≤ C ′′|x− y|.

We can adjust constants C ′′ and K such that there is still a positive constant such condition
(σ1) satisfied.

It follows that all conditions on φ̄ and σ̄ in Theorem 2.4 are fulfilled and therefore by
Remark 5.1 the corresponding stochastic equation for a process (Xt)t≥0 = (X

(1)
t , ..., X

(M)
t )t≥0

has a unique strong solution defined for all times whenever for the initial condition x we have
(0, x) ∈ Q. The corresponding equation is the following system

X
(k)
t = x(k) +

∫ t

0

σ(X(k)
s )dW (k)

s −
∫ t

0

(σσ∗)(X(k)
s )∂kφ̄(s,Xs)ds

+ (
1

2

d∑
j=1

∫ t

0

∂jai,j(X
(k)
s )ds)1≤i≤d +

∫ t

0

b(k)(s,Xs)ds.

We rewrite it as following with k = 1, ...,M

X
(k)
t = x(k)+

∫ t

0

σ(X(k)
s )dW (k)

s

−
∫ t

0

(σσ∗)(X(k)
s )

M∑
j=1,j 6=k

∇V ((X(k)
s −X(j)

s )sign(j − k))sign(j − k)ds

+(
1

2

d∑
j=1

∫ t

0

∂jai,j(X
(k)
s )ds)1≤j≤d,

which has a unique strong solution defined for all times whenever (0, (x(1), ..., x(M))) ∈ Q.

A Appendix

Lemma A.1. ([13, P. 1 Lemma 1.1.]) Let {β(t)}t∈[0,T ] be a nonnegative measurable (Ft)t≥0−adapted
process. Assume that for all 0 ≤ s ≤ t ≤ T ,

E

(∫ t

s

β(r)dr

∣∣∣∣Fs) ≤ Γ(s, t),
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where Γ(s, t) is a nonrandom interval function satisfying the following conditions:
(i) Γ(t1, t2) ≤ Γ(t3, t4) if (t1, t2) ⊂ (t3, t4);
(ii) limh↓0 sup0≤s<t≤T,|t−s|≤h Γ(s, t) = λ, λ ≥ 0. Then for any real κ < λ−1 ( if λ = 0, then
λ−1 =∞),

Eexp

{
κ

∫ T

0

β(r)dr

}
≤ C = C(κ,Γ, T ) <∞.

For the convenience of the reader, we include the C∞-Urysohn Lemma here.

Lemma A.2. ([3, 8.18] ) If K ⊂ Rn is compact and U is an open set containing K, there
exists a smooth function f such that 0 ≤ f ≤ 1, f = 1 on K, and supp(f) ⊂ U .

The following lemma is based on a consequence of 7.6.4 in [11]. We use this result a
couple of times and hence for the sake of completeness we state it here precisely.

Lemma A.3. Let σ and b(i), i = 1, 2 satisfy the conditions in Lemma 3.1. Let (X
(i)
t ,W

(i)
t )t≥0

satisfy:

X
(i)
t = x+

∫ t

0

b(i)(s,X(i)
s )ds+

∫ t

0

σ(s,X(i)
s )dW (i)

s .

Then for any bounded Borel function f given on C =: C([0,∞),Rd) we have

Ef(X(2)
· ) = Ef(X(1)

· )ρ∞

if

E exp
(1

2

∫ ∞
0

(∆b∗(s,X(1)
s )(σσ∗)−1(s,X(1)

s )∆b(s,Xs(1)))ds
)
<∞, (7.1)

where ∆b(t,X
(1)
t ) := b(2)(t,X

(1)
t )− b(1)(t,X

(1)
t ) and

ρt := exp(

∫ t

0

∆b∗(s,X(1)
s )(σ∗)−1(s,X(1)

s )dW (1)
s

− 1

2

∫ t

0

(∆b∗(s,X(1)
s )(σσ∗)−1(s,X(1)

s )∆b)(s,X(1)
s )ds), t ≥ 0.

Proof. Theorem 6.1 in [11] says if (7.1) (Novikov condition) holds, then (ρt)t≥0 is an (Ft)−
martingale. Let P̂ = ρ∞P , then P̂ is also a probability on (Ω,F). By Theorem 4.1 in [6],

Ŵt = W
(1)
t −

∫ t

0

σ−1(s,X(1)
s )∆b(s,X(1)

s )ds, t ≥ 0

is a (Ft)-Brownian motion on the probability space (Ω,F , P̂ ). So we can wirte

X
(1)
t = x+

∫ t

0

b(1)(s,X(1)
s )ds+

∫ t

0

σ(s,X(1)
s )dŴs +

∫ t

0

σ(s,X(1)
s )σ−1(s,X(1)

s )∆b(s,X(1)
s )ds

= x+

∫ t

0

b(1)(s,X(1)
s )ds+

∫ t

0

σ(s,X(1)
s )dŴs +

∫ t

0

∆b(s,X(1)
s )ds
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= x+

∫ t

0

b(2)(s,X(1)
s )ds+

∫ t

0

σ(s,X(1)
s )dŴs, t ≥ 0.

This implies that (X
(1)
t , Ŵt)t≥0 is a solution to the SDE

X
(2)
t = x+

∫ t

0

b(2)(s,X(2)
s )ds+

∫ t

0

σ(s,X(2)
s )dW (2)

s , t ≥ 0, (7.2)

on the probability space (Ω,F , (Ft)t≥0, P̂ ). From Lemma 3.1 we know that the solution to
SDE (7.2) is unique, hence for any bounded Borel function f(x), given on C =: C([0,∞),Rd)
we have

Ef(X(2)
· ) = Êf(X(1)

· ) = Eρ∞f(X(1)
· ).
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