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Abstract. We consider space-time quantum fields with exponential/trigonometric interactions.
In the context of Euclidean quantum field theory, the former and the latter are called the Høegh-
Krohn model and the Sine-Gordon model, respectively. The main objective of the present paper
is to construct infinite dimensional diffusion processes which solve modified stochastic quan-
tization equations for these quantum fields on the two-dimensional torus by the Dirichlet form
approach and to prove strong uniqueness of the corresponding Dirichlet operators.

1. Introduction

In recent years, there has been a growing interest in the study of infinite dimensional stochas-
tic dynamics associated with various models of Euclidean quantum field theory, hydrodynamics
and statistical mechanics, see, e.g., [AFS08, AKKR09, Hai14, GIP15, AK17] and references
therein. One of the principal programs in these studies is to obtain Gibbs measures as equilib-
rium states of stochastic processes taking values in infinite dimensional state spaces.

In Euclidean quantum field theory, the space-time free field in finite volume is given by the
Gaussian measure µ0 on a Sobolev space of negative order H−δ(T2) defined on the 2-dimensional
torus T2 = (R/2πZ)2 with zero mean and covariance operator (1 − ∆)−1, ∆ being the Laplacian
in L2(T2) with periodic boundary conditions. Heuristically, µ0 is given by the expression

µ0(dϕ) ∝ exp
{
− 1

2

∫
T2

(
ϕ(x)2 + |∇ϕ(x)|2

R2

)
dx

}∏
x∈T2

dϕ(x),

and it is also called the massive Gaussian free field. The ϕ2m
2 -quantum field, a special case of the

P(ϕ)2-quantum field in finite volume, is one of the most important objects of study in Euclidean
quantum field theory (see e.g., [Sim74, GJ86]), and is given by the probability measure

µ(2m)
pol (dϕ) =

1

Z(2m)
pol

exp
(
−

∫
T2

:ϕ2m(x): dx
)
µ0(dϕ), m = 2, 3, 4 . . . ,

where : ϕ2m : denotes the 2m-th order Wick power of ϕ with respect to µ0 and Z(2m)
pol > 0 is the

normalizing constant given by

Z(2m)
pol :=

∫
H−δ(T2)

exp
(
−

∫
T2

:ϕ2m(x): dx
)
µ0(dϕ).
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Parisi and Wu [PW81] proposed the above program to find a Markov process or a class of
Markov processes so that µ(2m)

pol is their invariant measure. This program is now called the sto-
chastic quantization. (More recently, following [Hai14], such processes with µ(2m)

pol as an invari-
ant measure have been called dynamical ϕ2m

2 -models.) In the well-known paper [JM85], Jona-
Lasinio and Mitter firstly provided a rigorous justification of the program for P(ϕ)2-quantum
fields in finite volume. Strictly speaking, they constructed an infinite dimensional continuous
Markov process having the ϕ4

2-measure µ(4)
pol (i.e., P(ϕ)2-measure in the case m = 2) as an in-

variant measure. Applying the Girsanov transform method to the Ornstein–Uhlenbeck process
whose unique invariant measure is the space-time free field measure µ0, they obtained the re-
sulting Markov process as the unique weak solution of the so-called (regularized) stochastic
quantization equation (SQE in short)

∂tXt(x) = −1
2

(1 − ∆)1−γXt(x) − m(1 − ∆)−γ : X2m−1
t (x) : +(1 − ∆)−

γ
2 ξt(x), t > 0, x ∈ T2, (1.1)

where the positive constant γ provides a regularizing effect on the nonlinear drift term and on the
noise term, ξ = {ξt = (ξt(x))x∈T2}t≥0 being an R-valued Gaussian space-time white noise, that is,
ξ is the time derivative of a standard L2(T2)-cylindrical Brownian motion {Bt = (Bt(x))x∈T2}t≥0.

Since then, there has been a large number of follow-up papers on stochastic quantization,
and both theories of SPDEs and Dirichlet forms on infinite dimensional state spaces have been
developed intensively. The Dirichlet form approach was later elaborated in a series of papers
[AR89, AR90, AR91]. In particular, in [AR90] the closability result was given, and in [AR89]
the existence of a diffusion (i.e., a path continuous strong Markov process) was proved and in
[AR91] it was shown that this process indeed solves equation (1.1) in the weak sense for quasi-
every initial condition has been shown for γ ≥ 0. In this way the generator of the diffusion
process has been identified to be the self-adjoint negative operator L in L2(µ(2m)

pol ) associated
with the classical quasi regular Dirichlet form given by the ϕ2m

2 -measure µ(2m)
pol . The problem

of its being uniquely determined by the closure from a minimal domain FC∞b (of cylindrical
functions) was solved in the sense of Markov uniqueness by [RZ92] for γ > 0. Strong unique-
ness in the strong sense of essential self-adjointness of L in the relevant L2-space was solved
by [LR98, DPT00], still for γ > 0. A (weaker) property of restricted Markov uniqueness
has been recently obtained by [RZZ17a] for γ = 0. This yields uniqueness within the class
of quasi-regular Dirichlet forms whose generators extend (L,FC∞b ). Moreover these authors
show that the martingale problem for (L,FC∞b ), up to a certain “µ-equivalence” is unique, in
the sense that there is a unique strong Markov process solving that martingale problem (cf.
[MR99, AMR15]). In this way also the uniqueness of probabilistic weak solutions of equation
(1.1) with γ = 0 has been shown. In [RZZ17a] in addition to [AR91] also results of [DPD03]
are used, which yields strong solutions. For uniqueness of the invariant measures in terms of
density under translations, see [RZZ17b].

Let us mention at this point that the original motivation to study measures like the P(ϕ)2-
measure came from quantum field theory on Euclidean space-time Rd, in particular where the
2-dimensional torus T2 is replaced by the 2-dimensional space-time R2. Such measures are
called (infinite volume) P(ϕ)2-measures and can indeed be constructed from limits of measures
constructed relative to the torus, as shown in the work [GRS76], see [GJ86, Sim74] for other
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constructions of such infinite volume measures. The invariance of these measures under the
action of the Euclidean group is important to construct the associated relativistic quantum fields,
the original physical motivation for studying Euclidean measures. See e.g., [GJ86, Sim74,
Dim11, AHFL86, Alb16, Sum16, AHPRS89a, HKPS93]. The corresponding SQE (1.1) with
γ > 0 has been studied in the sense of associating a Dirichlet form and a Markov semigroup in
[BCM88]. The construction of an associated diffusion has been first performed also for γ ≥ 0 in
[AR89] and it was shown in [AR91] that it solves (1.1) in the infinite volume case. For partial
results on the uniqueness problems (corresponding to those we mentioned in the case of the
torus model), see [ARZ93, LR98, RZZ17a]. The result in [RZZ17a] also applies to the infinite
volume case. Here recent results of [MW17], related to methods developed in [Hai14, GIP15,
CC18, GH19, AK17] are used. In [AKR97] ergodicity of the stochastic dynamics associated to
the infinite volume P(ϕ)2-models has been proven in the situation of “pure phases” (in the sense
of [GRS75]).

In the present paper, we initiate the study of the corresponding SQE for a model different
from the P(ϕ)2-case, but which also leads to interesting relativistic quantum fields, as shown at
about the same time as for the P(ϕ)2-case. This quantum field model was introduced by Høegh-
Krohn [Høe71] in a Hamiltonian setting, and its Euclidean version was constructed in [AH74].
In the latter paper [AH74], the probability measure

µ(a)
exp(dϕ) =

1

Z(a)
exp

exp
(
−

∫
T2

:exp(aϕ)(x): dx
)
µ0(dϕ)

was constructed and shown to yield interesting relativistic quantum fields, where Z(a)
exp > 0

is the normalizing constant, a ∈ (−
√

4π,
√

4π) is called the charge parameter, and the Wick
exponential :exp(aϕ)(x): is formally introduced by the expression

:exp(aϕ)(x):= exp
(
aϕ(x) − a2

2
Eµ0[ϕ(x)2]

)
, x ∈ T2,

Eµ0 standing for the expectation with respect to the massive Gaussian free field µ0 (given heuris-
tically by (1.1)). This model is called the Høegh-Krohn model or the exp(ϕ)2-model. The papers
[AGH79, AH80] study extensions of the model to Rd for d ≥ 2, and also show relations with
martingale theory and multiplicative noise. We also mention that this model has also been
discussed in the framework of nonstandard analysis (cf. [AHFL86]) and white noise analy-
sis (cf. [AHPRS89a, HKPS93]), as well as in connection with relativistic quantum fields on
curved spaces [FHN75]. A connection with problems in representation theory of groups of
mappings has been discussed in [AHT81], see also [AHMTT93], and for new developments,
[ADGV16]. The relevance of this model has also been pointed out in connection with string
theory [AJPS97, GT13], and recently rediscovered in connection with topics like Liouville
quantum gravity, where the random measure, called the Gaussian multiplicative chaos,

M(a)
ϕ (dx) = :exp(aϕ)(x): dx, x ∈ T2, ϕ ∈ H−δ(T2)

plays a central role (cf. e.g., [Kah85, Kus92, DS11, RV14, AK16, Ber17, DS19, Gar20]).
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The Høegh-Krohn model is also closely connected with the Sine-Gordon model (or the
cos(ϕ)2-quantum field model)

µ(a)
cos(dϕ) =

1

Z(a)
cos

exp
(
−

∫
T2

:cos(aϕ)(x): dx
)
µ0(dϕ),

where :cos(aϕ)(x): is defined by

:cos(aϕ)(x): =
1
2

(
:exp(

√
−1aϕ)(x): + :exp(−

√
−1aϕ)(x):

)
.

As with the Høegh-Krohn model, this quantum field model and generalizations of these models
as

∫
: exp(aϕ)(x) : ν(da) and

∫
: cos(aϕ)(x) : ν(da) have also been studied for a long period

by many authors, where ν(da) is a positive Radon measure on the interval (−
√

4π,
√

4π) and
not necessarily a Dirac measure. See e.g., [AH73, AH74, Frö76a, FS76, FP77, AHPRS89a,
AHPRS89b]. All this gives us much motivation to study SQEs and the associated Dirichlet
forms for such non-polynomial models. In the case where R2 and T2 are replaced by R, this has
been discussed in [AKR12], which provides solutions of the SQE and proves strong uniqueness
of the corresponding Dirichlet operator for any γ ≥ 0. For the same problem where exp(ϕ)1 is
replaced by P(ϕ)1, see [Iwa87, KR07].

The main purpose of the present paper is to study regularized SQEs both for the Høegh-Krohn
model

∂tXt(x) = −1
2

(1−∆)1−γXt(x)− a
2

(1−∆)−γ : exp(aXt(x)) : +(1−∆)−
γ
2 ξt(x), t > 0, x ∈ T2, (1.2)

and for the Sine-Gordon model

∂tXt(x) = −1
2

(1−∆)1−γXt(x)+
a
2

(1−∆)−γ : sin(aXt(x)) : +(1−∆)−
γ
2 ξt(x), t > 0, x ∈ T2 (1.3)

by the Dirichlet form approach. Furthermore, we prove strong uniqueness of the corresponding
Dirichlet operators in the relevant Lp-spaces for all p ≥ 1. To the best of our knowledge, except
L1-uniquness obtained by [Wu00], there seems to be only a few results on Lp-uniqueness of
Dirichlet operators associated with (1.2) and (1.3) for general p ≥ 1. We mention here that
Mihalache [Mih06] first proved the unique existence of the regularized SQE (1.2) in the weak
probabilistic sense under restrictive conditions on 0 < γ ≤ 1 and the charge parameter a, by
combining several properties of the exp(ϕ)2-measure µ(a)

exp established in [AH74] with approxi-
mation methods in [DPT04]. Quite recently, influenced by the quick development on singular
SPDEs (cf. [Hai14, GIP15]), unique probabilistic strong solutions to the original SQEs (1.2) and
(1.3) (i.e., with γ = 0) were constructed by [Gar20, HKK19, ORW19] and [HS16, CHS19], re-
spectively. However, these results do not imply strong uniqueness of the corresponding Dirich-
let operator in general (see Remark 2.6 below). Let us also mention that a recent approach on
stochastic quantization of the exp(ϕ)2-model on T2 or R2, and of the P(ϕ)2-model on T2, through
elliptic SPDEs, has been developed in [ADG19] (based on previous work on dimensional re-
duction [ADG18]).

The structure of the present paper is as follows: In Section 2, we describe our framework
and state the main results. To summarize them, let us stress that both the exp(ϕ)2-measure and
the cos(ϕ)2-measure have been constructed for values of the charge constant a in the interval
(−
√

4π,
√

4π). Our methods permit to cover the whole range of this parameter and show that the
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pre-Dirichlet form associated with (1.2) (resp. (1.3)), i.e., associated with the exp(ϕ)2-measure
µ(a)

exp (resp. the cos(ϕ)2-measure µ(a)
cos), for all a ∈ (−

√
4π,
√

4π) is closable, and one has Lp-
uniqueness of the corresponding Dirichlet operator for all 1 ≤ p < 1

2 (1 + 4πγ
a2 ) with |a| <

√
4πγ.

As a corollary we show the existence of diffusion processes solving (1.2) and (1.3) weakly for
quasi every starting point in the state space H−δ(T2) for suitable δ > 0. In Section 3, we construct
the Wick power, the Wick exponential and the Wick trigonometric mappings, including also a
new detailed estimate for Wick powers (Proposition 3.1) and a proof of the finite dimensional
approximation of the Wick exponential and the Wick trigonometric mappings (Theorem 3.4
and Corollary 3.7). In Section 4, we provide the proof of our main result (Theorem 2.4) by
combining the tools of Section 3 with the argument in [LR98]. Finally, in the appendix, we
present key estimates on Green’s function, which are used in Sections 3 and 4.

Throughout the present paper, we denote by C positive constants which may change from
line to line. When their dependence on some parameters are significant, we specify them as Cp,
C(ε), etc. Besides, we use the notation a ≲ b if there exists a positive constant C, independent
of the variables under consideration, such that a ≤ C · b.

2. Framework and results

We begin by introducing some notations and objects we will be working with. Let T2 =

(R/2πZ)2 be the 2-dimensional torus equipped with the Lebesgue measure dx. Let L2(T2;C) be
the Hilbert space consisting all C-valued Lebesgue square integrable functions equipped with
the usual inner product (

f , g
)

L2 =

∫
T2

f (x)g(x)dx, f , g ∈ L2(T2;C).

For k = (k1, k2) ∈ Z2 and x = (x1, x2) ∈ T2, we write |k| = (k2
1 + k2

2)1/2, ∥k∥ = max{|k1|, |k2|} and
k · x = k1x1 + k2x2. We define the space of distributions S′(T2;C) by the set of linear maps u
from S(T2;C) = C∞(T2;C) to C, such that there exist N ∈ N and C > 0 with

|u(φ)| ≤ C max
0≤i+ j≤N

max
x∈T2

∣∣∣∣ ∂i+ jφ

∂xi
1∂x

j
2

(x)
∣∣∣∣, φ ∈ S(T2;C).

Since S(T2;C) ⊂ L2(T2;C) ⊂ S′(T2;C), the L2-inner product
(·, ·)L2 is naturally extended to

the pairing of S(T2;C) and its dual space S′(T2;C). Let {ek; k ∈ Z2} be the usual complete
orthonormal system (CONS) of L2(T2;C) consisting of the C-valued functions

ek(x) =
1

2π
e
√
−1k·x, k ∈ Z2, x ∈ T2.

For each u ∈ S′(T2;C), we define the Fourier transform û : Z2 → C by

û(k) := S′⟨u, ek⟩S, k ∈ Z2.

We define the real L2-Sobolev space of order s with periodic boundary condition by

H s(T2) =

u ∈ S′(T2;C) ;
∑
k∈Z2

(1 + |k|2)s|û(k)|2 < ∞, û(−k) = û(k), k ∈ Z2

 , s ∈ R.
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This space is a Hilbert space equipped with the inner product

(u, v)Hs =
∑
k∈Z2

(1 + |k|2)sû(k)v̂(−k), u, v ∈ H s(T2).

Note that H0(T2) coincides with L2(T2) := L2(T2;R) and we regard H−s(T2) as the dual space
of Hs(T2) through the standard chain

H s(T2) ⊂ L2(T2) ⊂ H−s(T2), s ≥ 0.

We denote by H−α⟨·, ·⟩Hα the dualization between Hα(T2) and its dual space H−α(T2).
Let ∆ be the Laplacian with periodic boundary condition acting on L2(T2). It is a self-adjoint

negative operator in L2(T2) with Dom(∆) = H2(T2). We set A := (1 − ∆)−1 and λk := 1 + |k|2
(k ∈ Z2). Note that A is a compact and self-adjoint operator acting on L2(T2) and that the spectra
of both 1 − ∆ and A consist only of eigenvalues. Let {ek; k ∈ Z2} be the usual CONS of L2(T2)
associated with {ek; k ∈ Z2}, that is, e(0,0)(x) = (2π)−1 and

ek(x) =
1
√

2π

cos(k · x), k ∈ Z2
+

sin(k · x), k ∈ Z2
−,

x ∈ T2,

where Z2
+ = {(k1, k2) ∈ Z2; k1 > 0} ∪ {(0, k2); k2 > 0} and Z2

− = −Z2
+. Then we have that

{(λk, ek); k ∈ Z2} and {(λ−1
k , ek); k ∈ Z2} are normalized eigenbasis for 1 − ∆ and A, respectively.

Namely, we have
(1 − ∆)ek = λkek, Aek = λ

−1
k ek, k ∈ Z2.

Setting e(s)
k := λ−s/2

k ek (s ∈ R), we obtain a CONS {e(s)
k ; k ∈ Z2} of H s(T2). Then the operator A

can be extended to H−s(T2) (s > 0) by setting Ae(−s)
k := λ−1

k e(−s)
k (k ∈ Z2). Note that A is not a

trace class operator because of

Tr(A) =
∑
k∈Z2

λ−1
k =

∑
k∈Z2

1
1 + |k|2 = ∞.

On the other hand, it follows from

Tr(Ap) =
∑
k∈Z2

λ
−p
k =

∑
k∈Z2

1
(1 + |k|2)p < ∞, p > 1

that Ap is a trace class operator for any p > 1.
Throughout the present paper, we fix two parameters δ(> 0) and γ such that

0 < γ ≤ 1, δ + 2γ > 2. (2.1)

We set E := H−δ(T2), H := L2(T2), H := Hγ(T2) and define the space-time free field by
µ0 := N(0, A1+δ). Namely, µ0 is the mean zero Gaussian probability measure supported on E
such that ∫

E
(l1, z)E(l2, z)E µ0(dz) =

(
A1+δl1, l2

)
E, l1, l2 ∈ E. (2.2)

We can read (2.2) as∫
E
⟨z, l1⟩⟨z, l2⟩ µ0(dz) =

(
(1 − ∆)−1l1, l2

)
H, l1, l2 ∈ E∗ ⊂ H, (2.3)

where ⟨·, ·⟩ denotes the dualization between E and E∗ = Hδ(T2).
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Next, we introduce the exp(ϕ)2-measure µ(a)
exp and the cos(ϕ)2-measure µ(a)

cos on E. The details
of the rigorous construction of these probability measures as well as various properties of them
will be presented in Section 3. For Λ ⊂ R2, we write cΛ := {cx; x ∈ Λ} (c ∈ R). Throughout the
present paper, we assume

Λ is compact such that Λ = −Λ and 0 is an interior point of Λ. (2.4)

As typical examples of Λ, we may consider D(N) = {x ∈ R2; |x|R2 ≤ N} and Q(N) = {x =
(x1, x2) ∈ R2; |x1| ≤ N, |x2| ≤ N} (N ∈ N). We define the projection operator ΠΛ on E by

(ΠΛz)(x) :=
∑
k∈Z2

1Λ(k)ẑ(k)ek(x) =
∑

k∈Λ∩Z2

⟨z, ek⟩ek(x), z ∈ E, x ∈ T2, (2.5)

where 1Λ stands for the indicator function of Λ. For a cut-off function g ∈ H and the charge
parameter a ∈ (−

√
4π,
√

4π), we define the Wick exponential : exp(az) : (g) with respect to µ0

by

:exp(az): (g) = lim
N→∞

∫
T2

exp
(
a(ΠNΛz)(x) − a2

2
Eµ0[(ΠNΛz)(x)2]

)
g(x)dx, (2.6)

where the right-hand side of (2.6) converges in L2(µ0) and it does not depend on the choice
of Λ (see Theorem 3.4 for details). We note that the Gaussian multiplicative chaos M(a)

z (A)
(A ∈ B(T2)) coincides with : exp(az) : (1A). Using the Wick exponential : exp(az) : (g), we can
also introduce the Wick cosine :cos(az): (g) and the Wick sine :sin(az): (g) by

:cos(az): (g) =
1
2

(
:exp(

√
−1aϕ): (g)+ :exp(−

√
−1aϕ): (g)

)
= lim

N→∞

∫
T2

cos
(
a(ΠNΛz)(x)

)
exp

(a2

2
Eµ0[(ΠNΛz)(x)2]

)
g(x)dx,

:sin(az): (g) =
1
2

(
:exp(

√
−1aϕ): (g)− :exp(−

√
−1aϕ): (g)

)
= lim

N→∞

∫
T2

sin
(
a(ΠNΛz)(x)

)
exp

(a2

2
Eµ0[(ΠNΛz)(x)2]

)
g(x)dx,

respectively. We then define the exp(ϕ)2-measure µ(a)
exp on E by

µ(a)
exp(dz) :=

1

Z(a)
exp

exp
(
− :exp(az): (1T2)

)
µ0(dz), (2.7)

where
Z(a)

exp :=
∫

E
exp

(
− :exp(az): (1T2)

)
µ0(dz) (2.8)

is the normalization constant. Replacing :exp(az): (1T2) by :cos(az): (1T2) in (2.7) and (2.8), we
may also define the cos(ϕ)2-measure µ(a)

cos.
Now we are in a position to introduce a pre-Dirichlet form (E,FC∞b ). We put µ = µ(a)

exp, µ
(a)
cos

and set K := Span{ek; k ∈ Z2}. We mention that K ⊂ E∗ is a dense linear subspace of E. Let
FC∞b := FC∞b (K) be the space of all smooth cylinder functions on E having the form

F(z) = f (⟨z, φ1⟩, . . . , ⟨z, φn⟩), z ∈ E,

with n ∈ N, f ∈ C∞b (Rn,R) and {φ1, . . . , φn} ⊂ K. Since we have supp(µ) = E, two different
functions in FC∞b represent two different µ-classes. Note that FC∞b is dense in Lp(µ) for all
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p ≥ 1. If F : E → R is differentiable along every h ∈ H, and the mapping h 7→ (∂F/∂h)(z) is
a bounded linear functional on H, the function F is called H-Gâteaux differentiable at z ∈ E.
Such a mapping is called the H-Gâteaux derivative of F at z ∈ E, and denoted by DHF(z). For
a cylinder function F ∈ FC∞b having the above form, the H-Gâteaux derivative DHF : E → H
is given by

DHF(z) =
n∑

j=1

∂ j f
(⟨z, φ1⟩, . . . , ⟨z, φn⟩

)
φ j, z ∈ E,

where ∂ j stands for the j-th partial derivative. For φ ∈ K, we also define a function b(µ;φ) :
E → R by

b(µ;φ)(z) :=

a : exp(az) : (φ), µ = µ(a)
exp,

−a : sin(az) : (φ), µ = µ(a)
cos.

We consider the pre-Dirichlet form (E,FC∞b ) which is given by

E(F,G) =
1
2

∫
E

(
AγDHF(z),DHG(z)

)
H µ(dz), F,G ∈ FC∞b .

Then we obtain

Proposition 2.1.

E(F,G) = −
∫

E
LF(z)G(z)µ(dz), F,G ∈ FC∞b ,

where LF ∈ Lp(µ), 1 ≤ p < 1 + 4π
a2 is given by

LF(z) =
1
2

n∑
i, j=1

∂i∂ j f
(⟨z, φ1⟩, . . . , ⟨z, φn⟩

) · (Aγφi, φ j)H

− 1
2

n∑
i=1

∂i f
(⟨z, φ1⟩, . . . , ⟨z, φn⟩

) · {⟨z, Aγ−1φ j⟩ + b(µ; Aγφ j)(z)
}
, z ∈ E

for F = f (⟨·, φ1⟩, . . . , ⟨·, φn⟩) ∈ FC∞b .

Remark 2.2. Since Aγφ ∈ K for any γ ∈ R and φ ∈ K, we easily see that FC∞b coincides with
the space of all cylinder functions on E having the form

F(z) = f (φ∗1(z), . . . , φ∗n(z)), z ∈ E, (2.9)

with n ∈ N, f ∈ C∞b (Rn,R) and {φ1, . . . , φn} ⊂ K. Here φ∗j denotes the unique continuous
extension of the functional (φ j, ·)H to E, that is, φ∗j is given by φ∗j(z) = ⟨A−γφ j, z⟩ (z ∈ E). For a
cylinder function F ∈ FC∞b having the above form, the map DHF : E → H is defined by

DHF(z) :=
n∑

j=1

∂ j f
(
φ∗1(z), . . . , φ∗n(z)

)
φ j, z ∈ E.

By the chain rule, it coincides with the usual H-Gâteaux derivative of F, hence the above
definition is independent of the representation of F in (2.9). On the other hand, since the H-
Gâteaux derivative DHF is also given by

DHF(z) =
n∑

j=1

∂ j f
(
φ∗1(z), . . . , φ∗n(z)

) · A−γφ j, z ∈ E,
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we easily see that the pre-Dirichlet form (E,FC∞b ) and its associated pre-Dirichlet operator L
are also represented as

E(F,G) =
1
2

∫
E

(
DHF(z),DHG(z)

)
H µ(dz), F,G ∈ FC∞b ,

and

LF(z) =
1
2

n∑
i, j=1

∂i∂ j f
(
φ∗1(z), . . . , φ∗n(z)

)
(φi, φ j)H

− 1
2

n∑
i=1

∂i f
(
φ∗1(z), . . . , φ∗n(z)

) · {⟨z, A−1φ j⟩ + b(µ;φ j)(z)
}
, z ∈ E,

respectively.

Remark 2.3. Since inf |a|<√4π
(
1 + 4π

a2

)
= 2, we have LF ∈ L2(µ) for any |a| <

√
4π.

Proposition 2.1 means that the operator (L,FC∞b ) is the pre-Dirichlet operator which is asso-
ciated with the pre-Dirichlet form (E,FC∞b ). In particular, it implies that (E,FC∞b ) is closable in
L2(µ). We denote byD(E) the completion of FC∞b with respect to the E1/2

1 -norm. (Here we use
standard notations of the theory of Dirichlet forms, see, e.g., [Alb03, FOT94, MR92].) Then
by standard theory (cf. [Alb03, AR90, FOT94, MR92]), (E,D(E)) is a Dirichlet form and the
operator L has a self-adjoint extension (Lµ,Dom(Lµ)), called the Friedrichs extension, corre-
sponding to the Dirichlet form (E,D(E)). The semigroup {etLµ}t≥0 generated by (Lµ,Dom(Lµ))
in L2(µ) is Markovian, i.e., 0 ≤ etLµF ≤ 1, µ-a.e. whenever 0 ≤ F ≤ 1, µ-a.e. Moreover, since
{etLµ}t≥0 is symmetric on L2(µ), the Markovian property implies that∫

E
etLµF(z)µ(dz) ≤

∫
E

F(z)µ(dz), F ∈ L2(µ), F ≥ 0, µ-a.e.

Hence ∥etLµF∥L1(µ) ≤ ∥F∥L1(µ) holds for F ∈ L2(µ), and {etLµ}t≥0 can be extended as a family of
C0-semigroup of contractions in Lp(µ) for all p ≥ 1. See e.g., [RS75, Theorem X.55] for details.

It is a fundamental question whether the Friedrichs extension is the only closed extension of
(L,FC∞b ) generating a C0-semigroup on Lp(µ), p ≥ 1, i.e., whether we have Lp(µ)-uniqueness
for (L,FC∞b ). For p = 2, this is equivalent to the fundamental problem of essential self-
adjointness of L in quantum physics (cf. [RS75]). Even if p = 2, in general there are many
lower semi bounded self-adjoint extensions L̃ of L in L2(µ) which therefore generate differ-
ent symmetric strongly continuous semigroups {etL̃}t≥0 in L2(µ). If, however, we have Lp(µ)-
uniqueness ofL for some p ≥ 2, there is hence only one semigroup which is strongly continuous
and with generator extending L in Lp(µ). Consequently, in this case, only one such Lp-, hence
only one such L2-dynamics exists, associated with µ.

The following theorems are the main results of the present paper. For the notions of “quasi-
everywhere” and “capacity”, we refer to [Alb03, FOT94, MR92].

Theorem 2.4. Let 0 < γ ≤ 1 be the regularization constant satisfying (2.1) and let a ∈ R be
the charge constant satisfying |a| <

√
4πγ. Then the pre-Dirichlet operator (L,FC∞b ) is Lp(µ)-

unique for all 1 ≤ p < 1
2

(
1 + 4πγ

a2

)
. Namely, there exists exactly one C0-semigroup in Lp(µ) such

that its generator extends (L,FC∞b ). In particular, the Dirichlet form (E,D(E)) is the unique
extension of (E,FC∞b ) such that FC∞b is contained in the domain of the associated generator.
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Moreover, by applying [AR91, Theorem 6.1], we obtain the following result as an immediate
corollary of this theorem.

Corollary 2.5. There exists a conservative diffusion processM := (Θ,F , (Ft)t≥0, (Xt)t≥0, {Pz}z∈E)
such that the semigroup {Pt}t≥0 generated by the unique extension of (L,FC∞b ) satisfies the
following identity for any bounded Borel measurable function F : E → R, and t > 0:

PtF(z) =
∫
Θ

F(Xt(ω))Pz(dω), µ-a.s. z ∈ E,

in the sense that the right-hand side is a µ-version for the L2(µ)-class PtF. Moreover, M is
the unique µ-symmetric Hunt process with the state space E solving the regularized SQEs (1.2)
and (1.3) weakly for E-q.e. z ∈ E, in the cases µ = µ(a)

exp and µ = µ(a)
cos, respectively. Namely,

there exist a set S ⊂ E with Cap(S ) = 0 and a system of independent one-dimensional (Ft)t≥0-
Brownian motions {(Bk

t )t≥0; k ∈ Z2} with Bk
0 = 0 (k ∈ Z2) defined on the probability space

(Θ,F , (Ft)t≥0,Pz) such that for any z ∈ E \ S , Pz
(
Xt ∈ E \ S for all t ≥ 0

)
= 1 and the diffusion

process X = (Xt)t≥0 satisfies

⟨Xt, ek⟩ =⟨z, ek⟩ −
1
2

∫ t

0

{
(1 + |k|2)1−γ⟨Xs, ek

⟩
+ (1 + |k|2)−γb(µ; ek)(Xs)

}
ds

+ (1 + |k|2)−γ/2Bk
t t > 0, k ∈ Z2,

Pz-almost surely.

Remark 2.6. Following arguments in [Gar20, HKK19, ORW19, HS16, CHS19], we might
construct a unique strong solution for SQE (1.2) (resp. SQE (1.3)) for µ(a)

exp- (resp. µ(a)
cos-) al-

most every initial datum. However, this does not imply the Lp-uniqueness of the correspond-
ing Dirichlet operator. This is obvious, since a priori the latter might have extensions which
generate semigroups which have no probabilistic interpretation as transition probabilities of
Markovian processes. For example, there might be an extension generating a non-Markovian
semigroup which cannot be the transition probability semigroup of a Markov process or there
might be also an extension generating a Markovian semigroup whose associated Dirichlet form
is not quasi-regular, hence by the main result in [AMR93] and [MR92] this semigroup can also
not be the transition probability semigroup of a Markov process with càdlàg paths. Therefore,
in general, none of the properties Lp-uniqueness of the Dirichlet operator and strong unique-
ness of the corresponding SQE implies the other. We refer to [AR95, Sections 2 and 3] for a
detailed discussion of this point.

3. Preliminaries

3.1. A review of the Wick power. We give notations and review some statements on the Wick
power based on [DPT04]. In particular, we discuss the convergence of the finite dimensional
approximation of the Wick power in a strengthened form.

Let Λ be a subset of R2 satisfying (2.4) and ΠΛ be the projection operator defined in (2.5).
We set

ρΛ := Eµ0
[
(ΠΛz)(x)2]1/2

=
1

2π

{∑
k∈Z2

1Λ(k)(1 + |k|2)−1
}1/2
, x ∈ T2,
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and define ηΛ,x ∈ E∗ by

ηΛ,x :=
1
ρΛ

∑
k∈Z2

1Λ(k)ek(x)ek =
1
ρΛ

∑
k∈Z2

1Λ(k)ek(x)ek, x ∈ T2. (3.1)

Then we easily have
(ΠΛz)(x) = ρΛ

⟨
z, ηΛ,x

⟩
, z ∈ E, x ∈ T2.

We next consider the following Laplace equation on T2:

(1 − ∆)αu = f , α > 0. (3.2)

If f =
∑

k∈Z2 fkek ∈ H s(T2), then

u = (1 − ∆)−α f =
∑
k∈Z2

(1 + |k|2)−α fkek ∈ H s+2α(T2)

solves (3.2), and it can be also represented as

(1 − ∆)−α f (x) =
∫
T2

G(α)
T2 (x, y) f (y)dy, x ∈ T2

by using the Green function G(α)
T2 (x, y). We mention that

G(α)
T2 (x, y) =

∑
k∈Z2

G(α)(x, y + 2πk), x, y ∈ T2. (3.3)

See e.g., [GJ86, Proposition 7.3.1] for details. Combining Proposition A.2 with (3.3), we have

K(α)(x − y) := G(α)
T2 (x, y) ≤


C(1 + |x − y|2α−2

R2 ) if 0 < α < 1

− 1
2π

log |x − y|R2 +C if α = 1,
(3.4)

for some constant C > 0. This estimate implies K(1) ∈ L∞−(T2) := ∩p>1Lp(T2) and K(α) ∈
L1+(T2) := ∪p>1Lp(T2) for each 0 < α < 1. We set

K(α)
Λ

(x) :=
1

2π

∑
k∈Z2

1Λ(k)(1 + |k|2)−αek(x), x ∈ T2, 0 < α ≤ 1. (3.5)

By [Wei12, Theorems 4.1 and 4.4], for every 0 < α ≤ 1, the N-th cubic partial sum K(α)
N = K(α)

Q(N)
satisfies

K(α)(x) = lim
N→∞

K(α)
N (x) for almost everywhere x ∈ T2, (3.6)

and
sup
N∈N

∥∥∥K(1)
N

∥∥∥
Lp ≤ Cp∥K(1)∥Lp , p ≥ 1, (3.7)

for some constant Cp > 0, and

sup
N∈N

∥∥∥K(α)
N

∥∥∥
L1+ε ≤ Cε∥K(α)∥L1+ε , 0 < α < 1, (3.8)

where ε > 0 is some sufficiently small constant.
Next, we introduce a mapping W : E∗ ∋ f 7→ W f ∈ L2(µ0) by

W f (z) := ⟨z, f ⟩, z ∈ E.

It follows from (2.3) that W f ∈ L2(µ0) and

∥W f ∥L2(µ0) = ∥ f ∥H−1 , f ∈ E∗.
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Therefore the mapping W f gives rise to an isometric isomorphism from H−1(T2) into L2(µ0). We
still denote the mapping from H−1(T2) into L2(µ0) by W f and call it the white noise function.

Let {Hn}∞n=0 be the Hermite polynomials defined by

Hn(ξ) :=
(−1)n

√
n!

eξ
2/2( d

dξ
)ne−ξ

2/2, n = 0, 1, 2, . . . , ξ ∈ R.

For later use, we recall the well-known formula∫
E
Hm(W f (z))Hn(Wg(z))µ0(dz) = δm,n( f , g)n

H−1 , (3.9)

where f , g ∈ H−1(T2) with ∥ f ∥H−1 = ∥g∥H−1 = 1. It follows from (3.9) that Hn(W f ) ∈ L2(µ0) for
any f ∈ H−1(T2) and n ∈ N ∪ {0}.

For a real separable Hilbert space K , we denote by Cn(K), n ∈ N, the closed linear subspace
of L2(µ0;K) generated by the K-valued random variables {Hn(W f )k; f ∈ H−1(T2), ∥ f ∥H−1 =

1, k ∈ K} and by C0(K) the set of constant K-valued vectors. We set Cn := Cn(R) for sim-
plicity. The space Cn(K) is called the Wiener chaos of order n and the following Itô-Wiener
decomposition holds:

L2(µ0;K) = ⊕∞n=0Cn(K).

Applying the Nelson hypercontractivity estimate (cf. [Sim74, Theorem I.22]), we also have

∥F∥Lp(µ0;K) ≤ (p − 1)n/2∥F∥L2(µ0;K), F ∈ Cn(K), p ≥ 2. (3.10)

We now introduce the renormalized powers. For any n ∈ N ∪ {0},N ∈ N and x ∈ T2, we
define the ρn

Λ
-regularized Wick power evaluated at x ∈ T2 by

Φn,Λ(z)x :=
√

n!ρn
ΛHn

(
ρ−1
Λ (ΠΛz)(x)

)
=
√

n!ρn
ΛHn

(⟨z, ηΛ,x⟩) = √n!ρn
ΛHn

(
WηΛ,x(z)

)
, z ∈ E. (3.11)

By (3.1) and (3.5), we have(
ηΛ,x, ηΛ′,y

)
H−1 = ρ

−1
Λ ρ
−1
Λ′K

(1)
Λ

(x − y), ∥ηΛ,x∥H−1 = 1, x, y ∈ T2 (3.12)

for any two subsets Λ ⊂ Λ′ in R2 satisfying (2.4). Thus it follows from (3.9), (3.11) and (3.12)
that

∥Φn,Λ(·)x∥L2(µ0) =
√

n!ρn
Λ, n ∈ N ∪ {0}, x ∈ T2. (3.13)

We now introduce

(Φn,Λ(·), g)H :=
∫
T2
Φn,Λ(·)xg(x)dx in L2(µ0), g ∈ H. (3.14)

Note that the right-hand side of (3.14) is well-defined in the sense of Bochner integrals because
of (3.13). Since Cn is a closed subspace of L2(µ0) and Φn,Λ(·)x ∈ Cn for every x ∈ T2, we also
see that (Φn,Λ(·), g)H ∈ Cn and thus Φn,Λ ∈ Cn(H−α(T2)) for all α ≥ 0.

Although the following proposition might be well-known (cf. [Sim74, Section V.6]), we
reproduce the proof for the sake of completeness and later purpose.
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Proposition 3.1. (1) Let p ≥ 1 and α > 0. Then {Φn,NΛ; N ∈ N} is a Cauchy sequence in
Lp(µ0; H−α(T2)), and hence it converges to a mapping Φn ∈ Lp(µ0; H−α(T2)). Furthermore, the
limit Φn is independent of the choice of Λ. We denote Φn(z), z ∈ E, by : zn : and call it the Wick
power of order n. Moreover, for p ≥ 2, n ∈ N and ε > 0, we have

∥Φn∥Lp(µ0;H−α(T2)) ≤ C(p − 1)n/2
√

n!
{
α−2(1 + ε

4πα
)n−1n! +Cn(1 + ε

ε

)n−1
}1/2
, (3.15)

where C > 0 is independent of ε > 0.
(2) For each g ∈ H, the sequence {(Φn,NΛ(·), g)H; N ∈ N} converges to a function Φn(·)(g) in
Lp(µ0), p ≥ 1 as N → ∞. Furthermore, the limit Φn(·)(g) is independent of the choice of Λ. We
denote Φn(z)(g), z ∈ E, by : zn : (g) and we have Φn(·)(g) ∈ Cn, and

∥Φn(·)(g)∥Lp(µ0) ≤ C(p − 1)n/2
√

n!
{(1 + ε

4π
)n−1n! +Cn(1 + ε

ε

)n−1
}1/2
∥g∥H, (3.16)

where C > 0 is independent of ε > 0. Furthermore,

Φn(z)(g) = H−α⟨: zn :, g⟩Hα , µ0-a.e. z ∈ E, g ∈ Hα(T2). (3.17)

Proof. Without loss of generality, we may assume n ∈ N and p ≥ 2. (There is nothing to prove
in the case n = 0.) By (3.6), (3.7) and (3.8), we have

lim
M→∞

∫
T2

K(α)
M (x)K(1)

Λ
(x)ndx =

∫
T2

K(α)(x)K(1)
Λ

(x)ndx, (3.18)

lim
N→∞

∫
T2

K(α)(x)K(1)
N (x)ndx =

∫
T2

K(α)(x)K(1)(x)ndx. (3.19)

It follows from an elementary inequality

(a + b)n ≤ (1 + ε)n−1an +
(1 + ε
ε

)n−1bn, a, b, ε > 0

and (3.4) that∫
T2

K(α)(x)K(1)(x)ndx ≤ Cn +C(1 + ε)n−1
∫
|x|R2≤1

|x|2α−2
R2

( − 1
2π

log |x|R2
)ndx

+Cn+1(1 + ε
ε

)n−1
∫
|x|R2≤1

|x|2α−2
R2 dx

≤ Cn +C
(1 + ε

2π
)n−1(2α)−(n+1)n! +Cn+1(1 + ε

ε

)n−1 · (π
α

)
≤ Cα−2(1 + ε

4πα
)n−1n! +Cn+1α−1(1 + ε

ε

)n−1
, ε > 0. (3.20)

Now we prove item (1). Combining (3.9), (3.11) with (3.12), we have∫
E
(Φn,MΛ(z), f )H(Φn,NΛ(z), g)Hµ0(dz)

= n!ρn
MΛρ

n
NΛ

∫
T2

∫
T2

f (x)g(y)
(
ηMΛ,x, ηNΛ,y

)n
H−1dxdy

= n!
∫
T2

∫
T2

K(1)
NΛ(x − y)n f (x)g(y)dxdy, M ≥ N, f , g ∈ H. (3.21)
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Then by (3.5), (3.18) and (3.21), we have∥∥∥Φn,NΛ

∥∥∥2

L2(µ0;H−α(T2))
=

∫
E

∑
k∈Z2

{
(1 + |k|2)−α ̂Φn,NΛ(z)·(k) ̂Φn,NΛ(z)·(−k)

}
µ0(dz)

= n!
∑
k∈Z2

(1 + |k|2)−α
∫
T2

∫
T2

K(1)
NΛ(x − y)nek(x)e−k(y)dxdy

=
n!
2π

∑
k∈Z2

(1 + |k|2)−α
∫
T2

∫
T2

K(1)
NΛ(x − y)nek(x − y)dxdy

=
n!
2π

lim
M→∞

∑
∥k∥≤M

(1 + |k|2)−α(2π)2
∫
T2

K(1)
NΛ(x)nek(x)dx

= 4π2n! lim
M→∞

∫
T2

K(α)
M (x)K(1)

NΛ(x)ndx

= 4π2n!
∫
T2

K(α)(x)K(1)
NΛ(x)ndx.

On the other hand, for any M,N ∈ N, we also have∫
T2

K(α)
M (x)K(1)

NΛ(x)ndx

=
( 1
2π

)n+1
∫
T2

{ ∑
∥k∥≤M

(1 + |k|2)−αek(x)
}
·
{∑

l∈Z2

1NΛ(l)(1 + |l|2)−αel(x)
}n

dx

=
( 1
2π

)n+1
∑
∥k∥≤M

(1 + |k|2)−α
∑

l(1)∈Z2

· · ·
∑

l(n)∈Z2

{ n∏
j=1

1NΛ(l( j))(1 + |l( j)|2)−1
} ∫
T2

ek+l(1)+···+l(n)(x)dx

=
( 1
2π

)n−1
∑
∥k∥≤M

(1 + |k|2)−α
∑

l(1)∈Z2

· · ·
∑

l(n)∈Z2

{ n∏
j=1

1NΛ(l( j))(1 + |l( j)|2)−1
}
1k+l(1)+···+l(n)=0

≤ ( 1
2π

)n−1
∑
k∈Z2

(1 + |k|2)−α
∑

l(1)∈Z2

· · ·
∑

l(n)∈Z2

{ n∏
j=1

(1 + |l( j)|2)−1
}
1k+l(1)+···+l(n)=0

= lim
N→∞

(
lim

M→∞

∫
T2

K(α)
M (x)K(1)

N (x)ndx
)
=

∫
T2

K(α)(x)K(1)(x)ndx,

where we used (3.18) and (3.19) for the final line. Thus we obtain Φn,NΛ ∈ Cn(H−α(T2)) and∥∥∥Φn,NΛ

∥∥∥2

Lp(µ0;H−α(T2))
≤ (p − 1)n

∥∥∥Φn,NΛ

∥∥∥2

L2(µ0;H−α(T2))

≤ 4π2n!(p − 1)n
∫
T2

K(α)(x)K(1)(x)ndx, N ∈ N, p ≥ 2, (3.22)

where we used (3.10) for the first line.
Recalling (3.21) again, and repeating the same arguments as above, for any two integers

M ≥ N, we also have∥∥∥Φn,MΛ − Φn,NΛ

∥∥∥2

Lp(µ0;H−α(T2))
≤ 4π2n!(p − 1)n

∫
T2

K(α)(x)
(
K(1)

MΛ(x)n − K(1)
NΛ(x)n

)
dx. (3.23)
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Now we fix a constant p = pα > 1 sufficiently small such that p(1−α) < 1 and let q = qα(≫ 1)
be the conjugate constant of p. By (3.4),

1
p
+

1
nq
+

j
nq
+

n − 1 − j
nq

= 1, j = 0, 1, . . . , n − 1,

the elementary binomial equality an − bn = (a − b)(an−1 + an−2b + · · · + abn−2 + bn−1) and the
generalized Hölder inequality for (n + 1)-factors, we have∫

T2
K(α)(x)

(
K(1)

MΛ(x)n − K(1)
NΛ(x)n)dx

≤
∥∥∥K(α)

∥∥∥
Lp(T2)

n−1∑
j=0

∥∥∥(K(1)
MΛ − K(1)

NΛ)(K(1)
MΛ) j(K(1)

NΛ)n−1− j
∥∥∥

Lq(T2)

≤
∥∥∥K(α)

∥∥∥
Lp(T2)

n−1∑
j=0

∥∥∥K(1)
MΛ − K(1)

NΛ

∥∥∥
Lnq(T2)

∥∥∥K(1)
MΛ

∥∥∥ j

Lnq(T2)

∥∥∥K(1)
NΛ

∥∥∥n−1− j

Lnq(T2)

≤
∥∥∥K(α)

∥∥∥
Lp(T2)

· n
{∑

k∈Z2

( 1
1 + |k|2

) nq
nq−1

} (nq−1)(n−1)
nq

{∑
k∈Z2

1MΛ\NΛ(k)
( 1
1 + |k|2

) nq
nq−1

} nq−1
nq
. (3.24)

By summarizing (3.23), (3.24), and letting M,N → ∞, we have shown that {Φn,NΛ}∞n=1 is a
Cauchy sequence in Lp(µ0; H−α(T2)). Letting N → ∞ on both sides of (3.22) and combining it
with (3.20), we obtain the desired estimate (3.15).

For a general subset Λ ⊂ R2 satisfying (2.4), we can find some r > 0 and R ∈ N such that
Q(r) ⊂ Λ ⊂ Q(R). Repeating the same argument above, we obtain

∥Φn,NΛ − Φn,Q(NR)∥2Lp(µ0;H−α(T2)) ≲
∥∥∥K(α)

∥∥∥
Lp(T2)

{ ∑
[Nr]<∥k∥≤NR

( 1
1 + |k|2

) nq
nq−1

} nq−1
nq → 0 as N → ∞.

Thus we have completed the proof of item (1).

Next, we prove item (2). Applying Young’s inequality for convolution, we have∥∥∥Φn,MΛ(·)(g) − Φn,NΛ(·)(g)
∥∥∥2

L2(µ0)
= n!

∫
T2

∫
T2

(
K(1)

MΛ(x − y)n − K(1)
NΛ(x − y)n)g(x)g(y)dxdy

= n!
({

(K(1)
MΛ)n − (K(1)

NΛ)n} ∗ g, g)
L2

≤ n!
∥∥∥(K(1)

MΛ)n − (K(1)
NΛ)n

∥∥∥
L1∥g∥2L2 , M > N.

Then by following the proof of item (1), we can easily show Lp(µ0)-convergence of the sequence
{(Φn,NΛ(·), g)H; N ∈ N}. The fact that Φn(·)(g) ∈ Cn and the estimate (3.16) are clear.

For g ∈ Hα(T2), we have

(Φn,N(z), g)H = H−α⟨Φn,N(z), g⟩Hα , z ∈ E,N ∈ N, (3.25)

Then by taking the limit N → ∞ on both sides of (3.25), we obtain (3.17). This completes the
proof. □

Proposition 3.2. Let p ≥ 2 and 0 < α ≤ 1. If |a| <
√

4πα
p−1 , the mapping

∑∞
n=0

an

n!Φn(·) converges

as an element of Lp(µ0; H−α(T2)). Furthermore, for each g ∈ H, the function
∑∞

n=0
an

n! (Φn(·), g)H

converges as an element of Lp(µ0) provided that |a| <
√

4π
p−1 .
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Proof. To prove the first assertion, it is sufficient to check
∞∑

n=0

|a|n
n!
∥Φn∥Lp(µ0;H−α(T2)) < ∞, if |a| <

√
4πα
p − 1

. (3.26)

Recalling (3.15), we estimate the summand in (3.26) by
1
n!
∥Φn∥Lp(µ0;H−α(T2)) ≲ (p − 1)n/2

(1 + ε
4πα

) n−1
2
+

{C(p − 1)
n!

}n/2( ε
1 + ε

) n−1
2
=: k(n) + l(n),

Then by

lim
n→∞

(k(n + 1)
k(n)

)
=

√
4πα

(p − 1)(1 + ε)
, lim

n→∞

( l(n + 1)
l(n)

)
= 0,

and letting ε ↘ 0, we see that (3.26) holds. Replacing (3.15) by (3.16) in the above argument,
we obtain the second assertion. This completes the proof. □

3.2. Finite dimensional approximation of the Wick exponential. In this subsection, we con-
struct the Wick exponential mapping :exp(a·): through the finite dimensional approximation
introduced in the previous subsection.

First, we take an arbitrary number a ∈ R and Λ ⊂ R2 satisfying (2.4). For any z ∈ E, we
define the smooth non-negative function expΛ(az)• : T2 → [0,∞) by

expΛ(az)x := exp
{
a(ΠΛz)(x) − (aρΛ)2

2

}
, x ∈ T2,

where ΠΛ is the projection operator defined in (2.5). Substituting t = aρΛ and ξ = ρΛ−1(ΠΛz)(x)
into the formula

exp
( − t2

2
+ ξt

)
=

∞∑
n=0

an

√
n!
Hn(ξ),

we easily deduce

expΛ(az)x =

∞∑
n=0

an

n!
Φn,Λ(z)x, z ∈ E, x ∈ T2, (3.27)

with Φn,Λ(z)x as in (3.11). Furthermore, we have the following.

Proposition 3.3. For any α ≥ 0, we have expΛ(a·) ∈ L2(µ0; H−α(T2)) and

Pn

(
expΛ(a·)

)
=

an

n!
Φn,Λ(·), n = 0, 1, 2, . . . , (3.28)

where Pn : L2(µ0; H−α(T2))→ Cn(H−α(T2)) is the orthogonal projection onto the Wiener chaos
of order n.

Proof. Recalling ∫
E

eW f (z)µ0(dz) = exp
(1
2
∥ f ∥2H−1

)
, f ∈ H−1(T2),

and ∥ηΛ,x∥H−1 = 1 (x ∈ T2), we have∫
E
∥expΛ(az)∥2Hµ0(dz) = e−(aρΛ)2

∫
T2

( ∫
E

exp
(
2aρΛWηΛ,x(z)

)
µ0(dz)

)
dx

= e−(aρΛ)2
∫
T2

exp
(
2a2ρ2

Λ∥ηΛ,x∥2H−1

)
dx = 4π2ea2ρ2

Λ ,



STRONG UNIQUENESS OF DIRICHLET OPERATORS RELATED TO STOCHASTIC QUANTIZATION 17

which means expΛ(a·) ∈ L2(µ0; H−α(T2)) (α ≥ 0). Combining this and the fact that Φn,Λ ∈
Cn(H−α(T2)) with (3.27), we easily get (3.28). This completes the proof. □

As an immediate corollary of Proposition 3.3, we easily obtain(
expΛ(a·), g)H =

∞∑
n=0

an

n!
(Φn,Λ(·), g)H in L2(µ0), g ∈ H.

The following theorem plays a crucial role in the proof of our main results. The reader is
refered to [Sim74, Theorem V. 24 and Proposition VIII. 43] for a similar result in the case of
space-time cut off quantum fields with interactions of exponential type.

Theorem 3.4. Let p ≥ 2, g ∈ H and Λ ⊂ R2 be a subset of R2 satisfying (2.4). Then we have
the following:
(1) Let a ∈ (−

√
4πα,

√
4πα). Then

lim
N→∞

expNΛ(a·) =
∞∑

n=0

an

n!
Φn(·) in L2(µ0; H−α(T2)). (3.29)

We call the right-hand side of (3.29) the Wick exponential mapping and denote it by : exp(az) :
(z ∈ E).
(2) Let a ∈ (−

√
4π,
√

4π). Then for each g ∈ H,

lim
N→∞

(
expNΛ(a·), g)H =

∞∑
n=0

an

n!
Φn(·)(g) in L2(µ0). (3.30)

We denote the the right-hand side of (3.30) by :exp(az): (g) (z ∈ E). Furthermore, if g ∈ Hα(T2)
and a ∈ (−

√
4πα,

√
4πα), we have

:exp(az): (g) = H−α
⟨

:exp(az):, g
⟩

Hα , µ0-a.e. z ∈ E.

(3) If |a| <
√

4πα
p−1 , the Wick exponential : exp(a·) : belongs to Lp(µ0; H−α(T2)). Furthermore, if

|a| <
√

4π
p−1 , the function :exp(a·): (g) belongs to Lp(µ0).

Proof. By (3.22) and (3.26)
∞∑

n=0

|a|n
n!

(
sup
N∈N
∥Φn,NΛ∥L2(µ0;H−α(T2))

)
< ∞, if |a| <

√
4πα.

Thus we obtain item (1) as

lim
N→∞

expNΛ(a·) = lim
N→∞

∞∑
n=0

an

n!
Φn,NΛ(·)

=

∞∑
n=0

an

n!

(
lim

N→∞
Φn,NΛ(·)

)
=

∞∑
n=0

an

n!
Φn(·) in L2(µ0; H−α(T2)).

In the same way, we can prove the former part of item (2). For g ∈ Hα(T2), we have∫
E

∣∣∣ H−α⟨expN(az), g
⟩

Hα − H−α
⟨

:exp(az):, g
⟩

Hα

∣∣∣2µ0(dz)
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≤ ∥g∥2Hα
∫

E

∥∥∥expN(az)− :exp(az):
∥∥∥2

H−α
µ0(dz)→ 0 as N → ∞.

Hence by taking the limit N → ∞ on both sides of

(expN(az), g)H = H−α⟨expN(az), g
⟩

Hα , z ∈ E,N ∈ N,
we obtain the latter part of item (2).

Since item (3) is a straightforward consequence of items (1), (2) and Proposition 3.2, our
proof is complete. □

Remark 3.5. In [HKK19, Theorem 2.2], it is shown that the sequence {exp2NΛ(az)}∞N=0 con-
verges both in H−α(T2) µ0-almost surely and in L2(µ0; H−α(T2)) with a2

4π < α < 1.

Finally, we mention a significant property of the Wick exponential, which, however, it seems
to be a well-known fact. For the sake of completeness, we give a proof. See also e.g., [Sim74,
Theorem V.24] and [HKK19, Corollary 2.3].

Proposition 3.6. For all |a| <
√

4π, the function exp
(− :exp(a·):(1T2)

)
belongs to L∞(µ0) and

Z(a)
exp :=

∫
E

exp
(
− :exp(az):(1T2)

)
µ0(dz) > 0.

Proof. Since
(

expΛ(az), 12
T

)
H ≥ 0 for every z ∈ E, we easily see : exp(az) : (1T2) ≥ 0 for µ0-a.e.

z ∈ E. This implies that the function exp
(− : exp(az) : (1T2)

)
belongs to L∞(µ0). On the other

hand, it follows from Jensen’s inequality that∫
E

exp
(− :exp(az): (1T2)

)
µ0(dz) ≥ exp

(
−

∫
E

:exp(az): (1T2)µ0(dz)
)

≥ exp
(
−

∥∥∥ :exp(az): (1T2)
∥∥∥

L∞(µ0)

)
> 0.

This completes the proof. □

3.3. Finite dimensional approximation of the Wick trigonometric mappings. In this sub-
section, we construct the Wick trigonometric mappings :cos(a·): and :sin(a·): for later use.

For any z ∈ E and a ∈ R, we define the smooth functions cosΛ(az)• and sinΛ(az)• by

cosΛ(az)x :=
1
2
(
expΛ(

√
−1az)x + expΛ(−

√
−1az)x

)
= cos

(
a(ΠΛz)(x)

)
exp

{ (aρΛ)2

2

}
,

sinΛ(az)x :=
1
2
(
expΛ(

√
−1az)x − expΛ(−

√
−1az)x

)
= sin

(
a(ΠΛz)(x)

)
exp

{ (aρΛ)2

2

}
, x ∈ T2.

Repeating the same argument as in the previous subsection, we easily obtain the following:

Corollary 3.7. Let p ≥ 2, g ∈ H and Λ ⊂ R2 be a symmetric and compact set as introduced in
the beginning of this section.
(1) Let a ∈ (−

√
4πα,

√
4πα). Then

lim
N→∞

cosNΛ(a·) =
∞∑

n=0

(−1)n a2n

(2n)!
Φ2n(·), (3.31)

lim
N→∞

sinNΛ(a·) =
∞∑

n=0

(−1)n a2n+1

(2n + 1)!
Φ2n+1(·) (3.32)
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in L2(µ0; H−α(T2)). We call the right-hand side of (3.31) and (3.32) the Wick cosine mapping
and the Wick sine mapping. We denote them by : cos(a·) : and : sin(a·) : , respectively.
(2) Let a ∈ (−

√
4π,
√

4π). Then for each g ∈ H,

lim
N→∞

(
cosNΛ(a·), g)H =

∞∑
n=0

(−1)n a2n

(2n)!
Φ2n(·)(g), (3.33)

lim
N→∞

(
sinNΛ(a·), g)H =

∞∑
n=0

(−1)n a2n+1

(2n + 1)!
Φ2n+1(·)(g) (3.34)

in L2(µ0). We denote the the right-hand side of (3.33) and (3.34) by : cos(a·) :(g) and : sin(a·) :
(g), respectively. Furthermore, if g ∈ Hα(T2) and a ∈ (−

√
4πα,

√
4πα), we have

: cos(az) : (g) = H−α⟨: cos(az) :, g⟩Hα , : sin(az) : (g) = H−α⟨: sin(az) :, g⟩Hα , µ0-a.e. z ∈ E.

(3) If |a| <
√

4πα
p−1 , both the Wick cosine : cos(a·) : and the Wick sine : sin(a·) : belong to

Lp(µ0; H−α(T2)). Furthermore, if |a| <
√

4π
p−1 , both the functions : cos(a·) : (g) and : sin(a·) : (g)

also belong to Lp(µ0).

Before closing this subsection, we present the exponential integrability of the Wick trigono-
metric functions which plays a crucial role in the proof of the main result. Although this prop-
erty was first shown by Fröhlich [Frö76a, Frö76b], we provide a proof for the sake of complete-
ness. See also [FP77, AH79].

Proposition 3.8. For all |a| <
√

4π, the function exp
(− : cos(a·) : (1T2)

)
belongs to L∞−(µ0).

Namely, for any p ≥ 1, ∫
E

exp
(
− p :cos(az):(1T2)

)
µ0(dz) < ∞. (3.35)

Furthermore, we have

Z(a)
cos :=

∫
E

exp
(− :cos(az):(1T2)

)
µ0(dz) > 0. (3.36)

If we replace:cos(a·):(1T2) by:sin(a·):(1T2), these properties still hold.

Proof. Since (3.36) can be shown in the same way as in the proof of Proposition 3.6, we aim to
prove (3.35). First, we fix Λ ⊂ R2 satisfying (2.4) and set Ψ+N(z) =

(
expNΛ(

√
−1az), 1T2

)
H and

Ψ−N(z) =
(
expNΛ(−

√
−1az), 1T2

)
H. Noting Ψ+N(z) = Ψ−N(z) and

(
cosNΛ(az), 1T2

)
H =

1
2

(
Ψ+N(z) +

Ψ−N(z)
)
, we have∫

E
exp

{
− p

(
cosNΛ(az), 1T2

)
H

}
µ0(dz) ≤ 2

∫
E

cosh
{
p
(
cosNΛ(az), 1T2

)
H

}
µ0(dz)

= 2
∞∑

n=0

p2n

(2n)!

∫
E

(
cosNΛ(az), 1T2

)2n
H µ0(dz)

= 2
∞∑

n=0

p2n

(2n)!

∫
E

{1
2
(
Ψ+N(z) + Ψ−N(z)

)}2n
µ0(dz)

≤ 2
∞∑

n=0

p2n

(2n)!

∫
E

1
22n

2n∑
m=0

(
2n
m

)
|Ψ+N(z)|m|Ψ−N(z)|2n−mµ0(dz)
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≤ 2
∞∑

n=0

p2n

(n!)2

∫
E

(
Ψ+N(z)

)n(
Ψ−N(z)

)n
µ0(dz), (3.37)

where we used

|Ψ+N(z)|m|Ψ−N(z)|2n−m = |Ψ+N(z)|2n =
(
Ψ+N(z)Ψ−N(z)

)n
, m = 0, . . . , 2n

and the identities
∑2n

m=0

(
2n
m

)
= 22n and (2n)! ≥ (n!)2 for the final line in the above estimate.

For given i ∈ {1, . . . , 2n}, we set εi = 1 if i is even and εi = −1 if i is odd. Then∫
E

(
Ψ+N(z)

)n(
Ψ−N(z)

)n
µ0(dz)

= exp
(
a2ρ2

NΛ
) ∫

(T2)2n
dx1 · · · dx2n

∫
E

exp
{√
−1a

n∑
i=1

(
(ΠNΛz)(x2i) − (ΠNΛz)(x2i−1)

)}
µ0(dz)

= exp
(
a2ρ2

NΛ
) ∫

(T2)2n
exp

(
− (aρNΛ)2

2

∥∥∥∥ n∑
i=1

(
ηNΛ,x2i − ηNΛ,x2i−1

)∥∥∥∥2

H−1

)
dx1 · · · dx2n

=

∫
(T2)2n

exp
(
− a2

∑
1≤i< j≤2n

εiε jK
(1)
NΛ(xi − x j)

)
dx1 · · · dx2n

≤
∫

(T2)2n
exp

(
− a2

∑
1≤i< j≤2n

εiε jK(1)(xi − x j)
)
dx1 · · · dx2n, (3.38)

where we used that the Green functions K(1)
NΛ and K(1) satisfies K(1)

NΛ ≥ K(1) as quadratic forms
on T2 for the final line. (Note that the final line can be regarded as the conditioning property
mentioned in [Frö76b, Lemma IV.3].) Recalling (3.3) and [AS61, (4.2)] (see also Proposition
A.2 below), we obtain

K(1)(x) = − 1
2π

log |x|R2 + R(x), x ∈ T2 \ {0}, (3.39)

for some smooth function R. Combining (3.39) with [Frö76a, Lemma 2.1], we also have∫
(T2)2n

exp
(
− a2

∑
1≤i< j≤2n

εiε jK(1)(xi − x j)
)
dx1 · · · dx2n

≤ exp(2a2Cn)
∫

(T2)2n

∏
1≤i< j≤2n

|xi − x j|εiε ja2/2π
R2 dx1 · · · dx2n. (3.40)

Furthermore, it follows from [DL74, (1.5), (2.7) and (2.8)] that∫
(T2)2n

∏
1≤i< j≤2n

|xi − x j|εiε ja2/2π
R2 dx1 · · · dx2n

≤ (4π2)2n+ a2
4π

∑
1≤i< j≤2n εiε j(n!)max{a2/2π,1}(Q∗1)n = Cn(n!)max{a2/2π,1}, (3.41)

where the positive constant Q∗1 is given by

Q∗1 =
π2Γ(2 − a2/2π)

(1 − a2/8π)(1 − a2/4π)Γ(1 − a2/4π)Γ(2 − a2/4π)
.
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Inserting (3.38), (3.40) and (3.41) into (3.37), we obtain

sup
N∈N

∫
E

exp
(
− p

(
cosNΛ(az), 1T2

)
H

)
µ0(dz) ≤

∞∑
n=0

Cn

(n!)min{2−a2/2π,1} (p2)n. (3.42)

Noting that the condition |a| < 4π implies 2−a2/2π > 0, we see that the right-hand side of (3.42)
converges absolutely for every p ≥ 1. This estimate implies that

{
exp

(−p
(
cosNΛ(a·), 1T2

)
H
)}

N∈N
is uniformly integrable. Hence by combining this property with Corollary 3.7, we finally obtain
the desired estimate (3.35). □

4. Proof of main results

In this section, we only consider the case µ = µ(a)
cos and give a proof of Proposition 2.1 and

Theorem 2.4. Since we have exp(− : exp(a·) : (1T2)) ∈ L∞(µ0) (see Proposition 3.6), which is a
stronger property than exp(− : cos(a·) : (1T2)) ∈ L∞−(µ0) (see Proposition 3.8), the proof in the
case of µ = µ(a)

exp goes in a very similar way with only slight modifications.

Proof of Proposition 2.1. Applying a standard Gaussian integration by parts formula (cf. [GJ86,
page 207]), we easily have∫

E

(
DHF(z), φ

)
H

1

Z(a)
N

exp
(
− (

cosD(N)(az), 1T2
)

H

)
µ0(dz)

=

∫
E

F(z)
{
⟨z, (1 − ∆)φ⟩ + a

(
sinD(N)(az), φ

)
H

} 1

Z(a)
N

exp
(
− (

cosD(N)(az), 1T2
)

H

)
µ0(dz) (4.1)

for all F ∈ FC∞b , φ ∈ K and N ∈ N, where

Z(a)
N :=

∫
E

exp
(
− (

cosD(N)(az), 1T2
)

H

)
µ0(dz).

Combining Corollary 3.7 with Proposition 3.8 (in particular, (3.42)), we can take a subsequence
{N( j)}∞j=1 with N( j)↗ ∞ as j→ ∞ such that

lim
j→∞

(
cosD(N)(az), φ

)
H = :cos(az): (φ), lim

j→∞

(
sinD(N)(az), φ

)
H = :sin(az): (φ), µ0-a.s. z ∈ E,

and lim j→∞ Z(a)
N = Z(a)

cos provided that |a| <
√

4π. Thus, taking the limit j → ∞ on both sides of
(4.1), we obtain∫

E

(
DHF(z), φ

)
H µ

(a)
cos(dz) =

∫
E

F(z)
{
⟨z, (1 − ∆)φ⟩ + a :sin(az): (φ)

}
µ(a)

cos(dz),

and this leads us to the desired integration by parts formula (2.9).
To show LF ∈ Lp(µ(a)

cos), it is sufficient to check :sin(az): (φ) ∈ Lp(µ(a)
cos). Applying Corollary

3.7 and Proposition 3.8 again, we easily see :sin(az) : (φ) ∈ Lp(µ(a)
cos), provided that |a| <

√
4π

p−1 .
This completes the proof. □

Proof of Theorem 2.4. First, we introduce H+ := H2γ+δ(T2) and H− := E = H−δ(T2). By
virtue of condition (2.1), the embeddings H+ ⊂ H ⊂ H− are Hilbert-Schmidt. Note that H+
is regarded as the dual space of H− if we identify H with its dual. Let −(·, ·)+ stand for this
dualization betweenH− andH+. Noting the identity

−(z, φ)+ = (z, φ)H , φ ∈ H+, z ∈ H ,
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we may rewrite LF given in Proposition 2.1 as

LF(z) =
1
2
{
Tr(D2

HF(z)) +−
(
β(z),DHF(z)

)
+

}
, F ∈ FC∞b ,

where β(z) := βOU(z) + β(a)
cos(z) is given by

βOU(z) = −
∑
k∈Z2

λ
−δ/2−γ+1
k ⟨z, ek⟩e(−δ)

k

β(a)
cos(z) = a

∑
k∈Z2

λ
−γ/2
k

∞∑
n=0

(−1)n a2n+1

(2n + 1)!
Φ2n+1(z)(ek)e(γ)

k

Thanks to [LR98, Theorem 3], it is sufficient to check βOU ∈ L2p(µ(a)
cos;H−) and β(a)

cos ∈
L2p(µ(a)

cos;H) for Lp-uniqueness of the Dirichlet operator L. By using the Hölder inequality
and remembering the condition δ + 2γ > 2, we can estimate as follows:∫

E

∥∥∥βOU(z)
∥∥∥2p

E
µ(a)

cos(dz)

≤ Tr(Aδ+2γ−1)p−1
∫

E

∑
k∈Z2

λ
−(δ+2γ−p−1)
k ⟨z, ek⟩2pµ(a)

cos(dz)

≲ Tr(Aδ+2γ−1)p−1
∑
k∈Z2

λ
−(δ+2γ−p−1)
k

( ∫
E
⟨z, ek⟩2p exp

(− :cos(az): (1T2)
)
µ0(dz)

)
= Tr(Aδ+2γ−1)p−1

∑
k∈Z2

λ
−(δ+2γ−1)
k

( ∫
E
⟨z, e(−1)

k ⟩
2p exp

(− :cos(az): (1T2)
)
µ0(dz)

)
= Tr(Aδ+2γ−1)p

{ ∫
R

x4p( 1
√

2π
e−

x2
2 dx

)}1/2( ∫
E

exp
( − 2 :cos(az): (1T2)

)
µ0(dz)

)1/2
< ∞,

where we used ⟨z, e(−1)
k ⟩ ∼ N(0, 1) (k ∈ Z2) for the final line.

On the other hand, by using the triangle inequality and recalling Proposition 3.8, we obtain( ∫
E

∥∥∥β(a)
cos(z)

∥∥∥2p

H µ
(a)
cos(dz)

)1/2p
≤ |a|

∞∑
n=0

|a|2n+1

(2n + 1)!

[ ∫
E

{∑
k∈Z2

(
λ
−γ/2
k Φ2n+1(z)(ek)

)2}p
µ(a)

cos(dz)
]1/2p

≲ |a|
∞∑

n=0

|a|2n+1

(2n + 1)!

( ∫
E

∥∥∥Φ2n+1

∥∥∥2p(1+ε)

H−γ
µ0(dz)

)1/2p(1+ε)

×
( ∫

E
exp

( − 1 + ε
ε

:cos(az): (1T2)
)
µ0(dz)

)ε/2p(1+ε)

≲ |a|
∞∑

n=0

|a|2n+1

(2n + 1)!

∥∥∥Φ2n+1

∥∥∥
L2p(1+ε)(µ0;H−γ(T2))

(4.2)

for any ε > 0. By virtue of Corollary 3.7, the right-hand side of (4.2) is finite under the condition
2p(1 + ε) < 1 + 4πγ

a2 . Since we may take ε > 0 sufficiently small, this completes the proof. □

A. Auxiliary results

In this appendix, for the reader’s convenience, we collect auxiliary results which are used in
the proof of the main results.
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Lemma A.1. Let Λ and Λ′ be subsets of R2 satisfying (2.4), and K(1)
Λ

be the approximating
Green kernel of (1 − ∆) defined in (3.5). Then for any n ∈ N, q ≥ 2, we have

∥K(1)
Λ
∥Lqn(T2) ≤

( 1
2π

) 2(qn−1)
qn

{∑
k∈Z2

1Λ(k)
( 1
1 + |k|2

) qn
qn−1

} qn−1
qn
, (A.1)

∥K(1)
Λ′ − K(1)

Λ
∥Lqn(T2) ≤

( 1
2π

) 2(qn−1)
qn

{∑
k∈Z2

1Λ′\Λ(k)
( 1
1 + |k|2

) qn
qn−1

} qn−1
qn
, Λ ⊂ Λ′. (A.2)

Proof. By recalling the Hausdorff-Young inequality (cf. [Zyg59, Theorem 2.8 in Chapter XII]),
we have

∥ f ∥Lr(T2) ≤
( 1
2π

) 2
s−1

(∑
k∈Z2

| f̂ (k)|s
)1/s
, f ∈ Lr(T2), r ≥ 2, (A.3)

where 1 ≤ s ≤ 2 is the conjugate index of r. Now we set f = K(1)
Λ

. Replacing r and s by qn(≥ 2)
and qn

qn−1 , respectively, we easily see that (A.3) implies estimate (A.1). Similarly, estimate (A.2)
is obtained by putting f = KΛ′ − KΛ. □

Proposition A.2. Let G(α)(x, y) = G(α)(x − y) (0 < α ≤ 1, x, y ∈ R2) be the Green function for
(1 − ∆)α on R2. Then G(α) is smooth on R2 \ {0} and strictly positive. Furthermore, there exist
some constants C1,C2,C3 > 0 such that the following holds: if 0 < α < 1, then

G(α)(x − y) ≤

C1|x − y|2α−2
R2 for |x − y|R2 < 1

C2 exp(−C3|x − y|R2) for |x − y|R2 ≥ 1,
(A.4)

and if α = 1, then

G(1)(x − y) ≤


− 1

2π
log |x − y|R2 +C1 for |x − y|R2 < 1

C2 exp(−C3|x − y|R2) for |x − y|R2 ≥ 1.
(A.5)

Proof. One can find a proof of (A.5) e.g., in [AS61, Section 4], [Sim74, Proposition V.23] and
[GJ86, Proposition 7.2.1]. Although the case 0 < α < 1 is also treated in [AS61, Section 4], we
give a short proof of (A.4) here to make the present paper more self-contained.

We first recall an integral representation of the Green function

G(α)(x − y) = 1
4πΓ(α)

∫ ∞

0
e−s exp

( − |x − y|2R2

4s
)
sα−2ds, 0 < α ≤ 1, x, y ∈ R2.

Setting s = |x−y|R2

t , we have

G(α)(x − y) =
|x − y|2α−2

R2

4πΓ(α)
I(|x − y|R2), (A.6)

where

I(r) =
∫ ∞

0
t−α exp

( − t
4
− r2

t
)
dt, r ≥ 0.

Combining (A.6) with

I(r) ≤
∫ ∞

0
t−αe−t/4dt = 41−αΓ(1 − α),

we obtain the desired estimate in the case |x − y|R2 < 1.
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Next we consider the case r = |x − y|R2 ≥ 1. We set τ =
√

t
2 −

r√
t
, in other word, t =

(τ +
√
τ2 + 2r)2. Then we have

I(r) = 2e−r
∫
R

(
τ +
√
τ2 + 2r

)2−2α

√
τ2 + 2r

e−τ
2
dτ

= 2e−rr
1−2α

2

∫
R

(
τ√
r +

√
τ2

r + 2
)2−2α√

τ2

r + 2
e−τ

2
dτ

≤
√

2e−rr
1−2α

2

∫
R

(
τ +
√
τ2 + 2

)2−2αe−τ
2
dτ ≲ e−rr

1−2α
2 ,

where we used r ≥ 1 and 2 − 2α > 0 for the third line. Combining this estimate with (A.6), we
finally obtain

G(α)(x − y) ≤ C exp(−|x − y|R2)|x − y|α−
3
2

R2 ≤ C exp(−|x − y|R2),

where we used |x − y|α−
3
2

R2 ≤ 1. This completes the proof. □
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