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On iteration improvement for averaged control for
multidimensional ergodic diffusions
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Abstract

Ergodic Bellman’s (HJB) equation is proved for a special case of a uniformly
ergodic multidimensional controlled diffusion with variable diffusion and drift
coefficients both depending on control; convergence of Howard’s iterative re-
ward improvement algorithm to the unique solution of Bellman’s equation is
established.

1 Introduction

The paper is a continuation of [1] and [2] where the dimension was equal to one. We
consider a d-dimensional stochastic differential equation (SDE) on the probability
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space (Ω,F , (Ft), P ) with a one-dimensional (Ft) Wiener process B = (Bt)t≥0 with
coefficients b and σ, and with a feedback control function α (called strategy in the
sequel)

dXα
t = b(α(Xα

t ), Xα
t ) dt+ σ(α(Xα

t ), Xα
t ) dWt, t ≥ 0,

(1)

Xα
0 = x,

with the function σ ∈ R1.
Let a compact set U ⊂ R be a set where any strategy takes its values. The

functions b and σ on U ×R are assumed Borel; later on some further conditions will
be imposed, but we note straight away that σ will be assumed non-degenerate and
that a weak solution of the equation (1) always exists, see [17]. Denote the class of
all Borel functions α with values in U by A. For u ∈ U and α(·) ∈ A denote

Lu(x) = b(u, x)∇x +
1

2
σ2(u, x)

∑
i

∂2

∂x2i
,

and

Lα(x) = b(α(x), x)∇x +
1

2
σ2(α(x), x)

∑
i

∂2

∂x2i
, x ∈ Rd.

This is not the most general form of the (non-divergent) second order differential
operator. However, this restriction on L, namely, the scalar multiplier σ2 with the
Laplacian, makes sense because in most media the Einstein heat coefficient is, indeed,
scalar, although, of course, there exist anisotropic media where the scalar description
does not suffice.

A bit more general case may be considered,

Lu(x) = b(u, x)∇x +
1

2
σ2(u, x)

∑
ij

aij(x)
∂2

∂xi∂xj
,

where a(x) = (aij(x)) is a non-degenerate bounded Hölder-continuous matrix which
does not depend on control u. An additional restriction will be imposed on the drift
b so as to guarantee the uniform recurrence.

Denote by K the class of function on U ×Rd (also just on Rd) growing no faster
than some polynomial. The running cost function f will always be chosen from this
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class. The averaged cost function corresponding to the strategy α ∈ A is then defined
as

ρα(x) := lim sup
T→∞

1

T

∫ T

0

Exf(α(Xα
t ), Xα

t ) dt. (2)

For a strategy α ∈ A the function fα : Rd → R, fα(x) = f(α(x), x), x ∈ Rd, is
defined. Then (2) has an equivalent form

ρα(x) = lim sup
T→∞

1

T

∫ T

0

Exfα(Xα
t ) dt. (3)

Now, the cost function for the model under consideration is defined as

ρ(x) := inf
α∈A

lim sup
T→∞

1

T

∫ T

0

Exfα(Xα
t ) dt. (4)

It will be assumed that for every α ∈ A the solution of the equation (1) Xα is Markov
ergodic, i.e., there exists a limiting in total variation distribution µα of Xα

t , t→∞,
this distribution µα does not depend on the initial condition X0 = x ∈ Rd, is unique
and is invariant for the generator Lα. The cost function ρα then does not depend on
x and can be rewritten as

ρα(x) ≡ ρα :=

∫
fα(x)µα(dx) =: 〈fα, µα〉. (5)

Then what we want to find (compute) is the value

ρ := inf
α∈A

∫
fα(x)µα(dx) = inf

α∈A
〈fα, µα〉. (6)

For any strategy α ∈ A let us also define an auxiliary function

vα(x) :=

∫ ∞
0

Ex(fα(Xα
t )− ρα) dt.

The convergence of this integral will follow from the assumptions.

One goal of this paper is to show the ergodic HJB or Bellman’s equation on tghe
pair (V, ρ)

inf
u∈U

[LuV (x) + fu(x)− ρ] = 0, x ∈ Rd, (7)

where ρ is a constant and V : Rd 7→ R, or, equivalently,

inf
u∈U

[
1

σ2(u, x)
LuV (x) +

fu(x)

σ2(u, x)
− ρ

σ2(u, x)

]
= 0, x ∈ Rd, (8)
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with solution (V (·), ρ), to show uniqueness of the second component and that it
coincides with the cost from (6). The meaning of the first component V will be
explained later. The uniqueness of V will be shown up to an additive constant.

The class where the solution (V, ρ) will be studied is the family of all Borel
functions V and constants ρ ∈ R such that V has two Sobolev derivatives locally
integrable in any power. Respectively, the equation (7) is to be understood almost
everywhere; yet, in the 1D situation and under our assumptions it will follow straight-
forward that this equation, actually, is satisfied for all x ∈ R. Note that the first
derivative can be considered continuous (due to the embedding theorems), and the
second derivative will be always taken Borel, as one of the Borel representatives of
Lebesgue’s measurable function.

One more goal of the paper is to show how approach the solution ρ of the main
problem by some successive approximation procedure called Reward Improvement
Algorithm (RIA). It is interesting that under our minimal assumptions on regularity
of strategies for the weak SDE solution setting it is yet possible to justify a monotonic
convergence of the “exact” RIA; compare to [16, ch.1, §4] where it was necessary to
work with “approximate” RIA (called Bellman–Howard’s iteration procedure there)
and with regularized Lipschitz strategies.

Concerning a full uniqueness for the solution of (7), note that with any solution
(V, ρ) and for any constant C, the couple (V + C, ρ) is also a solution. There are
two close enough options how to tackle this fact: either accept that uniqueness will
be established up to a constant, or to choose a certain “natural” constant satisfying
some “centering condition” as will be done below.

To guarantee ergodicity, we will assume so called “blanket” recurrence conditions
(see below), which provide in some sense a uniform recurrence for any strategy.
Conditions of this type are sometimes considered as too restrictive; however, they
do allow to include models and cases not covered earlier in this theory and by this
reason we regard this restriction as a reasonable price for the time being. It is likely
that such restrictions may be relaxed so as to include the “near monotonicity” type
conditions (cf. [6]).

Let us say just a few words about the history of the problem. More can be found
in the references provided below. Earlier results on ergodic control in continuous
time were obtained in [21], [24], [7], et al. In his book [21] Mandl established appar-
ently first results on ergodic (averaged) control for controlled 1D diffusion on a finite
interval with boundary conditions including jumps from the boundary. He estab-
lished the HJB equation and proved uniqueness of the couple (up to a constant for
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the first component). Improvement of control was discussed, too, however, without
convergence.

Discrete time controlled models were considered in the monographs [8], [12], [13],
[26], and others, and in the papers [3], [22], [27], etc. Note that the paper [22]
contains a brief section on continuous time models as well; however, it does not
touch technical difficulties which we deal with in the present paper.

Continuous time controlled processes were also treated in the 80s in a chapter
of the monograph [7] where ergodic control for stable diffusions was considered.
Arapostathis and Borkar [5], Arapostathis [4], Arapostathis, Borkar and Ghosh [6]
treated diffusion with the “relaxed control” and with the diffusion coefficient not
depending on the control, under weaker recurrence assumptions (i.e., under two
types of condition, stable or near-monotone). In this setting, they establish Bellman’s
equation, existence, uniqueness, and RIA convergence. In the present paper we allow
diffusion coefficient to depend on control, even though in a reduced form, and we do
not use relaxed control.

The latest works include [4], [6], [27], see also the references therein. In the very
first papers and books compact cases with some auxiliary boundary conditions –
so as to simplify ergodicity – were studied; convergence of the improvement control
algorithms were studied only partially. In the later investigations noncompact spaces
are allowed; however, apparently, ergodic control in the diffusion coefficient σ of the
process was not tackled earlier. About controlled diffusion processes on a finite
horizon, or on infinite horizon with discount (technically equivalent to killing) the
reader may consult [7] and [16].

The paper consists of three sections: 1 – Introduction, 2 – Assumptions and
some auxiliaries, 3 – Main result and its proof. We will be using the convention that
arbitrary constants C in the calculus may change from line to line.

2 Assumptions and some auxiliaries

To ensure ergodicity of Xα under any feedback control strategy α ∈ A, we make the
following assumptions on the drift and diffusion coefficients.

(A1) (boundedness, non-degeneracy, continuity) The functions b and σ are Borel
measurable and bounded in their variables; |b(u, x)| ≤ Cb, |σ(u, x)| ≤ Cσ, σ
is uniformly non-degenerate, |σ(u, x)|−1 ≤ Cσ; the functions σ(u, x) and fu(x)
are continuous in u for every x.
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(A2) (recurrence)
lim
|x|→∞

sup
u
〈x, b(u, x)〉 = −∞. (9)

(A3) (running cost) The function f belongs to the class K of functions which are
Borel measurable in x for each u and admit a uniform in u polynomial bound:
there exist constants C1,m1 > 0 such that for any x,

sup
u∈U
|fu(x)| ≤ C1(1 + |x|m1).

(A4) (compactness of U) The set U is compact.

We will need the following three lemmata and two corollaries from them.

Lemma 1. Let the assumptions (A1) – (A3) hold true. Then

• For any C1,m1 > 0 there exist C,m > 0 such that for any strategy α ∈ A and
for any function g growing no faster than C1(1 + |x|m1),

sup
t≥0
|Exg(Xα

t )| ≤ C(1 + |x|m). (10)

• For any α ∈ A, the (unique) invariant measure µα integrates any polynomial
and

sup
α∈A

∫
|x|k µα(dx) <∞, ∀ k > 0. (11)

• For any strategy α ∈ A the function ρα is a constant, and

sup
α∈A
|ρα| ≤ C <∞; (12)

moreover, for any k > 0 and f ∈ K there exist C, k0 > 0 such that

sup
α∈A
|Exfα(Xα

t )− ρα| ≤ C
1 + |x|k0
1 + tk

, (13)

and

sup
α∈A

∣∣∣∣ 1

T

∫ T

0

Exfα(Xα
t ) dt− ρα

∣∣∣∣→ 0, T →∞. (14)

Proof. Follows from the calculus similar to that in [29] and [25].
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Corollary 1. Under the same assumptions,

sup
t≥0

Ex1(|Xα
t | > N)| ≤ sup

t≥0
Ex
|Xα

t |m

Nm
≤ C(1 + |x|m)

Nm
. (15)

Proof is straightforward by Bienaymé – Chebyshev – Markov’s inequality.

Lemma 2. Let the assumptions (A1) – (A3) be satisfied. Then for any strategy
α ∈ A the cost function vα has the following properties:

1. The function vα is continuous as well as (∇vα), and there exist C,m > 0 both
depending only on the constants in (A1)–(A3) such that

sup
α

(|vα(x)|+ |∇vα(x)|) + |∆vα(x)|) ≤ C(1 + |x|m). (16)

2. vα ∈ W 2
p,loc for any p ≥ 1.

3. vα ∈ C1,Lip (i.e., (∇vα) is locally Lipschitz).

4. vα satisfies a Poisson equation in the whole space,

Lαvα + fα − 〈fα, µα〉 = 0, (17)

in the Sobolev sense; in particular, for almost every x ∈ R

Lα(x)vα(x) + fα(x)− 〈fα, µα〉 = 0, (18)

or, equivalently,
1

σ2(α)
(Lαvα + fα − 〈fα, µα〉) = 0. (19)

5. Solution of the equation (17) is unique up to an additive constant in the class
of Sobolev solutions W 2

p,loc with any p > 1 with a no more than some (any)
polynomial growth of the solution vα.

6. 〈vα, µα〉 = 0.

Proof. Denote

L̄u =
1

σ2(u, x, z)
Lu, L̄α =

1

σ2(α(x, z), x, z)
Lα,
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Let t′(t) denote the inverse function for the mapping t 7→
∫ t

0

σ2(α(Xα
s ), Xα

s ) ds, and

let
X̄t := Xt′(t).

This random time change t 7→ t′(t) – see, for example, ([9, Theorem 15.5]), – tells us
that the process X̄α

t satisfies the following SDE

dX̄α
t = b̄(α(X̄t), X̄t) dt+ dW̄t, X̄α

0 = x,

with a new Wiener process W̄t =

∫ t′(t)

0

σ(α(Xα
s ), Xα

s ) dWs and with b̄α(x) =

bα(x)σ−2(α(x), x). The process (X̄α) is unique in distribution (more than that, it is,
actually, also pathwise unique), ergodic with a unique invariant measure µ̄α(dx) and
there is a convergence better than any polynomial to it in total variation. In fact, the
Lemma 1 is applicable straighforwarrdly to the process X̄, so that the statements
similar to (10) – (14) hold true for the process X̄ as well.

This time change allows to rewrite the definition of vα as follows,

vα(x) =

∫ ∞
0

Ex(f
α(Xα

t )− ρα) dt =

∫ ∞
0

Exf̄
α(X̄α

t ) dt, (20)

with

f̄α(x) =
fα(x)− ρα

σ2(α(x), x)
.

Hence, the only option for the integral in (20) to converge is that f̄α satisfies a
centering condition

〈f̄α, µ̄α〉 = 0.

Now it follows from (20) in a standard way (see, for example, [25]) that the function
vα is a solution of the Poisson equation

L̄αvα + f̄α = 0; (21)

recall that here

L̄ug(x) := b̄(u, x)∇g(x) +
1

2
∆g(x), x ∈ Rd,

and

L̄αg(x) := b̄(α(x), x)∇g(x) +
1

2
∆g(x).
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Let us show existence of derivatives vαx and vαxx in a Sobolev sense in the spaces W 2
p,loc

with any p > 1 (see notations in [19]). For this aim let us denote

v(T )(s, x, z) :=

∫ T−s

0

Ex,zf̄α(X̄α
t ) dt, 0 ≤ s ≤ T,

for any T > 0. In fact, it turns out to be a bit easier to prove a formally stronger
claim than just existence of vαx and vαxx, namely, that

(v(T )x , v(T )xx )|t=0 →
T→∞

(vαx , v
α
xx) in the Lp,loc sense,

or, a bit more precisely, that the left hand side here converges in Lp,loc, and the limit
turns out to be (vαx , v

α
xx). The functions vT have been introduced for this aim. In the

sequel the following short notations will be used: T̄tf̄
α(x) := Ex(f̄α(X̄α

t )). (On the
one hand, there is a slight abuse of notations here: T is time and T̄t is a semigroup;
on the other hand, the semigroup is never used without a lower index, so there is no
danger to get one for the other.) We have,

v(T )x (0, x) = ∂x

∫ T

0

T̄tf̄
α(x))dt = ∂x

∫ 1

0

T̄tf̄
α(x) dt+ ∂x

∫ T

1

T̄tf̄
α(x))dt

= ∂x

∫ 1

0

T̄tf̄
α(x)dt+ ∂x

∫ T

1

T̄1T̄t−1f̄
α(x) dt

= ∂x

∫ 1

0

T̄tf̄
α(x)dt+

∫ T

1

∂xT̄1(T̄t−1f̄
α)(x)dt. (22)

The first term here does not change with time (as far as T ≥ 1) and is well-defined

in Lp,loc Sobolev sense along with ∂2x

∫ 1

0

T̄tf̄
α(x, z))dt, due to [28, Theorem 5.5, 5.7].

The integrand in the second term admits the bound (see [28, Theorems 5.7 &
5.5] with T1 = ε > 0),

‖T̄·(T̄t−1f̄α)‖W 2
p ((ε,1)×BR) ≤ Cε(‖T̄·(T̄t−1f̄α)‖Lp((ε,1)×BR+1))

It follows from ergodic bounds of the SDE solutions similar to those in [29] that the
right hand side here decreases to zero faster than any polynomial in time, and, hence,
the second integral in the representation (22) converges as T →∞; this convergence
is locally uniform with respect to the initial value x and, of course, uniform with
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respect to z, as the latter variable takes values from a finite set. The same is also

true for any partial derivative of the second order

(
∂2x

∫ ∞
1

T̄tf̄
α(x))dt

)
. Thus, we

obtain,

∇x

∫ T

0

T̄tf̄
α(x))dt→ v̄1(x), ∂2x

∫ T

0

T̄tf̄
α(x))dt→ v̄2(x)

as T → ∞, both locally uniformly in x and, hence, also in the Lp,loc sense. In a
standard manner by integration over x it follows that v̄1(x) and v̄2(x) serve as ∇vα
and (vαxixj), respectively. Namely, for any x1, x

′
1 we have by the first theorem of the

calculus (also known as Newton – Leibnitz formula),

vT (0, x1, x2, . . .)− vT (0, x′1, x2, . . .) =

∫ x′1

x1

vTx1(0, e, x2, . . .) de

and in the limit as T →∞ we obtain

vα(x1, x2, . . .)− vα(x′1, x2, . . .) =

∫ x′1

x1

v̄11(e, x2, . . .) de,

which means exactly that v̄11 = vαx1 . Similarly for any other variable xi, and similarly
for the second order derivatives: for example,

vTx1(0, x1, x2, . . .)− v
T
x (0, x′1, x2, . . .) =

∫ x′1

x1

vTx1x1(0, e, x2, . . .) de

and in the limit as T →∞ we obtain

vαx1(x1, x2, . . .)− v
α
x1

(x′1, x2, . . .) =

∫ x′1

x1

v̄112 (e, x2, . . .) de,

which means that v̄112 = vαx1x1 , as required. So, indeed, vα ∈ W 2
p,loc.

Now let us show that in the generalised sense the function u from the previous
step satisfies the equation (21) and, hence, also to the equivalent one (17). Indeed,
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for any smooth test function g(x) with a compact support we have,

〈L̄αvα, g〉 = 〈vα, L̄∗g〉 = lim
T→∞
〈v(T )|t=0, (L̄

α)∗g〉 = lim
T→∞
〈L̄αv(T )|t=0, g〉

= lim
T→∞
〈
∫ T

0

L̄αExf̄
α(X̄α

t )dt, g〉

= lim
T→∞
〈
∫ T

0

∂tExf̄
α(X̄α

t )dt, g〉

= lim
T→∞
〈Exf̄α(X̄α

T )− f̄α(x), g〉

= −〈f̄α, g〉,

which means that u is a generalised solution of (21); the last equality in this calculus
is because of the ergodic properties of the process (X̄α

t ) from the Lemma 1 and
due to the centering property of f̄α. Now, since vα, actually, possesses two Sobolev
derivatives in x, this function is not just a generalised, but a true Sobolev solution
to the equation (21), or, equivalently, (17).

The bound
sup
α
|vα(x)| ≤ C(1 + |x|m) (23)

follows from the bounds (14) and (11).
The bound

sup
α

(|vα(x)|+ |∇vα(x)|) ≤ C(1 + |x|m) (24)

follows from (23) along with the a priori bound

‖v‖W 2
p ()
≤ C(‖v‖Lp() + ‖f̄α‖Lp())

[11, Theorem 9.11] and embedding theorems (see, e.g., [19]).
The bound (16)

sup
α

(|vα(x)|+ |∇vα(x)|) + |∆vα(x)|) ≤ C(1 + |x|m)

now follows from (24) and from the equation (21).
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Now let us show uniqueness of solution of the linear Poisson equation (system)

Lαv(x) + fα(x)− ρα = 0

in the Sobolev sense up to a constant in the class of functions growing no faster than
some polynomial in x. (Clearly, if v is a solution, then v + C is also a solution for
any constant C.) Suppose there is a solution v and let us add a constant to it so
that to make it centered, i.e.,

〈v, µα〉 = 0.

Let us use Itô – Krylov’s formula:

Exv(Xα
T )− v(x) = Ex

∫ T

0

Lαv(Xα
t )dt.

Since Exv(Xα
T )→ 〈v, µα〉 = 0 as T →∞, then in the limit we get

v(x) =

∫ ∞
0

Ex(fα(Xα
t )− ρα) dt. (25)

This shows uniqueness of solution of the Poisson system (17) in the described class
of functions.

Now when it has been established that the solution v of the equation (17) equals
vα, since this right hand side satisfies polynomial growth restrictions, the property
(16) follows from a similar lemma for an equation in the 1D case (see [2, Lemma 1]).

We have already seen that the centered version of the solution to (17) is equal to
vα; so, vα itself is µα-centered. Equivalently the equality 〈vα, µα〉 = 0 follows from
integration of the right hand side in the definition of vα with respect to µα, due to
the centering property of the function f̄α. The Lemma 2 follows.

Lemma 3. Let the assumptions (A1) – (A2) hold true. Then

Λ << µ̄α

(Λ is absolutely continuous with respect to µα), where Λ is the Lebesgue’s measure
in Rd.

Moreover, if all functions g ≥ 0 from some (abstract) family possess a uniform
polynomial bound g(x) ≤ C(1 + |x|`) and the value 〈g, µ̄α〉 is uniformly small, then
for any R > 0 the Ld-norm ‖1(| · | ≤ R)g(·)‖Ld

is uniformly small. More precisely,
for any δ > 0 and any R > 0 there exists ε > 0 such that if 〈g, µ̄α〉 < ε, then

‖1(| · | ≤ R)g(·)‖Ld
≤ δ.
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Proof. We have, by Chapman – Kolmogorov’s equation, where Qα(x, dx′) is the
transition kernel of the process X̄,

〈g, µ̄α〉 =

∫
g(x)µα(dx) =

∫∫
g(x′)µ̄α(dx)Qα(x, dx′)

=

∫
Exg(X̄1)µ̄

α(dx).

Let

ρ := exp(−
∫ 1

0

b(α(X̄s), X̄s)dWs −
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds).

Since b is bounded, by Girsanov’s theorem ρ is a probability density [10]. Consider
a new probability measure equivalent to P,

P̃(A) := Eρ1(A).

We have,

Exg(X̄1) = Ẽxg(X̄1)ρ
−1 = Ẽxg(X̄1) exp(

∫ 1

0

b(α(X̄s), X̄s)dWs +
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds)

= Ẽxg(X̄1) exp(

∫ 1

0

b(α(X̄s), X̄s)dW̃s −
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds),

where

W̃t := Wt +

∫ t

0

b(α(X̄s), X̄s)ds

is a new Wiener process on the [0, 1] time interval ith respect to the measure P̃.
Further, by virtue of the Cauchy – Bouniakovskii – Schwarz inequality (Eξη ≥

(E
√
ξ)2(Eη−1/2)−1) (if only ξ, η ≥ 0 and Eη−1/2 6= 0), we estimate for any R > 0,

Exg(X̄1) = Ẽxg(X̄1) exp(

∫ 1

0

b(α(X̄s), X̄s)dW̃s −
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds)

≥
(
Ẽxg1/2(X̄1)

)2(
Ẽx exp(−1

2

∫ 1

0

b(α(X̄s), X̄s)dW̃s +
1

4

∫ 1

0

|b(α(X̄s), X̄s)|2ds)
)−1

≥
(
Ẽxg1/2(X̄1)1(|X̄1| ≤ R)

)2(
Ẽx exp(−1

2

∫ 1

0

b(α(X̄s), X̄s)dW̃s +
1

4

∫ 1

0

|b(α(X̄s), X̄s)|2ds)
)−1

.
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(Recall that only the functions g ≥ 0 are considered.) Here again due to the CBS
inequality (

Ẽx exp(−1

2

∫ 1

0

b(α(X̄s), X̄s)dW̃s +
1

4

∫ 1

0

|b(α(X̄s), X̄s)|2ds)
)

≤
(
Ẽx exp(−

∫ 1

0

b(α(X̄s), X̄s)dW̃s +
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds)
)1/2

×
(
Ẽx exp(

∫ 1

0

|b(α(X̄s), X̄s)|2ds)
)1/2

≤ exp(‖b‖/2).

So,

Exg(X̄1) = Ẽxg(X̄1) exp(

∫ 1

0

b(α(X̄s), X̄s)dW̃s −
1

2

∫ 1

0

|b(α(X̄s), X̄s)|2ds)

≥
(
Ẽxg1/2(X̄1)1(|X̄1| ≤ R)

)2
exp(−‖b‖/2),

or, equivalently, (
Ẽxg1/2(X̄1)1(|X̄1| ≤ R)

)2
≤ Exg(X̄1) exp(‖b‖/2).
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Therefore,

〈g, µ̄α〉 =

∫
Exg(X̄1)µ̄

α(dx) ≥ exp(−‖b‖/2)

∫ (
Ẽxg1/2(X̄1)1(|X̄1| ≤ R)

)2
µα(dx)

≥ exp(−‖b‖/2)

∫ (
Ẽxg1/2(X̄1)1(|X̄1| ≤ R)

)2
1(|x| ≤ R)µα(dx)

≥ exp(−‖b‖/2)

∫ (∫
|x′|≤R

g1/2(x′)
1

(2π)d/2
exp(−(x′ + x)2/2)

)2

1(|x| ≤ R)µα(dx)

≥ exp(−‖b‖/2)

∫ (∫
|x′|≤R

g1/2(x′)
1

(2π)d/2
exp(−(2R)2/2)dx′

)2

1(|x| ≤ R)µα(dx)

= exp(−‖b‖/2)
1

(2π)d
exp(−(2R)2)

(∫
|x′|≤R

g1/2(x′)dx′
)2 ∫

1(|x| ≤ R)µα(dx).

In other words,(∫
|x′|≤R

g1/2(x′)dx′
)2

≤ 〈g, µ̄α〉 exp(‖b‖/2)
1

(2π)d
exp((2R)2)µα(|x| ≤ R)−1

Choose R > 0 so large that such that µα(|x| ≤ R) ≥ 1/2 for any α. Then(∫
|x′|≤R

g1/2(x′)dx′
)2

≤ 2〈g, µ̄α〉 exp(‖b‖/2)
1

(2π)d
exp((2R)2).

In particular, this implies the claim Λ << µ̄α. The Lemma is proved.

Remark 1. Note that a similar upper bound can be established for the expression
〈g, µ̄α〉, which implies that, in fact, Λ ∼ µ̄α. However, this will not be used in the
sequel.

Corollary 2. Under the assumptions of the Lemma 3, let the sequence (gn ≥ 0, n ≥
1) satisfy the bound supn gn(x) ≤ C(1 + |x|`) and

〈gn, µ̄α〉 → 0, n→∞.
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Then for any R > 0 and for any m ≥ 1,∫
|x′|≤R

gmn (x′)dx′ → 0, n→∞. (26)

Proof. We have, uniformly in n,∫
|x′|≤R

gmn (x′)dx′ ≤
(

2〈g2mn , µ̄α〉 exp(‖b‖/2)
1

(2π)d/2
exp((2R)2)

)1/2

. (27)

Note that under the assumptions of the Corollary,

〈g2mn , µ̄α〉 → 0, n→∞. (28)

Indeed, for any δ > 0 the value R0 > 0 can be chosen so large that for any R ≥ R0,∫
1(|x|) > R)C2m(1 + |x|)2m`µ̄α(dx) < δ, (29)

where C is the constant from the assumption |gn(x)| ≤ C(1 + |x|)`. Hence, it implies

sup
n

∫
1(|x|) > R)g2mn (x)µ̄α(dx) < δ. (30)

Then, for the R fixed we have,∫
1(|x| < R)g2mn (x)µ̄α(dx) ≤ C(1 +R)(2m−1)`〈gn, µ̄α〉 → 0. (31)

From (30) and (31) the claim (26) follows. The Corollary 2 is proved.

As a family of such functions (g) the sequence ψn (or even ψnj
) for n large enough

(or nj large enough) will be used in the proof of the Theorem: firstly, we will show
that 〈ψn, µα〉 is small enough for n large (see (43) below), and then we deduce from
the Corollary 2 that the value supn≥n(ε)

∫
|x|≤R ψ

d
n(x) dx is also small (see (45) below).

The latter will be used for Krylov’s estimate.

3 Main results

We accept in this section that solution of the SDE with any Markov strategy exists
and is a weak solution; we also want it to be unique in distribution, strong Markov
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and Markov ergodic. All of these follow from [17] and from the assumptions (A1)
and (A2) (see [30] about ergodicity).

For any pair (v, ρ) : v ∈
⋂
p>1W

2
p,loc, ρ ∈ R, define

F [v, ρ](x) := inf
u∈U

[Luv(x) + fu(x)− ρ] , G[v](x) := inf
u∈U

[Luv(x) + fu(x)] ,

and
F1[v

′, ρ](x) := inf
u∈U

[b̂uv′ + f̂u − ρ̂](x),

where

au(x) =
1

2
(σu(x))2, b̂u(x) = bu(x)/au(x),

f̂u(x) = fu(x)/au(x), ρ̂u(x) = ρ/au(x).

The functions v and∇v may be regarded as continuous and absolutely continuous due
to the embedding theorems [19]. The function F [v, ρ](·) is defined by the formula
above as a function of the class Lp,loc for any p > 1; in particular, it is Lebesgue
measurable and as such it is defined only a.e. in x. We may and will use a (any)
Borel measurable version of it, which existence follows, e.g., from Luzin’s Theorem
[20]). It will be shown in the sequel that the function F1[v

′, ρ](x) is continuous in x
and locally Lipschitz in the two other variables.

Let us recall what a reward improvement algorithm (RIA) is. We start with
some (any) feedback strategy α0 ∈ A. Denote the corresponding cost, the invariant
measure, and the auxiliary function ρ0 = ρα0 = 〈fα0 , µα0〉, and v0 = vα0 . If for some
n = 0, 1, . . . the triple (αn, ρn, vn) is determined, then the strategy αn+1 is defined as
follows: for a.e. x the function αn+1 is chosen so that for each x

Lαn+1vn(x) + fαn+1(x) = G[vn](x), (32)

or, in other words,

αn+1(x) ∈ Argminu∈U [Luvn(x) + fu(x)] .

We assume that a Borel measurable version of such strategy may be chosen; see
the reference in the Appendix. To this strategy αn+1 there correspond the unique
invariant measure µαn+1 , the value ρn+1 := 〈fαn+1 , µαn+1〉, and the function vn+1 =
vαn+1 . Note that the value ρn+1 and the function vn+1 do not depend on a particular
choice of Borel measurable versions of F and αn+1.
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Theorem 1. Let the assumptions (A1) – (A4) be satisfied. Then:
1. For any n, ρn+1 ≤ ρn, and there is a limit ρn ↓ ρ̃.
2. The sequence (vn) is compact in C1[−N,N ] for each N > 0, and there exists a

bounded sequence of constants βn such that there is a limit limn(vn(x) + βn) =: ṽ(x).
3. The couple (ṽ, ρ̃) solves the equation (7).
4. This solution (ṽ, ρ̃) is unique – up to an additive constant for ṽ – in the class

of functions growing no faster than some (any) polynomial and belonging to the class
W 2
p,loc for any p > 0 for the first component and for ρ̃ ∈ R.

5. The component ρ̃ in the couple (ṽ, ρ̃) coincides with ρ.

Proof. 1. Due to (32) and (17), for almost every (a.e.) x ∈ R,

ρn = Lαnvn(x) + fαn(x) ≥ G[vn](x) = Lαn+1vn(x) + fαn+1(x)

and also for a.e. x ∈ R,

ρn+1 = Lαn+1vn+1(x) + fαn+1(x)

So,

ρn − ρn+1

a.e.

≥ (Lαn+1vn + fαn+1)(x)− (Lαn+1vn+1 + fαn+1)(x)

(33)

= (Lαn+1vn − Lαn+1vn+1)(x).

Let us apply Ito – Krylov’s formula (see [16]) with expectations (also known as
Dynkin’s formula) to (vn − vn+1)(X

αn+1

t ): we have for any x ∈ R,

Ex (vn(X
αn+1

t )− vn+1(X
αn+1

t ))− (vn − vn+1) (x)

(34)

= Ex
∫ t

0

(Lαn+1vn − Lαn+1vn+1)(X
αn+1
s ) ds ≤ Ex

∫ t

0

(ρn − ρn+1) ds = (ρn − ρn+1) t.

Why for any x: since the functions vn ∈ C due to the embedding theorems [19] as
Sobolev solutions of Poisson equations, and because Exvn(X

αn+1

t ) and Exvn+1(X
αn+1

t )
as functions of x for each t > 0 are both Hölder continuous, being solutions of non-
degenerate parabolic equations [18]. We also used the fact that the distribution of
Xαn+1
s for almost all s > 0 is absolutely continuous with respect to the Lebesgue

measure due to the non-degeneracy and by virtue of Krylov’s estimates [16]; due to
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this reason and because vn, vn+1 ∈ C, the a.e. inequality (33) implies (34) for every
x. Further, since the left hand side in (34) is bounded for a fixed x by virtue of the
Lemma 2, we divide all terms of the latter inequality by t and let t→∞ to get,

0 ≤ ρn − ρn+1,

as required. Thus, ρn ≥ ρn+1, so that ρn ↓ ρ̃ (since the sequence ρn is bounded for
f ∈ K, see (12) in the Lemma 1) with some ρ̃. So, the RIA does converge.

Note that clearly ρ̃ ≥ ρ, since ρ is the inf over all Markov strategies, while ρ̃ is the
inf over some countable subset of them. Later we shall show that they do coincide.

Now we want to show that there exists a bounded sequence of real values (non-
random!) {βn} such that vn+βn → ṽ, so that the couple (ṽ, ρ̃) satisfies the equation
(7), and that ρ̃ here is unique, as well as ṽ in some sense. In the first instance we
will do it for some subsequence nj; eventually the convergence of the whole sequence
vn will follow from the uniqueness of the solution of Bellman’s equation, although,
it is not important for the proof of the Theorem.

2. Let us show local compactness of the family of functions (vn) in C1. (Follows from
embedding theorems! Even for a general non-degenerate σ!) Note that the equation
(7) is equivalent to the following:

1

2

∑
i

d2

dx2i
v(x) + inf

u∈U

[
b(u, x)

a(u, x)
∇xv(x) +

f(u, x)

a(u, x)
− ρ

a(u, x)

]
= 0, (35)

while the equation
Lαn+1vn+1(x) + fαn+1(x)− ρn+1

a.e.
= 0, (36)

is equivalent to

1

2

∑
i

d2

dx2i
vn+1(x) +

b(αn+1(x), x)

a(αn+1(x), x)
∇xvn+1(x) +

f(αn+1(x), (x))

a(αn+1(x), x)
− ρn+1

a(αn+1(x), x)
= 0.

According to the Lemma 2, the functions ∇vn+1 are uniformly locally bounded.
Since the sequence ρn+1 is bounded and due to the uniform local boundedness of
the functions f(αn+1(x), x) and uniform nondegeneracy of a, it follows that (∆vn)
are locally uniformly bounded and satisfy the uniform in n growth bounds similar to
(16) for the function itself and for its first derivative due to the equation (e.g., due
to (35)). This guarantees pre-compactness of (vn) in C1 locally.
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3. Due to the (local) compactness property showed in the previous step, by the
diagonal procedure from any infinite sub-family of functions vn it is possible to choose
a converging in C1

loc subsequence. We want to show that up to a constant the limit
is unique. For this aim, first of all we shall see in a minute that if some vnj

(x) has
a limit, say, ṽ(x) (locally in C) then vnj+1(x) + βnj

has the same limit, where βn is
some bounded sequence of real values. (In fact, what will be established is a little
bit more complicated but still enough for our purposes.) We have,

Lαnvn(x) + fαn(x)− ρn
a.e.
= 0,

and
Lαn+1vn+1(x) + fαn+1(x)− ρn+1

a.e.
= 0,

and

Lαn+1vn(x) + fαn+1(x)− ρn =: −ψn+1(x)
a.e.

≤ 0. (37)

Let us rewrite it as follows,

Lαn+1vn(x) + fαn+1(x)− ρn + ψn+1(x)
a.e.
= 0.

In other words, the function vn solves the Poisson equation with the second order
operator Lαn+1 and the “right hand side” −(fαn+1(x) + ψn+1(x)− ρn). This is only
possible if the expression fαn+1(x) +ψn+1(x)− ρn is centered with respect to the in-
variant measure µn+1 because Poisson equations in the whole space have no solutions
for non-centered right hand sides (cf., e.g., [25]). This implies that

〈fαn+1(x) + ψn+1 − ρn, µn+1〉 = 0

So,
〈ψn+1, µ

n+1〉 = ρn − ρn+1. (38)

By virtue of the Lemma 3 and from the definition (37),

ψn(x) ≤ C(1 + |x|m). (39)

2. Denote
wn(x) := vn(x)− vn+1(x).

We have,
Lαn+1wn(x) + ψn+1(x)− (ρn − ρn+1)

a.e.
= 0.
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So, there exists a constant βn = 〈wn, µn+1〉 such that

wn(x)− βn =

∫ ∞
0

Ex(ψn+1(X
n+1
t )− (ρn − ρn+1)) dt. (40)

Using the time change we have, ∫ ∞
0

Ex(ψn+1(X
n+1
t )− (ρn − ρn+1)) dt

=

∫ ∞
0

Ex(ψn+1(X̄
n+1
s )− (ρn − ρn+1))σ

−2(αn+1(X̄
n+1
s ), X̄n+1

s )ds

=:

∫ ∞
0

Exφn+1(X̄
n+1
s )ds,

with
φn+1(z) := (ψn+1(z)− (ρn − ρn+1))σ

−2(αn+1(z), z).

So, we obtain

〈ψn+1(·), µ̄n+1〉 − (ρn − ρn+1)〈σ−2(αn+1(·), ·), µ̄n+1〉 = 〈φn+1, µ̄n+1〉 = 0.

3. Let us show that for any N > 0,∫
|x|≤N

ψ2d
n (x) dx→ 0, n→∞. (41)

First of all, note that all functions ψn and, hence, ψ2
n are uniformly locally bounded

and may only grow polynomially fast,

(0 ≤ ) ψn(x) ≤ C(1 + |x|m), (42)

with some constants C,m which are the same for all values of n, see the Lemma 3
and Corollary 2. Also, recall that

〈ψn+1, µ
n+1〉 = ρn − ρn+1 → 0, n→∞. (43)

Now let us rewrite the equation (40) via a stationary version of our diffusion, say,
X̃n+1
t :

wn(x)− βn =

∫ ∞
0

Ex(ψn+1(X
n+1
t )− Eµn+1(ψn+1(X̃

n+1
t )) dt.
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(Note that if we knew that wn were centered with respect to the invariant measure
µn+1 then we would have βn = 0; however, the functions vn and vn+1 are both centered
with respect to two different measures, and this is the reason why their difference is
not just small, but small up to some additive constant; this very constant is denoted
by βn.

4. Using the coupling idea (cf., e.g., [29]), let us consider the independent processes
Xn+1
t and X̃n+1

t on the same (new!) probability space and denote the moment of the
first meeting

τ := inf(t ≥ 0 : Xn+1
t = X̃n+1

t ).

It is known (see [29]) that under our recurrence assumptions for any k > 0 there are
some constants Ck,m such that uniformly with respect to n,

Ex,µn+1τ k ≤ Ck(1 + |x|m).

Denote
X̂n+1
t := 1(t < τ)Xn+1

t + 1(t ≥ τ)X̃n+1
t .

Since τ is a stopping time and because the couple (Xn+1
t , X̃n+1

t ) is strong Markov
(see [15]), the process (X̂n+1

t ) is also strong Markov equivalent to (Xn+1
t ). Therefore,

it is possible to rewrite,

wn(x)− βn =

∫ ∞
0

Ex,µ(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt.

Hence, using the fact that after τ the processes X̂n+1
t and X̃n+1

t coincide, we obtain

wn(x)− βn =

∫ ∞
0

Ex,µ1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt

=

∫ ∞
0

Ex,µ
∞∑
i=0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt

=
∞∑
i=0

Ex,µ
∫ ∞
0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt.
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Thus, using Cauchy-Buniakovsky-Schwarz inequality and Fubini Theorem, we have,

|wn(x)− βn| ≤
∞∑
i=0

Ex,µ
∫ i+1

0

1(τ > i)|ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )| dt

≤
∞∑
i=0

∫ i+1

0

Ex,µ1(τ > i)(|ψn+1(X̂
n+1
t )|+ |ψn+1(X̃

n+1
t )|) dt

≤
∞∑
i=0

∫ i+1

0

(Ex,µ1(τ > i))1/2(Ex,µ(|ψn+1(X̂
n+1
t )|+ |ψn+1(X̃

n+1
t )|)2)1/2 dt

≤ 2
∞∑
i=0

(Ex,µ1(τ > i))1/2
∫ i+1

0

(Ex,µ|ψn+1(X̂
n+1
t )|2 + Ex,µ|ψn+1(X̃

n+1
t )|2)1/2 dt

≤ 2
∞∑
i=0

(Ex,µ1(τ > i))1/2
∫ i+1

0

[(Ex,µ(ψn+1(X̂
n+1
t ))2)1/2 + (Ex,µ(ψn+1(X̃

n+1
t ))2)1/2] dt.

Now, let us take any ε > 0 and use the inequality
√
a ≤ ε

2
+ a

2ε
. We estimate,∫ i+1

0

[(Ex,µ(ψn+1(X̂
n+1
t ))2)1/2 + (Ex,µ(ψn+1(X̃

n+1
t ))2)1/2] dt

≤ ε(i+ 1) +
1

2ε

∫ i+1

0

[Ex,µψ2
n+1(X̂

n+1
t ) + Ex,µψ2

n+1(X̃
n+1
t )] dt.

Let us first consider the stationary term. We have,

1

2ε

∫ i+1

0

Ex,µψ2
n+1(X̃

n+1
t ) dt

=
1

2ε

∫ i+1

0

Ex,µψ2
n+11|x|≤N(X̃n+1

t ) dt+
1

2ε

∫ i+1

0

Ex,µψ2
n+11Rd\BN

(X̃n+1
t ) dt

+
1

2ε

∫ i+1

0

Ex,µψ2
n+11BN

(X̂n+1
t ) dt+

1

2ε

∫ i+1

0

Ex,µψ2
n+11Rd\BN

(X̂n+1
t ) dt.
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Given (42) and because any stationary measure integrates uniformly any power func-
tion, let us find such N that uniformly with respect to n,

〈C(1 + |x|2m)1Rd\BN
, µn+1〉 < ε2/2, (44)

which is possible due to the Lemmata 1 and 3, and also such that N > ε−2. Then
choose n(ε) such that

sup
n≥n(ε)

∫
|x|≤N

ψ2d
n (x) dx < ε2/2. (45)

Now we evaluate with n ≥ n(ε) due to Krylov’s estimate [16, 17],

1

2ε

∫ i+1

0

Ex,µψ2
n+11BN

(X̃n+1
t ) dt

=
1

2ε

i∑
k=0

Ex
∫ k+1

k

ψ2
n+11BN

(X̃n+1
t ) dt ≤ i+ 1

2ε
K‖ψ2

n+11|x|≤N‖Ld ≤ (i+ 1)Kε

2
.

This argument works for the non-stationary process as well: due to Krylov’s estimate,

1

2ε

∫ i+1

0

Ex,µψ2
n+11BN

(X̂n+1
t ) dt

=
1

2ε

i∑
k=0

E
∫ k+1

k

ψ2
n+11BN

(X̂n+1
t ) dt ≤ i+ 1

2ε
K‖ψ2

n+11BN
‖)Ld ≤ (i+ 1)Kε

2
.

Further,

1

2ε

∫ i+1

0

Ex,µψ2
n+11Rd\BN

(X̃n+1
t ) dt ≤ i+ 1

2ε
× ε2

2
=

(i+ 1)ε

4
.

Finally, using (15), we obtain with some m,

1

2ε

∫ i+1

0

Ex,µψ2
n+11Rd\BN

(X̂n+1
t ) dt =

1

2ε

∫ i+1

0

Ex,µψ2
n+11Rd\BN

(Xn+1
t ) dt

≤ C
i+ 1

2ε

(1 + |x|m)

N
≤ C(i+ 1)(1 + |x|m)ε.
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Overall, this shows that with the appropriately chosen (uniformly bounded) βn,

|wn(x)− βn| ≤ C(1 + |x|2m)ε
∞∑
i=0

(i+ 1)(Ex,µ1(τ > i))1/2, n ≥ n(ε). (46)

By virtue of the results in [29], for any k > 0 there are C,m > 0 such that

Px,µ1(τ > i) ≤ C
1 + |x|m

1 + ik
.

Therefore, taking any k > 1, we have that the series in (46) converges providing us
an estimate

|wn(x)− βn| ≤ C(1 + |x|3m)ε, n ≥ n(ε). (47)

In other words, the difference wn(x) − βn = vn − vn+1 − βn is locally uniformly
converging to zero as n→∞. Naturally, it also implies that for any subsequence nj
such that vnj

converges locally uniformly in C1 we have that for any 1 ≤ i ≤ d, ∂xivnj

and ∂xivnj+1 may only converge to the same limit, i.e., derivatives ∂xivnj
−∂xivnj+1 →

0 (locally uniformly) as j →∞. Indeed, otherwise we just integrate to show that the
limits of vnj

and vnj+1 + βnj
are different, which contradicts to what was established

earlier. This contradiction shows that ∇vnj
− ∇vnj+1 → 0 locally uniformly as

j →∞.

5. What we want to do now is to pass to the limit as j →∞ in the equations

Lαnj+1vnj+1(x) + fαnj+1(x)− ρnj+1
a.e.
= 0, & G[vnj

](x)− ρnj
≤ 0,

where (nj, j →∞) is any sequence such that vnj
converges (locally uniformly) in C1.

From

G[vnj
](x)− ρnj

= Lαnj+1vnj
(x) + fαnj+1(x)− ρnj

(= inf
u∈U

[Luvnj
(x) + fu(x)− ρnj

]
a.e.

≤ 0),

by subtracting zero a.e. (36), we obtain a.e.,

G[vnj
](x)− ρnj

= Lαnj+1(vnj
(x)− vnj+1(x))− (ρnj

− ρnj+1). (48)

Now we want to show that (48) implies

1

2
∆ṽ(x) + F1[x,∇ṽ(x), ρ̃] = 0, (49)

25



where

F1[x, v1, r] := inf
u∈U

[
b(u, x)

a(u, x)
v1 +

f(u, x)

a(u, x)
− r

a(u, x)

]
for any x, where v1 ∈ Rd and bv1 is a scalar product.

Let us show that (48) indeed, implies (49). Note that G[vnj
](x)− ρnj

≤ 0 (a.e.).
Let us divide (48) by anj+1 = aαnj+1 and use δ := infu,x a

u(x) > 0: we get a.e. with
some K > 0,

0 ≥
(G[vnj

](x)− ρn)

anj+1

= (
1

2
∆vnj

(x)− 1

2
∆vnj+1(x)) + (b̂αnj+1(∇vnj

−∇vnj+1))−
(ρnj
− ρnj+1)

anj+1

≥ (
1

2

∑
j

(D2
xi
vnj

(x)−D2
xi
vnj+1)(x))− K

δ
|∇vnj

(x)−∇vnj+1(x)| − 1

δ
(ρnj
− ρnj+1).

(50)

So, we have just shown that a.e.,

0 ≥ (
1

2
∆vnj

(x)− 1

2
∆vnj+1(x))− K

δ
|∇vnj

(x)−∇vnj+1(x)| −
ρnj
− ρnj+1

δ
. (51)

The next trick is to note that again due to (50) and ρnj
≥ ρnj+1, and since δ ≤ a ≤ C,

0
a.e.

≥ G[vnj
](x)−ρnj

≥ anj+1(
1

2
∆vnj

− 1

2
∆vnj+1)(x)−C ′|v′nj

−v′nj+1|(x)−(ρnj
−ρnj+1),

which implies that with some C, c > 0,

0
a.e.

≥ 1

2
∆vnj

+ F1[v
′
nj
, ρnj

] ≥ ((
1

2
∆vnj

− 1

2
∆vnj+1)− C|v′nj

− v′nj+1|)− c(ρnj
− ρnj+1).

(52)
That is,

0
a.e.

≥ 1

2
∆vnj

+ inf
u∈U

[
b(u, x)

a(u, x)
∇xvnj

(x) +
f(u, x)

a(u, x)
−

ρnj

a(u, x)

]
(53)

≥ (
1

2
∆vnj

− 1

2
∆vnj+1)(x)− C|∇vnj

−∇vnj+1|(x)− c(ρnj
− ρnj+1).
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Since C|∇vnj
− ∇vnj+1|) − c(ρnj

− ρnj+1) → 0 locally uniformly, and because
∇vnj

→ ∇ṽ and ∇vnj+1 → ∇ṽ also locally uniformly, then (53) prompts that there
exists a (locally uniform) limit

lim
nj→∞

1

2
∆vnj+1(x) = −F1[x,∇ṽ(x), ρ̃(x)],

or, for short,

lim
nj→∞

1

2
∆vnj+1 = −F1[∇ṽ, ρ̃].

It is plausible that in the limit we obtain the equation for the function ṽ:

1

2
∆ṽ = −F1[∇ṽ, ρ̃]. (54)

6. The equation (54) requires some justification because a priori it is not known
whether or not the function ṽ possesses the second order derivatives. For this justi-
fication let us rewrite the double inequality (53) as a double equality ((55) & (56)),

1

2
∆vnj+1(x) + inf

u∈U

[
b(u, x)

a(u, x)
∇xvnj

(x) +
f(u, x)

a(u, x)
−

ρnj

a(u, x)

]
= ζnj

(x), (55)

and

1

2
∆vnj

(x) + inf
u∈U

[
b(u, x)

a(u, x)
∇xvnj

(x) +
f(u, x)

a(u, x)
−

ρnj

a(u, x)

]
= ηnj

(x), (56)

where
ζnj

(x) ≥ −C|∇vnj
−∇vnj+1|(x)− c(ρnj

− ρnj+1)

and
ηnj

(x) ≤ 0.

In other words,

1

2
∆vnj+1(x) + F1

[
∇xvnj

, ρnj

]
= ζnj

(x), (57)

and

1

2
∆vnj

(x) + F1

[
∇xvnj

, ρnj

]
= ηnj

(x). (58)
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Let Br be any open ball of a radius r, and

τr := inf(t ≥ 0 : x+Wt 6∈ Br).

Note that the stopping time τr has some finite exponential moment along with all
polynomial moments. From (57) and (58) it follows that for x ∈ Br we have,

vnj
(x) = E

(∫ τr

0

(
F1

[
∇xvnj

]
(x+Ws)− ηnj

(x+Ws)
)
ds+ vnj

(x+Wτr)

)
(59)

≥ E
(∫ τr

0

(
F1

[
∇xvnj

]
(x+Ws)

)
ds+ vnj

(x+Wτr)

)
,

and

vnj+1(x) = E
(∫ τr

0

(
F1

[
∇xvnj

]
(x+Ws)− ζnj

(x+Ws)
)
ds+ vnj

(x+Wτr)

)

≤ E
(∫ τr

0

(
F1

[
∇xvnj

]
(x+Ws) + (C|∇vnj

−∇vnj+1|(x+Ws)

+c(ρnj
− ρnj+1))

)
ds+ vnj

(x+Wτr)
)
. (60)

Indeed, let TN := inf(t ≥ 0 : x+Wt 6∈ Br−1/N) for N > 1/r. Then we have,

TN ↑ τr, N →∞,

and

vnj
(x) = E

(∫ TN

0

(
F1

[
∇xvnj

]
(x+Ws)− ηnj

(x+Ws)
)
ds+ vnj

(x+WTN )

)
(61)

≥ E
(∫ TN

0

(
F1

[
∇xvnj

]
(x+Ws)

)
ds+ vnj

(x+WTN )

)
,
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and

vnj+1(x) = E
(∫ TN

0

(
F1

[
∇xvnj

]
(x+Ws)− ζnj

(x+Ws)
)
ds+ vnj

(x+WTN )

)

≤ E
(∫ TN

0

(
F1

[
∇xvnj

]
(x+Ws) + (C|∇vnj

−∇vnj+1|(x+Ws)

+c(ρnj
− ρnj+1))

)
ds+ vnj

(x+WTN )
)
.
(62)

As N →∞, we get the desired inequalities (59) and (60).
Further, as nj →∞, we obtain from (59) and (60) in the limit,

ṽ(x) ≥ E
(∫ τr

0

(F1 [∇xṽ] (x+Ws)) ds+ ṽ(x+Wτr)

)
,

and

ṽ(x) ≤ E
(∫ τr

0

(F1 [∇xṽ] (x+Ws)) ds+ ṽ(x+Wτr)

)
.

This means that actually for each x ∈ Br

ṽ(x) = E
(∫ τr

0

(F1 [∇xṽ] (x+Ws)) ds+ ṽ(x+Wτr)

)
. (63)

However, if we denote by v̄(x) the right hand side of (63), then due to the standard
probabilistic arguments the function v̄ is a unique solution of the elliptic PDE (see
[11, Corollary 9.18])

1

2
∆v̄(x) + F1 [∇xṽ] (x) = 0, v̄|∂Br = ṽ|∂Br , (64)

in the Sobolev classes W 2
p,loc(Br) ∩ C(B̄r) with any p > 1.

Indeed, let us take the (unique) solution v̄ of the equation (64) from this class
and apply Itô-Krylov’s formula to v̄(x+Wt) for t < τr:

dv̄(x+Wt) =
1

2
∆v̄(x+Wt)dt+∇v̄(x+Wt)dWt.
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Using the same stopping time sequence (TN , N ≥ 1) as above, we have in the integral
form,

v̄(x+WTN )− v̄(x) =

∫ TN

0

1

2
∆v̄(x+Wt)dt+

∫ TN

0

∇v̄(x+Wt)dWt.

Taking expectations of both sides, we obtain

Ev̄(x+WTN )− v̄(x) = E
∫ TN

0

1

2
∆v̄(x+Wt)dt = E

∫ TN

0

F1 [∇xṽ] (x+Wt)dt.

Here due to the properties of v̄, F1 ∈ C, we get in the limit as N →∞,

Ev̄(x+Wτr)− v̄(x) = E
∫ τr

0

F1 [∇xṽ] (x+Wt)dt. (65)

Comparing it to (63), we conclude that the function ṽ itself in Br satisfies the equa-
tion (64) and belongs to the same class, ṽ ∈ W 2

p,loc(Br) ∩ C(B̄r) with any p > 1
(and for any ball Br), and the equation (54) holds true, as it was promised. It is
equivalent to (49).

In the sequel it will follow from the uniqueness of solution of Bellman’s equation
that actually the whole sequence vn converges up to an additive constant sequence
locally uniformly in C1 to a single limit. However, it is not needed for our proof.

7. Uniqueness for ρ in (7). Assume that there are two solutions of the (HJB)
equation, (v1, ρ1) and (v2, ρ2) with vi ∈ K, i = 1, 2:

inf
u∈U

(Luv1(x) + fu(x)− ρ1) = inf
u∈U

(Luv2(x) + fu(x)− ρ2) = 0.

Earlier it was shown that both v1 and v2 are classical solutions with locally Lipschitz
second derivatives. Let w(x) := v1(x)− v2(x) and consider two strategies α1, α2 ∈ A
such that α1(x) ∈ Argmaxu∈U(Luw(x)) and α2(x) ∈ Argminu∈U(Luw(x)), and let
X1
t , X

2
t be solutions of the SDEs corresponding to each strategy αi, i = 1, 2. Note that

due to the measurable choice arguments – see the Appendix – such Borel strategies
exist; corresponding weak solutions also exist. Let us denote

h1(x) := sup
u∈U

(Luw(x)− ρ1 + ρ2), h2(x) := inf
u∈U

(Luw(x)− ρ1 + ρ2).
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Then,

h2(x) = infu∈U(Luv1(x) + fu(x)− ρ1 − (Luv2(x) + fu(x)− ρ2))

≤ inf
u∈U

(Luv1(x) + fu(x)− ρ1)− inf
u∈U

(Luv2(x) + fu(x)− ρ2) = 0.

Similarly,

h1(x) = − infu(L
u(−v2)(x)− ρ2 + ρ1)

= − infu(L
uv2(x) + fu(x) + ρ2 − (Luv1(x) + fu(x) + ρ1))

≥ − [infu(L
uv2(x) + fu(x)− ρ2)− infu(L

uv1(x) + fu(x)− ρ1)] = 0.

We have,
Lα2w(x) = h2(x)− ρ2 + ρ1,

and
Lα1w(x) = h1(x)− ρ2 + ρ1.

Due to Dynkin’s formula we have,

Exw(X1
t )− w(x) = Ex

∫ t

0

Lα1w(X1
s ) ds

= Ex
∫ t

0

h1(X
1
s ) ds+ (ρ1 − ρ2) t

(h1≥0)
≥ (ρ1 − ρ2) t.

Since the left hand side here is bounded for a fixed x, due to the Lemma 1 we get,

ρ1 − ρ2 ≤ 0.

Similarly, considering α2 we conclude that

Exw(X2
t )− w(x) = Ex

∫ t

0

Lα2w(X2
s ) ds

= Ex
∫ t

0

h2(X
2
s ) ds+ (ρ1 − ρ2) t.

From here, due to the boundedness of the left hand side (Lemma 1) we get,

ρ2 − ρ1 = lim inf
t→0

(t−1Ex
∫ t

0

h2(X
2
s ) ds)

(h2≤0)
≤ 0.
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Thus, ρ1 − ρ2 ≥ 0 and, hence,
ρ1 = ρ2.

8. Proof of ρ = ρ̃. Recall that for any initial α0 ∈ A, the sequence ρn converges to
the same value ρ̃, which is a unique component of solution of the equation (7). Let
us take any ε > 0 and consider a strategy α0 such that

ρ0 = ρα0 < ρ+ ε.

Since the sequence (ρn) decreases, the limit ρ̃ must satisfy the same inequality,

ρ̃ = lim
n→∞

ρn < ρ+ ε.

Due to uniqueness of ρ̃ as a component of solution of the equation (7) and since ε > 0
is arbitrary, we find that

ρ̃ ≤ ρ.

But also ρ̃ ≥ ρ since ρ̃ is the infimum of the cost function values over a smaller –
just countable – family of strategies. So, in fact,

ρ̃ = ρ.

9. Uniqueness for V . Let us have another look at the earlier equations in the step
6, replacing ρ2 − ρ1 by zero as we already know that the second component in the
solution is unique:

Exw(X1
t )− w(x) = Ex

∫ t

0

h1(X
1
s ) ds ≤ Ex

∫ Ct

0

h1(X̃
1
s ) ds

Clearly, h1 ≥ 0 with h1 6= 0 – i.e., with µ̃1(x : h1(x) > 0) > 0 – would imply that
〈h1, µ̃1〉 > 0, which contradicts to the zero left hand side (after division by t with
t→∞). So, we conclude that

h1 = 0, µ̃1 − a.s.

Since Λ << µ̃1 (see the Lemma 3), we have by virtue of Krylov’s estimate that

0 ≤ Ex
∫ Ct

0

h1(X̃
1
s ) ds ≤ N‖h1‖Ld

= 0. So, in fact,

Exw(X1
t )− w(x) = 0. (66)
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Further, from (66) and due to the last statement of the Lemma 1 it follows that

w(x) = lim
t→∞

Exw(X1
t ) = 〈w, µ1〉.

Hence, w(x) is a constant. Recall that uniqueness of the first component V is stated
up to a constant, and it was just established that

v1(x)− v2(x) = const.

10. Returning to the second statement of the Theorem, note that due to uniqueness
of solution of the HJB equation, convergence of the whole sequence (vn) up to additive
constants depending only on n is to the unique limit v.

References

[1] S.V. Anulova, H. Mai, A.Yu. Veretennikov, On averaged expected cost control as
reliability for 1D ergodic diffusions, Reliability: Theory & Applications (RT&A),
12, 4(47), 31-38, 2017.

[2] S.V. Anulova, H. Mai, A.Yu. Veretennikov, On averaged expected cost control
for 1D ergodic diffusions, https://arxiv.org/abs/1812.10665.

[3] A. Arapostatis, V.S. Borkar, E. Fernãndes-Gaucherand, M.K. Ghosh, and S.I.
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