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Abstract. We study the asymptotic behavior of stochastic hyperbolic-parabolic e-
quations with slow and fast time scales. Both the strong and weak convergence in the
averaging principe are established, which can be viewed as a functional law of large
numbers. Then we study the stochastic fluctuations of the original system around its
averaged equation. We show that the normalized difference converges weakly to the
solution of a linear stochastic wave equation, which is a form of functional central limit
theorem. We provide a unified proof for the above convergence by using the Poisson
equation in Hilbert spaces. Moreover, sharp rates of convergence are obtained, which
are shown not to depend on the regularity of the coefficients in the equation for the
fast variable.
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1. Introduction

Let T > 0 and D ⊆ Rd (d > 1) be a bounded open set. Consider the following system
of stochastic hyperbolic-parabolic equations:

∂2U ε
t (ξ)

∂t2
= ∆U ε

t (ξ) + f(U ε
t (ξ), Y

ε
t (ξ)) + Ẇ 1

t (ξ), (t, ξ) ∈ (0, T ]×D,

∂Y ε
t (ξ)

∂t
=

1

ε
∆Y ε

t (ξ) +
1

ε
g(U ε

t (ξ), Y
ε
t (ξ)) +

1√
ε
Ẇ 2

t (ξ), (t, ξ) ∈ (0, T ]×D,

U ε
t (ξ) = Y ε

t (ξ) = 0, (t, ξ) ∈ (0, T ]× ∂D,

U ε
0 (ξ) = u(ξ),

∂U ε
t (ξ)

∂t

∣∣
t=0

= v(ξ), Y ε
0 (ξ) = y(ξ), ξ ∈ D,

(1.1)

where ∆ is the Laplacian operator, ∂D denotes the boundary of the domain D, f, g :
R2 → R are measurable functions, W 1

t and W 2
t are two mutually independent Q1- and

Q2-Wiener processes both defined on a complete probability space (Ω,F , {Ft}t>0,P),
and the small parameter 0 < ε≪ 1 represents the separation of time scales between the
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‘slow’ process U ε
t and the ‘fast’ motion Y ε

t (with time order 1/ε). Randomly perturbed
hyperbolic partial differential equations are usually used to model wave propagation
and mechanical vibration in a random medium. If these phenomena are temperature
dependent or heat generating, then the underlying hyperbolic equation will be coupled
with a stochastic parabolic equation, which leads to the mathematical description of
slow-fast systems through (1.1), see e.g. [16, 30, 34, 39] and the references therein. In
this respect, the question arises how a thermal environment at large time scales may
influence the dynamics of the whole system.

In the mathematical literature, powerful averaging and homogenization methods have
been developed to study the asymptotic behavior of multi-scale systems. The averaging
principle can be viewed as a functional law of large numbers, which says that under
certain regularity assumptions on the coefficients, the slow component will converge to
the solution of the so-called averaged equation as ε → 0. The averaged equation then
captures the evolution of the original system over a long time scale, which does not
depend on the fast variable any more. This theory was first studied by Bogoliubov
[4] for deterministic ordinary differential equations, and extended to stochastic differ-
ential equations (SDEs for short) by Khasminskii [28], see also [1, 23, 24, 29, 37] and
the references therein. Recently, the averaging principle for two time scale stochastic
partial differential equations (SPDEs for short) has attracted considerable attention. In
[12], Cerrai and Freidlin proved the averaging principle for slow-fast stochastic reaction-
diffusion equations with noise only in the fast motion. Later, Cerrai [9, 11] generalized
this result to more general reaction-diffusion equations, see also [2, 14, 36, 38] and the
references therein for further developments. We also mention that Bréhier [5, 6] stud-
ied the rate of convergence in terms of ε → 0 in the averaging principle for parabolic
SPDEs and obtained the 1/2-order rate of strong convergence (in the mean-square sense)
and the 1-order rate of weak convergence (in the distribution sense), which are known
to be optimal. These rates of convergence are important for the study of other lim-
it theorems in probability theory and numerical schemes, known as the Heterogeneous
Multi-scale Method for the original multi-scale system, see e.g. [7, 20]. Concerning sto-
chastic hyperbolic-parabolic equations, Fu ect. [22] established the strong convergence
in the averaging principle for system (1.1) when d = 1 by the classical Khasminskii time
discretization method, and obtained the 1/4-order rate of strong convergence. In [21],
by using asymptotic expansion arguments, the authors studied the weak order conver-
gence for system (1.1), but only in a not fully coupled case (g(u, y) = g(y)), i.e., the fast
equation does not depend on the slow process.

In this paper, we shall first prove the strong and weak convergence in the averaging
principle for the fully coupled system (1.1) with singular coefficients, see Theorem 2.1.
Compared with [21, 22], we assume that the coefficients are only η-Hölder continuous
with respect to the fast variable with any η > 0, and we obtain the optimal 1/2-order
rate of strong convergence as well as the 1-order rate of weak convergence. Moreover, we
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find that both the strong and weak convergence rates do not depend on the regularity of
the coefficients in the equation for the fast variable. This implies that the evolution of
the multi-scale system (1.1) relies mainly on the slow variable, which coincides with the
intuition since in the limit equation the fast component has been totally averaged out.
Furthermore, the arguments we use are different from those in [5, 9, 11, 12, 21, 22]. Our
method to establish the strong and weak convergence is based on the Poisson equation
in Hilbert space, which is more unifying and much simpler.

The averaged equation for (1.1) is only valid in the limit when the time scale separation
between the fast and slow variables is infinitely wide. Of course, the scale separation is
never infinite in reality. For small but positive ε, the slow variable U ε

t will experience
fluctuations around its averaged motion Ūt. These small fluctuations can be captured
by studying the functional central limit theorem. Namely, we are interested in the
asymptotic behavior of the normalized difference

Zε
t :=

U ε
t − Ūt√
ε

(1.2)

as ε tends to 0. Such result is known to be closely related to the homogenization behav-
ior of singularly perturbed partial differential equations, which is of its own interest, see
e.g. [25, 26]. For the study of the functional central limit theorem for finite dimensional
multi-scale systems, we refer the reader to the fundamental paper by Khasminskii [28],
see also [1, 15, 27, 32, 33, 35]. The infinite dimensional situation is more open and papers
on this subject are very few. In [10], Cerrai studied the normal deviations for a deter-
ministic reaction-diffusion equation with one dimensional space variable perturbed by a
fast process, and proved the weak convergence to a Gaussian process, whose covariance is
explicitly described. Later, this was generalized to general stochastic reaction-diffusion
equations by Wang and Roberts [38]. In both papers, the methods of proof are based on
Khasminskii’s time discretization argument. Recently, we [36] studied the normal devia-
tions for general slow-fast parabolic SPDEs by using the technique of Poisson equation.

In this paper, we further develop the argument used in [36] to study the functional
central limit theorem for the stochastic hyperbolic-parabolic system (1.1) with Hölder
continuous coefficients. We show that the normalized difference Zε

t , defined by (1.2),
converges weakly as ε → 0 to the solution of a linear stochastic wave equation, see
Theorem 2.3. Moreover, the optimal 1/2-order rate of convergence is obtained. This
rate also does not depend on the regularity of the coefficients in the equation for the
fast variable, which again is natural since in the limit equation the fast component has
been homogenized out. As far as we know, the result we obtained is completely new.
It turns out that the argument we use to prove the functional central limit theorem is
closely and universally connected with the proof of the strong and weak convergence in
the averaging principle. We note that due to the model considered in this paper, the
framework we deal with is different from [36]. Furthermore, we derive the higher order
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spatial-temporal convergence in the averaging principle and in the functional central
limit theorem. Throughout our proof, several strong and weak fluctuation estimates will
play an important role, see Lemmas 4.1, 4.2 and 5.2 below.

The rest of this paper is organized as follows. In Section 2, we first introduce some
assumptions and state our main results. Section 3 is devoted to establish some prelimi-
nary estimates. Then we prove the strong and weak convergence results, Theorem 2.1,
and the normal deviation result, Theorem 2.3, in Section 4 and Section 5, respectively.

Notations. To end this section, we introduce some usual notations for convenience.
Given Hilbert spaces H1, H2 and Ĥ, we use L (H1, H2) to denote the space of all linear
and bounded operators from H1 to H2. If H1 = H2, we write L (H1) = L (H1, H1) for

simplicity. Recall that an operator Q ∈ L (Ĥ) is called Hilbert-Schmidt if

∥Q∥2
L2(Ĥ)

:= Tr(QQ∗) < +∞.

We shall denote the space of all Hilbert-Schmidt operators on Ĥ by L2(Ĥ). Let L∞
ℓ (H1×

H2, Ĥ) denote the space of all measurable maps ϕ : H1 × H2 → Ĥ with linear growth,
i.e.,

∥ϕ∥L∞
ℓ (Ĥ) := sup

(x,y)∈H1×H2

∥ϕ(x, y)∥Ĥ
1 + ∥x∥H1 + ∥y∥H2

<∞.

For k ∈ N, the space Ck,0
ℓ (H1 ×H2, Ĥ) contains all ϕ ∈ L∞

ℓ (H1 ×H2, Ĥ) such that ϕ
has k times Gâteaux derivatives with respect to the x-variable satisfying

∥ϕ∥Ck,0
ℓ (Ĥ) := sup

(x,y)∈H1×H2

k∑
ı=1

∥Di
xϕ(x, y)∥L i(H1,Ĥ)

1 + ∥x∥H1 + ∥y∥H2

<∞.

Similarly, the space C0,k
ℓ (H1 ×H2, Ĥ) contains all ϕ ∈ L∞

ℓ (H1 ×H2, Ĥ) such that ϕ has
k times Gâteaux derivatives with respect to the y-variable satisfying

∥ϕ∥C0,k
ℓ (Ĥ) := sup

(x,y)∈H1×H2

k∑
i=1

∥Di
yϕ(x, y)∥L i(H2,Ĥ)

1 + ∥x∥H1 + ∥y∥H2

<∞.

For k,m ∈ N, let Ck,m
ℓ (H1 ×H2, Ĥ) be the space of all maps satisfying

∥ϕ∥Ck,m
ℓ (Ĥ) := ∥ϕ∥L∞

ℓ (Ĥ) + ∥ϕ∥Ck,0
ℓ (Ĥ) + ∥ϕ∥C0,m

ℓ (Ĥ) <∞, (1.3)

and for η ∈ (0, 1), the space Ck,η
ℓ (H1 × H2, Ĥ) consists of all ϕ ∈ Ck,0

ℓ (H1 × H2, Ĥ)
satisfying

∥ϕ(x, y1)− ϕ(x, y2)∥Ĥ 6 C0∥y1 − y2∥ηH2

(
1 + ∥x∥H1 + ∥y1∥H2 + ∥y2∥H2

)
.

The space Ck,η
b (H1×H2, Ĥ) consists of all ϕ ∈ Ck,η

ℓ (H1×H2, Ĥ) whose k times Gâteaux

derivatives with respect to the first variable are bounded, and the space Ck,η
B (H1×H2, Ĥ)

4



consists of all maps in Ck,η
b (H1×H2, Ĥ) which are bounded themselves. We also introduce

the space Ck,k
l (H1×H2, Ĥ) consisting of all maps which have k times Fréchet derivatives

with respect to both the first variable and the second variable and satisfy (1.3). The

space Ck,k
b (H1×H2, Ĥ) consists of all ϕ ∈ Ck,k

l (H1×H2, Ĥ) with all derivatives bounded.

When Ĥ = R, we will omit the letter Ĥ for simplicity.

2. Assumptions and main results

Let H := L2(D) be the usual space of square integrable functions on a bounded open
domain D in Rd with scalar product and norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively.
Let A be the realization of the Laplacian with Dirichlet boundary conditions in H. It is
known that there exists a complete orthonormal basis {en}n∈N of H such that

Aen = −λnen,
with 0 < λ1 6 λ2 6 · · ·λn 6 · · · . For α ∈ R, let Hα := D((−A)α

2 ) be the Hilbert space
endowed with the scalar product

⟨x, y⟩α := ⟨(−A)
α
2 x, (−A)

α
2 y⟩ =

∞∑
n=1

λαn⟨x, en⟩⟨y, en⟩, ∀x, y ∈ Hα,

and norm

∥x∥α :=

(
∞∑
n=1

λαn⟨x, en⟩
2

) 1
2

, ∀x ∈ Hα.

Then A can be regarded as an operator from Hα to Hα−2. For the drift coefficients f
and g given in system (1.1), we introduce two Nemytskii operators F,G : H ×H → H
by

F (u, y)(ξ) := f(u(ξ), y(ξ)), G(u, y)(ξ) := g(u(ξ), y(ξ)), ξ ∈ D. (2.1)

We remark that these operators are not Fréchet differentiable in H.
To give precise results, it is convenient to write system (1.1) in the following abstract

formulation in H:

∂2U ε
t

∂t2
= AU ε

t + F (U ε
t , Y

ε
t ) + Ẇ 1

t , t ∈ (0, T ],

∂Y ε
t

∂t
=

1

ε
AY ε

t +
1

ε
G(U ε

t , Y
ε
t ) +

1√
ε
Ẇ 2

t , t ∈ (0, T ],

U ε
0 = u,

∂U ε
t

∂t

∣∣
t=0

= v, Y ε
0 = y.

(2.2)

For i = 1, 2, we assume that Qi are nonnegative, symmetric operators with respect to
{en}n∈N, i.e.,

Qien = βi,nen, βi,n > 0, n ∈ N.
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In addition, we assume that

Tr(Qi) =
∑
n∈N

βi,n < +∞, i = 1, 2. (2.3)

Given u ∈ H, consider the following frozen equation:

dY u
t = AY u

t dt+G(u, Y u
t )dt+ dW 2

t , Y u
0 = y ∈ H. (2.4)

Under our assumptions below, the process Y u
t admits a unique invariant measure µu(dy).

Then, the averaged equation for system (2.2) is
∂2Ūt

∂t2
= AŪt + F̄ (Ūt) + Ẇ 1

t , t ∈ (0, T ],

Ū0 = u,
∂Ūt

∂t
|t=0 = v,

(2.5)

where

F̄ (u) :=

∫
H

F (u, y)µu(dy). (2.6)

Let U̇ ε
t := ∂U ε

t /∂t and
˙̄Ut := ∂Ūt/∂t. The following is the first main result of this

paper.

Theorem 2.1. Let T > 0, u ∈ H1 and v, y ∈ H. Assume that f ∈ C2,η
b (R× R,R) and

g ∈ C2,η
B (R× R,R) with η > 0. Then we have:

(i) (strong convergence) for any q > 1,

sup
t∈[0,T ]

E
(
∥U ε

t − Ūt∥21 + ∥U̇ ε
t − ˙̄Ut∥2

)q/2
6 C1 ε

q/2; (2.7)

(ii) (weak convergence) for any ϕ ∈ C3
b(H) and ϕ̃ ∈ C3

b(H
−1),

sup
t∈[0,T ]

(∣∣E[ϕ(U ε
t )]− E[ϕ(Ūt)]

∣∣+ ∣∣E[ϕ̃(U̇ ε
t )]− E[ϕ̃( ˙̄Ut)]

∣∣) 6 C2 ε, (2.8)

where C1 = C(T, u, v, y) and C2 = C(T, u, v, y, ϕ, ϕ̃) are positive constants independent
of ε and η.

Remark 2.2. (i) The 1/2-order rate of strong convergence in (2.7) and the 1-order rate
of weak convergence in (2.8) should be optimal, which coincides with the SDE case as
well as the stochastic reaction-diffusion equation case. Moreover, we obtain that both the
strong and weak convergence rates do not depend on the regularity of the coefficients in
the equation for the fast variable. This coincides with the intuition, since in the limit
equation the fast component has been averaged out.

(ii) Note that the coefficients are assumed to be only η-Hölder continuous with respect
to the fast variable, which is sufficient for us to prove the above convergence in the
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averaging principle. However, the pathwise uniqueness of solutions for system (2.2) is
not clear under such weak assumptions. In particular, if the system is not fully coupled
in the sense that the fast motion does not depend on the slow variable (i.e., g(u, y) =
g(y) in (1.1)), then the well-posedness for the fast equation with only Hölder continuous
coefficients has been proven in [19, Theorem 7] by using the Zvonkin’s transformation.
This in turn implies the strong well-posedness of the whole system (1.1).

Recall that Zε
t is defined by (1.2). In view of (2.2) and (2.5), we have

∂2Zε
t

∂t2
= AZε

t +
1√
ε

[
F (U ε

t , Y
ε
t )− F̄ (Ūt)

]
= AZε

t +
1√
ε

[
F̄ (U ε

t )− F̄ (Ūt)
]
+

1√
ε
δF (U ε

t , Y
ε
t ),

where

δF (u, y) := F (u, y)− F̄ (u).

To study the homogenization behavior of Zε
t , we consider the following Poisson equation:

L2(u, y)Ψ(u, y) = −δF (u, y), (2.9)

where L2 is the generator of the frozen equation (2.4) given by

L2(u, y)φ(y) :=⟨Ay +G(u, y), Dyφ(y)⟩+
1

2
Tr
(
D2

yφ(y)Q
1
2
2 (Q

1
2
2 )

∗
)
, ∀φ ∈ C2

ℓ (H), (2.10)

and u ∈ H is regarded as a parameter. According to Theorem 3.1 below, there exists a
unique solution Ψ to equation (2.9). Then, the limit process Z̄t of Z

ε
t turns out to satisfy

the following linear stochastic wave equation:
∂2Z̄t

∂t2
= AZ̄t +DuF̄ (Ūt).Z̄t + σ(Ūt)Ẇt, t ∈ (0, T ],

Z̄0 = 0,
∂Z̄t

∂t
|t=0 = 0,

(2.11)

where Wt is another cylindrical Wiener process independent of W 1
t , and σ is a Hilbert-

Schmidt operator satisfying

1

2
σ(u)σ∗(u) = δF ⊗Ψ(u) :=

∫
H

[
δF (u, y)⊗Ψ(u, y)

]
µu(dy).

Let Żε
t := ∂Zε

t /∂t and
˙̄Zt := ∂Z̄t/∂t. We have the following result.

Theorem 2.3 (Normal deviation). Let T > 0, f ∈ C2,η
b (R×R,R) and g ∈ C2,η

B (R×R,R)
with η > 0. Then for any u ∈ H1, v, y ∈ H, ϕ ∈ C3

b(H) and ϕ̃ ∈ C3
b(H

−1), we have

sup
t∈[0,T ]

(∣∣E[ϕ(Zε
t )]− E[ϕ(Z̄t)]

∣∣+ ∣∣E[ϕ̃(Żε
t )]− E[ϕ̃( ˙̄Zt)]

∣∣) 6 C3 ε
1
2 , (2.12)
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where C3 = C(T, u, u̇, y, ϕ, ϕ̃) > 0 is a constant independent of ε and η.

Remark 2.4. The 1/2-order rate of convergence in (2.12) coincides with the SDE case
and should be optimal. Moreover, the convergence rate does not depend on the regularity
of the coefficients in the equation for the fast variable.

3. Preliminaries

3.1. Poisson equation. We will rewrite the system (2.2) as an abstract evolution equa-
tion. To this end, we first introduce some notations. For α ∈ R, by Hα := Hα ×Hα−1

we denote the Hilbert space endowed with the scalar product

⟨u, v⟩Hα := ⟨u1, v1⟩α + ⟨u2, v2⟩α−1, ∀u = (u1, u2)
T , v = (v1, v2)

T ∈ Hα,

and norm 9u92
α := ∥u1∥2α + ∥u2∥2α−1, ∀u = (u1, u2)

T ∈ Hα.

For simplicity, we write H := H × H−1. Let Π1 be the canonical projection from H to
H, and define

V ε
t :=

d

dt
U ε
t and Xε

t := (U ε
t , V

ε
t )

T .

Then, the system (2.2) can be rewritten as
dXε

t = AXε
t + F(Xε

t , Y
ε
t ) + BdW 1

t ,

dY ε
t = ε−1AY ε

t + ε−1G(Xε
t , Y

ε
t ) + ε−1/2dW 2

t ,

Xε
0 = x, Y ε

0 = y,

(3.1)

where x := (u, v)T , and

A :=

(
0 I
A 0

)
, F(x, y) :=

(
0

F (Π1(x), y)

)
, G(x, y) := G(Π1(x), y), BdW 1

t :=

(
0

dW 1
t

)
,

and F,G are defined by (2.1). Similarly, concerning the averaged equation (2.5), let

V̄t :=
d

dt
Ūt and X̄t := (Ūt, V̄t)

T .

Then we can transfer (2.5) into a stochastic evolution equation:

dX̄t = AX̄tdt+ F̄(X̄t)dt+BdW 1
t , X̄0 = x = (u, v)T ∈ H, (3.2)

where

F̄(x) :=

(
0

F̄ (Π1(x))

)
,

and F̄ is defined by (2.6). It is known (see e.g. [3]) thatA generates a strongly continuous
group {etA}t>0 which is given by

etA =

(
Ct (−A)− 1

2St

−(−A) 1
2St Ct

)
, (3.3)
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where Ct := cos((−A) 1
2 )t) and St := sin((−A) 1

2 )t). For any x ∈ H, we have 9eAtx90 69x90 . Moreover, under the assumptions on f and g, one can check that F ∈ C2,η
b (H ×

H,H) and G ∈ C2,η
B (H × H,H). By definition, we further have F ∈ C2,η

b (H × H,H1)

and G ∈ C2,η
B (H×H,H). Furthermore, according to [36, Lemma 3.7], we also have that

F̄ ∈ C2
b (H,H1).

The Poisson equation will be the crucial tool in our paper. Recall that L2(u, y) is
defined by (2.10). If there is no confusion possible, we shall also write

L2φ(y) := L2(x, y)φ(y) := L2(Π1(x), y)φ(y), ∀φ ∈ C2
ℓ (H). (3.4)

Consider the following Poisson equation:

L2(x, y)ψ(x, y) = −ϕ(x, y), (3.5)

where x ∈ H is regarded as a parameter, and ϕ : H × H → Ĥ is measurable. To be
well-defined, it is necessary to make the following “centering” assumption on ϕ:∫

H

ϕ(x, y)µx(dy) = 0, ∀x ∈ H. (3.6)

The following result has been proven in [36, Theorem 3.2].

Theorem 3.1. Let η > 0 and k = 0, 1, 2, and assume G ∈ Ck,η
B (H × H,H). Then for

every ϕ(·, ·) ∈ Ck,η
ℓ (H × H, Ĥ) satisfying (3.6), there exists a unique solution ψ(·, ·) ∈

ψ ∈ Ck,0
ℓ (H×H, Ĥ) ∩ C0,2

ℓ (H×H, Ĥ) to equation (3.5) which is given by

ψ(x, y) =

∫ ∞

0

E
[
ϕ(x, Y x

t (y))
]
dt,

where Y x
t (y) = Y u

t (y) satisfies the frozen equation (2.4).

3.2. Moment estimates. We prove the following estimates for the solution Xε
t and Y ε

t

of system (3.1).

Lemma 3.2. Let T > 0, x ∈ H1, y ∈ H, and let (Xε
t , Y

ε
t ) satisfy

Xε
t = etAx+

∫ t

0

e(t−s)AF(Xε
s , Y

ε
s )ds+

∫ t

0

e(t−s)ABdW 1
s ,

Y ε
t = e

t
ε
Ay + ε−1

∫ t

0

e
t−s
ε

AG(Xε
s , Y

ε
s )ds+ ε−1/2

∫ t

0

e
t−s
ε

AdW 2
s .

(3.7)

Then for any q > 1, we have

sup
ε∈(0,1)

E
(

sup
t∈[0,T ]

9Xε
t 92q

1

)
6 CT,q

(
1 + 9x 92q

1 +∥y∥2q
)

and

sup
ε∈(0,1)

sup
t∈[0,T ]

E∥Y ε
t ∥2q + sup

ε∈(0,1)
E
(∫ T

0

∥Y ε
t ∥21dt

)q

6 CT,q(1 + ∥y∥2q), (3.8)
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where CT,q > 0 is a constant.

Proof. Applying Itô’s formula (see e.g. [31, Section 4.2]) to ∥Y ε
t ∥2q and taking expecta-

tion, we have

d

dt
E∥Y ε

t ∥2q =
2q

ε
E
[
∥Y ε

t ∥2q−2⟨AY ε
t , Y

ε
t ⟩
]
+

2q

ε
E
[
∥Y ε

t ∥2q−2⟨G(Xε
t , Y

ε
t ), Y

ε
t ⟩
]

+
(q
ε
+

2q(q − 1)

ε

)
Tr(Q2)E∥Y ε

t ∥2q−2.

It follows from Poincaré inequality, Young’s inequality and (2.3) that

d

dt
E∥Y ε

t ∥2q 6 −2qλ1
ε

E∥Y ε
t ∥2q +

2qC0

ε
E∥Y ε

t ∥2q−1 +
(q
ε
+

2q(q − 1)

ε

)
Tr(Q2)E∥Y ε

t ∥2q−2

6 −qC0

ε
E∥Y ε

t ∥2q +
C0

ε
.

Using Gronwall’s inequality, we obtain

E∥Y ε
t ∥2q 6 e−

qC0
ε

t∥y∥2q + C0

ε

∫ t

0

e−
qC0
ε

(t−s)ds 6 C0(1 + ∥y∥2q). (3.9)

Furthermore, in view of [18, Theorem 5.3.5], the process Xε
t = (U ε

t , V
ε
t )

T enjoys the
following energy equality:

9Xε
t 92

1 = 9x 92
1 +2

∫ t

0

⟨V ε
s , F (U

ε
s , Y

ε
s )⟩ds+ 2

∫ t

0

⟨U ε
t , dW

1
s ⟩+

∫ t

0

TrQ1ds.

Then it is easy to check that

9Xε
t 92q

1 6 C0

(
1 + 9x 92q

1 +
∣∣∣ ∫ t

0

⟨V ε
s , F (U

ε
s , Y

ε
s )⟩ds

∣∣∣q + ∣∣∣ ∫ t

0

⟨U ε
t , dW

1
s ⟩
∣∣∣q). (3.10)

On the one hand, note that

E sup
06t6T

∣∣∣ ∫ t

0

⟨V ε
s , F (U

ε
s , Y

ε
s )⟩ds

∣∣∣q
6 C1E

(∫ T

0

∥V ε
s ∥2ds

)q
+ C1E

(∫ T

0

(1 + ∥U ε
s∥2 + ∥Y ε

s ∥2)ds
)q

6 C1E
(∫ T

0

9Xε
s 92q

1 ds

)
+ C1E

(∫ T

0

(1 + ∥Y ε
s ∥2q)ds

)
. (3.11)

On the other hand, in view of Burkholder-Davis-Gundy’s inequality, we have

E sup
06t6T

∣∣∣∫ t

0

⟨U ε
t , dW

1
s ⟩
∣∣∣q 6C2TrQ1E

(∫ T

0

∥U ε
s∥2ds

) q
2

6 C2E
(∫ T

0

9Xε
s 92q

1 ds

)
. (3.12)

10



Combining (3.11) and (3.12) with (3.10), we get

E
(

sup
06t6T

9Xε
t 92q

1

)
6 C3(1 + 9x92q

1 ) + C3E
(∫ T

0

9Xε
s 92q

1 +∥Y ε
s ∥2qds

)
.

Thus, it follows from Gronwall’s inequality that

E( sup
06t6T

9Xε
t 92q

1 ) 6 C4

(
1 + 9x 92q

1 +

∫ T

0

E∥Y ε
s ∥2qds

)
,

which together with (3.9) yields

E
(

sup
06t6T

9Xε
t 92q

1

)
6 C5(1 + 9x 92q

1 +∥y∥2q).

In order to prove estimate (3.8), we deduce that

E
(∫ T

0

∥Y ε
t ∥21dt

)q

6 Cq

(∫ T

0

∥∥e t
ε
Ay
∥∥2
1
dt

)q

+ Cq E
(∫ T

0

∥∥∥ε−1

∫ t

0

e
t−s
ε

AG((Xε
s , Y

ε
s )ds

∥∥∥2
1
dt

)q

+ Cq E
(∫ T

0

∥∥∥ε−1/2

∫ t

0

e
t−s
ε

AdW 2
s

∥∥∥2
1
dt

)q

=:
3∑

i=1

Yi(T, ε).

For the first term, we have

Y1(T, ε) 6 C6

(∫ T/ε

0

∞∑
k=1

λke
−2λkt⟨y, ek⟩2dt

)q

6 C6

(
∞∑
k=1

(1− e
−2λkT

ε )⟨y, ek⟩2
)q

6 C6∥y∥2q.

Note that∥∥∥ε−1

∫ t

0

e
t−s
ε

AG(Xε
s , Y

ε
s )ds

∥∥∥
1
6 C7ε

−1

∫ t

0

(t− s

ε

)−1/2

e−
λ1(t−s)

2ε ∥G(Xε
s , Y

ε
s )∥ds

6 C7

∫ t/ε

0

e−
λ1s
2

s1/2
ds 6 C7,

which implies that

Y2(T, ε) 6 C8.
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For the last term, by Minkowski’s inequality, Burkholder-Davis-Gundy’s inequality and
(2.3), we deduce that

Y3(T, ε) 6 C9

{∫ T

0

(
E
∥∥∥ε−1/2

∫ t

0

e
t−s
ε

AdW 2
s

∥∥∥2q
1

)1/q

dt

}q

6 C9

{∫ T

0

(
E
(
ε−1

∫ t

0

∞∑
k=1

λke
−2λk

t−s
ε ⟨Q2ek, ek⟩ds

)q)1/q

dt

}q

6 C9

{∫ T

0

(
E
(∫ t/ε

0

∞∑
k=1

λke
−2λks⟨Q2ek, ek⟩ds

)q)1/q

dt

}q

6 C9.

Combining the above computations, we get the desired result. �
We also need the following estimate for AXε

t .

Lemma 3.3. Let T > 0, x = (u, v)T ∈ H1 and y ∈ H. Then for any q > 1 and
t ∈ [0, T ], we have

E 9 AXε
t 9q

0 6 CT,q(1 + 9x 9q
1 +∥y∥q),

where CT,q > 0 is a constant.

Proof. By definition, we have

AXε
t =

(
0 I
A 0

)(
U ε
t

V ε
t

)
=

(
V ε
t

AU ε
t

)
.

Thus, we deduce that 9AXε
t 9q

0 6 Cq

(
∥V ε

t ∥q + ∥AU ε
t ∥

q
−1

)
= Cq

(
∥V ε

t ∥q + ∥(−A)
1
2U ε

t ∥q
)
.

It then follows from (3.7) that

E∥(−A)
1
2U ε

t ∥q 6Cq

(
∥(−A)

1
2Ctu∥+ ∥Stv∥

)q
+ CqE

∥∥∥ ∫ t

0

St−sF (U
ε
s , Y

ε
s )ds

∥∥∥q
+ CqE

∥∥∥ ∫ t

0

St−sdW
1
s

∥∥∥q := 3∑
i=1

Ui(t, ε).

For the first term, we have

U1(t, ε) 6 C1 9 x 9q
1 .

To control the second term, by Minkowski’s inequality and Lemma 3.2, we get

U2(t, ε) 6 C2

(∫ t

0

(
1 + E∥U ε

s∥q + E∥Y ε
s ∥q
)1/q

ds
)q

6 C2(1 + 9x 9q
1 +∥y∥q).
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Finally, by Burkholder-Davis-Gundy’s inequality, we obtain

U3(t, ε) 6 C3.

Combining the above estimates, we have

E∥(−A)
1
2U ε

t ∥q 6 C4(1 + 9x 9q
1 +∥y∥q).

Note that

V ε
t = −(−A)

1
2Stu+ Ctv +

∫ t

0

Ct−sF (U
ε
s , Y

ε
s )ds+

∫ t

0

Ct−sdW
1
s .

In a similar way, we can prove that

E∥V ε
t ∥q 6 C5(1 + 9x 9q

1 +∥y∥q).

Combining the above, we get the desired result. �

The following estimates for the solution of the averaged equation (3.2) can be proved
in a similar way as Lemmas 3.2 and 3.3, hence we omit the details here.

Lemma 3.4. Let T > 0 and x ∈ H1. The averaged equation (3.2) admits a unique mild
solution X̄t such that for all t > 0,

X̄t = etAx+

∫ t

0

e(t−s)AF̄(X̄s)ds+

∫ t

0

e(t−s)ABdW 1
s . (3.13)

Moreover, for any q > 1 we have

sup
ε∈(0,1)

E
(

sup
t∈[0,T ]

9X̄t 92q
1

)
6 CT,q(1 + 9x92q

1 )

and

E 9 AX̄t9q
0 6 CT,q(1 + 9x9q

1),

where CT,q > 0 is a constant.

4. Strong and weak convergence in the averaging principle

4.1. Galerkin approximation. Itô’s formula will be used frequently below in the proof
of the main result. However, due to the persence of unbounded operators in the equation,
we can not apply Itô’s formula for SPDE (3.1) directly. For this reason, we use the
following Galerkin approximation scheme, which reduces the infinite dimensional setting
to a finite dimensional one. For every n ∈ N, let Hn = span{e1, e2, · · · , en}. Denote the
projection of H onto Hn by Pn, and set

Fn(x, y) :=

(
0

PnF (Π1(x), y)

)
, Gn(x, y) := PnG(Π1(x), y).

13



It is easy to check that Fn and Gn satisfy the same conditions as F and G with bounds
which are uniform with respect to n. Consider the following finite dimensional system:{

dXn,ε
t = AXn,ε

t dt+ Fn(X
n,ε
t , Y n,ε

t )dt+ PndW
1
t ,

dY n,ε
t = ε−1AY n,ε

t dt+ ε−1Gn(X
n,ε
t , Y n,ε

t )dt+ ε−1/2PndW
2
t ,

(4.1)

with initial values Xn,ε
0 = xn ∈ Hn × Hn and Y n,ε

0 = yn ∈ Hn. The corresponding
averaged equation for system (5.1) is given by

dX̄n
t = AX̄n

t dt+ F̄n(X̄
n
t )dt+ PndW

1
t , X̄n

0 = xn ∈ Hn ×Hn, (4.2)

where

F̄n(x) :=

∫
Hn

Fn(x, y)µ
x
n(dy), (4.3)

and µx
n(dy) is the invariant measure associated with the transition semigroup of the

process Y x,n
t (y) which satisfies the frozen equation

dY x,n
t = AY x,n

t dt+ Gn(x
n, Y x,n

t )dt+ PndW
2
t , Y x,n

0 = yn ∈ Hn.

Recall that Y u
t (y) satisfies (2.4) and note that G(x, y) = G(u, y). We know that Y x,n

t (yn)
converges strongly to Y x

t (y) := Y u
t (y). Let T > 0, x ∈ H1 and y ∈ H. Then as shown in

the proof of [17, Lemma 3.1], for any q > 1 and t ∈ [0, T ], we have

lim
n→∞

E 9Xε
t −Xn,ε

t 9q
1 = 0.

Furthermore, in view of (3.7), (3.13) and (3.3) we deduce that

E 9 X̄n
t − X̄t9q

1 6 E
∣∣∣∣∣∣∣∣∣ ∫ t

0

e(t−s)A(I − Pn)BdW 1
s

∣∣∣∣∣∣∣∣∣q
1

+ E
(∫ t

0

(∥∥(−A)− 1
2St−s(F̄ (Ūs)− F̄n(Ūs))

∥∥
1
+
∥∥Ct−s(F̄ (X̄s)− F̄n(Ūs)

∥∥)ds)q

+ E
(∫ t

0

(∥∥(−A)− 1
2St−s(F̄n(Ūs)− F̄n(Ū

n
s ))
∥∥
1
+
∥∥Ct−s(F̄n(Ūs)− F̄n(Ū

n
s ))
∥∥)ds)q

.

Since ∥F̄n− F̄∥ → 0 as n→ ∞ (see e.g. [5, (4.4)]), the first two terms go to 0 as n→ ∞
by the dominated convergence theorem. For the last term, we have

E
(∫ t

0

(∥∥(−A)− 1
2St−s

(
F̄n(Ūs)− F̄n(Ū

n
s ))
∥∥
1
+
∥∥Ct−s(F̄n(Ūs)− F̄n(Ū

n
s ))
∥∥)ds)q

6 C1 E
(∫ t

0

∥Ūs − Ūn
s ∥1ds

)q

6 C1 E
(∫ t

0

9X̄s − X̄n
s 91 ds

)q

,

which in turn yields by Gronwall’s inequality that

lim
n→∞

E 9 X̄n
t − X̄t9q

1 = 0.
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Therefore, in order to prove Theorem 2.1, we only need to show that for any q > 1,

sup
t∈[0,T ]

E 9Xn,ε
t − X̄n

t 9q
1 6 CT ε

q/2, (4.4)

and for every φ ∈ C3
b(H),

sup
t∈[0,T ]

∣∣E[φ(Xn,ε
t )]− E[φ(X̄n

t )]
∣∣ 6 CT ε, (4.5)

where CT > 0 is a constant independent of n. In the rest of this section, we shall
only work with the approximating system (4.1), and prove bounds that are uniform with
respect to n. To simplify the notations, we omit the index n. In particular, the space
Hn is denoted by H.

4.2. Proof of Theorem 2.1 (strong convergence). For simplicity, let

L1φ(x) := L1(x, y)φ(x) : = ⟨Ax+ F(x, y), Dxφ(x)⟩H

+
1

2
Tr
(
D2

xφ(x)(BQ1)
1
2 ((BQ1)

1
2 )∗
)
, ∀φ ∈ C2

ℓ (H). (4.6)

As shown in Subsection 4.1, to prove the strong convergence result (2.7), we only need
to prove (4.4). To this end, we first establish the following fluctuation estimate for an
integral functional of (Xε

s , Y
ε
s ) over time interval [0, t], which will play an important role

in proving (4.4).

Lemma 4.1 (Strong fluctuation estimate). Let T, η > 0, x = (u, v)T ∈ H1 and y ∈ H.
Assume that F ∈ C2,η

b (H × H,H1) and G ∈ C2,η
B (H × H,H). Then for any t ∈ [0, T ],

q > 1 and every ϕ̃(x, y) :=

(
0

ϕ(u, y))

)
satisfying (3.6) with ϕ ∈ C2,η

b (H×H,H), we have

E
∣∣∣∣∣∣∣∣∣ ∫ t

0

e(t−s)Aϕ̃(Xε
s , Y

ε
s )ds

∣∣∣∣∣∣∣∣∣q
1
6 CT,q ε

q/2,

where CT,q > 0 is a constant independent of ε, η and n.

Proof. Let ψ solve the Poisson equation,

L2(u, y)ψ(u, y) = −ϕ(u, y),
and define

ψ̃t(s, x, y) := e(t−s)Aψ̃(x, y) := e(t−s)A
(

0
ψ(u, y)

)
.

Since L2 is an operator with respect to the y-variable, one can check that

L2ψ̃t(s, x, y) = −e(t−s)Aϕ̃(x, y). (4.7)

Applying Itô’s formula to ψ̃t(t,X
ε
t , Y

ε
t ), we get

ψ̃t(t,X
ε
t , Y

ε
t ) = ψ̃t(0, x, y) +

∫ t

0

(∂s + L1)ψ̃t(s,X
ε
s , Y

ε
s )ds
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+
1

ε

∫ t

0

L2ψ̃t(s,X
ε
s , Y

ε
s )ds+M1

t +
1√
ε
M2

t , (4.8)

where M1
t and M2

t are defined by

M1
t :=

∫ t

0

Dxψ̃t(s,X
ε
s , Y

ε
s )BdW 1

s and M2
t :=

∫ t

0

Dyψ̃t(s,X
ε
s , Y

ε
s )dW

2
s .

Multiplying both sides of (4.8) by ε and using (4.7), we obtain∫ t

0

e(t−s)Aϕ̃(Xε
s , Y

ε
s )ds = −

∫ t

0

L2ψ̃t(s,X
ε
s , Y

ε
s )ds

= ε
[
ψ̃t(0, x, y)− ψ̃t(t,X

ε
t , Y

ε
t )
]
+ ε

∫ t

0

∂sψ̃t(s,X
ε
s , Y

ε
s )ds

+ ε

∫ t

0

L1ψ̃t(s,X
ε
s , Y

ε
s )ds+ εM1

t +
√
εM2

t =:
5∑

i=1

Ji(t, ε). (4.9)

According to Theorem 3.1 , we have that ψ ∈ C2,2
ℓ (H ×H,H) and hence

9e(t−s)Aψ̃(x, y)91 =
∣∣∣∣∣∣∣∣∣ ((−A)− 1

2St−sψ(u, y)
Ct−sψ(u, y)

) ∣∣∣∣∣∣∣∣∣
1

= ∥(−A)−
1
2St−sψ(u, y)∥1 + ∥Ct−sψ(u, y)∥

6 2∥ψ(u, y)∥ 6 C1(1 + ∥u∥+ ∥y∥).
As a result, by Lemma 3.2 we get

E 9 J1(t, ε)9q
1 6 C1 ε

q(1 + E∥U ε
t ∥q + E∥Y ε

t ∥q) 6 C1 ε
q.

Note that
∂sψ̃t(s, x, y) = −Ae(t−s)Aψ̃(x, y),

and that

9Ae(t−s)Aψ̃(x, y)91 =
∣∣∣∣∣∣∣∣∣ ( Ct−sψ(u, y)

−(−A)
1
2St−sψ(u, y)

) ∣∣∣∣∣∣∣∣∣
1

= ∥Ct−sψ(u, y)∥1 + ∥ − (−A)
1
2St−sψ(u, y)∥

6 2∥ψ(u, y)∥1 6 C2(1 + ∥u∥21 + ∥y∥21),
where the last inequality can be obtained as in [13, (2.16)]. Thus, using Minkowski’s
inequality and Lemma 3.2 again, we have

E 9 J2(t, ε)9q
1 6 C2 ε

q
(∫ T

0

(
1 + E∥U ε

s∥
2q
1

)1/q
dt
)q

+ C2 ε
q E
(∫ T

0

∥Y ε
s ∥21ds

)q
6 C2 ε

q.

For the third term, we have

|L1ψ̃t(s,X
ε
s , Y

ε
s )| 6 C3

(
1 + 9AXε

s 92
0 + 9Xε

s 92
1 +∥Y ε

s ∥2
)
,
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which together with Minkowski’s inequality, Lemmas 3.2 and 3.3 yields that

E 9 J3(t, ε)9q
1 6 C3 ε

q
(∫ t

0

(
E
(
1 + 9AXε

s 92
0 + 9Xε

s 92
1 +∥Y ε

s ∥2
)q)1/q

ds
)q

6 C3 ε
q.

Finally, by Burkholder-Davis-Gundy’s inequality, Theorem 3.1, Lemma 3.2 and (2.3),
we have

E 9 J4(t, ε)9q
1 6 C4 ε

q
(∫ T

0

E
∥∥e(t−s)ADxψ̃(X

ε
s , Y

ε
s )BQ

1
2
1

∥∥2
L2(H1)

ds
)q/2

6 C4 ε
q

(∫ T

0

(1 + E 9Xε
s 92

1 +E∥Y ε
s ∥2)ds

)q/2

6 C4 ε
q,

and similarly,

E 9 J5(t, ε)9q
1 6 C5 ε

q/2.

Combining the above inequalities with (4.9), we get the desired estimate. �

We are now in the position to give:

Proof of estimate (4.4). Fix T > 0 below. In view of (3.7) and (3.13), for every t ∈ [0, T ]
we have

Xε
t − X̄t =

∫ t

0

e(t−s)A[F̄(Xε
s )− F̄(X̄s)

]
ds+

∫ t

0

e(t−s)AδF(Xε
s , Y

ε
s )ds,

where δF is defined by

δF(x, y) := F(x, y)− F̄(x) =

(
0

δF (Π1(x), y)

)
. (4.10)

Thus, we have for any q > 1,

E 9Xε
t − X̄t9q

1 6 C0 E
∣∣∣∣∣∣∣∣∣ ∫ t

0

e(t−s)A[F̄(Xε
s )− F̄(X̄s)

]
ds
∣∣∣∣∣∣∣∣∣q
1

+ C0 E
∣∣∣∣∣∣∣∣∣ ∫ t

0

e(t−s)AδF(Xε
s , Y

ε
s )ds

∣∣∣∣∣∣∣∣∣q
1
=: I1(t, ε) + I2(t, ε).

Since F̄ ∈ C2
b (H,H1), by Minkowski’s inequality we deduce that

I1(t, ε) 6 C1E
(∫ t

0

9F̄(Xε
s )− F̄(X̄s) 91 ds

)q
6 C1

∫ t

0

E 9Xε
s − X̄s 9q

1 ds.

For the second term, noting that δF(x, y) satisfies the centering condition (3.6), it follows
by Lemma 4.1 directly that

I2(t, ε) 6 C2 ε
q/2.
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Thus, we arrive at

E 9Xε
t − X̄t9q

1 6 C3 ε
q/2 + C3

∫ t

0

E 9Xε
s − X̄s 9q

1 ds,

which together with Gronwall’s inequality yields the desired result. �
4.3. Proof of Theorem 2.1 (weak convergence). As in the previous subsection, to
prove the weak convergence result in Theorem 2.1 , we only need to show (4.5). The
main reason for the difference between the strong and weak convergence rates in the
averaging principle can be seen through the following estimate.

Lemma 4.2 (Weak fluctuation estimate). Let T, η > 0, x = (u, v)T ∈ H1 and y ∈ H.
Assume that F ∈ C2,η

b (H × H,H1) and G ∈ C2,η
B (H × H,H). Then for any t ∈ [0, T ],

ϕ ∈ C1,2,η
ℓ ([0, T ]×H×H) satisfying (3.6) and

|∂tϕ(t, x, y)| 6 C0(1 + 9x 92
1 +∥y∥2), (4.11)

we have

E
(∫ t

0

ϕ(s,Xε
s , Y

ε
s )ds

)
6 CT ε,

where CT > 0 is a constant independent of ε, η and n.

Proof. Let ψ solve the Poisson equation

L2ψ(t, x, y) = −ϕ(t, x, y), (4.12)

where L2 is given by (3.4). According to Theorem 3.1, we can apply Itô’s formula to
ψ(t,Xε

t , Y
ε
t ) to get that

E[ψ(t,Xε
t , Y

ε
t )] = ψ(0, x, y) + E

(∫ t

0

(∂s + L1)ψ(s,X
ε
s , Y

ε
s )ds

)
+

1

ε
E
(∫ t

0

L2ψ(s,X
ε
s , Y

ε
s )ds

)
.

Combining this with (4.12), we obtain

E
(∫ t

0

ϕ(s,Xε
s , Y

ε
s )ds

)
= εE

[
ψ(0, x, y)− ψ(t,Xε

t , Y
ε
t )
]
+ εE

(∫ t

0

L1ψ(s,X
ε
s , Y

ε
s )ds

)
+ εE

(∫ t

0

∂sψ(s,X
ε
s , Y

ε
s )ds

)
=:

3∑
i=1

Wi(t, ε).

By using exactly the same arguments as in the proof of Lemma 4.1, we can get that

W1(t, ε) + W2(t, ε) 6 C1 ε.
18



To control the third term, note that

L2∂tψ(t, x, y) = −∂tϕ(t, x, y).
In view of condition (4.11), we have

|∂tψ(t, x, y)| 6 C0(1 + 9x 92
1 +∥y∥2),

which together with Lemma 3.2 implies that

W3(t, ε) 6 C2 εE
(∫ t

0

(1 + 9Xε
s 92

1 +∥Y ε
s ∥2)ds

)
6 C2 ε.

Combining the above estimates, we get the desired result. �
Given T > 0, consider the following Cauchy problem on [0, T ]×H:{

∂tū(t, x) = L̄1ū(t, x), t ∈ (0, T ],

ū(0, x) = φ(x),
(4.13)

where φ : H → R is measurable and L̄1 is formally the infinitesimal generator of the
process X̄t given by

L̄1φ(x) = ⟨Ax+ F̄(x), Dxφ(x)⟩H

+
1

2
Tr
(
D2

xφ(x)(BQ1)
1
2 ((BQ1)

1
2 )∗
)
, ∀φ ∈ C2

ℓ (H). (4.14)

The following result has been proven in [21, Lemmas A.3-A.5 and 4.3].

Lemma 4.3. For every φ ∈ C3
b(H), there exists a solution ū ∈ C1,3

b ([0, T ] × H) to
equation (4.13) which is given by

ū(t, x) = E
[
φ(X̄t(x))

]
.

Moreover, for any t ∈ [0, T ] and x, h ∈ H1, we have

|∂tDxū(t, x).h| 6 CT 9 h 91 (1 + 9x91),

where CT > 0 is a constant.

Now, we are in the position to give:

Proof of estimate (4.5). Given T > 0 and φ ∈ C3
b(H), let ū solve the Cauchy problem

(4.13). For any t ∈ [0, T ] and x ∈ H1, define

ũ(t, x) := ū(T − t, x).

Then one can check that

ũ(T, x) = ū(0, x) = φ(x) and ũ(0, x) = ū(T, x) = E[φ(X̄T (x))].

Using Itô’s formula and taking expectation, we deduce that

E[φ(Xε
T )]− E[φ(X̄T )] = E[ũ(T,Xε

T )− ũ(0, x)]
19



= E
(∫ T

0

(
∂t + L1

)
ũ(t,Xε

t )dt

)
= E

(∫ T

0

[L1ũ(t,X
ε
t )− L̄1ũ(t,X

ε
t )]dt

)
= E

(∫ T

0

⟨δF(Xε
t , Y

ε
t ), Dxũ(t,X

ε
t )⟩Hdt

)
.

Note that the function

ϕ(t, x, y) := ⟨δF(x, y), Dxũ(t, x)⟩H
satisfies the centering condition (3.6). Moreover, by Lemma 4.3 we have

∂tϕ(t, x, y) = ⟨δF(x, y), ∂tDxū(T − t, x)⟩H 6 C0(1 + 9x 92
1 +∥y∥2).

As a result of Lemma 4.2, we have

E[φ(Xε
T )]− E[φ(X̄T )] 6 C1 ε,

which completes the proof. �

5. Normal deviations

5.1. Cauchy problem. Define

Zε
t :=

Xε
t − X̄t√
ε

.

In view of (3.1) and (3.2), we consider the process (Xε
t , Y

ε
t , X̄t,Zε

t ) as the solution to the
following system of equations:

dXε
t = AXε

t dt+ F(Xε
t , Y

ε
t )dt+BdW 1

t , Xε
0 = x,

dY ε
t = ε−1AY ε

t dt+ ε−1G(Xε
t , Y

ε
t )dt+ ε−1/2dW 2

t , Y ε
0 = y,

dX̄t = AX̄tdt+ F̄(X̄t)dt+BdW 1
t , X̄0 = x,

dZε
t = AZε

t dt+ ε−1/2[F̄(Xε
t )− F̄(X̄t)]dt+ ε−1/2δF(Xε

t , Y
ε
t )dt, Zε

0 = 0,

(5.1)

where δF is defined by (4.10). As a result of Theorem 2.1, we have that for any q > 1,

sup
06t6T

E 9 Zε
t 9q

1 6 CT <∞. (5.2)

Furthermore, note that

AZε
t =

(
0 I
A 0

)(Uε
t −Ūt√

ε
V ε
t −V̄t√

ε

)
=

(
V ε
t −V̄t√

ε
A(Uε

t −Ūt)√
ε

)
,

20



hence we have

E 9 AZε
t 9q

0 = E
(∥∥∥V ε

t − V̄t√
ε

∥∥∥2 + ∥∥∥A(U ε
t − Ūt)√
ε

∥∥∥2
−1

)q/2

= E
(∥∥∥V ε

t − V̄t√
ε

∥∥∥2 + ∥∥∥(U ε
t − Ūt)√
ε

∥∥∥2
1

)q/2

6 CT <∞. (5.3)

Similarly, we rewrite (2.11) as

dZ̄t = AZ̄tdt+DxF̄(X̄t).Z̄tdt+ Σ(X̄t)dWt, (5.4)

where Z̄t = (Z̄t,
˙̄Zt)

T , and Σ is a Hilbert-Schmidt operator satisfying

1

2
Σ(x)Σ∗(x) = δF ⊗ Ψ̃(x) :=

∫
H

[
δF(x, y)⊗ Ψ̃(x, y)

]
µx(dy), (5.5)

(see e.g. [10, (1.6)] and [38, (11)]), and Ψ̃ is the solution of the following Poisson equation:

L2(x, y)Ψ̃(x, y) = −δF(x, y). (5.6)

Recall that L2(x, y) = L2(u, y) and Ψ(u, y) solves the Poisson equation (2.9). Thus, we
have Ψ̃(x, y) = Ψ(Π1(x), y) = Ψ(u, y). Combining (3.2) and (5.4), the process (X̄t, Z̄t)
solves the system{

dX̄t = AX̄tdt+ F̄(X̄t)dt+ dW 1
t , X̄0 = x,

dZ̄t = AZ̄tdt+DxF̄(X̄t).Z̄tdt+ Σ(X̄t)dWt, Z̄0 = 0.

Note that the processes X̄t and Z̄t depend on the initial value x. Below, we shall write
X̄t(x) when we want to stress its dependence on the initial value, and use Z̄t(x, z) to
denote the process Z̄t with initial point Z̄0 = z ∈ H.

Given T > 0, consider the following Cauchy problem on [0, T ]×H×H:{
∂tū(t, x, z) = L̄ū(t, x, z), t ∈ (0, T ],

ū(0, x, z) = φ(z),
(5.7)

where φ : H → R is measurable and L̄ is formally the infinitesimal generator of the
Markov process (X̄t, Z̄t), i.e.,

L̄ := L̄1 + L̄3,

with L̄1 given by (4.14) and L̄3 defined by

L̄3φ(z) := L̄3(x, z)φ(z) := ⟨Az +DxF̄(x).z,Dzφ(z)⟩H

+
1

2
Tr
(
D2

zφ(z)Σ(x)Σ
∗(x)

)
, ∀φ ∈ C2

ℓ (H).

We have the following result.
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Lemma 5.1. For every φ ∈ C3
b(H), there exists a solution ū ∈ C1,3,3

b ([0, T ]×H×H) to
equation (5.7) which is given by

ū(t, x, z) = E
[
φ(Z̄t(x, z))

]
. (5.8)

Moreover, for any t ∈ [0, T ] and x, z, h ∈ H1, we have

|∂tDzū(t, x, z).h|+ |∂tDxū(t, x, z).h|
6 C0

(
1 + 9x 92

1 + 9 z 91 + 9 Ax 90 + 9 Az 90

)( 9 h 91 + 9 Ah 90

)
, (5.9)

where C0 > 0 is a positive constant.

Proof. By using the same arguments as in [6, Section 7], we can prove that equation
(5.7) admits a solution ū ∈ C1,3,3

b ([0, T ] × H × H) which is given by (5.8), see also [8,
Section 4]. Moreover, for x, z, h ∈ H1,

∂tDzū(t, x, z).h = Dz∂tū(t, x, z).h = Dz(L̄1 + L̄3)ū(t, x, z).h, (5.10)

On the one hand, we have

DzL̄1ū(t, x, z).h

= DzDxū(t, x, z).(Ax+ F̄(x), h) +
1

2

∞∑
n=1

β1,nDzD
2
xū(t, x, z).(Ben, Ben, h),

which together with ū ∈ C1,3,3
b ([0, T ]×H×H) yields that

|DzL̄1ū(t, x, z).h| 6 C1(1 + 9Ax 90 + 9 x91) 9 h 91 . (5.11)

On the other hand, we have

DzL̄3ū(t, x, z).h

= ⟨Ah,Dzū(t, x, z)⟩H + ⟨DxF̄(x).h,Dzū(t, x, z))⟩H

+D2
z ū(t, x, z).(Az +DxF̄(x).z, h) +

1

2

∞∑
n=1

D3
z ū(t, x, z).(Σ(x)en,Σ(x)en, h).

Thus,

|DzL̄3ū(t, x, z).h| 6 C2(1 + 9Az 90 + 9 z 91 + 9 x92
1)(9h 91 + 9 Ah90). (5.12)

Combining (5.10), (5.11) and (5.12), we arrive at

|∂tDzū(t, x, z).h| 6 C3

(
1 + 9x 92

1 + 9 z 91 + 9 Ax 90 + 9 Az 90

)(9 h 91 + 9 Ah 90

)
.

Similarly, we have

∂tDxū(t, x, z).h = D2
xū(t, x, z).(Ax+ F̄(x), h) + ⟨Ah+DxF̄(x).h,Dxū(t, x, z)⟩H

+ ⟨D2
xF̄(x).(z, h), Dzū(t, x, z))⟩H +DxDzū(t, x, z).(Az +DxF̄(x).z, h)
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+
1

2

∞∑
n=1

β1,nD
3
xū(t, x, z).(Ben, Ben, h)

+
1

2

∞∑
n=1

DxD
2
z ū(t, x, z).(Σ(x)en,Σ(x)en, h)

+
∞∑
n=1

D2
z ū(t, x, z).(Dx(Σ(x))en,Σ(x)en, h).

By the same argument as above, we can obtain

|∂tDxū(t, x, z).h| 6 C4

(
1 + 9x 92

1 + 9 z 91 + 9 Ax 90 + 9 Az 90

)(9 h 91 + 9 Ah 90

)
,

which completes the proof. �
5.2. Proof of Theorem 2.3. As before, we reduce the infinite dimensional problem to
a finite dimensional one by the Galerkin approximation. Recall that Xn,ε

t and X̄n
t are

defined by (4.1) and (4.2), respectively. Define

Zn,ε
t :=

Xn,ε
t − X̄n

t√
ε

.

Then we have

dZn,ε
t = AZn,ε

t dt+ ε−1/2[F̄n(X
n,ε
t )− F̄n(X̄

n
t )]dt+ ε−1/2δFn(X

n,ε
t , Y n,ε

t )dt,

where F̄n is given by (4.3), and δFn(x, y) := Fn(x, y) − F̄n(x). Let Z̄n
t satisfy the

following linear equation:

dZ̄n
t = AZ̄n

t dt+DxF̄n(X̄
n
t ).Z̄n

t dt+ PnΣ(X̄
n
t )dWt,

where Wt is a cylindrical Wiener process in H, and Σ(x) is defined by (5.5). As in [36,
Lemma 5.4], one can check that

lim
n→∞

E
( 9 Zε

t −Zn,ε
t 91 + 9 Z̄t − Z̄n

t 91

)
= 0. (5.13)

For any T > 0 and φ ∈ C3
b(H), we have for t ∈ [0, T ],∣∣E[φ(Zε

t )]− E[φ(Z̄t)]
∣∣ 6 |E[φ(Zε

t )]− E[φ(Zn,ε
t )]|

+
∣∣E[φ(Zn,ε

t )]− E[φ(Z̄n
t )]
∣∣+ ∣∣E[φ(Z̄n

t )]− E[φ(Z̄t)]
∣∣ . (5.14)

According to (5.13), the first and the last terms on the right-hand of (5.14) converge to
0 as n→ ∞ . Therefore, in order to prove Theorem 2.3, we only need to show that

sup
t∈[0,T ]

∣∣E[φ(Zn,ε
t )]− E[φ(Z̄n

t )]
∣∣ 6 CT ε

1
2 , (5.15)

where CT > 0 is a constant independent of n. We shall only work with the approxi-
mating system in the following subsection, and proceed to prove bounds that are uniform
with respect to n. To simplify the notations, we shall omit the index n as before.
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Define

L3φ(z) := L3(x, y, x̄, z)φ(z) := ⟨Az,Dzφ(z)⟩H

+
1√
ε
⟨F̄(x)− F̄(x̄), Dzφ(z)⟩H +

1√
ε
⟨δF(x, y), Dzφ(z)⟩H, ∀φ ∈ C1

ℓ (H). (5.16)

Given a function ϕ ∈ C1,2,η,2
ℓ ([0, T ]×H×H ×H) satisfying the centering condition:∫
H

ϕ(t, x, y, z)µx(dy) = 0, ∀t > 0, x, z ∈ H, (5.17)

let ψ(t, x, y, z) solve the following Poisson equation

L2(x, y)ψ(t, x, y, z) = −ϕ(t, x, y, z), (5.18)

where t, x, z are regarded as parameters. Define

δF · ∇zψ(t, x, z) :=

∫
H

∇zψ(t, x, y, z).δF(x, y)µx(dy). (5.19)

We first establish the following weak fluctuation estimates for an appropriate integral
functional of (Xε

s , Y
ε
s ,Zε

s ) over the time interval [0, t], which will play an important role
in the proof of (5.15).

Lemma 5.2 (Weak fluctuation estimates). Let T, η > 0, x ∈ H1 and y ∈ H. Assume
that F ∈ C2,η

b (H × H,H1) and G ∈ C2,η
B (H × H,H). Then for any t ∈ [0, T ], ϕ ∈

C1,2,η,2
ℓ ([0, T ]×H×H ×H) satisfying (5.17) and

|∂tϕ(t, x, y, z)| 6 C0

(
1 + 9x 92

1 + 9 z91

+ 9Ax 90 + 9 Az 90

)(
1 + 9x 91 +∥y∥

)
, (5.20)

we have

E
(∫ t

0

ϕ(s,Xε
s , Y

ε
s ,Zε

s )ds

)
6 CT ε

1
2 , (5.21)

and

E
(

1√
ε

∫ t

0

ϕ(s,Xε
s , Y

ε
s ,Zε

s )ds

)
− E

(∫ t

0

δF · ∇zψ(s,X
ε
s ,Zε

s )ds

)
6 CT ε

1
2 , (5.22)

where CT > 0 is a constant independent of ε, η and n.

Proof. The proof will be divided into two steps.

Step 1. We first prove estimate (5.21). Applying Itô’s formula to ψ(t,Xε
t , Y

ε
t ,Zε

t ) and
taking expectation, we have

E[ψ(t,Xε
t , Y

ε
t ,Zε

t )] = ψ(0, x, y, 0) + E
(∫ t

0

(∂s + L1 + L3)ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
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+
1

ε
E
(∫ t

0

L2ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
,

where L1 and L3 are defined by (4.6) and (5.16), respectively. Combining this with
(5.18), we obtain

E
(∫ t

0

ϕ(s,Xε
s , Y

ε
s ,Zε

s )ds

)
= εE

[
ψ(0, x, y, 0)− ψ(t,Xε

t , Y
ε
t ,Zε

t )
]

+ εE
(∫ t

0

∂sψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
+ εE

(∫ t

0

L1ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
+ εE

(∫ t

0

L3ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
=:

4∑
i=1

Qi(t, ε). (5.23)

By Theorem 3.1 and Lemma 3.2, we have

Q1(t, ε) 6 C1εE
(
1 + 9Xε

t 91 +∥Y ε
t ∥
)
6 C1ε.

For the second term, by using Theorem 3.1, condition (5.20), Lemma 3.2, (5.2) and (5.3),
we get

Q2(t, ε) 6 C2

∫ t

0

E
(
1 + 9AXε

s 92
0 + 9 AZε

s 92
0 + 9Xε

s 94
1 ++ ∥Y ε

s ∥2 + 9Zε
s 92

1

)
ds

6 C2 ε.

To treat the third term, since for each t ∈ [0, T ], ϕ(t, ·, ·, ·) ∈ C2,η,2
ℓ (H × H × H), by

Theorem 3.1, we have ψ(t, ·, ·, ·) ∈ C2,2,2
ℓ (H×H ×H), hence

|L1ψ(t,X
ε
t , Y

ε
t ,Zε

t )| 6 |⟨AXε
t + F(Xε

t , Y
ε
t ), Dxψ(t,X

ε
t , Y

ε
t ,Zε

t )⟩H|

+
1

2
Tr((BQ

1
2
1 )(BQ

1
2
1 )

∗)∥D2
xψ(t,X

ε
t , Y

ε
t ,Zε

t )∥L (H×H)

6 C3

(
1 + 9AXε

t 92
0 + 9Xε

t 92
1 +∥Y ε

t ∥2
)
.

As a result of Lemmas 3.2 and 3.3, we deduce that

Q3(t, ε) 6 C3 εE
(∫ t

0

( 9 AXε
s 92

0 + 9Xε
s 92

1 +∥Y ε
s ∥2
)
ds

)
6 C3 ε.

For the last term, we have

Q4(t, ε) = εE
(∫ t

0

⟨AZε
s , Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)

+
√
εE
(∫ t

0

⟨F̄(Xε
s )− F̄(X̄s), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)

+
√
εE
(∫ t

0

⟨δF(Xε
s , Y

ε
s ), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)
.
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It follows from (5.3) and Lemma 3.2 again that

Q4(t, ε) 6 C4

√
εE
(∫ t

0

(1 + 9AZε
s 92

0 + 9Xε
s 92

1 +∥Y ε
s ∥2)ds

)
6 C4

√
ε.

Combining the above inequalities with (5.23), we get the desired result.

Step 2. We proceed to prove estimate (5.22). By following exactly the same arguments
as in the proof of Step 1, we get that

E
(

1√
ε

∫ t

0

ϕ(s,Xε
s , Y

ε
s ,Zε

s )ds

)
6 C0

√
ε+

√
εE
(∫ t

0

L3ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
.

For the last term, by definition (5.16) we have

√
εE
(∫ t

0

L3ψ(s,X
ε
s , Y

ε
s ,Zε

s )ds

)
=

√
εE
(∫ t

0

⟨AZε
s , Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)

+ E
(∫ t

0

⟨F̄(Xε
s )− F̄(X̄s), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)

+ E
(∫ t

0

⟨δF(Xε
s , Y

ε
s ), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩Hds
)

=:
3∑

i=1

Ti(t, ε).

Using Lemma 3.2 and (5.3), we get

T1(t, ε) 6 C1

√
εE
(∫ t

0

9AZε
s 90 (1 + 9Xε

s 91 +∥Y ε
s ∥)ds

)
6 C1

√
ε.

According to Hölder’s inequality, Lemma 3.2 and Theorem 2.1, we have

T2(t, ε) 6 C2

∫ t

0

(
E 9Xε

s − X̄s 92
1

)1/2(
1 + E|∥Xε

s |∥21 + E∥Y ε
s ∥2
)1/2

ds 6 C2

√
ε.

Thus, we deduce that

E
(

1√
ε

∫ t

0

ϕ(s,Xε
s , Y

ε
s ,Zε

s )ds

)
− E

(∫ t

0

δF · ∇zψ(s,X
ε
s ,Zε

s )ds

)
6 C3

√
ε+ E

(∫ t

0

(
⟨δF(Xε

s , Y
ε
s ), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩H − δF · ∇zψ(s,X
ε
s ,Zε

s )
)
ds

)
,

where δF · ∇zψ is defined by (5.19). Note that the function

ϕ̃(t, x, y, z) := ⟨δF(x, y), Dzψ(t, x, y, z)⟩1 − δF · ∇zψ(t, x, z)
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satisfies the centering condition (5.17) and condition (5.20). Thus, using (5.21) directly,
we obtain

E
(∫ t

0

(
⟨δF(Xε

s , Y
ε
s ), Dzψ(s,X

ε
s , Y

ε
s ,Zε

s )⟩H − δF · ∇zψ(s,X
ε
s ,Zε

s )
)
ds

)
6 C4

√
ε,

which completes the proof. �
Now, we are in the position to give:

Proof of estimate (5.15). Fix T > 0. For any t ∈ [0, T ] and x, z ∈ H1, let

ũ(t, x, z) = ū(T − t, x, z).

It is easy to check that

ũ(0, x, 0) = ū(T, x, 0) = E[φ(Z̄T )] and ũ(T, x, z) = ū(0, x, z) = φ(z).

Applying Itô’s formula, by (5.7) we have

E[φ(Zε
T )]− E[φ(Z̄T )] = E[ũ(T, X̄T ,Zε

T )− ũ(0, x, 0)]

= E
(∫ T

0

(
∂t + L1 + L3

)
ũ(t,Xε

t ,Zε
t )dt

)
= E

(∫ T

0

(L1 − L̄1)ũ(t,X
ε
t ,Zε

t )dt

)
+ E

(∫ T

0

(L3 − L̄3)ũ(t,X
ε
t ,Zε

t )dt

)
= E

(∫ T

0

⟨F(Xε
t , Y

ε
t )− F̄(Xε

t ), Dxũ(t,X
ε
t ,Zε

t ))⟩Hdt
)

+ E
(∫ T

0

⟨F̄(Xε
t )− F̄(X̄t)√

ε
−DxF̄(Xε

t ).Zε
t , Dzũ(t,X

ε
t ,Zε

t ))
⟩
H
dt

)
+

[
E
(

1√
ε

∫ T

0

⟨F(Xε
t , Y

ε
t )− F̄(Xε

t ), Dzũ(t,X
ε
t ,Zε

t ))⟩Hdt
)

− 1

2
E
(∫ T

0

Tr(D2
z ũ(t,X

ε
t ,Zε

t )Σ(X
ε
t )Σ(X

ε
t )

∗)dt

)]
:=

3∑
i=1

Ni(T, ε).

For the first term, recall that Ψ̃ solves the Poisson equation (5.6) and define

ψ(t, x, y, z) := ⟨Ψ̃(x, y), Dxũ(t, x, z)⟩H.
Since L2 is an operator with respect to the y-variable, one can check that ψ solves the
following Poisson equation:

L2(x, y)ψ(t, x, y, z) = −⟨δF(x, y), Dxũ(t, x, z)⟩H =: −ϕ(t, x, y, z).

It is obvious that ϕ satisfies the centering condition (5.17). Furthermore, by (5.9) we get

|∂tϕ(t, x, y, z)| = |⟨δF(x, y), ∂tDxū(T − t, x, z)⟩H|
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6 C1

(
1 + 9x 92

1 + 9 z 91 + 9 Ax 90 + 9 Az 90

)( 9 δF(x, y) 91 + 9 AδF(x, y) 90

)
6 C1

(
1 + 9x 92

1 + 9 z 91 + 9 Ax 90 + 9 Az 90

)(
1 + 9x 91 +∥y∥

)
.

Thus, it follows from (5.21) directly that

N1(T, ε) 6 C1

√
ε.

To control the second term, by the mean value theorem, Hölder’s inequality, Lemma 5.1,
Theorem 2.1 and (5.2) we deduce that for ϑ ∈ (0, 1),

N2(T, ε) 6 E
(∫ T

0

∣∣⟨[DxF̄(Xε
t + ϑ(Xε

t − X̄t))−DxF̄(Xε
t )].Zε

t , Dzũ(t,X
ε
t ,Zε

t )
⟩
H

∣∣ dt)
6 C2

∫ T

0

(
E 9Xε

t − X̄t 92
1

)1/2(E 9 Zε
t 92

1

)1/2
dt 6 C2

√
ε.

For the last term, define

ψ̂(t, x, y, z) := ⟨Ψ̃(x, y), Dzũ(t, x, z)⟩H.

Then ψ̂ solves the Poisson equation

L2(x, y)ψ̂(t, x, y, z) = −⟨δF(x, y), Dzũ(t, x, z)⟩H =: −ϕ̂(t, x, y, z).

By exactly the same arguments as above, we have that ϕ̂ satisfies the centering condition
(5.17) and condition (5.20). Furthermore, by the definition of Σ in (5.5), we have

δF · ∇zψ̂(t, x, z) =

∫
H

Dzψ̂(t, x, y, z).δF(x, y)µx(dy)

=

∫
H

D2
z ũ(t, x, z).(Ψ̃(x, y), δF(x, y))µx(dy) =

1

2
Tr(D2

z ũ(t, x, z)Σ(x)Σ
∗(x)).

Thus, it follows by (5.22) directly that

N3(T, ε) 6 C3

√
ε.

Combining the above computations, we get the desired result. �
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[7] Bréhier C. E.: Analysis of an HMM time-discretization scheme for a system of stochastic PDEs.
SIAM J. Numer. Anal., 51 (2013), 1185–1210.
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