Well-Posedness for Singular McKean-Vlasov Stochastic Differential Equations *

Xing Huang ${ }^{a)}$, Feng-Yu Wang ${ }^{a), b)}$
a)Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
xinghuang@tju.edu.cn
b)Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom
wangfy@tju.edu.cn

December 18, 2020

Abstract

By using Zvonkin's transform and the heat kernel parameter expansion with respect to a frozen SDE, the well-posedness is proved for a McKean-Vlasov SDE with distribution dependent noise and singular drift, where the drift may be discontinuous in both weak topology and total variation distance, and is bounded by a linear growth term in distribution multiplying a locally integrable term in time-space. This extends existing results derived in the literature for distribution independent noise or time-space locally integrable drift.

AMS subject Classification: 60H1075, 60G44.
Keywords: Mckean-Vlasov SDEs, Wasserstein distance, weighted total variational distance, heat kernel parameter expansion.

1 Introduction

Let \mathscr{P} be the set of all probability measures on \mathbb{R}^{d}. For $\theta \geq 1$, let

$$
\mathscr{P}_{\theta}=\left\{\gamma \in \mathscr{P}:\|\gamma\|_{\theta}:=\gamma\left(|\cdot|^{\theta}\right)^{\frac{1}{\theta}}<\infty\right\}
$$

[^0]which is a Polish space under the L^{θ}-Wasserstein distance \mathbb{W}_{θ} :
$$
\mathbb{W}_{\theta}(\gamma, \tilde{\gamma}):=\inf _{\pi \in \mathscr{C}(\gamma, \tilde{\gamma})}\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{\theta} \pi(\mathrm{d} x, \mathrm{~d} y)\right)^{\frac{1}{\theta}}, \quad \gamma, \tilde{\gamma} \in \mathscr{P}_{\theta},
$$
where $\mathscr{C}(\gamma, \tilde{\gamma})$ is the set of all couplings of γ and $\tilde{\gamma}$. Moreover, \mathscr{P}_{θ} is a complete metric space under the weighted variational norm
$$
\|\mu-\nu\|_{\theta, T V}:=\sup _{|f| \leq 1+|\cdot| \cdot \theta}|\mu(f)-\nu(f)|, \quad \mu, \nu \in \mathscr{P}_{\theta} .
$$

By [15, Theorem 6.15], there exists a constant $\kappa>0$ such that

$$
\begin{equation*}
\|\mu-\nu\|_{T V}+\mathbb{W}_{\theta}(\mu, \nu) \leq \kappa\|\mu-\nu\|_{\theta, T V} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|_{T V}:=\|\cdot\|_{0, T V}$ is the total variation norm.
Consider the following distribution dependent SDE on \mathbb{R}^{d} :

$$
\begin{equation*}
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} W_{t}, \quad t \in[0, T] \tag{1.2}
\end{equation*}
$$

for some fixed time $T>0$, where W_{t} is an m-dimensional Brownian motion on a complete filtration probability space $\left(\Omega,\left\{\mathscr{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right), \mathscr{L}_{X_{t}}$ is the law of X_{t}, and

$$
b: \mathbb{R}_{+} \times \mathbb{R}^{d} \times \mathscr{P}_{\theta} \rightarrow \mathbb{R}^{d}, \quad \sigma: \mathbb{R}_{+} \times \mathbb{R}^{d} \times \mathscr{P}_{\theta} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{m}
$$

are measurable. This type equations, known as Mckean-Vlasov or mean field SDEs, have been intensively investigated and applied, see for instance the monograph [3] and references therein.

In this paper, we investigate the well-posedness of (1.2) with $b_{t}(x, \mu)$ singular in x and Lipschitz continuous in μ merely under $\|\cdot\|_{\theta, T V}$. To measure the time-space singularity of $b_{t}(x, \mu)$, we introduce the following class

$$
\mathscr{K}:=\left\{(p, q): p, q>1, \frac{d}{p}+\frac{2}{q}<1\right\} .
$$

For any $t>s \geq 0$, we write $f \in \tilde{L}_{p}^{q}([s, t])$ if $f:[s, t] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is measurable with

$$
\|f\|_{\tilde{L}_{p}^{q}([s, t])}:=\sup _{z \in \mathbb{R}^{d}}\left\{\int_{s}^{t}\left(\int_{B(z, 1)}|f(u, x)|^{p} \mathrm{~d} x\right)^{\frac{q}{p}} \mathrm{~d} u\right\}^{\frac{1}{q}}<\infty
$$

where $B(z, 1):=\left\{x \in \mathbb{R}^{d}:|x-z| \leq 1\right\}$ is the unit ball at point z. When $s=0$, we simply denote

$$
\tilde{L}_{p}^{q}(t)=\tilde{L}_{p}^{q}([0, t]), \quad\|f\|_{\tilde{L}_{p}^{q}(t)}=\|f\|_{\tilde{L}_{p}^{q}([0, t])}
$$

We will adopt the following assumption.
(A) Let $\theta \geq 1$.
$\left(A_{1}\right)$ There exists a constant $K>0$ such that for any $t \in[0, T], x, y \in \mathbb{R}^{d}$ and $\mu, \nu \in \mathscr{P}_{\theta}$,

$$
\begin{aligned}
& \left\|\sigma_{t}(x, \mu)\right\|^{2} \vee\left\|\left(\sigma_{t} \sigma_{t}^{*}\right)^{-1}(x, \mu)\right\| \leq K \\
& \left\|\sigma_{t}(x, \mu)-\sigma_{t}(y, \nu)\right\| \leq K\left(|x-y|+\mathbb{W}_{\theta}(\mu, \nu)\right) \\
& \left\|\left\{\sigma_{t}(x, \mu)-\sigma_{t}(y, \mu)\right\}-\left\{\sigma_{t}(x, \nu)-\sigma_{t}(y, \nu)\right\}\right\| \leq K|x-y| \mathbb{W}_{\theta}(\mu, \nu)
\end{aligned}
$$

$\left(A_{2}\right)$ There exists nonnegative $f \in \tilde{L}_{p}^{q}(T)$ for some $(p, q) \in \mathscr{K}$ such that

$$
\begin{aligned}
& \left|b_{t}(x, \mu)\right| \leq\left(1+\|\mu\|_{\theta}\right) f_{t}(x), \\
& \left|b_{t}(x, \mu)-b_{t}(x, \nu)\right| \leq f_{t}(x)\|\mu-\nu\|_{\theta, T V}, \quad t \in[0, T], x \in \mathbb{R}^{d}, \mu, \nu \in \mathscr{P}_{\theta} .
\end{aligned}
$$

Remark 1.1. (1) It is easy to see that the third inequality in $\left(A_{1}\right)$ holds if $\sigma_{t}(x, \mu)$ is differentiable in x with

$$
\left\|\nabla \sigma_{t}(\cdot, \mu)(x)-\nabla \sigma_{t}(\cdot, \nu)(x)\right\| \leq K \mathbb{W}_{\theta}(\mu, \nu), \quad \mu, \nu \in \mathscr{P}_{\theta}, x \in \mathbb{R}^{d}
$$

Indeed, this implies

$$
\begin{aligned}
& \left\|\left\{\sigma_{t}(x, \mu)-\sigma_{t}(y, \mu)\right\}-\left\{\sigma_{t}(x, \nu)-\sigma_{t}(y, \nu)\right\}\right\| \\
& =\left\|\int_{0}^{1}\left\{\nabla_{x-y} \sigma_{t}(y+s(x-y), \mu)-\nabla_{x-y} \sigma_{t}(y+s(x-y), \nu)\right\} \mathrm{d} s\right\| \\
& \leq \int_{0}^{1}\left\|\nabla_{x-y} \sigma_{t}(y+s(x-y), \mu)-\nabla_{x-y} \sigma_{t}(y+s(x-y), \nu)\right\| \mathrm{d} s \leq K|x-y| \mathbb{W}_{\theta}(\mu, \nu)
\end{aligned}
$$

(2) Let $\sigma \sigma^{*}$ be uniformly positive definite. When the noise coefficient $\sigma_{t}(x, \mu)=\sigma_{t}(x)$ does not depend on μ, the well-posedness of (1.2) has been presented in [14] for b. $(\cdot, \mu) \in \tilde{L}_{p}^{q}(T)$ for some $(p, q) \in \mathscr{K}$ and $b_{t}(x, \cdot)$ being weakly continuous and Lipschitz continuous in $\|\cdot\|_{\theta, T V}$, and in [9] for $b=\bar{b}+\hat{b}$ with $\bar{b} .(\cdot, \mu) \in L_{p}^{q}(T)$ for some $(p, q) \in \mathscr{K}, \hat{b}_{t}(x, \mu)$ having linear growth in x, and $b_{t}(x, \cdot)$ being Lipschitz continuous in $\|\cdot\|_{T V}+\mathbb{W}_{\theta}$. In these conditions, the continuity of $b_{t}(x, \mu)$ in μ is stronger than that presented in $\left(A_{2}\right)$ where $b_{t}(x, \mu)$ is allowed to be discontinuous in both $\|\cdot\|_{T V}$ and the weak topology. When $\sigma=\sqrt{2} I_{d}$ (where I_{d} is the $d \times d$ identity matrix) and $b_{t}(x, \mu)=\int_{\mathbb{R}^{d}} K_{t}(x-y) \mu(\mathrm{d} y)$ with $K \in \tilde{L}_{p}^{q}(T)$, the well-posedness of (1.2) is proved in [14] for $(p, q) \in \mathscr{K}$, while the weak existence is presented in [19] for some $p, q>1$ with $\frac{d}{p}+\frac{2}{q}<2$. When $\sigma_{t}(x, \mu)$ has linear functional derivative in μ which is Lipschitz continuous in the space variable uniformly in μ and t, the well-posedness is derived in [21] for b. $(\cdot, \mu) \in \tilde{L}_{p}^{q}(T)$ uniformly in μ for some $(p, q) \in \mathscr{K}$, while in [5] for $b_{t}(x, \mu)$ being bounded and Lipschitz continuous in μ under $\|\cdot\|_{T V}$. See also [1, 2, 4, 6, 8, 7, 12, 13, 16, 20] for earlier results on the well-posedness under different type or stronger conditions. Comparing with conditions in [5, 21], $\left(A_{2}\right)$ allows $b_{t}(x, \mu)$ to have linear growth in μ and $\left(A_{1}\right)$ does not require $\sigma_{t}(x, \mu)$ having linear functional derivative in μ. To include drifts with linear growth in the space variable, we hope that the first inequality in $\left(A_{2}\right)$ could be weakened as

$$
\left|b_{t}(x, \mu)\right| \leq\left(1+\|\mu\|_{\theta}\right)\left(K|x|+f_{t}(x)\right)
$$

for some constant $K>0$ and $f \in \tilde{L}_{p}^{q}(T)$. But with this condition there is essential difficulty in the proof of Lemma 2.4 below on the heat kernel expansion.

Let $\hat{\mathscr{P}}$ be a subspace of \mathscr{P}. We call (1.2) well-posed for initial distributions in $\hat{\mathscr{P}}$, if for any \mathscr{F}_{0}-measurable random variable X_{0} with $\mathscr{L}_{X_{0}} \in \hat{\mathscr{P}}$ and any $\mu_{0} \in \hat{\mathscr{P}},(1.2)$ has a unique solution starting at X_{0} as well as a unique weak solution starting at μ_{0}.

Theorem 1.2. Assume (A). Then (1.2) is well-posed for initial distributions in $\mathscr{P}_{\theta+}:=$ $\cap_{m>\theta} \mathscr{P}_{m}$, and the solution satisfies $\mathscr{L}_{X .} \in C\left([0, T] ; \mathscr{P}_{\theta}\right)$, the space of continuous maps from $[0, T]$ to \mathscr{P}_{θ} under the metric \mathbb{W}_{θ}. Moreover,

$$
\begin{equation*}
\mathbb{E}\left[\sup _{t \in[0, T]}\left|X_{t}\right|^{\theta}\right]<\infty \tag{1.3}
\end{equation*}
$$

Note that a Lipschitz function with respect to $\|\cdot\|_{\theta, T V}$ may be discontinuous in the weak topology and the total variation norm, for instance, $F(\mu):=\mu(f)$ with $f:=h+|\cdot|{ }^{\theta}$ for some bounded and discontinuous measurable function h on \mathbb{R}^{d}. So, this result extends existing well-posedness results derived in the above mentioned references.

To prove Theorem 1.2, besides Zvonkin's transform, Krylov's estimate and stochastic Gronwall's inequality used in [14], we will also apply the heat kernel parameter expansion with respect to a frozen SDE. This expansion is useful in the study of heat kernel estimates for distribution dependent SDEs and has been recently used in [10] to estimate the Lion's derivative of the solution to (1.2) with distribution dependent noise.

The remainder of the paper is organized as follows. Section 2 contains necessary preparations including some estimates on the map $\Phi_{s, \text {. }}^{\gamma}$ in (2.2) below induced by (2.1) with a fixed distribution parameter μ. replacing \mathscr{L}_{X}. in the drift term of (1.2). To derive these estimates, the heat kernel parameter expansion with respect to a frozen SDEs is used. With these preparations we prove Theorem 1.2 in Section 3.

2 Preparations

For any $0 \leq s<t \leq T$, let $C\left([s, t] ; \mathscr{P}_{\theta}\right)$ be the set of all continuous map from $[s, t]$ to \mathscr{P}_{θ} under the metric \mathbb{W}_{θ}. For $\mu \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$ and $\gamma \in \mathscr{P}_{\theta}$, we consider the following SDE with initial distribution $\mathscr{L}_{X_{s, s}^{\gamma, \mu}}=\gamma$ and fixed measure parameter μ_{t} in the drift:

$$
\begin{equation*}
\mathrm{d} X_{s, t}^{\gamma, \mu}=b_{t}\left(X_{s, t}^{\gamma, \mu}, \mu_{t}\right) \mathrm{d} t+\sigma_{t}\left(X_{s, t}^{\gamma, \mu}, \mathscr{L}_{X_{s, t}, \mu}^{\gamma, \mu}\right) \mathrm{d} W_{t}, \quad t \in[s, T] . \tag{2.1}
\end{equation*}
$$

According to Lemma 2.1 below, $\left(A_{1}\right)$ and $\left(A_{2}\right)$ imply the strong and weak well-posedness of (2.1) for initial distributions in \mathscr{P}_{θ}, and the solution satisfies $\mathscr{L}_{X_{s, \mu}^{\gamma, \mu}} \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$. Consider the map

$$
\begin{equation*}
\Phi_{s, \cdot}^{\gamma}: C\left([s, T] ; \mathscr{P}_{\theta}\right) \rightarrow C\left([s, T] ; \mathscr{P}_{\theta}\right) ; \quad \Phi_{s, t}^{\gamma}(\mu):=\mathscr{L}_{X_{s, t}^{\gamma, \mu}}, \quad t \in[s, T], \mu \in C\left([s, T] ; \mathscr{P}_{\theta}\right) . \tag{2.2}
\end{equation*}
$$

 then $\left(X_{s, t}^{\gamma, \mu}\right)_{t \in[s, T]}$ is a solution of (1.2) with initial distribution γ at time s.

To prove the existence and uniqueness of the fixed point for $\Phi_{s, \text {, }}^{\gamma}$, we investigate the contraction of this map with respect to the complete metric

$$
\|\mu-\nu\|_{s, t, \theta, T V}:=\sup _{r \in[s, t]}\left\|\mu_{r}-\nu_{r}\right\|_{\theta, T V}, \quad \mu, \nu \in C\left([s, t] ; \mathscr{P}_{\theta}\right), \quad 0 \leq s<t \leq T
$$

in a subspace of $C\left([s, t] ; \mathscr{P}_{\theta}\right)$ which contains all distributions of solutions to (2.1) up to time t. To this end, in the following we first study the $\mathbb{W}_{s, t, \theta^{-}}$estimate on $\Phi_{s, \text {, }}^{\gamma}$ for

$$
\mathbb{W}_{s, t, \theta}(\mu, \nu)=\sup _{r \in[s, t]} \mathbb{W}_{\theta}\left(\mu_{r}, \nu_{r}\right), \quad 0 \leq s \leq t \leq T, \mu, \nu \in C\left([s, t] ; \mathscr{P}_{\theta}\right)
$$

then present $\Phi_{s,-}^{\gamma}$-invariant subspaces of $C\left([s, t] ; \mathscr{P}_{\theta}\right)$, and finally study the $\|\cdot\|_{s, t, \theta, T V^{-}}$ contraction of this map in such an invariant subspace which implies the well-posedness of (1.2).

$2.1 \mathbb{W}_{s, t, \theta}$-estimate on $\Phi_{s,}^{\gamma}$.

For any $N>0$ and $0 \leq s \leq t \leq T$, let

$$
\begin{aligned}
\mathscr{P}_{\theta, N} & =\left\{\gamma \in \mathscr{P}_{\theta}:\|\gamma\|_{\theta} \leq N\right\} \\
\mathscr{P}_{\theta, N}^{s, t} & :=\left\{\mu \in C\left([s, t] ; \mathscr{P}_{\theta}\right):\left\|\mu_{r}\right\|_{\theta} \leq N, r \in[s, t]\right\} .
\end{aligned}
$$

Lemma 2.1. Assume (A).
(1) For any $s \in[0, T)$ and $\mu \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$, (2.1) is well-posed for initial distributions in \mathscr{P}_{θ}, and the unique solution satisfies $\mathscr{L}_{X_{s,}^{\gamma, \mu}} \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$.
(2) There exist a constant $\epsilon \in(0,1]$ and a function $K:(0, \infty) \rightarrow(0, \infty)$ such that for any $\gamma \in \mathscr{P}_{\theta, N}$ and $0 \leq s \leq t \leq T$, the map $\Phi_{s,-}^{\gamma}: C\left([s, t] ; \mathscr{P}_{\theta}\right) \rightarrow C\left([s, t] ; \mathscr{P}_{\theta}\right)$ satisfies

$$
\mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right) \leq K_{N}(t-s)^{\epsilon}\|\mu-\nu\|_{s, t, \theta, T V}, \quad N>0, \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t} .
$$

Proof. (1) Simply denote

$$
b_{t}^{\nu}(x)=b_{t}\left(x, \nu_{t}\right), \quad \sigma_{t}^{\nu}(x)=\sigma_{t}\left(x, \nu_{t}\right), \quad \nu \in C\left([s, T] ; \mathscr{P}_{\theta}\right), t \in[s, T] .
$$

Let $X_{s, s}^{\gamma}$ be \mathscr{F}_{s}-measurable with $\mathscr{L}_{X_{s, s}^{\gamma}}=\gamma$, and let $\mu, \nu \in \mathscr{P}_{\theta, N}^{s, T}$ for some $N>0$. For $\bar{\nu}, \bar{\mu} \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$, consider the SDEs

$$
\begin{gather*}
\mathrm{d} X_{s, t}^{\gamma, \mu, \bar{\mu}}=b_{t}^{\mu}\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right) \mathrm{d} t+\sigma_{t}^{\bar{\mu}}\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right) \mathrm{d} W_{t}, \quad X_{s, s}^{\gamma, \mu, \bar{\mu}}=X_{s, s}^{\gamma}, t \in[s, T] \tag{2.3}\\
\mathrm{d} X_{s, t}^{\gamma, \nu, \bar{\nu}}=b_{t}^{\nu}\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right) \mathrm{d} t+\sigma_{t}^{\bar{\nu}}\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right) \mathrm{d} W_{t}, \quad X_{s, s}^{\gamma, \nu, \bar{\nu}}=X_{s, s}^{\gamma}, t \in[s, T] . \tag{2.4}
\end{gather*}
$$

According to [19], both SDEs are well-posed under assumption (A). For any $\lambda \geq 0$, consider the following PDE for $u:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$:

$$
\begin{equation*}
\frac{\partial u_{t}}{\partial t}+\frac{1}{2} \operatorname{Tr}\left(\sigma_{t}^{\bar{\mu}}\left(\sigma_{t}^{\bar{\mu}}\right)^{*} \nabla^{2} u_{t}\right)+\left\{\nabla u_{t}\right\} b_{t}^{\mu}+b_{t}^{\mu}=\lambda u_{t}, \quad t \in[s, T], u_{T}=0 \tag{2.5}
\end{equation*}
$$

According to [17, Theorem 3.1], for large enough $\lambda>0$ depending on N via $\mu \in \mathscr{P}_{\theta, N}^{s, T},\left(A_{1}\right)$ and $\left(A_{2}\right)$ imply that (2.5) has a unique solution $\mathbf{u}^{\lambda, \mu, \bar{\mu}}$ satisfying

$$
\begin{equation*}
\sup _{\mu \in \mathscr{P}_{\theta, N}^{s, T}}\left\|\nabla^{2} \mathbf{u}^{\lambda, \mu, \bar{\mu}}\right\|_{\tilde{L}_{q}^{p}(T)} \leq L \tag{2.6}
\end{equation*}
$$

for some constant $L>0$ depending on λ and N, and

$$
\begin{equation*}
\sup _{\mu \in \mathscr{P}_{\theta, N}^{s, T}}\left(\left\|\mathbf{u}^{\lambda, \mu, \bar{\mu}}\right\|_{\infty}+\left\|\nabla \mathbf{u}^{\lambda, \mu, \bar{\mu}}\right\|_{\infty}\right) \leq \frac{1}{5} \tag{2.7}
\end{equation*}
$$

Let $\Theta_{t}^{\lambda, \mu, \bar{\mu}}(x)=x+\mathbf{u}_{t}^{\lambda, \mu, \bar{\mu}}(x),(t, x) \in[s, T] \times \mathbb{R}^{d}$. By [17, Lemma 4.1 (iii)], we have

$$
\begin{aligned}
\mathrm{d} \Theta_{t}^{\lambda, \mu, \bar{\mu}}\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right) & =\lambda \mathbf{u}_{t}^{\lambda, \mu, \bar{\mu}}\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right) \mathrm{d} t+\left(\left\{\nabla \Theta_{t}^{\lambda, \mu, \bar{\mu}}\right\} \sigma_{t}^{\bar{\mu}}\right)\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right) \mathrm{d} W_{t}, \\
\mathrm{~d} \Theta_{t}^{\lambda, \mu, \bar{\mu}}\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right) & =\left[\lambda \mathbf{u}_{t}^{\lambda, \mu, \bar{\mu}}+\left\{\nabla \Theta_{t}^{\lambda, \mu, \bar{\mu}}\right\}\left(b_{t}^{\nu}-b_{t}^{\mu}\right)\right]\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right) \mathrm{d} t \\
& +\frac{1}{2}\left[\operatorname{Tr}\left\{\sigma_{t}^{\bar{\nu}}\left(\sigma_{t}^{\bar{\nu}}\right)^{*}-\sigma_{t}^{\bar{\mu}}\left(\sigma_{t}^{\bar{\mu}}\right)^{*}\right\} \nabla^{2} \mathbf{u}_{t}^{\lambda, \mu, \bar{\mu}}\right]\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right)+\left(\left\{\nabla \Theta_{t}^{\lambda, \mu, \bar{\mu}}\right\} \sigma_{t}^{\bar{\nu}}\right)\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right) \mathrm{d} W_{t} .
\end{aligned}
$$

where by (2.7) and $\gamma \in \mathscr{P}_{\theta}$ the first equation implies $\mathbb{E}\left[\sup _{t \in[s, T]}\left|X_{s, t}^{\gamma, \mu, \bar{\mu}}\right|^{\theta}\right]<\infty$, so that

$$
\begin{equation*}
\mathscr{L}_{X_{s, \cdot}^{\gamma, \mu, \bar{\mu}}} \in C\left([s, T] ; \mathscr{P}_{\theta}\right), \quad \bar{\mu} \in C\left([s, T] ; \mathscr{P}_{\theta}\right) . \tag{2.8}
\end{equation*}
$$

Moreover, combining these two equations with (A), we find a constant $c_{1}>1$ depending on N such that $\eta_{s, t}:=\left|X_{s, t}^{\gamma, \mu, \bar{\mu}}-X_{s, t}^{\gamma, \nu, \bar{\nu}}\right|$ satisfies

$$
\begin{align*}
& c_{1}^{-1} \eta_{s, t} \leq\left|\Theta_{t}^{\lambda, \mu, \bar{\mu}}\left(X_{s, t}^{\gamma, \mu, \bar{\mu}}\right)-\Theta_{t}^{\lambda, \mu, \bar{\mu}}\left(X_{s, t}^{\gamma, \nu, \bar{\nu}}\right)\right| \\
& \leq c_{1} \int_{s}^{t}\left\{\eta_{s, r}+\left\|\mu_{r}-\nu_{r}\right\|_{\theta, T V}\left(1+f_{r}\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right)\right. \tag{2.9}\\
& \left.\quad+\mathbb{W}_{\theta}\left(\bar{\mu}_{r}, \bar{\nu}_{r}\right)\left\|\nabla^{2} \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right\|\right\} \mathrm{d} r+\left|\int_{s}^{t} \Xi_{r} \mathrm{~d} W_{r}\right|,
\end{align*}
$$

where $\Xi_{r}:=\left(\left\{\nabla \Theta_{r}^{\lambda, \mu, \bar{\mu}}\right\} \sigma_{r}^{\bar{\mu}}\right)\left(X_{s, r}^{\gamma, \mu, \bar{\mu}}\right)-\left(\left\{\nabla \Theta_{r}^{\lambda, \mu, \bar{\mu}}\right\} \sigma_{r}^{\bar{\nu}}\right)\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)$ satisfies

$$
\begin{equation*}
\left\|\Xi_{r}\right\| \leq c_{1} \eta_{s, r}+c_{1} \mathbb{W}_{\theta}\left(\bar{\mu}_{r}, \bar{\nu}_{r}\right)+c_{1}\left\|\nabla \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\left(X_{s, r}^{\gamma, \mu, \bar{\mu}}\right)-\nabla \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right\| . \tag{2.10}
\end{equation*}
$$

Since $\eta_{s, s}=0$, by (2.9), (2.10) and (A1), for $2 m>\theta$, we find a constant $c_{2}>0$ depending on N and a local martingale $\left(M_{t}\right)_{t \in[s, T]}$ such that

$$
\begin{align*}
\eta_{s, t}^{2 m} & \leq c_{2} \int_{s}^{t} \eta_{s, r}^{2 m} \mathrm{~d} A_{r}+c_{2} \int_{s}^{t} \mathbb{W}_{\theta}\left(\bar{\mu}_{r}, \bar{\nu}_{r}\right)^{2 m} \mathrm{~d} r \tag{2.11}\\
& +c_{2}\|\mu-\nu\|_{s, t, \theta, T V}^{2 m}\left|\int_{s}^{t}\left(1+f_{r}\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right) \mathrm{d} r\right|^{2 m}+M_{t}, \quad t \in[s, T]
\end{align*}
$$

holds for

$$
A_{t}:=\int_{s}^{t}\left\{1+K^{2}+\left\|\nabla^{2} \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\right\|\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right.
$$

$$
\begin{aligned}
& \left.+\left[\left(\mathscr{M}\left|\nabla^{2} \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\right|\right)\left(X_{s, r}^{\gamma, \mu, \bar{\mu}}\right)+\left(\mathscr{M}\left|\nabla^{2} \mathbf{u}_{r}^{\lambda, \mu, \bar{\mu}}\right|\right)\left(X_{s, r}^{\gamma, \nu, \bar{\nu}}\right)\right]^{2}\right\} \mathrm{d} r, \\
\mathscr{M} g(x):= & \sup _{r \in[0,1]} \frac{1}{|B(x, r)|} \int_{B(x, r)} g(y) \mathrm{d} y, \quad g \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right) \\
B(x, r):= & \left\{y \in \mathbb{R}^{d}:|x-y| \leq r\right\}, \quad x \in \mathbb{R}^{d} .
\end{aligned}
$$

By Krylov's and Khasminskii's estimates [17, (4.1),(4.2)] and (2.6), and applying the stochastic Gronwall inequality [18, Lemma 3.8], we find constants $c_{3}>0$ depending on N such that (2.11) yields

$$
\begin{align*}
& \left\{\mathbb{W}_{\theta}\left(\mathscr{L}_{X_{s, t}^{\gamma, \mu, \bar{\mu}}}, \mathscr{L}_{X_{s, t}^{\gamma, \nu, \bar{\nu}}}\right)\right\}^{2 m} \leq\left(\mathbb{E} \eta_{s, t}^{\theta}\right)^{\frac{2 m}{\theta}} \tag{2.12}\\
& \leq c_{3}\left(\int_{s}^{t} \mathbb{W}_{\theta}\left(\bar{\mu}_{r}, \bar{\nu}_{r}\right)^{2 m} \mathrm{~d} r+\|\mu-\nu\|_{s, t, \theta, T V}^{2 m}(t-s)^{2 m \epsilon}\right), \quad t \in[s, T]
\end{align*}
$$

for some $\epsilon \in(0,1)$. Taking $\mu=\nu$ gives

$$
\mathbb{W}_{s, t, \theta}\left(\mathscr{L}_{X_{s, t}^{\gamma, \mu, \bar{\mu}}}, \mathscr{L}_{X_{s, t}^{\gamma, \mu, \bar{\nu}}}\right) \leq\left\{c_{3}(t-s)\right\}^{\frac{1}{2 m}} \mathbb{W}_{s, t, \theta}(\bar{\mu}, \bar{\nu}), \quad t \in[s, T] .
$$

Letting $t_{0}=\frac{1}{2 c_{4}}$, we conclude from this and (2.8) that the map

$$
\bar{\mu} \mapsto \mathscr{L}_{X_{s,}^{\gamma, \mu, \bar{\mu}}}
$$

is contractive in $C\left(\left[s,\left(s+t_{0}\right) \wedge T\right] ; \mathscr{P}_{\theta}\right)$ under the complete metric $\mathbb{W}_{s,\left(s+t_{0}\right) \wedge T, \theta}$. Therefore, it has a unique fixed point $\bar{\mu}=\mathscr{L}_{X_{s,}^{\gamma, \mu, \bar{\mu}}} \in C\left(\left[s,\left(s+t_{0}\right) \wedge T\right] ; \mathscr{P}_{\theta}\right)$, so that $X_{s, \cdot}^{\gamma, \mu, \bar{\mu}}$ is the unique solution of (2.1) up to time $\left(s+t_{0}\right) \wedge T$. Due to this and the well-posedness of (2.3), the modified Yamada-Watanabe principle [9, Lemma 2.1] also implies the well-posedness of (2.1) up to time $\left(s+t_{0}\right) \wedge T$ for initial distributions in \mathscr{P}_{θ}. So, if $s+t_{0} \geq T$ then we have proved the first assertion. Otherwise, by the same argument we may consider (2.1) from time $s+t_{0}$ to conclude that it is well-posed up to time $\left(s+2 t_{0}\right) \wedge T$. Repeating finite many times we prove the well-posedness of (2.1) up to time T.
(2) By taking $\bar{\mu}=\Phi_{s, \cdot}^{\gamma}(\mu), \bar{\nu}=\Phi_{s, .}^{\gamma}(\nu)$ in (2.12), and applying Gronwall's inequality, we find a constant $C>0$ depending on N such that

$$
\mathbb{W}_{s, t, \theta}\left(\Phi_{s, .}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)^{2 m} \leq C(t-s)^{2 m \epsilon}\|\mu-\nu\|_{s, t, \theta, T V}^{2 m}, \quad t \in[s, T], \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t} .
$$

This finishes the proof.

2.2 Invariant subspaces of $\Phi_{s,}^{\gamma}$.

Lemma 2.2. Assume (A). There exists a constant $N_{0}>0$ such that for any $N \geq N_{0}$ and $0 \leq s<t \leq T, \gamma \in \mathscr{P}_{\theta}$, the class

$$
\mathscr{P}_{\theta, N}^{s, t, \gamma}:=\left\{\mu \in C\left([s, t] ; \mathscr{P}_{\theta}\right): \mu_{s}=\gamma, \sup _{r \in[s, t]}\left(1+\left\|\mu_{r}\right\|_{\theta}\right) \mathrm{e}^{-N(r-s)} \leq 2\left(1+\|\gamma\|_{\theta}\right)\right\}
$$

is $\Phi_{s,-}^{\gamma}$-invariant, i.e. $\mu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$ implies $\Phi_{s, .}^{\gamma}(\mu) \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$.

Proof. Simply denote $\xi_{r}=X_{s, r}^{\gamma, \mu}, M_{r}=\int_{s}^{r} \sigma_{u}\left(\xi_{u}, \mathscr{L}_{\xi_{u}}\right) \mathrm{d} W_{u}, r \in[s, T]$. By (A), (2.1), and $\mu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$, we have

$$
\begin{aligned}
\left|\xi_{r}\right| \mathrm{e}^{-N(r-s)} & \leq\left|\xi_{0}\right| \mathrm{e}^{-N(r-s)}+\mathrm{e}^{-N(r-s)} \int_{s}^{r}\left(1+\left\|\mu_{u}\right\|_{\theta}\right) f_{u}\left(\xi_{u}\right) \mathrm{d} u+\mathrm{e}^{-N(r-s)}\left|M_{r}\right| \\
& \leq\left|\xi_{0}\right| \mathrm{e}^{-N(r-s)}+2\left(1+\|\gamma\|_{\theta}\right) \int_{s}^{r} \mathrm{e}^{-N(r-u)} f_{u}\left(\xi_{u}\right) \mathrm{d} u+\mathrm{e}^{-N(r-s)}\left|M_{r}\right|
\end{aligned}
$$

Let $q^{\prime} \in(1, q)$ such that $\left(p, q^{\prime}\right) \in \mathscr{K}$. Combining this with Krylov's estimate [17, (4.1),(4.2)], the BDG inequality, and $\left\|\sigma \sigma^{*}\right\| \leq K$, we find a constant $c_{1}>0$ such that

$$
\begin{align*}
& \mathrm{e}^{-N(r-s)}\left\|\Phi_{s, r}^{\gamma}(\mu)\right\|_{\theta}=\mathrm{e}^{-N(r-s)}\left(\mathbb{E}\left|\xi_{r}\right|^{\theta}\right)^{\frac{1}{\theta}} \\
\leq & \mathrm{e}^{-N(r-s)}\|\gamma\|_{\theta}+2\left(1+\|\gamma\|_{\theta}\right)\left(\mathbb{E}\left|\int_{s}^{r} \mathrm{e}^{-N(r-u)} f_{u}\left(\xi_{u}\right) \mathrm{d} u\right|^{\theta}\right)^{\frac{1}{\theta}}+\mathrm{e}^{-N(r-s)}\left(\mathbb{E}\left|M_{r}\right|^{\theta}\right)^{\frac{1}{\theta}} \tag{2.13}\\
\leq & \mathrm{e}^{-N(r-s)}\|\gamma\|_{\theta}+c_{1}\left(1+\|\gamma\|_{\theta}\right)\left(\left\|\mathrm{e}^{-N(r-\cdot)} f\right\|_{\tilde{L}_{p}^{q^{\prime}}([s, r])}+\mathrm{e}^{-N(r-s)} \sqrt{r-s}\right), \quad r \in[s, t] .
\end{align*}
$$

Noting that Hölder's inequality yields

$$
\begin{aligned}
\sup _{s \in[0, T), r \in[s, T]}\left\|\mathrm{e}^{-N(r-)} f\right\|_{\tilde{L}_{p}^{q^{\prime}}([s, r])} & \leq \sup _{s \in[0, T), r \in[s, T]}\left(\int_{s}^{r} \mathrm{e}^{-N(r-u) \frac{q q^{\prime}}{q-q^{\prime}}} \mathrm{d} u\right)^{\frac{q-q^{\prime}}{q q^{\prime}}}\|f\|_{\tilde{L}_{p}^{q}([T])} \\
& \leq\left(N \frac{q q^{\prime}}{q-q^{\prime}}\right)^{-\frac{q-q^{\prime}}{q q^{\prime}}}\|f\|_{\tilde{L}_{p}^{q}(T)},
\end{aligned}
$$

we obtain

$$
\lim _{N \rightarrow \infty} \sup _{s \in[0, T), r \in[s, T]}\left(\left\|\mathrm{e}^{-N(r-\cdot)} f\right\|_{\tilde{L}_{p}^{q^{\prime}}([s, r])}+\mathrm{e}^{-N(r-s)} \sqrt{r-s}\right)=0
$$

Combining this with (2.13), we find a constant $N_{0}>0$ such that

$$
\sup _{r \in[s, t]}\left(1+\left\|\Phi_{s, r}^{\gamma}(\mu)\right\|_{\theta}\right) \mathrm{e}^{-N(r-s)} \leq 2\left(1+\|\gamma\|_{\theta}\right), \quad N \geq N_{0}, \mu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}
$$

That is, $\Phi_{s, .}^{\gamma}(\mu) \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$ for $N \geq N_{0}$ and $\mu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$.

$2.3\|\cdot\|_{s, t, \theta, T V}$-contraction of $\Phi_{s,}^{\gamma}$,

To prove the $\|\cdot\|_{s, t, \theta, T V}$-contraction of $\Phi_{s, .}^{\gamma}$, for any $\mu \in C\left([s, T] ; \mathscr{P}_{\theta}\right)$, we make use of the parameter expansion of $p_{s, t}^{\gamma, \mu}$ with respect to the heat kernel of a frozen SDE whose solution is a Gaussian Markov process, where $p_{s, t}^{\gamma, \mu}(x, \cdot)$ is the distribution density function of the unique solution to the SDE

$$
\begin{equation*}
\mathrm{d} X_{s, t}^{x, \gamma, \mu}=b_{t}\left(X_{s, t}^{x, \gamma, \mu}, \mu_{t}\right) \mathrm{d} t+\sigma_{t}\left(X_{s, t}^{x, \gamma, \mu}, \Phi_{s, t}^{\gamma}(\mu)\right) \mathrm{d} W_{t}, \quad t \in[s, T], \quad X_{s, s}^{x, \gamma, \mu}=x . \tag{2.14}
\end{equation*}
$$

According to [19], (A) is enough to ensure the well-posedness of this SDE. By the standard Markov property of solutions to (2.14), the solution to (2.1) satisfies

$$
\begin{equation*}
\mathbb{E} f\left(X_{s, t}^{\gamma, \mu}\right)=\int_{\mathbb{R}^{d}} \gamma(\mathrm{~d} x) \int_{\mathbb{R}^{d}} f(y) p_{s, t}^{\gamma, \mu}(x, y) \mathrm{d} y, \quad t>s, f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right), \gamma \in \mathscr{P}_{\theta} \tag{2.15}
\end{equation*}
$$

where $\mathscr{B}_{b}\left(\mathbb{R}^{d}\right)$ is the class of bounded measurable functions on \mathbb{R}^{d}.
For any $z \in \mathbb{R}^{d}, t \in[s, T]$ and $\mu \in C\left([s, t] ; \mathscr{P}_{\theta}\right)$, let $p_{s, r}^{\gamma, \mu, z}(x, \cdot)$ be the distribution density function of the random variable

$$
X_{s, r}^{x, \gamma, \mu, z}:=x+\int_{s}^{r} \sigma_{u}\left(z, \Phi_{s, u}^{\gamma}(\mu)\right) \mathrm{d} W_{u}, \quad r \in[s, t], x \in \mathbb{R}^{d} .
$$

Let

$$
\begin{equation*}
a_{s, r}^{\gamma, \mu, z}:=\int_{s}^{r}\left(\sigma_{u} \sigma_{u}^{*}\right)\left(z, \Phi_{s, u}^{\gamma}(\mu)\right) \mathrm{d} u, \quad r \in[s, t] . \tag{2.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
p_{s, r}^{\gamma, \mu, z}(x, y)=\frac{\exp \left[-\frac{1}{2}\left\langle\left(a_{s, r}^{\gamma, \mu, z}\right)^{-1}(y-x), y-x\right\rangle\right]}{(2 \pi)^{\frac{d}{2}}\left(\operatorname{det}\left\{a_{s, r}^{\gamma, \mu, z}\right\}\right)^{\frac{1}{2}}}, \quad x, y \in \mathbb{R}^{d}, r \in(s, t] \tag{2.17}
\end{equation*}
$$

Obviously, $\left(A_{1}\right)$ implies

$$
\begin{align*}
& \left\|a_{s, r}^{\gamma, \mu, z}-a_{s, r}^{\gamma, \nu, z}\right\| \leq K(r-s) \mathbb{W}_{s, r, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right), \\
& \frac{1}{K(r-s)} \leq\left\|\left(a_{s, r}^{\gamma, \mu, z}\right)^{-1}\right\| \leq \frac{K}{r-s}, \quad r \in[s, t] \tag{2.18}
\end{align*}
$$

For any $r \in[s, t)$ and $y, z \in \mathbb{R}^{d}$, let

$$
\begin{align*}
H_{r, t}^{\gamma, \mu}(y, z):= & \left\langle-b_{r}\left(y, \mu_{r}\right), \nabla p_{r, t}^{\gamma, \mu, z}(\cdot, z)(y)\right\rangle \\
& +\frac{1}{2} \operatorname{tr}\left[\left\{\left(\sigma_{r} \sigma_{r}^{*}\right)\left(z, \Phi_{s, r}^{\gamma}(\mu)\right)-\left(\sigma_{r} \sigma_{r}^{*}\right)\left(y, \Phi_{s, r}^{\gamma}(\mu)\right)\right\} \nabla^{2} p_{r, t}^{\gamma, \mu, z}(\cdot, z)(y)\right] \tag{2.19}
\end{align*}
$$

By (A), we have the parameter expansion formula

$$
\begin{equation*}
p_{s, t}^{\gamma, \mu}(x, z)=p_{s, t}^{\gamma, \mu, z}(x, z)+\sum_{m=1}^{\infty} \int_{s}^{t} \mathrm{~d} r \int_{\mathbb{R}^{d}} H_{r, t}^{\gamma, \mu, m}(y, z) p_{s, r}^{\gamma, \mu, z}(x, y) \mathrm{d} y \tag{2.20}
\end{equation*}
$$

where $H_{r, t}^{\gamma, \mu, m}$ for $m \in \mathbb{N}$ are defined by

$$
\begin{align*}
& H_{r, t}^{\gamma, \mu, 1}:=H_{r, t}^{\gamma, \mu}, \\
& H_{r, t}^{\gamma, \mu, m}(y, z):=\int_{r}^{t} \mathrm{~d} u \int_{\mathbb{R}^{d}} H_{u, t}^{\gamma, \mu, m-1}\left(z^{\prime}, z\right) H_{r, u}^{\gamma, \mu}\left(y, z^{\prime}\right) \mathrm{d} z^{\prime}, m \geq 2 . \tag{2.21}
\end{align*}
$$

Note that (2.20) follows from the parabolic equations for the heat kernels $p_{s, t}^{\gamma, \mu}$ and $p_{s, t}^{\gamma, \mu, z}$, see for instance the paragraph after [11, Lemma 3.1] for an explanation.

Let

$$
\begin{equation*}
\tilde{p}_{s, r}^{K}(x, y)=\frac{\exp \left[-\frac{1}{4 K(r-s)}|y-x|^{2}\right]}{(4 K \pi(r-s))^{\frac{d}{2}}}, \quad x, y \in \mathbb{R}^{d}, r \in(s, t] . \tag{2.22}
\end{equation*}
$$

By multiplying the time parameter with T^{-1} to make it stay in $[0,1]$, we deduce from [21, (2.3), (2.4)] with $\beta=\beta^{\prime}=1$ and $\lambda=\frac{1}{8 K T}$ that

$$
\begin{align*}
& \int_{s}^{t} \int_{\mathbb{R}^{d}} \tilde{p}_{s, r}^{K}\left(x, y^{\prime}\right)(r-s)^{-\frac{1}{2}} g_{r}\left(y^{\prime}\right)(t-r)^{-\frac{1}{2}} \tilde{p}_{r, t}^{2 K}\left(y^{\prime}, y\right) \mathrm{d} y^{\prime} \tag{2.23}\\
& \leq c(t-s)^{-\frac{1}{2}+\frac{1}{2}\left(1-\frac{d}{p}-\frac{2}{q}\right)} \tilde{p}_{s, t}^{2 K}(x, y)\|g\|_{\tilde{L}_{p}^{q}([s, t])}, \quad 0 \leq s \leq t \leq T, g \in \tilde{L}_{p}^{q}([s, t])
\end{align*}
$$

holds for some constant $c>0$ depending on T, d, p, q and K. By $\left(A_{1}\right)$ and (2.17), there exists a constant $c_{1}>0$ such that

$$
\begin{align*}
& p_{s, t}^{\gamma, \mu, z}(x, y)\left(1+\frac{|x-y|^{4}}{(t-s)^{2}}\right) \tag{2.24}\\
& \leq c_{1} \tilde{p}_{s, t}^{K}(x, y), \quad x, y, z \in \mathbb{R}^{d}, 0 \leq s \leq t \leq T, \gamma \in \mathscr{P}_{\theta}, \mu \in C\left([s, t] ; \mathscr{P}_{\theta}\right)
\end{align*}
$$

Lemma 2.3. Assume $\left(A_{1}\right)$. There exists a constant $c>0$ such that for any $0 \leq s<t \leq$ $T, x, y, z \in \mathbb{R}^{d}, \gamma \in \mathscr{P}_{\theta}$, and $\mu, \nu \in C\left([s, t] ; \mathscr{P}_{\theta}\right)$,

$$
\begin{align*}
& \left(1+\frac{|x-y|^{2}}{t-s}\right)\left|p_{s, t}^{\gamma, \mu, z}(x, y)-p_{s, t}^{\gamma, \nu, z}(x, y)\right| \leq c \tilde{p}_{s, t}^{K}(x, y) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right) \tag{2.25}\\
& \sqrt{t-s}\left|\nabla p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)\right|+(t-s)\left\|\nabla^{2} p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)\right\| \leq c \tilde{p}_{s, t}^{K}(x, y) \tag{2.26}\\
& \quad \sqrt{t-s}\left|\nabla p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)-\nabla p_{s, t}^{\gamma, \nu, z}(\cdot, y)(x)\right| \\
& \quad+(t-s)\left\|\nabla^{2} p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)-\nabla^{2} p_{s, t}^{\gamma, \nu, z}(\cdot, y)(x)\right\| \tag{2.27}\\
& \leq c \tilde{p}_{s, t}^{K}(x, y) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)
\end{align*}
$$

Proof. (1) Let $F(a, \mu)=\left\langle\left(a_{s, t}^{\mu, z}\right)^{-1}(y-x), y-x\right\rangle$ and $F(a, \nu)$ be defined with ν in place of μ. It is easy to see that

$$
\begin{align*}
& \left|p_{s, t}^{\gamma, \mu, z}(x, y)-p_{s, t}^{\gamma, \nu, z}(x, y)\right| \\
& =\left|\frac{\exp \left[-\frac{1}{2} F(a, \mu)\right]}{(2 \pi)^{\frac{d}{2}}\left(\operatorname{det}\left\{a_{s, t}^{\mu, z}\right\}\right)^{\frac{1}{2}}}-\frac{\exp \left[-\frac{1}{2} F(a, \nu)\right]}{(2 \pi)^{\frac{d}{2}}\left(\operatorname{det}\left\{a_{s, t}^{\nu, z}\right\}\right)^{\frac{1}{2}}}\right| \\
& \leq \frac{\left|\exp \left[-\frac{1}{2} F(a, \mu)\right]-\exp \left[-\frac{1}{2} F(a, \nu)\right]\right|}{(2 \pi)^{\frac{d}{2}}\left(\operatorname{det}\left\{a_{s, t}^{\mu, z}\right\}\right)^{\frac{1}{2}}} \tag{2.28}\\
& \quad+\frac{\exp \left[-\frac{1}{2} F(a, \nu)\right]}{(2 \pi)^{\frac{d}{2}}}\left|\left(\operatorname{det}\left\{a_{s, t}^{\mu, z}\right\}\right)^{-\frac{1}{2}}-\left(\operatorname{det}\left\{a_{s, t}^{\nu, z}\right\}\right)^{-\frac{1}{2}}\right| \\
& =: I_{1}+I_{2}, \quad y \in \mathbb{R}^{d}, t>s .
\end{align*}
$$

Combining this with $\left(A_{1}\right)$ which implies (2.18), we find a constant $c_{1}>0$ such that

$$
\begin{aligned}
& |F(a, \mu)-F(a, \nu)|=\left|\left\langle\left\{\left(a_{s, t}^{\mu, z}\right)^{-1}-\left(a_{s, t}^{\nu, z}\right)^{-1}\right\}(y-x), y-x\right\rangle\right| \\
& \leq c_{1} \frac{|y-x|^{2}}{t-s} \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right),
\end{aligned}
$$

which together with (2.24) yields that for some constant $c_{2}>0$,

$$
\left(1+\frac{|x-y|^{2}}{t-s}\right) I_{1} \leq c_{2} \tilde{p}_{s, t}^{K}(x, y) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)
$$

Next, by (2.18) and (2.24), we find a constant $c_{3}>0$ such that

$$
\left(1+\frac{|x-y|^{2}}{t-s}\right) I_{2} \leq c_{3} \tilde{p}_{s, t}^{K}(x, y) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)
$$

Combining these with (2.28), we arrive at

$$
\left(1+\frac{|x-y|^{2}}{t-s}\right)\left|p_{s, t}^{\gamma, \mu, z}(x, y)-p_{s, t}^{\gamma, \nu, z}(x, y)\right| \leq\left(c_{2}+c_{3}\right) \tilde{p}_{s, t}^{K}(x, y) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)
$$

(2) By (2.17) we have

$$
\begin{gather*}
\nabla p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)=\left(a_{s, t}^{\mu, z}\right)^{-1}(y-x) p_{s, t}^{\gamma, \mu, z}(x, y) \tag{2.29}\\
\nabla^{2} p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)=p_{s, t}^{\gamma, \mu, z}(x, y)\left(\left\{\left(a_{s, t}^{\mu, z}\right)^{-1}(y-x)\right\} \otimes\left\{\left(a_{s, t}^{\mu, z}\right)^{-1}(y-x)\right\}-\left(a_{s, t}^{\mu, z}\right)^{-1}\right) \tag{2.30}
\end{gather*}
$$

So, by (2.18) and (2.24) we find a constant $c>0$ such that (2.26) holds. Moreover, (2.29) implies

$$
\begin{aligned}
& \left|\nabla p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)-\nabla p_{s, t}^{\gamma, \nu, z}(\cdot, y)(x)\right| \\
& \leq\left|\left\{\left(a_{s, t}^{\mu, z}\right)^{-1}-\left(a_{s, t}^{\nu, z}\right)^{-1}\right\}(y-x)\right| p_{s, t}^{\gamma, \mu, z}(x, y)+\left|\left\{p_{s, t}^{\gamma, \mu, z}(x, y)-p_{s, t}^{\gamma, \nu, z}(x, y)\right\}\left(a_{s, t}^{\nu, z}\right)^{-1}(y-x)\right| .
\end{aligned}
$$

Combining this with (2.18), (2.24) and (2.25), we find a constant $c>0$ such that

$$
\left|\nabla p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)-\nabla p_{s, t}^{\gamma, \nu, z}(\cdot, y)(x)\right| \leq \frac{c \mathbb{W}_{s, t, \theta}\left(\Phi_{s, .}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)}{\sqrt{t-s}} \tilde{p}_{s, t}^{K}(x, y)
$$

Similarly, combining (2.30) with (2.18), (2.24) and (2.25), we find a constant $c>0$ such that

$$
\left\|\nabla^{2} p_{s, t}^{\gamma, \mu, z}(\cdot, y)(x)-\nabla^{2} p_{s, t}^{\gamma, \nu, z}(\cdot, y)(x)\right\| \leq \frac{c \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)}{t-s} \tilde{p}_{s, t}^{K}(x, y)
$$

Therefore, (2.27) holds for some constant $c>0$.
For $0 \leq s \leq t \leq T, \gamma \in \mathscr{P}_{\theta}$ and $\mu, \nu \in C\left([s, t] ; \mathscr{P}_{\theta}\right)$, let

$$
\begin{equation*}
\Lambda_{s, t, \gamma}(\mu, \nu)=\mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)+\|\mu-\nu\|_{s, t, \theta, T V} \tag{2.31}
\end{equation*}
$$

Lemma 2.4. Assume (A). Let

$$
\begin{aligned}
& \delta=\frac{1}{2}\left(1-\frac{d}{p}-\frac{2}{q}\right)>0 \\
& S_{s, t}^{\mu}:=\sup _{r \in[s, t]}\left(1+\left\|\mu_{r}\right\|_{\theta}\right) \\
& S_{s, t}^{\mu, \nu}:=S_{s, t}^{\mu} \vee S_{s, t}^{\nu}, \quad 0 \leq s \leq t \leq T, \mu \in C\left([0, T] ; \mathscr{P}_{\theta}\right) .
\end{aligned}
$$

Then there exists a constant $C \geq 1$ such that for any $0 \leq s \leq t \leq T, y, z \in \mathbb{R}^{d}, \mu, \nu \in$ $C\left([0, T] ; \mathscr{P}_{\theta}\right)$, and $m \geq 1$,

$$
\begin{align*}
& \left|H_{s, t}^{\gamma, \mu, m}(y, z)\right| \leq f_{s}(y)\left(C S_{s, t}^{\mu}\right)^{m}(t-s)^{-\frac{1}{2}+\delta(m-1)} \tilde{p}_{s, t}^{2 K}(x, y), \tag{2.32}\\
& \left\|H_{s, t}^{\gamma, \mu, m}(y, z)-H_{s, t}^{\gamma, \nu, m}(y, z)\right\| \\
& \leq m f_{s}(y)\left(C S_{s, t}^{\mu, \nu}\right)^{m}(t-s)^{-\frac{1}{2}+\delta(m-1)} \tilde{p}_{s, t}^{2 K}(x, y) \Lambda_{s, t, \gamma}(\mu, \nu) . \tag{2.33}
\end{align*}
$$

Proof. (1) By (2.19), (2.26) and (A1)-(A2), we find a constant $c_{1}>0$ such that for any $0 \leq s<t \leq T, \mu \in C\left([0, T] ; \mathscr{P}_{\theta}\right)$ and $y, z \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left|H_{s, t}^{\gamma, \mu}(y, z)\right| \leq c_{1}(t-s)^{-\frac{1}{2}}\left\{\left(1+\left\|\mu_{s}\right\|_{\theta}\right) f_{s}(y)\right\} \tilde{p}_{s, t}^{K}(y, z) \tag{2.34}
\end{equation*}
$$

So, (2.32) holds for $m=1$ and $C=c_{1}$. Thanks to [21, (2.3), (2.4)] with $\beta=\beta^{\prime}=1, \lambda=\frac{1}{8 K}$, we have

$$
\begin{align*}
I_{k}:= & \int_{s}^{t} \int_{\mathbb{R}^{d}}(t-u)^{-\frac{1}{2}}(t-u)^{\delta(k-1)} \tilde{p}_{u, t}^{2 K}(y, z) f_{u}(y)(u-s)^{-\frac{1}{2}} \tilde{p}_{s, u}^{K}(x, y) \mathrm{d} y \mathrm{~d} u \\
& \leq c_{2}(t-s)^{-\frac{1}{2}} \tilde{p}_{s, t}^{2 K}(x, z)(t-s)^{\frac{1}{2}\left(1-\frac{d}{p}-\frac{2}{q}\right)}\|f\|_{\tilde{L}_{p}^{q}([s, t])}(t-s)^{\delta(k-1)} \tag{2.35}\\
& =c_{3}(t-s)^{-\frac{1}{2}} \tilde{p}_{s, t}^{2 K}(x, z)(t-s)^{\delta k} .0 \leq s<t \leq T, k \geq 1
\end{align*}
$$

where $c_{3}:=c_{2}\|f\|_{\tilde{L}_{p}^{q}([s, t])}$. Let $C:=1 \vee c_{1}^{2} \vee\left(4 c_{3}^{2}\right)$. If for some $k \geq 1$ we have

$$
\left|H_{s, t}^{\gamma, \mu, k}(y, z)\right| \leq\left(C S_{s, t}^{\mu}\right)^{k} f_{s}(y) \tilde{p}_{s, t}^{2 K}(y, z)(t-s)^{-\frac{1}{2}+\delta(k-1)}
$$

for all $y, z \in \mathbb{R}^{d}$ and $0 \leq s \leq t \leq T$, then by combining with (2.34) and (2.35), we arrive at

$$
\begin{aligned}
\left|H_{s, t}^{\gamma, \mu, k+1}(y, z)\right| & \leq \int_{s}^{t} \mathrm{~d} u \int_{\mathbb{R}^{d}}\left|H_{u, t}^{\gamma, \mu, k}\left(z^{\prime}, z\right) H_{s, u}^{\gamma, \mu}\left(y, z^{\prime}\right)\right| \mathrm{d} z^{\prime} \\
& \leq C^{k} \sqrt{C}\left(S_{s, t}^{\mu}\right)^{k+1} f_{s}(y) I_{k} \\
& \leq C^{k+1}\left(S_{s, t}^{\mu}\right)^{k+1} f_{s}(y)(t-s)^{-\frac{1}{2}+\delta k} \tilde{p}_{s, t}^{2 K}(y, z)
\end{aligned}
$$

Therefore, (2.32) holds for all $m \geq 1$.
(2) By (2.26), (2.27), (2.18) and $(A 1)-(A 2)$, we find a constant $c>0$ such that for any $0 \leq s<t \leq T, \mu, \nu \in C\left([0, T] ; \mathscr{P}_{\theta}\right)$ and $y, z \in \mathbb{R}^{d}$,

$$
\begin{align*}
& \left|H_{s, t}^{\gamma, \mu}(y, z)-H_{s, t}^{\gamma, \nu}(y, z)\right| \\
& \leq c(t-s)^{-\frac{1}{2}} \tilde{p}_{s, t}^{K}(y, z) S_{s, t}^{\mu, \nu} f_{s}(y)\left(\|\mu-\nu\|_{s, t, \theta, T V}+\mathbb{W}_{s, t, \theta}\left(\Phi_{s, .}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)\right) \tag{2.36}
\end{align*}
$$

Let, for instance, $L=1+4 C^{2}+4 c^{2}$, where C is in (2.32). If for some $k \geq 1$ we have

$$
\left\|H_{s, t}^{\gamma, \mu, k}\left(z^{\prime}, z\right)-H_{s, t}^{\gamma, \nu, k}\left(z^{\prime}, z\right)\right\| \leq k\left(L S_{s, t}^{\mu, \nu}\right)^{k} f_{s}\left(z^{\prime}\right) \tilde{p}_{s, t}^{2 K}\left(z^{\prime}, z\right)(t-s)^{-\frac{1}{2}+\delta(k-1)} \Lambda_{s, t, \gamma}(\mu, \nu),
$$

for any $0 \leq s<t \leq T$ and $z, z^{\prime} \in \mathbb{R}^{d}$, then (2.32), (2.35) and (2.36) imply

$$
\begin{aligned}
& \left\|H_{s, t}^{\gamma, \mu, k+1}(y, z)-H_{s, t}^{\gamma, \nu, k+1}(y, z)\right\| \\
& \begin{array}{l}
\leq \int_{s}^{t} \mathrm{~d} r \int_{\mathbb{R}^{d}}\left\{\left\|H_{r, t}^{\gamma, \mu, k}\left(z^{\prime}, z\right)-H_{r, t}^{\gamma, \nu, k}\left(z^{\prime}, z\right)\right\| \cdot\left|H_{s, r}^{\gamma, \mu}\left(y, z^{\prime}\right)\right|\right. \\
\left.\quad+\left|H_{r, t}^{\gamma, \nu, k}\left(z^{\prime}, z\right)\right| \cdot\left\|H_{s, r}^{\gamma, \mu}\left(y, z^{\prime}\right)-H_{s, r}^{\gamma, \nu}\left(y, z^{\prime}\right)\right\|\right\} \mathrm{d} z^{\prime}
\end{array} \\
& \leq(k+1)\left(L S_{s, t}^{\mu, \nu}\right)^{k+1} f_{s}(y) \tilde{p}_{s, t}^{2 K}(y, z)(t-s)^{-\frac{1}{2}+\delta k} \Lambda_{s, t, \gamma}(\mu, \nu)
\end{aligned}
$$

Therefore, (2.33) holds for some constant $C>0$.
We are now ready to prove the following main result in this part, which ensures the $\|\cdot\|_{s, t, \theta, T V}$-contraction of $\Phi_{s, \text {, for small } t-s \text {. }}^{\gamma}$

Lemma 2.5. Assume (A). There exist constants $\varepsilon_{0}, \varepsilon \in(0,1)$ and a function $\phi:(0, \infty) \rightarrow$ $[0, \infty)$ such that

$$
\left\|\Phi_{s, \cdot}^{\gamma}(\mu)-\Phi_{s, .}^{\gamma}(\nu)\right\|_{s, t, \theta, T V} \leq \phi(N)(t-s)^{\varepsilon}\|\mu-\nu\|_{s, t, \theta, T V} \gamma\left(1+|\cdot|^{\theta}\right)
$$

holds for any $N>0, s \in[0, T), t \in\left[s,\left(s+\varepsilon_{0} N^{-1 / \delta}\right) \wedge T\right], \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t}$ and $\gamma \in \mathscr{P}_{\theta, N}$.
Proof. By Lemma 2.1, for any $N>0$, we find a constant $\phi_{1}(N)>0$ such that

$$
\begin{aligned}
& \mathbb{W}_{s, t, \theta}\left(\Phi_{s, .}^{\gamma}(\mu), \Phi_{s,(}^{\gamma}(\nu)\right) \\
& \leq \phi_{1}(N)(t-s)^{\epsilon}\|\mu-\nu\|_{s, t, \theta, T V}, \quad 0 \leq s \leq t \leq T, \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}, \gamma \in \mathscr{P}_{\theta, N}
\end{aligned}
$$

Combining this with (2.24), Lemma 2.3-Lemma 2.4, (2.20), (2.23) and $\left(A_{2}\right)$, we find $\phi_{2}(N)>$ 0 such that for $\varepsilon:=\epsilon \wedge \delta$ and $\varepsilon_{0}:=(2 C)^{-1 / \delta}$,

$$
\begin{aligned}
& \left|p_{s, t}^{\gamma, \mu}(x, z)-p_{s, t}^{\gamma, \nu}(x, z)\right| \\
& \begin{aligned}
& \leq c \tilde{p}_{s, t}^{K}(x, z) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right)+\sum_{m=1}^{\infty} \int_{s}^{t} \mathrm{~d} r \int_{\mathbb{R}^{d}}\left|H_{r, t}^{\gamma, \mu, m}(y, z)-H_{r, t}^{\gamma, \nu, m}(y, z)\right| p_{s, r}^{\gamma, \nu, z}(x, y) \mathrm{d} y \\
& \quad+ \sum_{m=1}^{\infty} \int_{s}^{t} \mathrm{~d} r \int_{\mathbb{R}^{d}}\left|H_{r, t}^{\gamma, \mu, m}(y, z) \| p_{s, r}^{\gamma, \mu, z}(x, y)-p_{s, r}^{\gamma, \nu, z}(x, y)\right| \mathrm{d} y \\
& \leq c \tilde{p}_{s, t}^{K}(x, z) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right) \\
&+ \sum_{m=1}^{\infty}(m+1)(C N)^{m} \Lambda_{s, t, \gamma}(\mu, \nu)(t-s)^{\frac{1}{2}+\delta(m-1)} \\
& \quad \times \int_{s}^{t} \int_{\mathbb{R}^{d}}(t-r)^{-\frac{1}{2}} \tilde{p}_{r, t}^{2 K}(y, z) f_{r}(y)(r-s)^{-\frac{1}{2}} \tilde{p}_{s, r}^{K}(x, y) \mathrm{d} y \mathrm{~d} r
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \leq c \tilde{p}_{s, t}^{K}(x, z) \mathbb{W}_{s, t, \theta}\left(\Phi_{s, \cdot}^{\gamma}(\mu), \Phi_{s, \cdot}^{\gamma}(\nu)\right) \\
& \quad \\
& \quad+(t-s)^{\delta} \Lambda_{s, t, \gamma}(\mu, \nu) \tilde{p}_{s, t}^{2 K}(x, z) \sum_{m=1}^{\infty}(m+1)(C N)^{m}(t-s)^{\delta(m-1)} \\
& \leq
\end{aligned}
$$

holds for any $N>0,0 \leq s \leq t \leq\left(s+\varepsilon_{0} N^{-1 / \delta}\right) \wedge T, \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}$, and $\gamma \in \mathscr{P}_{\theta, N}$. So, by (2.22) and the definitions of $\Phi_{s, t}^{\gamma}$ and $\|\cdot\|_{\theta, T V}$, we find a constant $\phi(N)>0$ such that

$$
\begin{aligned}
& \left\|\Phi_{s, t}^{\gamma}(\mu)-\Phi_{s, t}^{\gamma}(\nu)\right\|_{\theta, T V} \\
& =\sup _{|g| \leq 1+|\cdot| \theta}\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} g(z) p_{s, t}^{\gamma, \mu}(x, z) \mathrm{d} z \gamma(\mathrm{~d} x)-\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} g(z) p_{s, t}^{\gamma, \nu}(x, z) \mathrm{d} z \gamma(\mathrm{~d} x)\right| \\
& \leq \phi_{2}(N)(t-s)^{\varepsilon}\|\mu-\nu\|_{s, t, \theta, T V} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(1+|z|^{\theta}\right) \tilde{p}_{s, t}^{K}(x, z) \mathrm{d} z \gamma(\mathrm{~d} x) \\
& \leq \phi(N) \gamma\left(1+|\cdot|^{\theta}\right)(t-s)^{\varepsilon}\|\mu-\nu\|_{s, t, \theta, T V}, \quad t \in\left[s,\left(s+\varepsilon_{0} N^{-1 / \delta}\right) \wedge T\right] .
\end{aligned}
$$

Then the proof is finished.

3 Proof of Theorem 1.2

To prove Theorem 1.2 using the contraction result Lemma 2.5, we need the following prioriestimates on the solution of (1.2).

Lemma 3.1. Assume (A) and let $m>\theta$. Then there exists a constant $N_{1}>0$ such that for any $s \in[0, T), X_{s, s} \in L^{m}\left(\Omega \rightarrow \mathbb{R}^{d}, \mathscr{F}_{s}, \mathbb{P}\right)$, and $T^{\prime} \in(0, T]$, a solution $\left(X_{s, t}\right)_{t \in\left[s, T^{\prime}\right]}$ of (1.2) with initial value at $X_{s, s}$ from s up to T^{\prime} satisfies

$$
\mathbb{E}\left[\sup _{t \in\left[s, T^{\prime}\right]}\left(1+\left|X_{s, t}\right|^{2}\right)^{\frac{\theta}{2}}\right] \leq \mathrm{e}^{N_{1} T^{\prime}}\left(\mathbb{E}\left(1+\left|X_{s, s}\right|^{2}\right)^{\frac{m}{2}}\right)^{\frac{\theta}{m}}, \quad t \in\left[s, T^{\prime}\right]
$$

Proof. Without loss of generality, we may and do assume that $s=0$ and denote $X_{t}=X_{0, t}$. By Itô's formula, $\left(A_{2}\right)$ and the boundedness of σ, there exists a constant $c_{2}>0$ such that

$$
\begin{aligned}
& \mathrm{d}\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}} \\
& \leq \frac{m}{2}\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}-1}\left(2\left\langle X_{t}, b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right)\right\rangle \mathrm{d} t+\left\|\sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right)\right\|_{H S}^{2} \mathrm{~d} t\right) \\
& +\frac{m}{4}\left(\frac{m}{2}-1\right)\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}-2}\left|\sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right)^{*} X_{t}\right|^{2} \mathrm{~d} t \\
& +m\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}-1}\left\langle X_{t}, \sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} W_{t}\right\rangle \\
& \leq m K\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}} f_{t}\left(X_{t}\right) \mathrm{d} t+\left(1+\left\|\mathscr{L}_{X_{t}}\right\|_{\theta}\right)^{m} f_{t}\left(X_{t}\right) \mathrm{d} t+c_{2} \mathrm{~d} t \\
& +m\left(1+\left|X_{t}\right|^{2}\right)^{\frac{m}{2}-1}\left\langle X_{t}, \sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} W_{t}\right\rangle .
\end{aligned}
$$

Thanks to Krylov's estimate and Khasminskii's estimate [17, (4.1), (4.2)], (A1)-(A2) and the stochastic Gronwall inequality [18, Lemma 3.8] yield

$$
\left(\mathbb{E} \sup _{t \in\left[0, T^{\prime}\right]}\left(1+\left|X_{t}\right|^{2}\right)^{\frac{\theta}{2}}\right)^{\frac{m}{\theta}} \leq \mathrm{e}^{N_{1} T^{\prime}} \mathbb{E}\left(1+\left|X_{0}\right|^{2}\right)^{\frac{m}{2}}
$$

for some constant $N_{1}>0$ independent of X_{0} and $T^{\prime} \in[0, T]$.
Proof of Theorem 1.2. Since (1.3) is implied by Lemma 3.1, we only prove the well-posedness of (1.2) for initial distributions in \mathscr{P}_{m} for some $m>\theta$. Since according to [17] the assumption (A) implies the well-posedness of the SDE

$$
\mathrm{d} X_{t}^{\mu}=b_{t}^{\mu}\left(X_{t}^{\mu}\right)+\sigma_{t}^{\mu}\left(X_{t}^{\mu}\right) \mathrm{d} W_{t}, \quad X_{0}^{\mu}=X_{0}
$$

for $\mu \in C\left([0, T] ; \mathscr{P}_{\theta}\right)$ and $\mathbb{E}\left|X_{0}\right|^{\theta}<\infty$, by the modified Yamada-Watanabe principle [9, Lemma 2.1] we only need to prove the strong well-posedness of (1.2) with an initial value X_{0} such that $E\left|X_{0}\right|^{m}<\infty$.
(1) Let N_{0} and N_{1} be in Lemmas 2.2 and 3.1 respectively. Take

$$
\begin{equation*}
N=\max \left\{N_{0}, \mathrm{e}^{N_{1}(1+T)} \mathbb{E}\left(1+\left|X_{0}\right|^{2}\right)^{\frac{\theta}{2}}\right\} . \tag{3.1}
\end{equation*}
$$

Since $N \geq N_{0}$, Lemma 2.2 implies

$$
\Phi_{s,:}^{\gamma}: \mathscr{P}_{\theta, N}^{s, t, \gamma} \rightarrow \mathscr{P}_{\theta, N}^{s, t, \gamma}, \quad 0 \leq s \leq t \leq T .
$$

Moreover, by Lemma 2.5, there exists constant $C>0$ depending on N such that

$$
\begin{aligned}
& \left\|\Phi_{s, \cdot}^{\gamma}(\mu)-\Phi_{s, \cdot}^{\gamma}(\nu)\right\|_{s, t, \theta, T V} \\
& \leq C(t-s)^{\varepsilon}\|\mu-\nu\|_{s, t, \theta, T V}, \quad \mu, \nu \in \mathscr{P}_{\theta, N}^{s, t, \gamma}, \gamma \in \mathscr{P}_{\theta, N}, t \in\left[s,\left(s+\varepsilon_{0} N^{-\frac{1}{\delta}}\right) \wedge T\right] .
\end{aligned}
$$

Taking $t_{0} \in\left(0, \varepsilon_{0} N^{-\frac{1}{\delta}}\right)$ such that $C t_{0}<1$, we conclude that $\Phi_{s, .}^{\gamma}$ is contractive in $\mathscr{P}_{\theta, N}^{s,\left(s+t_{0}\right) \wedge T, \gamma}$ for any $s \in[0, T)$ and $\gamma \in \mathscr{P}_{\theta, N}$. Below we prove that this implies the existence and uniqueness of solution of (1.2).
(2) Let $s=0$ and $\gamma=\mathscr{L}_{X_{0}}$. By (1) and the fixed point theorem, there exists a unique $\mu \in \mathscr{P}_{\theta, N}^{0, t_{0} \wedge T, \gamma}$ such that $\mu_{t}=\Phi_{s, t}^{\gamma}(\mu)$ for $t \in\left[0, t_{0} \wedge T\right]$. Combining this with the definition of $\Phi_{s, t}^{\gamma}(\mu)$, we conclude that $X_{s, t}^{\gamma, \mu}$ is a solution of (1.2) up to time $t_{0} \wedge T$. Moreover, it is easy to see that the distribution of a solution to (1.2) is a fixed point of the map $\Phi_{0, \text {, }}^{\gamma}$, and by Lemma 3.1 and (3.1) a solution of (1.2) up to time $t_{0} \wedge T$ must in the space $\mathscr{P}_{\theta, N}^{0, t_{0} \wedge T, \gamma}$. Therefore, (1.2) has a unique solution up to time $t_{0} \wedge T$.
(3) If $t_{0} \geq T$ then the proof is done. Assume that for some integer $k \geq 1$ the equation (1.2) has a unique solution $\left(X_{t}\right)_{t \in\left[0, k t_{0}\right]}$ up to time $k t_{0} \leq T$, we take $s=k t_{0}$ and $\gamma=$ $\mathscr{L}_{X_{k t_{0}}}$. By Lemma 3.1 and (3.1), we have $\gamma \in \mathscr{P}_{\theta, N}$, so that $\Phi_{k t_{0},\left\{(k+1) t_{0}\right\} \wedge T}^{\gamma}$ is contractive in $\mathscr{P}_{\theta, N}^{k t_{0},\left\{(k+1) t_{0}\right\} \wedge T, \gamma}$. Hence, as explained in (2) that the SDE (1.2) has a unique solution from time $s=k t_{0}$ up to $\left\{(k+1) t_{0}\right\} \wedge T$. This together with the assumption we conclude that (1.2) has a unique solution up to time $\left\{(k+1) t_{0}\right\} \wedge T$. In conclusion, we have proved the existence and uniqueness of solution to (1.2).

References

[1] M. Bauer, T. M-Brandis, Existence and Regularity of Solutions to Multi-Dimensional Mean-Field Stochastic Differential Equations with Irregular Drift, arXiv:1912.05932.
[2] M. Bauer, T. M-Brandis, F. Proske, Strong Solutions of Mean-Field Stochastic Differential Equations with irregular drift, arXiv:1806.11451.
[3] P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games, Princeton University Press, 2019.
[4] P. E. Chaudru de Raynal, Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift, Stoch. Proc. Appl. 130(2020), 79-107.
[5] P. E. Chaudru de Raynal, N. Frikha Well-posedness for some non-linear diffusion processes and related pde on the wasserstein space, arXiv:1811.06904.
[6] D. Crisan, E. McMurray, Smoothing properties of McKean-Vlasov SDEs, Probab. Theory Relat. Fields 171(2018), 97-148.
[7] X. Huang, M. Röckner, F.-Y. Wang, Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs, Disc. Cont. Dyn. Syst. Ser. A 39(2019), 3017-3035.
[8] X. Huang, F.-Y. Wang, Distribution dependent SDEs with singular coefficients, Stoch. Proc. Appl. 129(2019), 4747-4770.
[9] X. Huang, F.-Y. Wang, McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance, Disc. Cont. Dyn. Syst. Ser. A. doi: 10.3934/dcds. 2020336.
[10] X. Huang, F.-Y. Wang, Derivative Estimates on Distributions of McKean-Vlasov SDEs, arXiv:2006.16731.
[11] V. Konakov, E. Mammen, Local limit theorems for transition densities of Markov chains converging to diffusions, Probab. Theory Relat. Fields 117(2000), 551-587.
[12] D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations, arXiv:1805.04476.
[13] Yu. S. Mishura, A. Yu. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, arXiv:1603.02212.
[14] M. Röckner, X. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, arXiv:1809.02216. To appear in Bernoulli.
[15] C. Villani Optimal Transport, Old and New, Springer-Verlag, 2009.
[16] F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl. 128(2018), 595-621.
[17] P. Xia, L. Xie, X. Zhang, G. Zhao, $L^{q}\left(L^{p}\right)$-theory of stochastic differential equations, arXiv:1908.01255.
[18] L. Xie, X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coefficients, Ann. Inst. Henri Poincaré Probab. Stat. 56(2020), 175-229.
[19] X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab. 16(2011), 1096-1116.
[20] X. Zhang, Weak solutions of McKean-Vlasov SDEs with supercritical drifts, arXiv:2010.15330.
[21] G. Zhao, On Distribution depend SDEs with singular drifts, arXiv:2003.04829.

[^0]: *Supported in part by NNSFC $(11771326,11831014,11801406,11921001)$ and the DFG through the CRC 1283.

