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Abstract

By using Zvonkin’s transform and the heat kernel parameter expansion with respect
to a frozen SDE, the well-posedness is proved for a McKean-Vlasov SDE with distribu-
tion dependent noise and singular drift, where the drift may be discontinuous in both
weak topology and total variation distance, and is bounded by a linear growth term in
distribution multiplying a locally integrable term in time-space. This extends existing
results derived in the literature for distribution independent noise or time-space locally
integrable drift.
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1 Introduction

Let P be the set of all probability measures on Rd. For θ ≥ 1, let

Pθ =
{
γ ∈P : ‖γ‖θ := γ(| · |θ)

1
θ <∞

}
,

∗Supported in part by NNSFC (11771326, 11831014, 11801406, 11921001) and the DFG through the CRC
1283.
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which is a Polish space under the Lθ-Wasserstein distance Wθ:

Wθ(γ, γ̃) := inf
π∈C (γ,γ̃)

(∫
Rd×Rd

|x− y|θπ(dx, dy)

) 1
θ

, γ, γ̃ ∈Pθ,

where C (γ, γ̃) is the set of all couplings of γ and γ̃. Moreover, Pθ is a complete metric space
under the weighted variational norm

‖µ− ν‖θ,TV := sup
|f |≤1+|·|θ

∣∣µ(f)− ν(f)
∣∣, µ, ν ∈Pθ.

By [15, Theorem 6.15], there exists a constant κ > 0 such that

(1.1) ‖µ− ν‖TV + Wθ(µ, ν) ≤ κ‖µ− ν‖θ,TV ,

where ‖ · ‖TV := ‖ · ‖0,TV is the total variation norm.
Consider the following distribution dependent SDE on Rd:

(1.2) dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt, t ∈ [0, T ]

for some fixed time T > 0, where Wt is an m-dimensional Brownian motion on a complete
filtration probability space (Ω, {Ft}t≥0,P), LXt is the law of Xt, and

b : R+ × Rd ×Pθ → Rd, σ : R+ × Rd ×Pθ → Rd ⊗ Rm

are measurable. This type equations, known as Mckean-Vlasov or mean field SDEs, have
been intensively investigated and applied, see for instance the monograph [3] and references
therein.

In this paper, we investigate the well-posedness of (1.2) with bt(x, µ) singular in x and
Lipschitz continuous in µ merely under ‖ · ‖θ,TV . To measure the time-space singularity of
bt(x, µ), we introduce the following class

K :=
{

(p, q) : p, q > 1,
d

p
+

2

q
< 1
}
.

For any t > s ≥ 0, we write f ∈ L̃qp([s, t]) if f : [s, t]× Rd → R is measurable with

‖f‖L̃qp([s,t]) := sup
z∈Rd

{∫ t

s

(∫
B(z,1)

|f(u, x)|pdx
) q

p

du

} 1
q

<∞,

where B(z, 1) := {x ∈ Rd : |x− z| ≤ 1} is the unit ball at point z. When s = 0, we simply
denote

L̃qp(t) = L̃qp([0, t]), ‖f‖L̃qp(t) = ‖f‖L̃qp([0,t]).

We will adopt the following assumption.
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(A) Let θ ≥ 1.

(A1) There exists a constant K > 0 such that for any t ∈ [0, T ], x, y ∈ Rd and µ, ν ∈Pθ,

‖σt(x, µ)‖2 ∨ ‖(σtσ∗t )−1(x, µ)‖ ≤ K,

‖σt(x, µ)− σt(y, ν)‖ ≤ K
(
|x− y|+ Wθ(µ, ν)

)
,

‖{σt(x, µ)− σt(y, µ)} − {σt(x, ν)− σt(y, ν)}‖ ≤ K|x− y|Wθ(µ, ν).

(A2) There exists nonnegative f ∈ L̃qp(T ) for some (p, q) ∈ K such that

|bt(x, µ)| ≤ (1 + ‖µ‖θ)ft(x),

|bt(x, µ)− bt(x, ν)| ≤ ft(x)‖µ− ν‖θ,TV , t ∈ [0, T ], x ∈ Rd, µ, ν ∈Pθ.

Remark 1.1. (1) It is easy to see that the third inequality in (A1) holds if σt(x, µ) is differ-
entiable in x with

‖∇σt(·, µ)(x)−∇σt(·, ν)(x)‖ ≤ KWθ(µ, ν), µ, ν ∈Pθ, x ∈ Rd.

Indeed, this implies

‖{σt(x, µ)− σt(y, µ)} − {σt(x, ν)− σt(y, ν)}‖

=

∥∥∥∥∫ 1

0

{
∇x−yσt(y + s(x− y), µ)−∇x−yσt(y + s(x− y), ν)

}
ds

∥∥∥∥
≤
∫ 1

0

∥∥∇x−yσt(y + s(x− y), µ)−∇x−yσt(y + s(x− y), ν)
∥∥ds ≤ K|x− y|Wθ(µ, ν).

(2) Let σσ∗ be uniformly positive definite. When the noise coefficient σt(x, µ) = σt(x) does
not depend on µ, the well-posedness of (1.2) has been presented in [14] for b·(·, µ) ∈ L̃qp(T )
for some (p, q) ∈ K and bt(x, ·) being weakly continuous and Lipschitz continuous in ‖·‖θ,TV ,

and in [9] for b = b̄ + b̂ with b̄·(·, µ) ∈ Lqp(T ) for some (p, q) ∈ K , b̂t(x, µ) having linear
growth in x, and bt(x, ·) being Lipschitz continuous in ‖ · ‖TV +Wθ. In these conditions, the
continuity of bt(x, µ) in µ is stronger than that presented in (A2) where bt(x, µ) is allowed to
be discontinuous in both ‖·‖TV and the weak topology. When σ =

√
2Id (where Id is the d×d

identity matrix) and bt(x, µ) =
∫
Rd Kt(x − y)µ(dy) with K ∈ L̃qp(T ), the well-posedness of

(1.2) is proved in [14] for (p, q) ∈ K , while the weak existence is presented in [19] for some
p, q > 1 with d

p
+ 2

q
< 2. When σt(x, µ) has linear functional derivative in µ which is Lipschitz

continuous in the space variable uniformly in µ and t, the well-posedness is derived in [21] for
b·(·, µ) ∈ L̃qp(T ) uniformly in µ for some (p, q) ∈ K , while in [5] for bt(x, µ) being bounded
and Lipschitz continuous in µ under ‖ · ‖TV . See also [1, 2, 4, 6, 8, 7, 12, 13, 16, 20] for
earlier results on the well-posedness under different type or stronger conditions. Comparing
with conditions in [5, 21], (A2) allows bt(x, µ) to have linear growth in µ and (A1) does not
require σt(x, µ) having linear functional derivative in µ. To include drifts with linear growth
in the space variable, we hope that the first inequality in (A2) could be weakened as

|bt(x, µ)| ≤ (1 + ‖µ‖θ)(K|x|+ ft(x))
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for some constant K > 0 and f ∈ L̃qp(T ). But with this condition there is essential difficulty
in the proof of Lemma 2.4 below on the heat kernel expansion.

Let P̂ be a subspace of P. We call (1.2) well-posed for initial distributions in P̂, if for

any F0-measurable random variable X0 with LX0 ∈ P̂ and any µ0 ∈ P̂, (1.2) has a unique
solution starting at X0 as well as a unique weak solution starting at µ0.

Theorem 1.2. Assume (A). Then (1.2) is well-posed for initial distributions in Pθ+ :=
∩m>θPm, and the solution satisfies LX· ∈ C([0, T ]; Pθ), the space of continuous maps from
[0, T ] to Pθ under the metric Wθ. Moreover,

(1.3) E
[

sup
t∈[0,T ]

|Xt|θ
]
<∞.

Note that a Lipschitz function with respect to ‖ · ‖θ,TV may be discontinuous in the weak
topology and the total variation norm, for instance, F (µ) := µ(f) with f := h+ | · |θ for some
bounded and discontinuous measurable function h on Rd. So, this result extends existing
well-posedness results derived in the above mentioned references.

To prove Theorem 1.2, besides Zvonkin’s transform, Krylov’s estimate and stochastic
Gronwall’s inequality used in [14], we will also apply the heat kernel parameter expansion
with respect to a frozen SDE. This expansion is useful in the study of heat kernel estimates
for distribution dependent SDEs and has been recently used in [10] to estimate the Lion’s
derivative of the solution to (1.2) with distribution dependent noise.

The remainder of the paper is organized as follows. Section 2 contains necessary prepa-
rations including some estimates on the map Φγ

s,· in (2.2) below induced by (2.1) with a fixed
distribution parameter µ· replacing LX· in the drift term of (1.2). To derive these estimates,
the heat kernel parameter expansion with respect to a frozen SDEs is used. With these
preparations we prove Theorem 1.2 in Section 3.

2 Preparations

For any 0 ≤ s < t ≤ T , let C([s, t]; Pθ) be the set of all continuous map from [s, t] to Pθ

under the metric Wθ. For µ ∈ C([s, T ]; Pθ) and γ ∈ Pθ, we consider the following SDE
with initial distribution LXγ,µ

s,s
= γ and fixed measure parameter µt in the drift:

(2.1) dXγ,µ
s,t = bt(X

γ,µ
s,t , µt)dt+ σt(X

γ,µ
s,t ,LXγ,µ

s,t
)dWt, t ∈ [s, T ].

According to Lemma 2.1 below, (A1) and (A2) imply the strong and weak well-posedness
of (2.1) for initial distributions in Pθ, and the solution satisfies LXγ,µ

s,· ∈ C([s, T ]; Pθ).
Consider the map

(2.2) Φγ
s,· : C([s, T ]; Pθ)→ C([s, T ]; Pθ); Φγ

s,t(µ) := LXγ,µ
s,t
, t ∈ [s, T ], µ ∈ C([s, T ]; Pθ).

It is easy to see that if µs = γ and µ is a fixed point of Φγ
s,· (i.e. Φγ

s,t(µ) = µt, t ∈ [s, T ]),
then (Xγ,µ

s,t )t∈[s,T ] is a solution of (1.2) with initial distribution γ at time s.
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To prove the existence and uniqueness of the fixed point for Φγ
s,·, we investigate the

contraction of this map with respect to the complete metric

‖µ− ν‖s,t,θ,TV := sup
r∈[s,t]

‖µr − νr‖θ,TV , µ, ν ∈ C([s, t]; Pθ), 0 ≤ s < t ≤ T

in a subspace of C([s, t]; Pθ) which contains all distributions of solutions to (2.1) up to time
t. To this end, in the following we first study the Ws,t,θ-estimate on Φγ

s,· for

Ws,t,θ(µ, ν) = sup
r∈[s,t]

Wθ(µr, νr), 0 ≤ s ≤ t ≤ T, µ, ν ∈ C([s, t]; Pθ),

then present Φγ
s,·-invariant subspaces of C([s, t]; Pθ), and finally study the ‖ · ‖s,t,θ,TV -

contraction of this map in such an invariant subspace which implies the well-posedness
of (1.2).

2.1 Ws,t,θ-estimate on Φγ
s,·

For any N > 0 and 0 ≤ s ≤ t ≤ T , let

Pθ,N =
{
γ ∈Pθ : ‖γ‖θ ≤ N

}
,

Ps,t
θ,N :=

{
µ ∈ C([s, t]; Pθ) : ‖µr‖θ ≤ N, r ∈ [s, t]

}
.

Lemma 2.1. Assume (A).

(1) For any s ∈ [0, T ) and µ ∈ C([s, T ]; Pθ), (2.1) is well-posed for initial distributions in
Pθ, and the unique solution satisfies LXγ,µ

s,· ∈ C([s, T ]; Pθ).

(2) There exist a constant ε ∈ (0, 1] and a function K : (0,∞)→ (0,∞) such that for any
γ ∈Pθ,N and 0 ≤ s ≤ t ≤ T, the map Φγ

s,· : C([s, t]; Pθ)→ C([s, t]; Pθ) satisfies

Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν)) ≤ KN(t− s)ε‖µ− ν‖s,t,θ,TV , N > 0, µ, ν ∈Ps,t
θ,N .

Proof. (1) Simply denote

bνt (x) = bt(x, νt), σνt (x) = σt(x, νt), ν ∈ C([s, T ]; Pθ), t ∈ [s, T ].

Let Xγ
s,s be Fs-measurable with LXγ

s,s
= γ, and let µ, ν ∈ Ps,T

θ,N for some N > 0. For
ν̄, µ̄ ∈ C([s, T ]; Pθ), consider the SDEs

(2.3) dXγ,µ,µ̄
s,t = bµt (Xγ,µ,µ̄

s,t )dt+ σµ̄t (Xγ,µ,µ̄
s,t )dWt, Xγ,µ,µ̄

s,s = Xγ
s,s, t ∈ [s, T ],

(2.4) dXγ,ν,ν̄
s,t = bνt (X

γ,ν,ν̄
s,t )dt+ σν̄t (Xγ,ν,ν̄

s,t )dWt, Xγ,ν,ν̄
s,s = Xγ

s,s, t ∈ [s, T ].

According to [19], both SDEs are well-posed under assumption (A). For any λ ≥ 0, consider
the following PDE for u : [0, T ]× Rd → Rd:

(2.5)
∂ut
∂t

+
1

2
Tr(σµ̄t (σµ̄t )∗∇2ut) + {∇ut}bµt + bµt = λut, t ∈ [s, T ], uT = 0.

5



According to [17, Theorem 3.1], for large enough λ > 0 depending on N via µ ∈Ps,T
θ,N , (A1)

and (A2) imply that (2.5) has a unique solution uλ,µ,µ̄ satisfying

(2.6) sup
µ∈Ps,T

θ,N

‖∇2uλ,µ,µ̄‖L̃pq(T ) ≤ L

for some constant L > 0 depending on λ and N , and

sup
µ∈Ps,T

θ,N

(‖uλ,µ,µ̄‖∞ + ‖∇uλ,µ,µ̄‖∞) ≤ 1

5
.(2.7)

Let Θλ,µ,µ̄
t (x) = x+ uλ,µ,µ̄t (x), (t, x) ∈ [s, T ]× Rd. By [17, Lemma 4.1 (iii)], we have

dΘλ,µ,µ̄
t (Xγ,µ,µ̄

s,t ) = λuλ,µ,µ̄t (Xγ,µ,µ̄
s,t )dt+ ({∇Θλ,µ,µ̄

t }σµ̄t )(Xγ,µ,µ̄
s,t ) dWt,

dΘλ,µ,µ̄
t (Xγ,ν,ν̄

s,t ) =
[
λuλ,µ,µ̄t + {∇Θλ,µ,µ̄

t }(bνt − b
µ
t )
]
(Xγ,ν,ν̄

s,t )dt

+
1

2

[
Tr{σν̄t (σν̄t )∗ − σµ̄t (σµ̄t )∗}∇2uλ,µ,µ̄t

]
(Xγ,ν,ν̄

s,t ) + ({∇Θλ,µ,µ̄
t }σν̄t )(Xγ,ν,ν̄

s,t ) dWt.

where by (2.7) and γ ∈Pθ the first equation implies E
[

supt∈[s,T ] |X
γ,µ,µ̄
s,t |θ

]
<∞, so that

(2.8) LXγ,µ,µ̄
s,·
∈ C([s, T ]; Pθ), µ̄ ∈ C([s, T ]; Pθ).

Moreover, combining these two equations with (A), we find a constant c1 > 1 depending on
N such that ηs,t := |Xγ,µ,µ̄

s,t −Xγ,ν,ν̄
s,t | satisfies

c−1
1 ηs,t ≤

∣∣Θλ,µ,µ̄
t (Xγ,µ,µ̄

s,t )−Θλ,µ,µ̄
t (Xγ,ν,ν̄

s,t )
∣∣

≤ c1

∫ t

s

{
ηs,r + ‖µr − νr‖θ,TV (1 + fr(X

γ,ν,ν̄
s,r ))

+ Wθ(µ̄r, ν̄r)‖∇2uλ,µ,µ̄r (Xγ,ν,ν̄
s,r )‖

}
dr +

∣∣∣∣ ∫ t

s

ΞrdWr

∣∣∣∣,
(2.9)

where Ξr := ({∇Θλ,µ,µ̄
r }σµ̄r )(Xγ,µ,µ̄

s,r )− ({∇Θλ,µ,µ̄
r }σν̄r )(Xγ,ν,ν̄

s,r ) satisfies

‖Ξr‖ ≤ c1ηs,r + c1Wθ(µ̄r, ν̄r) + c1‖∇uλ,µ,µ̄r (Xγ,µ,µ̄
s,r )−∇uλ,µ,µ̄r (Xγ,ν,ν̄

s,r )‖.(2.10)

Since ηs,s = 0, by (2.9), (2.10) and (A1), for 2m > θ, we find a constant c2 > 0 depending
on N and a local martingale (Mt)t∈[s,T ] such that

η2m
s,t ≤ c2

∫ t

s

η2m
s,r dAr + c2

∫ t

s

Wθ(µ̄r, ν̄r)
2mdr

+ c2‖µ− ν‖2m
s,t,θ,TV

∣∣∣∣∫ t

s

(1 + fr(X
γ,ν,ν̄
s,r ))dr

∣∣∣∣2m +Mt, t ∈ [s, T ]

(2.11)

holds for

At :=

∫ t

s

{
1 +K2 + ‖∇2uλ,µ,µ̄r ‖(Xγ,ν,ν̄

s,r )
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+
[(

M |∇2uλ,µ,µ̄r |
)
(Xγ,µ,µ̄

s,r ) +
(
M |∇2uλ,µ,µ̄r |

)
(Xγ,ν,ν̄

s,r )
]2}

dr,

M g(x) := sup
r∈[0,1]

1

|B(x, r)|

∫
B(x,r)

g(y)dy, g ∈ L1
loc(Rd),

B(x, r) := {y ∈ Rd : |x− y| ≤ r}, x ∈ Rd.

By Krylov’s and Khasminskii’s estimates [17, (4.1),(4.2)] and (2.6), and applying the s-
tochastic Gronwall inequality [18, Lemma 3.8], we find constants c3 > 0 depending on N
such that (2.11) yields

{Wθ(LXγ,µ,µ̄
s,t

,LXγ,ν,ν̄
s,t

)}2m ≤ (Eηθs,t)
2m
θ(2.12)

≤ c3

(∫ t

s

Wθ(µ̄r, ν̄r)
2mdr + ‖µ− ν‖2m

s,t,θ,TV (t− s)2mε

)
, t ∈ [s, T ]

for some ε ∈ (0, 1). Taking µ = ν gives

Ws,t,θ(LXγ,µ,µ̄
s,t

,LXγ,µ,ν̄
s,t

) ≤ {c3(t− s)}
1

2mWs,t,θ(µ̄, ν̄), t ∈ [s, T ].

Letting t0 = 1
2c4

, we conclude from this and (2.8) that the map

µ̄ 7→ LXγ,µ,µ̄
s,·

is contractive in C([s, (s+ t0) ∧ T ]; Pθ) under the complete metric Ws,(s+t0)∧T,θ. Therefore,
it has a unique fixed point µ̄ = LXγ,µ,µ̄

s,·
∈ C([s, (s+ t0)∧T ]; Pθ), so that Xγ,µ,µ̄

s,· is the unique

solution of (2.1) up to time (s + t0) ∧ T . Due to this and the well-posedness of (2.3), tthe
modified Yamada-Watanabe principle [9, Lemma 2.1] also implies the well-posedness of (2.1)
up to time (s+ t0)∧ T for initial distributions in Pθ. So, if s+ t0 ≥ T then we have proved
the first assertion. Otherwise, by the same argument we may consider (2.1) from time s+ t0
to conclude that it is well-posed up to time (s + 2t0) ∧ T . Repeating finite many times we
prove the well-posedness of (2.1) up to time T .

(2) By taking µ̄ = Φγ
s,·(µ), ν̄ = Φγ

s,·(ν) in (2.12), and applying Gronwall’s inequality, we
find a constant C > 0 depending on N such that

Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν))2m ≤ C(t− s)2mε‖µ− ν‖2m
s,t,θ,TV , t ∈ [s, T ], µ, ν ∈Ps,t

θ,N .

This finishes the proof.

2.2 Invariant subspaces of Φγ
s,·

Lemma 2.2. Assume (A). There exists a constant N0 > 0 such that for any N ≥ N0 and
0 ≤ s < t ≤ T , γ ∈Pθ, the class

Ps,t,γ
θ,N :=

{
µ ∈ C([s, t]; Pθ) : µs = γ, sup

r∈[s,t]

(1 + ‖µr‖θ)e−N(r−s) ≤ 2(1 + ‖γ‖θ)
}

is Φγ
s,·-invariant, i.e. µ ∈Ps,t,γ

θ,N implies Φγ
s,·(µ) ∈Ps,t,γ

θ,N .
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Proof. Simply denote ξr = Xγ,µ
s,r ,Mr =

∫ r
s
σu(ξu,Lξu)dWu, r ∈ [s, T ]. By (A), (2.1), and

µ ∈Ps,t,γ
θ,N , we have

|ξr|e−N(r−s) ≤ |ξ0|e−N(r−s) + e−N(r−s)
∫ r

s

(1 + ‖µu‖θ)fu(ξu)du+ e−N(r−s)∣∣Mr

∣∣
≤ |ξ0|e−N(r−s) + 2(1 + ‖γ‖θ)

∫ r

s

e−N(r−u)fu(ξu)du+ e−N(r−s)∣∣Mr

∣∣.
Let q′ ∈ (1, q) such that (p, q′) ∈ K . Combining this with Krylov’s estimate [17, (4.1),(4.2)],
the BDG inequality, and ‖σσ∗‖ ≤ K, we find a constant c1 > 0 such that

e−N(r−s)‖Φγ
s,r(µ)‖θ = e−N(r−s)(E|ξr|θ)

1
θ

≤e−N(r−s)‖γ‖θ + 2(1 + ‖γ‖θ)
(
E
∣∣∣∣ ∫ r

s

e−N(r−u)fu(ξu)du

∣∣∣∣θ) 1
θ

+ e−N(r−s)(E|Mr|θ
) 1
θ

≤e−N(r−s)‖γ‖θ + c1(1 + ‖γ‖θ)
(
‖e−N(r−·)f‖

L̃q
′
p ([s,r])

+ e−N(r−s)√r − s
)
, r ∈ [s, t].

(2.13)

Noting that Hölder’s inequality yields

sup
s∈[0,T ),r∈[s,T ]

‖e−N(r−·)f‖
L̃q
′
p ([s,r])

≤ sup
s∈[0,T ),r∈[s,T ]

(∫ r

s

e
−N(r−u) qq′

q−q′ du

) q−q′
qq′

‖f‖L̃qp([T ])

≤
(
N

qq′

q − q′

)− q−q′
qq′

‖f‖L̃qp(T ),

we obtain
lim
N→∞

sup
s∈[0,T ),r∈[s,T ]

(
‖e−N(r−·)f‖

L̃q
′
p ([s,r])

+ e−N(r−s)√r − s
)

= 0.

Combining this with (2.13), we find a constant N0 > 0 such that

sup
r∈[s,t]

(1 + ‖Φγ
s,r(µ)‖θ)e−N(r−s) ≤ 2(1 + ‖γ‖θ), N ≥ N0, µ ∈Ps,t,γ

θ,N .

That is, Φγ
s,·(µ) ∈Ps,t,γ

θ,N for N ≥ N0 and µ ∈Ps,t,γ
θ,N .

2.3 ‖ · ‖s,t,θ,TV -contraction of Φγ
s,·

To prove the ‖ · ‖s,t,θ,TV -contraction of Φγ
s,·, for any µ ∈ C([s, T ]; Pθ), we make use of the

parameter expansion of pγ,µs,t with respect to the heat kernel of a frozen SDE whose solution
is a Gaussian Markov process, where pγ,µs,t (x, ·) is the distribution density function of the
unique solution to the SDE

dXx,γ,µ
s,t = bt(X

x,γ,µ
s,t , µt)dt+ σt(X

x,γ,µ
s,t ,Φγ

s,t(µ))dWt, t ∈ [s, T ], Xx,γ,µ
s,s = x.(2.14)
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According to [19], (A) is enough to ensure the well-posedness of this SDE. By the standard
Markov property of solutions to (2.14), the solution to (2.1) satisfies

(2.15) Ef(Xγ,µ
s,t ) =

∫
Rd
γ(dx)

∫
Rd
f(y)pγ,µs,t (x, y)dy, t > s, f ∈ Bb(Rd), γ ∈Pθ,

where Bb(Rd) is the class of bounded measurable functions on Rd.
For any z ∈ Rd, t ∈ [s, T ] and µ ∈ C([s, t]; Pθ), let pγ,µ,zs,r (x, ·) be the distribution density

function of the random variable

Xx,γ,µ,z
s,r := x+

∫ r

s

σu(z,Φ
γ
s,u(µ))dWu, r ∈ [s, t], x ∈ Rd.

Let

(2.16) aγ,µ,zs,r :=

∫ r

s

(σuσ
∗
u)(z,Φ

γ
s,u(µ))du, r ∈ [s, t].

Then

(2.17) pγ,µ,zs,r (x, y) =
exp[−1

2
〈(aγ,µ,zs,r )−1(y − x), y − x〉]

(2π)
d
2 (det{aγ,µ,zs,r })

1
2

, x, y ∈ Rd, r ∈ (s, t].

Obviously, (A1) implies

‖aγ,µ,zs,r − aγ,ν,zs,r ‖ ≤ K(r − s)Ws,r,θ

(
Φγ
s,·(µ),Φγ

s,·(ν)
)
,

1

K(r − s)
≤ ‖(aγ,µ,zs,r )−1‖ ≤ K

r − s
, r ∈ [s, t].

(2.18)

For any r ∈ [s, t) and y, z ∈ Rd, let

Hγ,µ
r,t (y, z) :=

〈
−br(y, µr),∇pγ,µ,zr,t (·, z)(y)

〉
+

1

2
tr
[{

(σrσ
∗
r)(z,Φ

γ
s,r(µ))− (σrσ

∗
r)(y,Φ

γ
s,r(µ))

}
∇2pγ,µ,zr,t (·, z)(y)

]
.

(2.19)

By (A), we have the parameter expansion formula

(2.20) pγ,µs,t (x, z) = pγ,µ,zs,t (x, z) +
∞∑
m=1

∫ t

s

dr

∫
Rd
Hγ,µ,m
r,t (y, z)pγ,µ,zs,r (x, y)dy,

where Hγ,µ,m
r,t for m ∈ N are defined by

Hγ,µ,1
r,t := Hγ,µ

r,t ,

Hγ,µ,m
r,t (y, z) :=

∫ t

r

du

∫
Rd
Hγ,µ,m−1
u,t (z′, z)Hγ,µ

r,u (y, z′)dz′, m ≥ 2.
(2.21)

Note that (2.20) follows from the parabolic equations for the heat kernels pγ,µs,t and pγ,µ,zs,t , see
for instance the paragraph after [11, Lemma 3.1] for an explanation.
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Let

(2.22) p̃Ks,r(x, y) =
exp[− 1

4K(r−s) |y − x|
2]

(4Kπ(r − s)) d2
, x, y ∈ Rd, r ∈ (s, t].

By multiplying the time parameter with T−1 to make it stay in [0, 1], we deduce from [21,
(2.3), (2.4)] with β = β′ = 1 and λ = 1

8KT
that∫ t

s

∫
Rd
p̃Ks,r(x, y

′)(r − s)−
1
2 gr(y

′)(t− r)−
1
2 p̃2K

r,t (y′, y)dy′

≤ c(t− s)−
1
2

+ 1
2

(1− d
p
− 2
q

)p̃2K
s,t (x, y)‖g‖L̃qp([s,t]), 0 ≤ s ≤ t ≤ T, g ∈ L̃qp([s, t])

(2.23)

holds for some constant c > 0 depending on T, d, p, q and K. By (A1) and (2.17), there
exists a constant c1 > 0 such that

pγ,µ,zs,t (x, y)

(
1 +
|x− y|4

(t− s)2

)
≤ c1p̃

K
s,t(x, y), x, y, z ∈ Rd, 0 ≤ s ≤ t ≤ T, γ ∈Pθ, µ ∈ C([s, t]; Pθ).

(2.24)

Lemma 2.3. Assume (A1). There exists a constant c > 0 such that for any 0 ≤ s < t ≤
T, x, y, z ∈ Rd, γ ∈Pθ, and µ, ν ∈ C([s, t]; Pθ),(

1 +
|x− y|2

t− s

)
|pγ,µ,zs,t (x, y)− pγ,ν,zs,t (x, y)| ≤ cp̃Ks,t(x, y)Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)),(2.25)

(2.26)
√
t− s|∇pγ,µ,zs,t (·, y)(x)|+ (t− s)‖∇2pγ,µ,zs,t (·, y)(x)‖ ≤ cp̃Ks,t(x, y),

√
t− s|∇pγ,µ,zs,t (·, y)(x)−∇pγ,ν,zs,t (·, y)(x)|

+ (t− s)‖∇2pγ,µ,zs,t (·, y)(x)−∇2pγ,ν,zs,t (·, y)(x)‖
≤ cp̃Ks,t(x, y)Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)).

(2.27)

Proof. (1) Let F (a, µ) = 〈(aµ,zs,t )−1(y− x), y− x〉 and F (a, ν) be defined with ν in place of µ.
It is easy to see that

|pγ,µ,zs,t (x, y)− pγ,ν,zs,t (x, y)|

=

∣∣∣∣∣ exp[−1
2
F (a, µ)]

(2π)
d
2 (det{aµ,zs,t })

1
2

−
exp[−1

2
F (a, ν)]

(2π)
d
2 (det{aν,zs,t })

1
2

∣∣∣∣∣
≤
∣∣exp[−1

2
F (a, µ)]− exp[−1

2
F (a, ν)]

∣∣
(2π)

d
2 (det{aµ,zs,t })

1
2

+
exp[−1

2
F (a, ν)]

(2π)
d
2

∣∣∣(det{aµ,zs,t })−
1
2 − (det{aν,zs,t })−

1
2

∣∣∣
=: I1 + I2, y ∈ Rd, t > s.

(2.28)
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Combining this with (A1) which implies (2.18), we find a constant c1 > 0 such that

|F (a, µ)− F (a, ν)| =
∣∣〈{(aµ,zs,t )−1 − (aν,zs,t )

−1}(y − x), y − x〉
∣∣

≤ c1
|y − x|2

t− s
Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)),

which together with (2.24) yields that for some constant c2 > 0,(
1 +
|x− y|2

t− s

)
I1 ≤ c2p̃

K
s,t(x, y)Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)).

Next, by (2.18) and (2.24), we find a constant c3 > 0 such that(
1 +
|x− y|2

t− s

)
I2 ≤ c3p̃

K
s,t(x, y)Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)).

Combining these with (2.28), we arrive at(
1 +
|x− y|2

t− s

)
|pγ,µ,zs,t (x, y)− pγ,ν,zs,t (x, y)| ≤ (c2 + c3)p̃Ks,t(x, y)Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν)).

(2) By (2.17) we have

(2.29) ∇pγ,µ,zs,t (·, y)(x) = (aµ,zs,t )−1(y − x)pγ,µ,zs,t (x, y),

∇2pγ,µ,zs,t (·, y)(x) = pγ,µ,zs,t (x, y)
({

(aµ,zs,t )−1(y − x)
}
⊗
{

(aµ,zs,t )−1(y − x)
}
− (aµ,zs,t )−1

)
(2.30)

So, by (2.18) and (2.24) we find a constant c > 0 such that (2.26) holds. Moreover, (2.29)
implies

|∇pγ,µ,zs,t (·, y)(x)−∇pγ,ν,zs,t (·, y)(x)|
≤
∣∣{(aµ,zs,t )−1 − (aν,zs,t )

−1}(y − x)
∣∣ pγ,µ,zs,t (x, y) +

∣∣{pγ,µ,zs,t (x, y)− pγ,ν,zs,t (x, y)}(aν,zs,t )−1(y − x)
∣∣.

Combining this with (2.18), (2.24) and (2.25), we find a constant c > 0 such that

|∇pγ,µ,zs,t (·, y)(x)−∇pγ,ν,zs,t (·, y)(x)| ≤
cWs,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν))
√
t− s

p̃Ks,t(x, y).

Similarly, combining (2.30) with (2.18), (2.24) and (2.25), we find a constant c > 0 such that

‖∇2pγ,µ,zs,t (·, y)(x)−∇2pγ,ν,zs,t (·, y)(x)‖ ≤
cWs,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν))

t− s
p̃Ks,t(x, y).

Therefore, (2.27) holds for some constant c > 0.

For 0 ≤ s ≤ t ≤ T, γ ∈Pθ and µ, ν ∈ C([s, t]; Pθ), let

(2.31) Λs,t,γ(µ, ν) = Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν)) + ‖µ− ν‖s,t,θ,TV .
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Lemma 2.4. Assume (A). Let

δ =
1

2

(
1− d

p
− 2

q

)
> 0,

Sµs,t := sup
r∈[s,t]

(1 + ‖µr‖θ),

Sµ,νs,t := Sµs,t ∨ Sνs,t, 0 ≤ s ≤ t ≤ T, µ ∈ C([0, T ]; Pθ).

Then there exists a constant C ≥ 1 such that for any 0 ≤ s ≤ t ≤ T , y, z ∈ Rd, µ, ν ∈
C([0, T ]; Pθ), and m ≥ 1,

(2.32) |Hγ,µ,m
s,t (y, z)| ≤ fs(y)(CSµs,t)

m(t− s)−
1
2

+δ(m−1)p̃2K
s,t (x, y),

‖Hγ,µ,m
s,t (y, z)−Hγ,ν,m

s,t (y, z)‖
≤ mfs(y)(CSµ,νs,t )m(t− s)−

1
2

+δ(m−1)p̃2K
s,t (x, y)Λs,t,γ(µ, ν).

(2.33)

Proof. (1) By (2.19), (2.26) and (A1)-(A2), we find a constant c1 > 0 such that for any
0 ≤ s < t ≤ T, µ ∈ C([0, T ]; Pθ) and y, z ∈ Rd,

|Hγ,µ
s,t (y, z)| ≤ c1(t− s)−

1
2{(1 + ‖µs‖θ)fs(y)}p̃Ks,t(y, z).(2.34)

So, (2.32) holds for m = 1 and C = c1. Thanks to [21, (2.3), (2.4)] with β = β′ = 1, λ = 1
8K

,
we have

Ik :=

∫ t

s

∫
Rd

(t− u)−
1
2 (t− u)δ(k−1)p̃2K

u,t (y, z)fu(y)(u− s)−
1
2 p̃Ks,u(x, y)dydu

≤ c2(t− s)−
1
2 p̃2K

s,t (x, z)(t− s)
1
2

(1− d
p
− 2
q

)‖f‖L̃qp([s,t])(t− s)
δ(k−1)(2.35)

= c3(t− s)−
1
2 p̃2K

s,t (x, z)(t− s)δk. 0 ≤ s < t ≤ T, k ≥ 1

where c3 := c2‖f‖L̃qp([s,t]). Let C := 1 ∨ c2
1 ∨ (4c2

3). If for some k ≥ 1 we have

|Hγ,µ,k
s,t (y, z)| ≤ (CSµs,t)

kfs(y)p̃2K
s,t (y, z)(t− s)−

1
2

+δ(k−1)

for all y, z ∈ Rd and 0 ≤ s ≤ t ≤ T , then by combining with (2.34) and (2.35), we arrive at

|Hγ,µ,k+1
s,t (y, z)| ≤

∫ t

s

du

∫
Rd
|Hγ,µ,k

u,t (z′, z)Hγ,µ
s,u (y, z′)|dz′

≤ Ck
√
C(Sµs,t)

k+1fs(y)Ik

≤ Ck+1(Sµs,t)
k+1fs(y)(t− s)−

1
2

+δkp̃2K
s,t (y, z).

Therefore, (2.32) holds for all m ≥ 1.
(2) By (2.26), (2.27), (2.18) and (A1)-(A2), we find a constant c > 0 such that for any

0 ≤ s < t ≤ T, µ, ν ∈ C([0, T ]; Pθ) and y, z ∈ Rd,

|Hγ,µ
s,t (y, z)−Hγ,ν

s,t (y, z)|
≤ c(t− s)−

1
2 p̃Ks,t(y, z)S

µ,ν
s,t fs(y)

(
‖µ− ν‖s,t,θ,TV + Ws,t,θ(Φ

γ
s,·(µ),Φγ

s,·(ν))
)(2.36)
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Let, for instance, L = 1 + 4C2 + 4c2, where C is in (2.32). If for some k ≥ 1 we have

‖Hγ,µ,k
s,t (z′, z)−Hγ,ν,k

s,t (z′, z)‖ ≤ k(LSµ,νs,t )kfs(z
′)p̃2K

s,t (z′, z)(t− s)−
1
2

+δ(k−1)Λs,t,γ(µ, ν),

for any 0 ≤ s < t ≤ T and z, z′ ∈ Rd, then (2.32), (2.35) and (2.36) imply

‖Hγ,µ,k+1
s,t (y, z)−Hγ,ν,k+1

s,t (y, z)‖

≤
∫ t

s

dr

∫
Rd

{
‖Hγ,µ,k

r,t (z′, z)−Hγ,ν,k
r,t (z′, z)‖ · |Hγ,µ

s,r (y, z′)|

+ |Hγ,ν,k
r,t (z′, z)| · ‖Hγ,µ

s,r (y, z′)−Hγ,ν
s,r (y, z′)‖

}
dz′

≤ (k + 1)(LSµ,νs,t )k+1fs(y)p̃2K
s,t (y, z)(t− s)−

1
2

+δkΛs,t,γ(µ, ν).

Therefore, (2.33) holds for some constant C > 0.

We are now ready to prove the following main result in this part, which ensures the
‖ · ‖s,t,θ,TV -contraction of Φγ

s,· for small t− s.

Lemma 2.5. Assume (A). There exist constants ε0, ε ∈ (0, 1) and a function φ : (0,∞)→
[0,∞) such that

‖Φγ
s,·(µ)− Φγ

s,·(ν)‖s,t,θ,TV ≤ φ(N)(t− s)ε‖µ− ν‖s,t,θ,TV γ
(
1 + | · |θ

)
holds for any N > 0, s ∈ [0, T ), t ∈ [s, (s+ ε0N

−1/δ) ∧ T ], µ, ν ∈Ps,t
θ,N and γ ∈Pθ,N .

Proof. By Lemma 2.1, for any N > 0, we find a constant φ1(N) > 0 such that

Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν))

≤ φ1(N)(t− s)ε‖µ− ν‖s,t,θ,TV , 0 ≤ s ≤ t ≤ T, µ, ν ∈Ps,t,γ
θ,N , γ ∈Pθ,N .

Combining this with (2.24), Lemma 2.3-Lemma 2.4, (2.20), (2.23) and (A2), we find φ2(N) >
0 such that for ε := ε ∧ δ and ε0 := (2C)−1/δ,

|pγ,µs,t (x, z)− pγ,νs,t (x, z)|

≤ cp̃Ks,t(x, z)Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν)) +
∞∑
m=1

∫ t

s

dr

∫
Rd
|Hγ,µ,m

r,t (y, z)−Hγ,ν,m
r,t (y, z)|pγ,ν,zs,r (x, y)dy

+
∞∑
m=1

∫ t

s

dr

∫
Rd
|Hγ,µ,m

r,t (y, z)||pγ,µ,zs,r (x, y)− pγ,ν,zs,r (x, y)|dy

≤ cp̃Ks,t(x, z)Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν))

+
∞∑
m=1

(m+ 1)(CN)mΛs,t,γ(µ, ν)(t− s)
1
2

+δ(m−1)

×
∫ t

s

∫
Rd

(t− r)−
1
2 p̃2K

r,t (y, z)fr(y)(r − s)−
1
2 p̃Ks,r(x, y)dydr

13



≤ cp̃Ks,t(x, z)Ws,t,θ(Φ
γ
s,·(µ),Φγ

s,·(ν))

+ (t− s)δΛs,t,γ(µ, ν)p̃2K
s,t (x, z)

∞∑
m=1

(m+ 1)(CN)m(t− s)δ(m−1)

≤ φ2(N)(t− s)ε‖µ− ν‖s,t,θ,TV p̃2K
s,t (x, z), x, z ∈ Rd

holds for any N > 0, 0 ≤ s ≤ t ≤ (s + ε0N
−1/δ) ∧ T, µ, ν ∈ Ps,t,γ

θ,N , and γ ∈ Pθ,N . So, by
(2.22) and the definitions of Φγ

s,t and ‖ · ‖θ,TV , we find a constant φ(N) > 0 such that

‖Φγ
s,t(µ)− Φγ

s,t(ν)‖θ,TV

= sup
|g|≤1+|·|θ

∣∣∣∣∫
Rd

∫
Rd
g(z)pγ,µs,t (x, z)dzγ(dx)−

∫
Rd

∫
Rd
g(z)pγ,νs,t (x, z)dzγ(dx)

∣∣∣∣
≤ φ2(N)(t− s)ε‖µ− ν‖s,t,θ,TV

∫
Rd×Rd

(1 + |z|θ)p̃2K
s,t (x, z)dzγ(dx)

≤ φ(N)γ
(
1 + | · |θ

)
(t− s)ε‖µ− ν‖s,t,θ,TV , t ∈ [s, (s+ ε0N

−1/δ) ∧ T ].

Then the proof is finished.

3 Proof of Theorem 1.2

To prove Theorem 1.2 using the contraction result Lemma 2.5, we need the following priori-
estimates on the solution of (1.2).

Lemma 3.1. Assume (A) and let m > θ. Then there exists a constant N1 > 0 such that for
any s ∈ [0, T ), Xs,s ∈ Lm(Ω → Rd,Fs,P), and T ′ ∈ (0, T ] , a solution (Xs,t)t∈[s,T ′] of (1.2)
with initial value at Xs,s from s up to T ′ satisfies

E
[

sup
t∈[s,T ′]

(1 + |Xs,t|2)
θ
2

]
≤ eN1T ′

(
E(1 + |Xs,s|2)

m
2

) θ
m , t ∈ [s, T ′].

Proof. Without loss of generality, we may and do assume that s = 0 and denote Xt = X0,t.
By Itô’s formula, (A2) and the boundedness of σ, there exists a constant c2 > 0 such that

d(1 + |Xt|2)
m
2

≤ m

2
(1 + |Xt|2)

m
2
−1
(
2〈Xt, bt(Xt,LXt)〉dt+ ‖σt(Xt,LXt)‖2

HSdt
)

+
m

4
(
m

2
− 1)(1 + |Xt|2)

m
2
−2|σt(Xt,LXt)

∗Xt|2dt

+m(1 + |Xt|2)
m
2
−1〈Xt, σt(Xt,LXt)dWt〉

≤ mK(1 + |Xt|2)
m
2 ft(Xt)dt+ (1 + ‖LXt‖θ)mft(Xt)dt+ c2dt

+m(1 + |Xt|2)
m
2
−1〈Xt, σt(Xt,LXt)dWt〉.
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Thanks to Krylov’s estimate and Khasminskii’s estimate [17, (4.1),(4.2)], (A1)-(A2) and the
stochastic Gronwall inequality [18, Lemma 3.8] yield(

E sup
t∈[0,T ′]

(1 + |Xt|2)
θ
2

)m
θ

≤ eN1T ′E(1 + |X0|2)
m
2

for some constant N1 > 0 independent of X0 and T ′ ∈ [0, T ].

Proof of Theorem 1.2. Since (1.3) is implied by Lemma 3.1, we only prove the well-posedness
of (1.2) for initial distributions in Pm for somem > θ. Since according to [17] the assumption
(A) implies the well-posedness of the SDE

dXµ
t = bµt (Xµ

t ) + σµt (Xµ
t )dWt, Xµ

0 = X0

for µ ∈ C([0, T ]; Pθ) and E|X0|θ < ∞, by the modified Yamada-Watanabe principle [9,
Lemma 2.1] we only need to prove the strong well-posedness of (1.2) with an initial value
X0 such that E|X0|m <∞.

(1) Let N0 and N1 be in Lemmas 2.2 and 3.1 respectively. Take

(3.1) N = max
{
N0, e

N1(1+T )E(1 + |X0|2)
θ
2

}
.

Since N ≥ N0, Lemma 2.2 implies

Φγ
s,· : Ps,t,γ

θ,N →Ps,t,γ
θ,N , 0 ≤ s ≤ t ≤ T.

Moreover, by Lemma 2.5, there exists constant C > 0 depending on N such that

‖Φγ
s,·(µ)− Φγ

s,·(ν)‖s,t,θ,TV
≤ C(t− s)ε‖µ− ν‖s,t,θ,TV , µ, ν ∈Ps,t,γ

θ,N , γ ∈Pθ,N , t ∈ [s, (s+ ε0N
− 1
δ ) ∧ T ].

Taking t0 ∈ (0, ε0N
− 1
δ ) such that Ct0 < 1, we conclude that Φγ

s,· is contractive in Ps,(s+t0)∧T,γ
θ,N

for any s ∈ [0, T ) and γ ∈ Pθ,N . Below we prove that this implies the existence and
uniqueness of solution of (1.2).

(2) Let s = 0 and γ = LX0 . By (1) and the fixed point theorem, there exists a unique
µ ∈ P0,t0∧T,γ

θ,N such that µt = Φγ
s,t(µ) for t ∈ [0, t0 ∧ T ]. Combining this with the definition

of Φγ
s,t(µ), we conclude that Xγ,µ

s,t is a solution of (1.2) up to time t0 ∧ T . Moreover, it is
easy to see that the distribution of a solution to (1.2) is a fixed point of the map Φγ

0,·, and

by Lemma 3.1 and (3.1) a solution of (1.2) up to time t0 ∧ T must in the space P0,t0∧T,γ
θ,N .

Therefore, (1.2) has a unique solution up to time t0 ∧ T .
(3) If t0 ≥ T then the proof is done. Assume that for some integer k ≥ 1 the equation

(1.2) has a unique solution (Xt)t∈[0,kt0] up to time kt0 ≤ T , we take s = kt0 and γ =
LXkt0

. By Lemma 3.1 and (3.1), we have γ ∈Pθ,N , so that Φγ
kt0,{(k+1)t0}∧T is contractive in

Pkt0,{(k+1)t0}∧T,γ
θ,N . Hence, as explained in (2) that the SDE (1.2) has a unique solution from

time s = kt0 up to {(k + 1)t0} ∧ T . This together with the assumption we conclude that
(1.2) has a unique solution up to time {(k + 1)t0} ∧ T. In conclusion, we have proved the
existence and uniqueness of solution to (1.2).
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