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Abstract. Consider the following McKean-Vlasov SDE:

dXt =
√

2dWt +

∫
Rd
K(t,Xt − y)µXt (dy)dt, X0 = x,

where µXt stands for the distribution of Xt and K(t, x) : R+ × Rd → Rd

is a time-dependent divergence free vector field. Under the assumption K ∈
Lq
t (L̃p

x) with d
p

+ 2
q
< 2, where L̃p

x stands for the localized Lp-space, we show

the existence of weak solutions to the above SDE. As an application, we provide

a new proof for the existence of weak solutions to 2D-Navier-Stokes equations

with measure as initial vorticity.
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1. Introduction

Consider the following two dimensional Naver-Stokes equation:

du = ∆u + u · ∇u+∇p, divu = 0, (1.1)

where u = (u1, u2) stands for the velocity field, and p stands for the pressure. Let
ρ := curlu = ∂1u2 − ∂2u1 be the vorticity of u. It is easy to see that

∂tρ = ∆ρ+ u · ∇ρ = ∆ρ+ div(ρ · u).

Moreover, by the Biot-Savart law we have (cf. [9])

u(t, x) =

∫
R2

K2(x− y)ρ(t, y)dy =: K2 ∗ ρ(t, x),

where

K2(x) := 1
2π

(
−x2

|x|2 ,
x1

|x|2

)
. (1.2)

In other words, ρ solves the following nonlinear integral-differential equation:

∂tρ = ∆ρ+ div(ρ ·K2 ∗ ρ). (1.3)

Notice that the kernel function K2 is of homogeneous of degree −1, and∫
R2

|K2(x)|pdx =∞, p ∈ [1,∞]. (1.4)
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Suppose that ρ(0, x) > 0 and
∫
R2 ρ(0, x)dx = 1. By the maximum principle and

integrating both sides of (1.3) with respect to x, we obtain that for any t > 0,

ρ(t, x) > 0,

∫
R2

ρ(t, x)dx =

∫
R2

ρ(0, x)dx = 1,

which means that ρ(t, ·)t>0 is a family of probability measures. By the superposition
principle [15], there would be a weak solution to the following McKean-Vlasov SDEs:

dXt =

[∫
R2

K2(Xt − y)ρ(t, y)dy

]
dt+

√
2dWt, X0 = x, (1.5)

where W is a two-dimensional standard Brownian motion and ρ(t, ·) is the distri-
butional density of Xt. On the other hand, if Xt solves the nonlinear SDE (1.5), by
Itô’s formula, the law of Xt will solve the nonlinear Fokker-Planck equation (1.3)
in the distributional sense. It should be noticed that when the initial vorticity is
a finite Radon measure, the existence of solutions to PDE (1.3) was obtained by
Giga, Miyakawa and Osada in [5] (see also Cottet’s work [2]), and the uniqueness
was proven by Gallagher and Gallay in [4]. However, due to the non-integrability
of K2 (see (1.4)), it does not immediately imply the existence of weak solutions to
distributional dependent SDE (1.5) by superposition principle because the following
condition in [15] is not known to hold for the solution obtained in [5],∫ T

0

∣∣∣∣∫
R2

[∫
R2

K2(x− y)ρ(t, y)dy

]
ρ(t, x)dx

∣∣∣∣dt <∞.
In this paper we are concerning with the following McKean-Vlasov SDE in Rd:

dXt =

[∫
Rd
K(t,Xt, y)µXt(dy)

]
dt+

√
2dWt, (1.6)

where K : R+ × Rd × Rd → Rd is a measurable vector-valued function and µXt is
the law of Xt. For any α ∈ [0, 2), we introduce the following index set:

Iα :=
{

(p, q) ∈ (1,∞)2, d
p + 2

q < 2− α
}
.

Suppose that for some (p, q) ∈ I1,

|K(t, x, y)| 6 h(t, x− y), h ∈ Lqt (L̃px) := ∩T>0L
q([0, T ]; L̃p), (1.7)

where L̃p is the localized Lp-space in Rd (see (2.2) below). Under (1.7), Röckner
and the present author [12] showed the strong well-posedness to the above SDE.
The integrability condition (1.7) for d

p + 2
q < 1 is usually called subcritical case

in the literature; while d
p + 2

q = 1 and d
p + 2

q > 1 correspond to the critical and

supercritical cases, respectively. Notice that the kernel function K2 given in (1.2)
belongs to the supercritical regime since∫

|x|<1

|K2(x)|pdx <∞, p ∈ [1, 2),

∫
|x|<1

|K2(x)|2dx =∞.

For β > 0, let Pβ(Rd) be the set of all probability measures on Rd with finite
β-order moment. The aim of this paper is to show the following existence result.

Theorem 1.1. We suppose that in the distributional sense,

divK(t, ·, y) 6 0, (1.8)
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and for some (p, q) ∈ I0,

|K(t, x, y)| 6 h(t, x− y), h ∈ Lqt (L̃px). (1.9)

Let β ∈ [0, 2/(dp + 2
q )). For any ν0 ∈ Pβ(Rd), there exists at least one weak solution

to SDE (1.6) with initial distribution ν0. More precisely, there are stochastic basis
(Ω,F , (Ft)t>0,P) and two Ft-adapted processes (X,W ) defined on it such that

(i) P ◦X−1
0 = ν0 and W is a d-dimensional standard Ft-Brownian motion.

(ii) It holds that for all t > 0,

Xt = X0 +

∫ t

0

∫
Rd
K(s,Xs, y)µXs(dy)ds+

√
2Wt, P− a.s.,

where µXs is the law of Xs.

Moreover, we have the following conclusions:

(i) For any T > 0, there is a constant C > 0 such that

E

(
sup
t∈[0,T ]

|Xt|β
)
6 C(E|X0|β + 1). (1.10)

(ii) For Lebesgue almost all t > 0, Xt admits a density ρ(t, ·) with the regularity

ρ ∈ ∩T>0Hα,pq (T ), α ∈ [0, 1], p, q ∈ (1,∞), d
p + 2

q > d+ α, (1.11)

where Hα,pq (T ) := Lq([0, T ];Hα,p) and Hα,p is the usual Bessel potential space.

Recently, there are great interests to study the McKean-Vlasov or distributional
dependent SDEs since it appears in the studies of propagation of chaos [14], mean-
field games (cf. [1]) and nonlinear integral-partial differential equations [10, 3].
When K is bounded measurable, the existence and uniqueness of weak solutions to
SDE (1.6) was proved by Li and Min [8] (see also [11] for the strong well-posedness of
SDE (1.6)). As mentioned above, when K is singular and belongs to the subcritical
regime, the strong existence and uniqueness was shown in [12] recently (see also
[6]). We also mention that Jabin and Wang [7] showed the propagation of chaos for
singular kernel K2 above by purely analytic method. While, the existence of particle
trajectories is not provided therein. Here, an open question is the uniqueness of
weak solutions in the supercritical case. This is even not known for linear SDEs
with supercritical drifts (cf. [17]).

As a simple application of Theorem 1.1, we have the following corollary.

Corollary 1.2. Consider the vorticity form (1.3) of 2D-Navier-Stokes equations.
Let β ∈ [0, 2). For any µ(0) ∈ Pβ(R2), there exists a continuous curve t 7→ µ(t) ∈
Pβ(R2) such that for all t > 0 and f ∈ C∞b (Rd),

µt(f) = µ0(f) +

∫ t

0

µs(∆f)ds+

∫ t

0

[∫
R2

∫
R2

K2(x− y) · ∇f(x)µs(dy)µs(dx)

]
ds.

Moreover, for Lebesgue-almost all t > 0, µ(t, dx) = ρ(t, x)dx, where ρ satisfies
(1.11), and for any T > 0 and some C > 0,

ess. sup
t∈[0,T ]

∫
R2

|x|βρ(t, x)dx 6 C

(∫
R2

|x|βµ0(dx) + 1

)
. (1.12)



4 XICHENG ZHANG

Remark 1.3. Compared with [5], the new point here is that the moment estimate
(1.12) is obtained, which provides the decay estimate of the vorticity as |x| → ∞.
Note that the uniqueness is proven in [4], which strongly depends on the structure
of K2.

This paper is organized as following: in Section 2, we prepare necessary spaces
and some well-known results about the maximum principle for the associated PDE.
In Section 3, through mollifying the kernel function K, we show our main result by
weak convergence method.

2. Preliminaries

We first introduce the following spaces and notations for later use. For (α, p) ∈
R+ × [1,∞], the Bessel potential space Hα,p is defined by

Hα,p :=
{
f ∈ L1

loc(Rd) : ‖f‖α,p := ‖(I−∆)α/2f‖p <∞
}
,

where ‖ · ‖p is the usual Lp-norm, and (I−∆)α/2f is defined by Fourier’s transform

(I−∆)α/2f := F−1
(
(1 + | · |2)α/2Ff

)
.

For T > 0, p, q ∈ [1,∞] and α ∈ R+, we introduce the following spaces of space-time
functions,

Lpq(T ) := Lq
(
[0, T ];Lp

)
, Hα,pq (T ) := Lq

(
[0, T ];Hα,p

)
.

Let χ ∈ C∞c (Rd) be a smooth function with χ(x) = 1 for |x| 6 1 and χ(x) = 0 for
|x| > 2. For r > 0 and z ∈ Rd, define

χzr(x) := χ((x− z)/r). (2.1)

Fix r > 0. We introduce the following localized Hα,p-space:

H̃α,p :=
{
f : |||f |||α,p := sup

z
‖fχzr‖α,p <∞

}
, (2.2)

and the localized space-time function space

H̃α,pq (T ) :=
{
f : |||f |||H̃α,pq (T ) := sup

z∈Rd
‖χzrf‖Hα,pq (T ) <∞.

}
(2.3)

For simplicity we shall write

H̃α,pq := ∩T>0H̃α,pq (T ), L̃pq := H̃0,p
q , L̃p(T ) := L̃pp(T ).

It should be noticed that

Lq([0, T ]; L̃p) ⊂ L̃pq(T ).

The following lemma lists some easy properties of H̃α,pq (see [17]).

Proposition 2.1. Let p, q ∈ (1,∞), α ∈ R+ and T > 0.

(i) For r 6= r′ > 0, there is a C = C(d, α, r, r′, p, q) > 1 such that

C−1 sup
z
‖fχzr′‖Hα,pq (T ) 6 sup

z
‖fχzr‖Hα,pq (T ) 6 C sup

z
‖fχzr′‖Hα,pq (T ). (2.4)

In other words, the definition of H̃α,pq does not depend on the choice of r.
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(ii) Let (ρε)ε∈(0,1) be a family of mollifiers in Rd. For any f ∈ H̃α,pq and T > 0,
it holds that

fε(t, x) := f(t, ·) ∗ ρε(x) ∈ Lqloc(R;C∞b (Rd)),

and for some C = C(d, α, p, q) > 0,

|||fε|||H̃α,pq (T ) 6 C|||f |||H̃α,pq (T ), ∀ε ∈ (0, 1), (2.5)

and for any ϕ ∈ C∞c (Rd),

lim
ε→0
‖(fε − f)ϕ‖Hα,pq (T ) = 0. (2.6)

We introduce the following notion about Krylov’s estimate.

Definition 2.2. Let p, q ∈ (1,∞) and T, κ > 0. We say a stochastic process X

satisfies Krylov’s estimate with index p, q and constant κ if for any f ∈ L̃pq(T ),

E

(∫ T

0

f(t,Xt)dt

)
6 κ|||f |||L̃pq(T ). (2.7)

The set of all such X will be denoted by Kp,q
T,κ.

Remark 2.3. By Krylov’s estimate (2.7), there is a density function ρX ∈ Lrs(T )
with r = p

p−1 and s = q
q−1 so that∫ T

0

∫
Rd
f(t, x)ρXt (x)dxdt = E

(∫ T

0

f(t,Xt)dt

)
6 κ|||f |||L̃pq(T ) 6 κ‖f‖Lpq(T ).

For a space-time function f(t, x, y) : R+ × Rd × Rd → R and p1, p2, q0 ∈ [1,∞],
we also introduce the norm

|||f |||L̃p1,p2
q0

(T ) := sup
z,z′∈Rd

(∫ T

0

(∫
Rd

1Bz′1 (y)‖1Bz1 f(t, ·, y)‖p2
p1

dy

) q0
p2

) 1
q0

, (2.8)

where for z ∈ Rd and r > 0,

Bzr := {x ∈ Rd : |x− z| < r}, Br := B0
r .

The following lemma will be used to take the limits in the proof of the existence of
weak solutions (see [12, Lemma 2.6]).

Lemma 2.4. Let p1, p2, q0, q1, q2 ∈ (1,∞) with 1
q1

+ 1
q2

= 1 + 1
q0

and T, κ1, κ2 > 0.

Let X ∈ Kp1,q1
T,κ1

and Y ∈ Kp2,q2
T,κ2

be two independent processes. Then for any

f(t, x, y) ∈ L̃p1,p2
q0 (T ),

E

(∫ T

0

f(t,Xt, Yt)dt

)
6 κ1κ2|||f |||L̃p1,p2

q0
(T ). (2.9)

Consider the following backward PDE:

∂tu+ ∆u+ b · ∇u = f, u(T ) ≡ 0. (2.10)

The following maximum principle was proven in [17, Theorem 2.2].
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Theorem 2.5. Let T > 0. Suppose that b ∈ C∞b ([0, T ] × Rd)) satisfies divb 6 0
and for some (p, q) ∈ I0 and κ > 0,

|||b|||L̃pq(T ) 6 κ.

Let α ∈ [0, 1] and f ∈ C∞0 (Rd+1). For any (p̄, q̄) ∈ Iα, there is a constant C > 0
only depending on T, d, p, q, α, p̄, q̄, κ such that for any smooth solution u of PDE
(2.10),

‖u‖L∞([0,T ]×Rd) 6 C|||f |||H̃−α,p̄q̄ (T ). (2.11)

3. Proof of Theorem 1.1

Suppose that K(t, x, y) satisfies (1.8) and (1.9). Let (%d
n)n∈N be a family of

mollifiers in Rd with compact supports in unit ball B1. Define

Kn(t, x, y) :=

∫ ∞
0

∫
R2d

K(t′, x′, y′)%1
n(t− t′)%d

n(x− x′)%d
n(y − y′)dt′dx′dy′, (3.1)

and for a probability measure µ,

bn(t, x, µ) :=

∫
Rd
Kn(t, x, y)µ(dy).

By (ii) of Proposition 2.1 and (1.9), one sees that for each T > 0 and j = 0, 1, · · · ,

κjn := ‖∇jxKn‖L∞(T ) + ‖∇jyKn‖L∞(T ) <∞ (3.2)

and

divbn(t, ·, µ) 6 0.

Hence, for any T > 0 and some C = C(κ1
n) > 0,

|bn(t, x, µ)− bn(t, x̄, µ)| 6 C|x− x̄|,

and for any two random variables X,Y ,

|bn(t, x, µX)− bn(t, x, µY )| 6 CE|X − Y |.

Thus, there is a unique strong solution Xn
t to the following McKean-Vlasov SDE:

dXn
t = bn(t,Xn

t , µXnt )dt+
√

2dWt, X
n
0

(d)
= ν0, (3.3)

where W is a d-dimensional Brownian motion on some probability space (Ω,F ,P).
We first show the following key Krylov estimate.

Lemma 3.1. Let α ∈ [0, 1] and (p̄, q̄) ∈ Iα. For any T > 0, there is a constant
C > 0 such that for each n ∈ N,

E

(∫ T

0

f(t,Xn
t )dt

)
6 C|||f |||H̃−α,p̄q̄ (T ). (3.4)

In particular, Xn ∈ Kp̄,q̄
T,κ for any (p̄, q̄) ∈ I0.

Proof. Without loss of generality, we assume that f is smooth. By the properties
of convolution and |K(t, x, y)| 6 h(t, x− y), one sees that

|||bn(t, ·, µ)|||p 6
∫
Rd
|||Kn(t, ·, y)|||pµ(dy) 6

∫ ∞
0

|||h(t′, ·)|||p%1
n(t− t′)dt′.
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Hence, ∫ T

0

|||bn(t, ·, µXnt )|||qpdt 6
∫ T

0

|||h(t, ·)|||qpdt. (3.5)

Now, consider the following backward PDE:

∂un + ∆un + bn(t, ·, µXnt ) · ∇un = f, un(T ) = 0.

Since by (3.2), for any j ∈ N,

sup
t∈[0,T ]

‖∇jbn(t, ·, µXnt )‖∞ <∞,

the above PDE admits a unique smooth solution un with the regularities

∂tun,∇2un ∈ L∞([0, T ]× Rd).
Moreover, by Theorem 2.5, there is a constant C > 0 such that for all n ∈ N,

‖un‖L∞([0,T ]×Rd) 6 C|||f |||H̃−α,p̄q̄ (T ).

Now by Itô’s formula, we have

Eun(T,Xn
T ) = Eun(0, Xn

0 ) + E
∫ T

0

f(t,Xn
t )dt,

which implies that

E
∫ T

0

f(s,Xn
s )ds 6 ‖un(0, ·)‖∞ 6 C|||f |||H̃−α,p̄q̄ (T ).

The proof is complete. �

Let C be the space of all continuous functions from R+ to Rd, which is endowed
with the locally uniform convergence topology so that C is a Polish space. We also
use the following convention below: The letter C with or without subscripts will
denote a constant whose value may change in different places.

Lemma 3.2. Let Pn be the law of Xn
· in C. Then (Pn)n∈N is tight. Moreover, for

any β ∈ [0, 2/(dp + 2
q )) and T > 0, there is a constant C > 0 such that for all n ∈ N,

E

(
sup
t∈[0,T ]

|Xn
t |β
)
6 C(E|Xn

0 |β + 1). (3.6)

Proof. Let T > 0 and τ 6 T be any bounded stopping time. For any δ > 0 and
γ ∈ (1, 2/(dp + 2

q )), by Hölder’s inequality and (3.4) with α = 0, we have

E

(∫ τ+δ

τ

|bn(t,Xn
t , µXnt )|dt

)γ
6 δγ−1E

(∫ τ+δ

τ

|bn(t,Xn
t , µXnt )|γdt

)

6 δγ−1E

(∫ T+δ

0

|bn(t,Xn
t , µXnt )|γdt

)

6 Cδγ−1

[∫ T+δ

0

||||bn(t, ·, µXnt )|γ |||q/γp/γdt

] γ
q

= Cδγ−1

[∫ T+δ

0

|||bn(t, ·, µXnt )|||qpdt

] γ
q



8 XICHENG ZHANG

(3.5)

6 Cδγ−1

[∫ T+δ

0

|||h(t, ·)|||qpdt

] γ
q

, (3.7)

where the constant C does not depend on n. Moreover, by Burkholder’s inequality,
it is easy to see that

E

(
sup
s∈[0,δ]

|Wτ+s −Wτ |γ
)
6 Cδγ/2.

Hence, for any θ ∈ (0, 1), by [16, Lemma 2.7] we have

sup
n

E

(
sup

s,t∈[0,T ],s 6=t
|Xn

t −Xn
s |θγ

)
6 Cδθ(γ−1).

The tightness of (Pn)n∈N now follows by [13, Theorem 1.3.2]. Finally, the moment
estimate (3.6) follows by (3.3) and (3.7). �

Now we can give

Proof of Theorem 1.1. Let Pn be the law of Xn
· in C and W the law of Brownian

motion in C. Consider the product probability measure Qn := Pn × Pn ×W. By
Lemma 3.2, one sees that (Qn)n∈N is tight in C × C × C. Let Q be any accumu-
lation point. Without loss of generality, we assume that Qn weakly converges to
some probability measure Q. By Skorokhod’s representation theorem, there are
a probability space (Ω̃, F̃ , P̃) and random variables (X̃n, Ỹ n, W̃n) and (X̃, Ỹ , W̃ )
defined on it such that

(X̃n, Ỹ n, W̃n)→ (X̃, Ỹ , W̃ ), P̃− a.s. (3.8)

and

P̃ ◦ (X̃n, Ỹ n, W̃n)−1 = Qn, P̃ ◦ (X̃, Ỹ , W̃ )−1 = Q. (3.9)

Define F̃n
t := σ(W̃n

s , X̃
n
s ; s 6 t). We note that

P(Wt −Ws ∈ ·|Fs) = P(Wt −Ws ∈ ·)

⇒ P̃(W̃n
t − W̃n

s ∈ ·|F̃n
s ) = P̃(W̃n

t − W̃n
s ∈ ·).

In other words, W̃n is an F̃n
t -Brownian motion. Thus, by (3.3) and (3.9) we have

X̃n
t = X̃n

0 +

∫ t

0

bn(s, X̃n
s , µX̃ns

)ds+
√

2W̃n
t . (3.10)

To show the existence of a solution, the key point is to show that∫ t

0

bn(s, X̃n
s , µX̃ns

)ds→
∫ t

0

b(s, X̃s, µX̃s)ds in probability as n→∞, (3.11)

where b(s, x, µ) :=
∫
Rd K(s, x, y)µ(dy). After showing this limit, we can take limits

for both sides of (3.10) to obtain the existence of a solution, i.e.

X̃t = X̃0 +

∫ t

0

b(s, X̃s, µX̃s)ds+
√

2W̃t.

Since X̃n and Ỹ n are independent by (3.9), to prove (3.11), it suffices to show that∫ t

0

Kn(s, X̃n
s , Ỹ

n
s )ds→

∫ t

0

K(s, X̃s, Ỹs)ds in probability as n→∞.
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The above limit will be a consequence of the following two limits: for each m ∈ N,

lim
n→∞

∫ t

0

|Km(s, X̃n
s , Ỹ

n
s )−Km(s, X̃s, Ỹs)|ds = 0, P− a.s. (3.12)

and

lim
m→∞

sup
n

E

∫ t

0

|Km(s, X̃n
s , Ỹ

n
s )−K(s, X̃n

s , Ỹ
n
s )|ds = 0. (3.13)

Below we drop the tilde for simplicity. For fixed m ∈ N, since Km is bounded
and (x, y) 7→ Km(s, x, y) is continuous, it follows by the dominated convergence
theorem and (3.8) that the limit (3.12) holds. For limit (3.13), we write

E

∫ t

0

|Km(s,Xn
s , Y

n
s )−K(s,Xn

s , Y
n
s )|ds = I(1)

n,m(R) + I(2)
n,m(R),

where

I(1)
n,m(R) := E

∫ t

0

1{|Xns |6R}∩{ |Y ns |6R}|Km(s,Xn
s , Y

n
s )−K(s,Xn

s , Y
n
s )|ds,

I(2)
n,m(R) := E

∫ t

0

1{|Xns |>R}∪{|Y ns |>R}|Km(s,Xn
s , Y

n
s )−K(s,Xn

s , Y
n
s )|ds.

For I
(1)
n,m(R), since (p, q) ∈ I0, one can choose γ > 1 such that

d
p + 2γ

q < 2.

Thus, by Lemma 2.4 with p1 = p, q1 = q
γ , p2 >

qd
2(γ−1) , q2 = q

q+1−γ and q0 = q,

I(1)
n,m(R) 6 C|||1BR×BR(Km −K)|||L̃p,p2

q (t), (3.14)

where C is independent of n,m. Recalling the definition (2.8), we further have

I(1)
n,m(R) 6 C

∫ t

0

(∫
BR+1

‖1BR+1
|Km(s, ·, y)−K(s, ·, y)‖p2

p dy

) q
p2

ds

1/q

.

Since |K(s, x, y)| 6 h(s, x− y), by (3.1) we have∫ t

0

(
sup
m

∫
BR+1

‖1BR+1
|Km(s, ·, y)‖p2

p dy

) q
p2

ds

6
∫ t

0

(∫
BR+2

‖1BR+2
|h(s, · − y)‖p2

p dy

) q
p2

ds

6 CR

∫ t

0

(∫
B2(R+2)

|h(s, x)|pdx

) q
p

ds <∞. (3.15)

Hence, by the dominated convergence theorem, for each R > 0,

lim
m→∞

sup
n
I(1)
n,m(R) = 0. (3.16)

For I
(2)
n,m(R), letting α ∈ (1, 2/(dp + 2

q )), by Hölder’s inequality and Lemma 2.4
again,

I(2)
n,m(R) 6

∫ t

0

(E|Km(s,Xn
s , Y

n
s )−K(s,Xn

s , Y
n
s )|α)

1
α
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×P({|Xn
s | > R} ∪ {|Y ns | > R})1− 1

α ds

6

(∫ t

0

E|Km(s,Xn
s , Y

n
s )−K(s,Xn

s , Y
n
s )|αds

) 1
α

× sup
s∈[0,t]

P({|Xn
s | > R} ∪ {|Y ns | > R})1− 1

α

6 C
(
|||Km|||L̃p,p2

q (t) + |||K|||L̃p,p2
q (t)

)
sup
s∈[0,t]

(2P{|Xn
s | > R})1− 1

α , (3.17)

where C is independent of n,m and R, and p2 is chosen being large enough as in
(3.14). As in (3.15), we have

|||Km|||qL̃p,p2
q (T )

= sup
z,z′∈Rd

∫ T

0

(∫
Rd

1Bz′1
(y)‖1Bz1Km(t, ·, y)‖p2

p dy

) q
p2

dt

6 sup
z,z′∈Rd

∫ T

0

(∫
Rd

1Bz′2
(y)‖1Bz2h(t, · − y)‖p2

p dy

) q
p2

dt

6 C sup
z,z′∈Rd

∫ T

0

sup
|y−z′|62

‖1Bz2h(t, · − y)‖qpdt

6 C
∫ T

0

|||h(t)|||qpdt <∞. (3.18)

Moreover, by (3.10) and Chebyschev’s inequality, we have

sup
s∈[0,t]

P{|Xn
s | > R} 6 P{|Xn

0 | > R
3 }+ P

{
sup
s∈[0,t]

√
2|Ws| > R

3

}

+ P

{∫ t

0

|bn(s,Xn
s , µXns )|ds > R

3

}
6 ν

{
|x| > R

3

}
+
C

R
+

3

R
E

∫ t

0

|bn(s,Xn
s , µXns )|ds

6 ν
{
|x| > R

3

}
+
C

R
, (3.19)

where the constant C is independent of R and n, and the last step is due to (3.7).
Combining (3.17), (3.18) and (3.19), we obtain

lim
R→∞

sup
n,m

I(2)
n,m(R) = 0,

which together with (3.16) yields (3.13). Moreover, the estimate (1.10) follows by
(3.6), and the regularity estimate (1.11) follows by (3.4) and Remark 2.3. The proof
is thus complete. �
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XIX-1989, Vol. 1464, Lect. Notes in Math., pages 165-251. Springer-Verlag, 1991.

[15] Trevisan D.: Well-posedness of multidimensional diffusion processes with weakly differen-

tiable coefficients. Electron. J. Probab.21, (2016), Paper No. 22, 41 pp.

[16] Zhang X. and Zhao G.: Singular Brownian Diffusion Processes. Communications in Math-

ematics and Statistics, pp.1-49, 2018.

[17] Zhang X. and Zhao G.: Stochastic Lagrangian path for Leray solutions of 3D Navier-Stokes

equations, to appear in Comm. in Math. Phys. (2020+), arXiv: 1904.04387.

Xicheng Zhang: School of Mathematics and Statistics, Wuhan University, Wuhan,

Hubei 430072, P.R.China, Email: XichengZhang@gmail.com


