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1. Introduction

Consider the following elliptic equation of divergence form in Rd (d > 2):

div(a · ∇u) = 0, (1.1)

where a : Rd → Rd×d is a Borel measurable function and ∇ := (∂x1
, · · · , ∂xd). We

introduce the following two functions:

λ0(x) := inf
|ξ|=1

ξ · a(x)ξ, µ0(x) := sup
|ξ|=1

|a(x)ξ|2

ξ · a(x)ξ
. (1.2)

Suppose that λ0 and µ0 are nonnegative measurable functions. If λ−1
0 and µ0 are

essentially bounded, that is, a is uniformly elliptic, then the celebrated works of
De-Giorgi [4] and Nash [13] said that any weak solutions of elliptic equation (1.1)
are bounded and Hölder continuous. Moreover, Moser [12] showed that any weak
solutions of (1.1) satisfy the Harnack inequality.

In [17], Trudinger considered the non-uniformly elliptic equation (1.1) under the
following integrability assumptions:

λ−1
0 ∈ Lp0 , µ0 ∈ Lp1 with p0, p1 ∈ (1,∞] satisfying 1

p0
+ 1

p1
< 2

d ,

and showed that any generalized solutions of (1.1) are locally bounded and weak
Harnack inequality holds. Recently, Bella and Schäffner [3] showed the same results
under the following sharp condition on p0, p1,

1
p0

+ 1
p1
< 2

d−1 , p0, p1 ∈ [1,∞], (1.3)

where the key point is a new Sobolev embedding inequality of variational type. In
this paper we are interested in a parabolic version of [3], and aim to establish the
global boundedness for the solutions of non-uniformly parabolic equations. More
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precisely, we shall consider the following parabolic equation of divergence form in
Rd+1:

∂tu = div(a · ∇u) + b · ∇u+ f, (1.4)

where

a : Rd+1 → Rd×d, b : Rd+1 → Rd, f : Rd+1 → R
are Borel measurable functions. As in (1.2), we introduce

λ(x) := inf
t>0,|ξ|=1

ξ · a(t, x)ξ, µ(x) := sup
t>0,|ξ|=1

|a(t, x)ξ|2

ξ · a(t, x)ξ
, (1.5)

and suppose that λ and µ are nonnegative Borel measurable functions.

First of all we introduce the following notion of weak solutions to PDE (1.4).

Definition 1.1. A continuous function u : Rd+1 → R is called a Lipschitz weak
(super/sub)-solution of PDE (1.4) if ∇u is locally bounded and for any nonnegative
Lipschitz function ϕ on Rd+1 with compact support,

−〈〈u, ∂tϕ〉〉 = (> / 6)− 〈〈a · ∇u,∇ϕ〉+ 〈〈b · ∇u, ϕ〉〉+ 〈〈f, ϕ〉〉, (1.6)

where 〈〈f, g〉〉 :=
∫
R
∫
Rd f(t, x)g(t, x)dxdt.

Throughout this paper, we fix p0 ∈ (d2 ,∞] and p1 ∈ [1,∞] with

1
p0

+ 1
p1
< 2

d−1 , (1.7)

and introduce the index set

Idp0
:=
{

(p, q) ∈ [1,∞]2 : 1
p < (1− 1

q )( 2
d −

1
p0

)
}
.

Using the localized space introduced in (2.3) and (2.4) below, we make the following
assumptions about a and b:

(Ha) |||λ−1|||p0
+ |||µ|||p1

<∞, where λ, µ are defined by (1.5).

(Hb) b = b1 + b2, where if p0 ∈ (d2 , d], b1 ≡ 0, and if p0 > d, b1 ∈ L̃q2,p2

t,x for some

(p2, q2) ∈ [1,∞]2 with

1
2p0

+ 1
p2
< ( 1

2 −
1
q2

)( 2
d −

1
p0

), (1.8)

and b2 ∈ L̃p1,∞
x,t and (divb2)− ∈ L̃q3,p3

t,x for some (p3, q3) ∈ Idp0
.

Remark 1.2. Note that condition (1.8) is satisfied for p2 = q2 =∞ if and only if
p0 > d. This is why we need to put b1 ≡ 0 for p0 6 d. If p0 =∞, i.e., a has a lower
bound, condition (1.8) reduces to the usual one d

p2
+ 2

q2
< 1, and

Id∞ =
{

(p, q) ∈ [1,∞]2 : dp + 2
q < 2

}
.

For simplicity of notations, we introduce the following parameter set

Θ :=
(
d, pi, qi, |||λ−1|||p0 , |||µ|||p1 , |||b1|||L̃q2,p2

t,x
, |||b2|||L̃p1,∞

x,t
, |||(divb2)−|||L̃q3,p3

t,x

)
. (1.9)

The main aim of this paper is to prove the following apriori estimate.

Theorem 1.3. Under (Ha) and (Hb), for any f ∈ L̃q4,p4

t,x with (p4, q4) ∈ Idp0
and

for any T > 0, there exists a constant C = C(T,Θ, p4, q4) > 0 such that for any
Lipschitz weak solution u of PDE (1.4) in Rd+1 with u(t)|t60 ≡ 0,

‖u‖L∞([0,T ]×Rd) + |||u1[0,T ]|||Ṽ 6 C|||f1[0,T ]|||L̃q4,p4
t,x

, (1.10)

where Ṽ is defined by (3.2) below.
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Consider the following heat equation with divergence free drift b:

∂tu = ∆u+ b · ∇u+ f, u(t)|t60 = 0. (1.11)

The following apriori global boundedness estimate is an easy consequence of The-
orem 1.3, which seems to be new.

Corollary 1.4. Let b ∈ L̃p,∞x,t with divb = 0, where p ∈ [1,∞] ∩ (d−1
2 ,∞]. For any

T > 0 and f ∈ L̃q
′,p′

t,x , where p′, q′ ∈ [1,∞] satisfy d
p′ +

2
q′ < 2, there exists a constant

C > 0 only depending on T, d, p, p′, q′ and ‖b‖L̃p,∞x,t such that for any Lipschitz weak

solution u of (1.11),

‖u‖L∞([0,T ]×Rd) 6 C|||f1[0,T ]|||L̃q′,p′t,x
. (1.12)

Remark 1.5. Note that when d
p + 2

q < 2 and b ∈ L̃q,pt,x with divb = 0, it is well

known that (1.12) holds (cf. [14], [19]). When b does not depend on t, the current
condition p > d−1

2 in Corollary 1.4 is clearly better than p > d
2 .

In [3], the local boundedness of generalized solutions of elliptic equations is used
to establish the L∞-sublinearity of the corrector in stochastic homogenization in
non-uniformly case, which is a key step of proving quenched invariance principle
for random walks [1]. As in [3] and [2], Theorem 1.3 could be used to showing
a quenched invariance principle for random walks in time-dependent ergodic en-
vironment. This is not the purpose of the present paper, and will be studied in
future.

As one application of the global boundedness estimate (1.10), we shall establish
the existence of weak solutions to possibly degenerate SDEs with singular diffusion
and drift coefficients in this paper. Consider the following SDE:

dXt =
√

2σ(t,Xt)dWt + b(t,Xt)dt, X0 = x, (1.13)

where W is a d-dimensional standard Brownian motion on some stochastic basis
(Ω,F ,P; (Ft)t>0) and σ : R+ × Rd → Rd ⊗ Rd and b : R+ × Rd → Rd are Borel
measurable functions. Note that the generator of SDE (1.13) is given by

L σ,b
t f(x) = (σikσjk)(t, x)∂i∂jf(x) + bj(t, x)∂jf(x).

Here and after we shall use the usual Einstein convention for summation: an index
appearing twice in a product will be summed automatically.

It is well known that if σ and b are Lipschitz continuous in x uniformly in t, then
SDE (1.13) admits a unique strong solution. When σ is bounded measurable and
uniformly elliptic and b ∈ Ld+1(R+×Rd), recently, Krylov [11] showed the existence
of weak solutions to SDE (1.13) (see [10] for bounded measurable drift b). When σ is

the identity matrix and b is divergence free and belongs to L̃q,pt,x for some p, q ∈ [1,∞]

with d
p + 2

q < 2, utilizing the like-estimate (1.12), in a joint work [19] with G.

Zhao, we showed the existence of weak solutions to SDE (1.13). In particular, the
stochastic Lagrangian trajectories associated with Leray’s solutions of 3D-Navier-
Stokes equations are constructed. However, when diffusion coefficient σ is possibly
degenerate or singular, and b is irregular (saying only bounded measurable), to
the author’s knowledge, it seems that there are few results about the existence of
solutions to SDE (1.13) except for [18]. To show the existence of weak solutions,
the key step is to prove the following estimate of Krylov’s type: for any (p, q) ∈ Idp0

,

E
(∫ t

0

f(s,Xs)ds

)
6 C|||f |||L̃q,pt,x . (1.14)
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Note that if we let a = σσ∗, then L σ,b
t can be written as the divergence form:

L σ,b
t f(x) = ∂i(a

ij(t, ·)∂jf)(x) + (bj − ∂iaij)(t, x)∂jf(t, x).

Under suitable conditions, (1.14) will be a consequence of Itô’s formula and (1.10)
(see Theorem 4.3 below).

Although we can show the existence of weak solutions for SDE (1.13) with singu-
lar coefficients, in many cases, the uniqueness is not easily obtained and even does
not hold for SDEs with measurable coefficients. In 1973, N.V. Krylov [9] proved a
Markov selection theorem from the family of solutions of SDE (1.13) when b and
σ are bounded continuous. His method was presented in a different way in [16,
Chapter 12]. For applications in SPDEs, we refer to [5] and [6]. Here we shall
follow Stroock and Varadhan’s method [16] to select a strong Markovian solution
for SDEs (1.13) with singular coefficients when the uniqueness is not applicable.

We would like to mention the following examples to illustrate our main results
obtained in Sections 4 and 5.

Example 1.6. Let d = 3 and u(t, x) be any Leray solutions of 3D-Navier-Stokes
equations. Consider the following SDEs:

dXt,s =
√

2dWt + u(t,Xt,s)dt, t > s > 0, Xs,s = x ∈ R3.

In [19], the existence of weak solutions is obtained to the above SDE. By [19,
Theorem 1.1] and Theorem 5.5 below, one can select a family of probability mea-
sures (Ps,x)(s,x)∈R+×R3 on the continuous function space C so that for each (s, x) ∈
R+ × R3, Ps,x solves the martingale problem associated to the above SDE, and
(Ps,x)(s,x)∈R+×R3 forms a time-inhomoegenous strong Markovian family.

Example 1.7. Let d > 3 and α ∈ (0, (d2 − 1) ∧ ( 1
2 + 1

d−1 )), β ∈ (0, 2α). For

any λ > 0 and x ∈ Rd, the following SDE admits a unique strong solution (see
Proposition 6.2 below):

dXt = |Xt|−αdWt + λXt|Xt|−β−1dt, X0 = x.

Note that the starting point can be zero.

This paper is organized as follows: In Section 2, we prove a time-dependent
variational embedding theorem, which in particular extends the result obtained in
[3]. In Section 3, we prove our main Theorem 1.3 by De-Giorgi’s iteration (cf. [4]).
In Section 4, we apply our main result to SDEs with rough coefficients. In Section 5,
we use Krylov’s Markov selection theorem to select a strong Markov family from the
weak solution family. In Section 6, we present two examples to illustrate our result.
In the appendix, we recall some results about the regular conditional probability
distribution (abbreviated as r.c.p.d.) as well as the abstract time-inhomoegenous
strong Markov selection theorem.

Throughout this paper, we use the following conventions: The letter C = C(· · · )
denotes a constant, whose value may change in different places, and which is in-
creasing with respect to its argument. We also use A . B to denote A 6 CB for
some unimportant constant C > 0.

2. Preliminaries

Let D := C∞c (Rd+1) be the space of all smooth functions in Rd+1 with compact
supports and D ′ the dual space of D , which is also called the distribution space.
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The duality between D ′ and D is denoted by 〈〈·, ·〉〉. In particular, if f ∈ D ′ is
locally integrable and g ∈ D , then

〈〈f, g〉〉 =

∫
R
〈f(t), g(t)〉dt with 〈f(t), g(t)〉 :=

∫
Rd
f(t, x)g(t, x)dx. (2.1)

For p, q ∈ [1,∞], let Lq,pt,x := Lq(R;Lp(Rd)) and Lp,qx,t := Lp(Rd;Lq(R)) be the space
of spatial-time functions with norms, respectively,

‖f‖Lq,pt,x :=

(∫
R
‖f(t, ·)‖qpdt

)1/q

, ‖f‖Lp,qx,t :=

(∫
Rd
‖f(·, x)‖pqdx

)1/p

,

where ‖ · ‖p stands for the usual Lp-norm. By Minkowskii’s inequality,

‖f‖Lq,pt,x 6 ‖f‖Lp,qx,t if q > p; ‖f‖Lp,qx,t 6 ‖f‖Lq,pt,x if q 6 p. (2.2)

For r > 0 and (s, z) ∈ Rd+1, we define

Qr := [−r2, r2]×Br ⊂ Rd+1, Qs,zr := Qr + (s, z), Bzr := Br + z,

and for p ∈ [1,∞], introduce the following localized Lp-space:

L̃p :=
{
f ∈ L1

loc(Rd) : |||f |||p := sup
z
‖1Bz1 f‖p <∞

}
, (2.3)

and for p, q ∈ [1,∞],

L̃q,pt,x :=
{
f ∈ L1

loc(Rd+1) : |||f |||L̃q,pt,x := sup
s,z
‖1Qs,z1

f‖Lq,pt,x <∞
}
, (2.4)

and similarly for L̃p,qx,t . Clearly, for p 6 p′ and q 6 q′,

L̃q
′,p′

t,x ⊂ L̃q,pt,x , L̃p
′,q′

x,t ⊂ L̃p,qx,t .

By a finite covering technique, it is easy to see that for any T, r > 0 (see [19]),

|||1[0,T ]f |||L̃q,pt,x � sup
z
‖1[0,T ]×Bzr f‖Lq,pt,x . (2.5)

First of all, we have the following Gagliado-Nirenberge’s interpolation estimate.

Lemma 2.1. Fix κ ∈ [2d/(d+ 2), 2] and θ ∈ [0, 1] with exception θ = 1 and κ = d.
For any r > 2 and s > 1 with

1
2 −

1
r = θ

2

(
2
d + 1− 2

κ

)
, sθ 6 2,

there is a constant C = C(κ, d, r, θ) > 0 such that

‖f‖Ls,rt,x 6 C‖∇f‖
θ
L2,κ
t,x
‖f‖1−θ

L2(1−θ)s/(2−sθ),2
t,x

. (2.6)

Proof. By Gagliado-Nirenberge’s interpolation inequality, we have

‖f‖r 6 C‖∇f‖θκ‖f‖1−θ2 .

Since sθ 6 2, by Hölder’s inequality we further have

‖f‖Ls,rt,x 6 C‖∇f‖
θ
L2,κ
t,x
‖f‖1−θ

L2(1−θ)s/(2−sθ),2
t,x

.

The proof is complete. �

Next for fixed κ ∈ [1, 2], we introduce the following index set

Iκ :=
{

(r, s) ∈ [2,∞)× [1,∞) : 1
2 −

1
r <

1
s

(
2
d + 1− 2

κ
)}
.

The following lemma is an easy consequence of (2.6).
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Lemma 2.2. For any (r, s) ∈ Iκ and ε ∈ (0, 1), there are β ∈ (1,∞) and constant
Cε = Cε(r, s,κ, d) > 0 such that for any 1 6 τ1 < τ2 6 2,

‖1Qτ1 f‖Ls,rt,x 6 ε‖1Qτ2∇f‖L2,κ
t,x

+ Cε(τ2 − τ1)−1‖1Qτ2 f‖Lβ,2t,x
. (2.7)

Proof. Let η ∈ C∞c (Qτ2 ; [0, 1]) with

η|Qτ1 = 1, |∇η| 6 2(τ2 − τ1)−1.

Since (r, s) ∈ Iκ , by (2.6), there are θ ∈ [0, 2
s ∧ 1) such that

‖1Qτ1 f‖Ls,rt,x 6 ‖ηf‖Ls,rt,x . ‖∇(ηf)‖θL2,κ
t,x
‖ηf‖1−θ

L2(1−θ)s/(2−sθ),2
t,x

.

Moreover, we have

‖∇(ηf)‖L2,κ
t,x
6 ‖∇ηf‖L2,κ

t,x
+ ‖η∇f‖L2,κ

t,x
. (τ2 − τ1)−1‖1Qτ2 f‖L2,κ

t,x
+ ‖1Qτ2∇f‖L2,κ

t,x
.

Since θ ∈ [0, 1) and sθ < 2, the desired estimate follows by Young’s inequality. �

We need the following simple variational inequality.

Lemma 2.3. Let α > 1. For any τ < δ and γ > 0, we have for f ∈ L1([τ, σ]),

inf
`∈C1([τ,δ])

{∫ δ

τ

|`′(r)|α|f(r)|dr : `(τ) = 1, `(δ) = 0

}

6 (δ − τ)1−α− 1
γ

(∫ δ

τ

|f(r)|γdr

) 1
γ

.

Proof. The one dimensional variational problem in the lemma is clearly less than

Jε(f) := inf
`∈C1([τ,δ])

{∫ δ

τ

|`′(r)|α(|f(r)|+ ε)dr : `(τ) = 1, `(δ) = 0

}
, ε > 0.

Let fn be the mollifying approximation of f and let us choose

`(r) =

∫ δ

r

(|fn(s)|+ ε)−
1

α−1 ds

(∫ δ

τ

(|fn(s)|+ ε)−
1

α−1 ds

)−1

so that

Jε(f) 6

(∫ δ

τ

(|fn(s)|+ ε)−
α
α−1 (|f(s)|+ ε)ds

)(∫ δ

τ

(|fn(s)|+ ε)−
1

α−1 ds

)−α
.

Taking limits n→∞, by the dominated convergence theorem, we get

Jε(f) 6

(∫ δ

τ

(|f(s)|+ ε)−
1

α−1 ds

)1−α

.

By the inverse Hölder inequality, we obtain that for any β > 1,

Jε(f) 6 (δ − τ)−
β(α−1)
β−1

(∫ δ

τ

(|f(r)|+ ε)
β−1
α−1 dr

)α−1
β−1

.

The desired estimate follows by letting γ = β−1
α−1 and ε ↓ 0. �

The following lemma is a time-dependent version of [3, Lemma 2.1].
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Lemma 2.4. Let w : R×Rd → R be a measurable function with support in I×B2,
where I ⊂ R is a finite time interval. Let p, q > 1 and α > 1/p. For given
1 6 τ < δ 6 2, consider the following variational problem

J (w) := inf
{
‖w|∇η|α‖Lp,qx,t : η ∈ C1

0 (Bδ), η > 0, η = 1 on Bτ

}
.

For β > 1 with 1
β = 1

p+ θ
d−1 , where θ ∈ [0, 1], there is a constant C = C(β, p, q, d) >

0 such that

J (w) 6 C(δ − τ)−α−
1
d−1

(
‖1Q∇w‖θLβ,qx,t ‖1Qw‖

1−θ
Lβ,qx,t

+ ‖1Qw‖Lβ,qx,t
)
,

where Q := I × (Bδ \Bτ ).

Proof. Let p, q > 1 and α > 1/p. Let F (x) :=
(∫
I
|w(t, x)|qdt

)1/q
. For given

radial test function η(x) = `(|x|), by Fubini’s theorem and the transform of polar
coordinates, we have

‖w|∇η|α‖pLp,qx,t =

∫
Rd
F p|∇η|αp =

∫ δ

τ

|`′(s)|αp
(∫

Ss
F p
)

ds,

where Ss := {x ∈ Rd : |x| = s}. Thus, for any γ > 0, by Lemma 2.3 we have

J (w) 6 inf

{∫ δ

τ

|`′(s)|αp
(∫

Ss
F p
)

ds : `(τ) = 1, `(δ) = 0

}1/p

6 (δ − τ)
1
p−

1
pγ−α

(∫ δ

τ

(∫
Ss
F p
)γ

ds

) 1
pγ

. (2.8)

Now for β > 1 with 1
β = 1

p + θ
d−1 , by the Sobolev embedding in sphere Ss, we have

‖F‖Lp(Ss) . ‖∇F‖
θ
Lβ(Ss)‖F‖

1−θ
Lβ(Ss) + ‖F‖Lβ(Ss), s ∈ [1, 2].

Substituting this into (2.8) and taking γ = β/p, we obtain

J (w) . (δ − τ)
1
p−

1
β−α

(∫ δ

τ

(
‖∇F‖θLβ(Ss)‖F‖

1−θ
Lβ(Ss) + ‖F‖Lβ(Ss)

)β
ds

) 1
β

. (δ − τ)−
θ
d−1−α

(
‖∇F‖θLβ(Bδ\Bτ )‖F‖

1−θ
Lβ(Bδ\Bτ )

+ ‖F‖Lβ(Bδ\Bτ )

)
. (2.9)

On the other hand, let

Fε(x) :=

(∫
I

(|w(t, x)|q + ε)dt

)1/q

.

By the chain rule and Hölder’s inequality, we have

|∇Fε(x)|6
(∫

I

(|w(t, x)|q+ ε)dt

)1−q
q
∫
I

|w(t, x)|q−1|∇w(t, x)|dt 6 ‖∇w(·, x)‖Lq(I).

Letting ε ↓ 0, we obtain

|∇F (x)| 6 ‖∇w(·, x)‖Lq(I).

Substituting this into (2.9), we obtain the desired estimate. �

Remark 2.5. Suppose that w : Rd → R is time-independent and 1
β 6

1
p + 1

d .

Directly using Sobolev’s embedding, we have

J (w) 6 (δ − τ)−α‖w‖Lp(Bδ) 6 C(δ − τ)−α
(
‖∇w‖Lβ(Bδ) + ‖w‖Lβ(Bδ)

)
.
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However, by Lemma 2.2, we have for 1
β 6

1
p + 1

d−1 ,

J (w) 6 C(δ − τ)−
1
d−1−α

(
‖∇w‖Lβ(Bδ) + ‖w‖Lβ(Bδ)

)
,

which clearly has better β than the above estimate.

We also need the following iteration lemma (cf. [7, Lemma 4.3]).

Lemma 2.6. Let h(τ) > 0 be bounded in [τ1, τ2] with τ1 > 0. Let A,B > 0.
Suppose that for some α > 0, θ ∈ (0, 1) and any τ1 6 τ < τ ′ 6 τ2,

h(τ) 6 θh(τ ′) + (τ ′ − τ)−αA+B.

Then there is a C = C(α, θ) > 0 such that

h(τ1) 6 C((τ2 − τ1)−αA+B).

3. Maximum principle for linear parabolic equations

Let p0 >
d
2 be as in (Ha). We define κ ∈ [1, 2] by

2
κ = 1

p0
+ 1. (3.1)

For a set Q ⊂ Rd+1, we also introduce

VQ :=
{
f ∈ L1

loc : ‖f‖VQ := ‖1Qf‖L∞,2t,x
+ ‖1Q∇xf‖Lκ,2

x,t
<∞

}
and

Ṽ :=
{
f ∈ L1

loc : |||f |||Ṽ := |||f |||L̃∞,2t,x
+ |||∇xf |||L̃κ,2

x,t
<∞

}
. (3.2)

3.1. Energy type estimate. In this subsection we fix 1 6 τ1 < τ2 6 2 and

Qi := Qτi = [−τ2
i , τ

2
i ]×Bτi , i = 1, 2.

Let C be the class of all functions η ∈ C∞c (Q2; [0, 1]) with

η|Q1 = 1, η|Qc2 = 0, ‖∇η‖∞ + ‖∂tη‖∞ 6 4(τ2 − τ1)−1. (3.3)

We first prepare the following important variational estimate.

Lemma 3.1. For any p ∈ [1,∞] with 1
p0

+ 1
p <

2
d−1 , there are γ0, γ1, γ2 > 0 and

constant C > 0 only depending on p, d, p0 such that for any ε ∈ (0, 1), w ∈ VQ2
and

g ∈ Lp,∞x,t (Q2),

inf
η∈C
‖gw2∇η‖L1,1

t,x
.C ε‖w‖2VQ2

+
‖1Q2g‖

γ2

Lp,∞x,t
+ 1

εγ0(τ2 − τ1)γ1
‖1Q2

w‖2L2,2
t,x
. (3.4)

Proof. Let p̄ = p
p−1 . By Hölder’s inequality, we have

‖gw2∇η‖L1,1
t,x
6 ‖1Q2

g‖Lp,∞x,t ‖w
2∇η‖Lp̄,1x,t = ‖1Q2

g‖Lp,∞x,t ‖w|∇η|
1
2 ‖2L2p̄,2

x,t
. (3.5)

Since 1
p0

+ 1
p <

2
d−1 , we have for some θ ∈ (0, 1),

1
2p0

+ 1
2 = 1

χ = 1
2p̄ + θ

d−1 .

Thus by Lemma 2.4, we have

inf
η∈C
‖w|∇η| 12 ‖L2p̄,2

x,t
. (τ2 − τ1)−

d+1
2(d−1)

(
‖1Q2

∇w‖θLχ,2x,t
‖1Q2

w‖1−θLχ,2x,t

+ ‖1Q2
w‖Lχ,2x,t

)
.

Substituting this into (3.5), we obtain

inf
η∈C
‖gw2∇η‖L1,1

t,x
. ‖1Q2

g‖Lp,∞x,t (τ2 − τ1)−
d+1
d−1 ‖1Q2

∇w‖2θLχ,2x,t
‖1Q2

w‖2(1−θ)
Lχ,2x,t

+ ‖1Q2
g‖Lp,∞x,t (τ2 − τ1)−

d+1
d−1 ‖1Q2

w‖2Lχ,2x,t
.
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By Young’s inequality and ‖1Q2
w‖Lχ,2x,t

6 Cd,χ‖1Q2
w‖L2,2

t,x
, we obtain (3.4). �

Recall Θ being the parameter set (1.9). Now we prove the following local energy
estimate by Lemma 3.1.

Lemma 3.2. Under (Ha) and (Hb), for any f ∈ Lq4,p4

t,x (Q2) with (p4, q4) ∈ Idp0
,

there are (ri, si) ∈ Iκ, i = 1, 2, 3, 4, γ = γ(p0, p1, d) > 1 and constant C = C(Θ) >
0 such that for any Lipschitz weak subsolution u of PDE (1.4) and t > 0,

‖wIt‖2VQ1
.C (τ2−τ1)−γ

∑
i=1,2,3

‖1Q2
wIt‖2Lsi,rit,x

+‖f1Q2
‖2Lq4,p4

t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
,

where It(·) := 1(−∞,t](·) and w := (u− κ)+ and κ > 0.

Proof. We divide the proof into three steps.
(i) Fix η ∈ C (see (3.3)). In this step we show that for all t ∈ R,

‖(ηw)(t)‖22 6 〈〈∂sη2, w2It〉〉 − 2〈〈a · ∇u,∇(η2w)It〉〉
+ 2〈〈b · ∇u, η2wIt〉〉+ 2〈〈f, η2wIt〉〉.

(3.6)

Since we want to take the test function ϕ = wη2 in (1.6), and ∂su only makes sense
in the distributional sense, we shall first approximate u by its Steklov mean:

Shu(t, x) :=
1

h

∫ h

0

u(t+ s, x)ds =
1

h

∫ t+h

t

u(s, x)ds, h ∈ (0, 1). (3.7)

Let uh := Shu and S∗h be the adjoint operator of Sh. Let ϕ be a nonnegative
Lipschitz function in Rd+1 with compact support in Q2. By Definition 1.1 with
test function S∗hϕ, using integration by parts and Fubini’s theorem, one sees that

〈〈∂suh, ϕ〉〉 6 −〈〈Sh(a · ∇u),∇ϕ〉〉+ 〈〈Sh(b · ∇u), ϕ〉〉+ 〈〈fh, ϕ〉〉. (3.8)

Now fix t ∈ R and define

ζεt (s) = 1(−∞,t](s) + (1− ε−1(s− t))1(t,t+ε](s), ε ∈ (0, 1).

Let wh := (uh − k)+. Note that

2〈∂suh, whη2ζεt 〉 = 2〈∂swh, whη2ζεt 〉

= ∂s〈w2
h, η

2ζεt 〉 −
∫
Rd
w2
hη

2(ζεt )′ −
∫
Rd
w2
h(∂sη

2ζεt ).

By (3.8) with ϕ = whη
2ζt,ε and

∫
Rd+1 ∂s〈w2

h, η
2ζεt 〉 = 0, we get

−
∫
Rd+1

η2w2
h(ζεt )′ 6

∫
Rd+1

w2
h(∂sη

2ζεt )− 2〈〈Sh(a · ∇u),∇(whη
2ζεt )〉〉

+ 2〈〈Sh(b · ∇u), whη
2ζεt 〉〉+ 2〈〈fh, whη2ζεt 〉〉.

Letting h ↓ 0 and by the dominated convergence theorem, we obtain

−
∫
Rd+1

(ηw)2(ζεt )′ 6
∫
Rd+1

w2(∂tη
2ζεt )− 2〈〈a · ∇u,∇(wη2ζεt )〉〉

+ 2〈〈b · ∇u,wη2ζεt 〉〉+ 2〈〈f, wη2ζεt 〉〉.

Since limε↓0 ζ
ε
t (s) = It(s) for each s ∈ R, the right hand side of the above inequality

converges to the right hand side of (3.6) as ε ↓ 0. On the other hand, by the
Lebesgue differential theorem, we also have

−
∫
Rd+1

(ηw)2(ζεt )′ =
1

ε

∫ t+ε

t

‖(ηw)(s)‖22ds
ε↓0→ ‖(ηw)(t)‖22.

Thus, we obtain (3.6).
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(ii) Recalling w = (u− κ)+ and noting that

∇u · ∇w = |∇w|2, (∇u)w = (∇w)w = ∇w2/2, (3.9)

by the chain rule and Young’s inequality, we have

−〈a · ∇u,∇(η2w)〉 = −
∫
Rd
η2(∇w)∗a∇w − 2

∫
Rd
ηw(∇η)∗a∇w

6 −1

2

∫
Rd
η2(∇w)∗a∇w + 4

∫
Rd
w2|∇η|2 |a∇w|2

(∇w)∗a∇w
(1.5)

6 −1

2

∫
Rd
η2|∇w|2λ+ 4

∫
Rd
w2|∇η|2µ,

which in turn gives that

−〈〈a · ∇u,∇(η2w)It〉〉 6 − 1
2‖η∇wλ

1
2 It‖2L2,2

x,t
+ 4‖w∇ηµ 1

2 It‖2L2,2
t,x
. (3.10)

Due to b = b1 + b2, by (3.9) and the integration by parts, we have

〈〈b · ∇u, η2wIt〉〉 = 〈〈ηb1 · ∇wλ
1
2 , λ−

1
2 ηwIt〉〉+ 1

2 〈〈b2 · ∇w
2, η2It〉〉

6 1
4‖η∇wλ

1
2 It‖2L2,2

t,x
+ 4‖λ− 1

2 b1ηwIt‖2L2,2
t,x

− 〈〈ηb2 · ∇η, w2It〉〉 − 1
2 〈〈divb2w

2, η2It〉〉.

Let (r2, s2), (r3, s3) and (r4, s4) be defined by

1
2p0

+ 1
p2

+ 1
r2

= 1
2 ,

1
q2

+ 1
s2

= 1
2

and
1
p3

+ 2
r3

= 1, 1
q3

+ 2
s3

= 1, 1
p4

+ 1
r4

= 1
2 ,

1
q4

+ 1
s4

= 1.

Since (p2, q2) satisfies (1.8) and (p3, q3), (p4, q4) ∈ Idp0
, one sees that

(r2, s2), (r3, s3), (r4, s4) ∈ Iκ .

Thus by Hölder’s inequality and Young’s inequality, we further have

〈〈b · ∇u, η2wIt〉〉 6 1
4‖η∇wλ

1
2 It‖2L2,2

t,x
+ 4‖λ−11B2

‖p0
‖b11Q2

‖2Lq2,p2
t,x
‖ηwIt‖2Ls2,r2t,x

+ ‖b2∇ηw2It‖L1,1
t,x

+ ‖(divb2)−1Q2
‖Lq3,p3

t,x
‖ηwIt‖2Ls3,r3t,x

6 1
4‖η∇wλ

1
2 It‖2L2,2

t,x
+ 4|||λ−1|||p0

|||b1|||2L̃q2,p2
t,x

‖ηwIt‖2Ls2,r2t,x

+ ‖b2∇ηw2It‖L1,1
t,x

+ 1
2 |||(divb2)−|||L̃q3,p3

t,x
‖ηwIt‖2Ls3,r3t,x

, (3.11)

and also,

〈〈f, η2wIt〉〉 6 ‖fη‖Lq4,p4
t,x
‖ηwIt‖L∞,2t,x

‖1{w 6=0}∩Q2
It‖Ls4,r4t,x

6 1
4‖ηwI

t‖2L∞,2t,x
+ 4‖fη‖2Lq4,p4

t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
. (3.12)

(iii) Combining (3.6) and (3.10)-(3.12), we obtain

‖(ηw)(t)‖22 + 1
2‖η∇wλ

1
2 It‖2L2,2

t,x
6 2‖∂sηw2It‖L1,1

t,x
+ 8‖w∇ηµ 1

2 It‖2L2,2
t,x

+ C‖ηwIt‖2Ls2,r2t,x
+ C‖ηwIt‖2Ls3,r3t,x

+ 2‖b2∇ηw2It‖L1,1
t,x

+ 1
2‖ηwI

t‖2L∞,2t,x
+ 8‖fη‖2Lq4,p4

t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
.

Furthermore, we have for some C = C(Θ) > 0,

‖ηwIt‖2L∞,2t,x
+ ‖η∇wλ 1

2 It‖2L2,2
t,x
.C ‖∂sηw2It‖L1,1

t,x
+ ‖w∇ηµ 1

2 It‖2L2,2
t,x

+ ‖b2∇ηw2It‖L1,1
t,x

+ ‖ηwIt‖2Ls2,r2t,x
+ ‖ηwIt‖2Ls3,r3t,x
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+ ‖fη‖2Lq4,p4
t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
. (3.13)

Now since η|Q1 = 1 and η|Qc2 = 0, by (3.1) and Hölder’s inequality, we have

‖1Q1
∇wIt‖2Lκ,2

x,t
6 ‖η∇wIt‖2Lκ,2

x,t
6 ‖λ−1‖Lp0 (Bτ2 )‖η∇wλ

1
2 It‖2L2,2

x,t
,

and by (3.3),

‖∂sηw2It‖L1,1
t,x
6 C(τ2 − τ1)−1‖1Q2wIt‖2L2,2

t,x
.

Substituting these into (3.13), we obtain that for any η ∈ C ,

‖1Q1wIt‖2L∞,2t,x
+ ‖1Q1∇wIt‖2Lκ,2

x,t
6 ‖ηwIt‖2L∞,2t,x

+ |||λ−1|||p0‖η∇wλ
1
2 It‖2L2,2

t,x

.C (τ2 − τ1)−1‖1Q2wIt‖2L2,2
t,x

+ ‖(µ|∇η|+ |b2|)w2|∇η|It‖L1,1
t,x

+
∑
i=2,3

‖1Q2wIt‖2Lsi,rit,x
+ ‖f1Q2‖2Lq4,p4

t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
.

(3.14)

Note that by (3.3) and the assumptions,

µ|∇η|+ |b2| 6 (τ2 − τ1)−1(2µ+ 4|b2|) =: (τ2 − τ1)−1g ∈ L̃p1,∞
x,t . (3.15)

By (1.7) and Lemma 3.1, there are γ0, γ1 > 0 such that for all t > 0 and ε ∈ (0, 1),

inf
η∈C
‖gw2|∇η|It‖L1,1

t,x
6 ε‖wIt‖2VQ2

+ Cε−γ0(τ2 − τ1)−γ1‖1Q2
wIt‖2L2,2

t,x
. (3.16)

Let (r1, s1) = (2, 2) ∈ Iχ. By (3.14), (3.15) and (3.16), there are γ = γ(p0, p1, d) >
1 and C > 0 such that for all 1 6 τ1 < τ2 6 2,

‖wIt‖2VQ1
6 1

2‖wI
t‖2VQ2

+ C(τ2 − τ1)−γ
∑

i=1,2,3

‖1Q2wIt‖2Lsi,rit,x

+ ‖f1Q2
‖2Lq4,p4

t,x
‖1{w 6=0}∩Q2

It‖2Ls4,r4t,x
.

Recall Qi = Qτi for i = 1, 2. If we let h(τ) := ‖wIt‖2VQτ , then the above inequality

implies that for any τ1 6 τ < τ ′ 6 τ2,

h(τ) 6 1
2h(τ ′) + C(τ ′ − τ)−γ

∑
i=1,2,3

‖1Qτ2wI
t‖2Lsi,rit,x

+ ‖f1Qτ2 ‖
2
Lq4,p4
t,x
‖1{w 6=0}∩Qτ2I

t‖2Ls4,r4t,x
.

The desired estimate now follows by Lemma 2.6. �

3.2. Local maximum estimate. The following lemma is easy by Hölder’s in-
equality.

Lemma 3.3. Let Q = I×D ⊂ R×Rd be a bounded domain. For any p, q ∈ [1,∞),
there are constants C1, C2 > 0 only depending on Q, p, q such that for any A ⊂ Q,

‖1A‖Lq,pt,x + ‖1A‖Lp,qx,t 6 C1‖1A‖1/(p∨q)L1,1
t,x

6 C2

(
‖1A‖Lq,pt,x + ‖1A‖Lp,qx,t

)1/(p∨q)
.

We need the following simple De-Giorgi’s iteration lemma.

Lemma 3.4. Let (an)n∈N be a sequence of nonnegative real numbers. Suppose that
for some C0, λ > 1 and δj > 0, j = 1, · · · ,m,

an+1 6 C0λ
nan

m∑
j=1

aδjn , n = 1, 2, · · · .

If a1 6 (mC0λ
(1+δ)/δ)−1/δ, where δ = δ1 ∧ · · · ∧ δm, then

lim
n→∞

an = 0.
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Proof. We use induction to prove that if a1 6 (mC0λ
(1+δ)/δ)−1/δ 6 1, then

an 6 a1λ
−(n−1)/δ, ∀n ∈ N.

By the induction hypothesis, we have

an+1 6 mC0λ
na1+δ

n 6 mC0a
1+δ
1 λn−(n−1)(1+δ)/δ

=
(
mC0a

δ
1λ

(1+δ)/δ
)
a1λ
−n/δ 6 a1λ

−n/δ,

where the last step is due to mC0a
δ
1λ

(1+δ)/δ 6 1. �

Lemma 3.5. Let 1 6 τ1 < τ0 6 2 and 0 < κ0 < κ1. Define

Γi := Qτi , wi := (u− κi)+, i = 0, 1.

(i) For any r, s ∈ [1,∞], we have

‖1{w1 6=0}∩Γ0
‖Ls,rt,x 6 ‖w01Γ0

‖Ls,rt,x/(κ1 − κ0). (3.17)

(ii) For any r ∈ [1,κ) and s ∈ [1, 2), there is a universal constant C > 0 such that

‖1Γ0∇w1‖Lr,sx,t 6 C‖w1‖VΓ0

(‖w01Γ0
‖
L1,1
t,x

κ1−κ0

)( 1
r−

1
κ )∧( 1

s−
1
2 )

. (3.18)

(iii) For any (r, s) ∈ Iκ, there are δ ∈ (0, 1) and C = C(r, s, d,κ) > 0 such that

‖1Γ1
w1‖Ls,rt,x 6 C(τ0 − τ1)−1‖w1‖VΓ0

·
(‖w01Γ0‖L1,1

t,x

κ1−κ0

)δ
. (3.19)

Proof. (i) Noting that

w0|w1 6=0 = (u− κ1 + κ1 − κ0)+|w1 6=0 > κ1 − κ0,

for given r, s ∈ [1,∞], we have

‖w01Γ0
‖Ls,rt,x > ‖w01{w1 6=0}∩Γ0

‖Ls,rt,x > (κ1 − κ0)‖1{w1 6=0}∩Γ0
‖Ls,rt,x ,

which implies (3.17).
(ii) Let 1

r = 1
κ + 1

r′ and 1
s = 1

2 + 1
s′ . By Hölder’s inequality, we have

‖1Γ0∇w1‖Lr,sx,t = ‖1Γ0∩{w1 6=0}∇w1‖Lr,sx,t 6 ‖1Γ0∇w1‖Lκ,2
x,t
‖1Γ0∩{w1 6=0}‖Lr′,s′x,t

. ‖w1‖VΓ0
‖1Γ0∩{w1 6=0}‖

1/(s′∨r′)
L1,1
t,x

,

which implies (3.18) by (3.17).
(iii) Since 1

2 −
1
r <

1
s ( 2
d −

1
p0

), we can choose r′, β > r and s′, θ > s so that

1
r′ + 1

β = 1
r ,

1
s′ + 1

θ = 1
s ,

1
2 −

1
r′ <

1
s′ (

2
d −

1
p0

).

By Hölder’s inequality, we have

‖w11Γ1‖Ls,rt,x 6 ‖w11Γ1‖Ls′,r′t,x
‖1{w1 6=0}∩Γ1

‖Lθ,βt,x ,

and by Lemma 2.2 and (2.2),

‖w11Γ1
‖Ls′,r′t,x

.C ‖1Γ0
∇w1‖L2,κ

t,x
+ (τ0 − τ1)−1‖1Γ0

w1‖L∞,2t,x

.C (τ0 − τ1)−1‖w1‖VΓ0
,

which in turn yields (3.19) by Lemma 3.3 and (3.17). �

Now we can show the following local maximum principle for PDE (1.4).
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Theorem 3.6 (Local maximum estimate). Under the assumption of Lemma 3.2,
for any p > 0, there is a constant C = C(p,Θ) > 0 such that for any Lipschitz weak
subsolution u of PDE (1.4),

‖u+1Q1
‖∞ 6 C

(
‖u+1Q2

‖Lp,pt,x + ‖f1Q2
‖Lq4,p4

t,x

)
, (3.20)

where Q1 := [−1, 1]×B1 and Q2 := [−4, 4]×B2.

Proof. Fix 1 6 τ < σ 6 2. Let κ > 0, which will be determined below. For n ∈ N,
define

τn = τ + (σ − τ)21−n, τ̃n := τ + 3(σ − τ)2−n−1, κn := κ
(
1− 21−n)

and

wn := (u− κn)+, Γn := (−τ2
n, τ

2
n)×Bτn , Γ̃n := (−τ̃2

n, τ̃
2
n)×Bτ̃n .

Clearly,

κn ↑ κ, Γn+1 ⊂ Γ̃n ⊂ Γn ↓ [−τ2, τ2]× B̄τ = Q̄τ .

Since κn+1 − κn = κ2−n, for any r, s ∈ [1,∞], by (3.17) we have

‖1{wn+1 6=0}∩Γn‖Ls,rt,x 6 2nκ−1‖1Γnwn‖Ls,rt,x , (3.21)

and by (3.19), for any (r, s) ∈ Iκ , there is a δ ∈ (0, 1) such that

‖1Γn+1
wn+1‖Ls,rt,x .

2n‖wn+1‖V
Γ̃n

σ−τ ·
(

2nκ−1‖1Γnwn‖L1,1
t,x

)δ
. (3.22)

Now let (ri, si), i = 1, 2, 3, 4 be as in Lemma 3.2. If we define

`(i)n := ‖1Γnwn‖Lsi,rit,x
, i = 1, 2, 3, 4,

then by (3.22), for some δi = δi(ri, si,κ) ∈ (0, 1) and C = C(ri, si,κ, d) > 0,

`
(i)
n+1 .C

2n‖wn+1‖V
Γ̃n

σ−τ ·
(
2nκ−1‖1Γnwn‖L1,1

t,x

)δi
, i = 1, 2, 3, 4.

In particular, we have

an+1 :=
1

κ

4∑
i=1

`
(i)
n+1 .

2n‖wn+1‖V
Γ̃n

(σ−τ)κ

4∑
i=1

(
2nκ−1‖1Γnwn‖L1,1

t,x

)δi
.

4n‖wn+1‖V
Γ̃n

(σ−τ)κ

4∑
i=1

(
`
(1)
n

κ

)δi
6

4n‖wn+1‖V
Γ̃n

(σ−τ)κ

4∑
i=1

aδin , (3.23)

where the second inequality is due to ‖1Γnwn‖L1,1
t,x
6 C‖1Γnwn‖Ls1,r1t,x

.

On the other hand, note that

0 6 wn+1 6 wn ⇒ |∇wn+1| = |∇u|1{wn+1 6=0} 6 |∇u|1{wn 6=0} = |∇wn|.

By Lemma 3.2 with w = wn+1, Q1 = Γ̃n, Q2 = Γn and (3.17), we have for some
γ > 1,

‖wn+1‖VΓ̃n
.C 2γn

∑
i=1,2,3

‖1Γnwn+1‖Lsi,rit,x
+ ‖f1Γn‖Lq4,p4

t,x
‖1{wn+1 6=0}∩Γn‖Ls4,r4t,x

.C 2γn(`(1)
n + `(2)

n + `(3)
n ) + ‖f1Q2

‖Lq4,p4
t,x

(2nκ−1`(4)
n ),

where C = C(Θ) > 0. This implies that for κ > ‖f1Q2
‖Lq4,p4

t,x
,

‖wn+1‖VΓ̃n
.C 2γn(`(1)

n + `(2)
n + `(3)

n ) + 2n`(4)
n 6 2γn

4∑
i=1

`(i)n = 2γnanκ.
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Substituting this into (3.23), we obtain that for some C0, γ0 > 1,

an+1 6
C02γ0nan
σ − τ

4∑
i=1

aδin , ∀n ∈ N.

Let δ := δ1 ∧ · · · ∧ δ4. Suppose that

κ >

[4C02γ0(1+δ)/δ

σ − τ

] 1
δ ∑
i=1,2,3,4

‖u+1Qσ‖Lsi,rit,x

 ∨ ‖f1Q2
‖Lq4,p4

t,x
.

Then a1 6 (4C02γ0(1+δ)/δ)−
1
δ , and by Fatou’s lemma and Lemma 3.4,

‖(u− κ)+1Qτ ‖Ls1,r1t,x
6 lim inf

n→∞
‖wn1Γn‖Ls1,r1t,x

= lim inf
n→∞

`(1)
n 6 κ · lim sup

n→∞
an = 0,

which in turn implies that

‖u+1Qτ ‖∞ 6

[4C02γ0(1+δ)/δ

σ − τ

] 1
δ ∑
i=1,2,3,4

‖u+1Qσ‖Lsi,rit,x

 ∨ ‖f1Q2‖Lq4,p4
t,x

.

To show (3.20), without loss of generality, we may assume

p 6 γ/2, γ := max
i=1,2,3,4

{si, ri}.

Thus by Hölder’s inequality and Young’s inequality, we have

‖u+1Qτ ‖∞ 6 C(σ − τ)−
1
δ ‖u+1Qσ‖Lγ,γt,x + ‖f1Q2

‖Lq4,p4
t,x

6 C(σ − τ)−
1
δ ‖u+1Q2

‖1−
p
γ

∞ ‖u+1Qσ‖
p
γ

Lp,pt,x
+ ‖f1Q2

‖Lq4,p4
t,x

6 1
2‖u

+1Qσ‖∞ + C(σ − τ)−
γ
pδ ‖u+1Q2

‖Lp,pt,x + ‖f1Q2
‖Lq4,p4

t,x
,

where C = C(Θ) is independent of σ, τ . By Lemma 2.6, we conclude the proof. �

3.3. Proof of Theorem 1.3. Without loss of generality, we assume T = 1 and

u(t, x) = f(t, x) ≡ 0, ∀t 6 0.

For z ∈ Rd, we write

Qzi := Q0,z
i , i = 1, 2, 3.

Let u be a Lipschitz weak solution of PDE (1.4) in the sense of Definition 1.1. By
translation and Lemma 3.2 with w = u+, u−, there is a constant C = C(Θ) > 0
such that for all t ∈ [0, 1],

‖uIt‖VQz1 .C
∑

i=1,2,3

‖1Qz2uI
t‖Lsi,rit,x

+ ‖f1Qz2I
t‖Lq4,p4

t,x
,

where (ri, si) are as in Lemma 3.2. By Lemma 2.2, we further have for some
β ∈ (1,∞) and any ε ∈ (0, 1),

‖uIt‖VQz1 6 ε‖1Qz3∇uI
t‖Lκ,2

x,t
+ Cε‖1Qz3uI

t‖Lβ,2t,x
+ C‖f1Qz2I

t‖Lq4,p4
t,x

.

Taking supremum in z ∈ Rd for both sides and by (2.5), we obtain

|||uIt|||Ṽ . sup
z
‖uIt‖VQz1 . ε|||∇uI

t|||L̃κ,2
x,t

+ |||uIt|||L̃β,2t,x
+ |||fIt|||Lq4,p4

t,x
.

Since |||∇uIt|||L̃κ,2
x,t
6 |||uIt|||Ṽ , choosing ε small enough, we obtain

|||uIt|||Ṽ .C |||uI
t|||L̃β,2t,x

+ |||fIt|||Lq4,p4
t,x

. (3.24)
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Since β < ∞ and u(t) ≡ 0 for t 6 0, the above inequality implies that for any
t ∈ [0, 1],

|||u(t)|||2 .C
(∫ t

0

|||u(s)|||β2 ds

)1/β

+ |||fIt|||Lq4,p4
t,x

.

By Gronwall’s inequality we obtain

|||uIt|||L̃∞,2t,x
6 sup
t∈[0,1]

|||u(t)|||2 . |||fIt|||Lq4,p4
t,x

.

which together with (3.24) yields

|||u1[0,1]|||Ṽ .C |||f1[0,1]|||Lq4,p4
t,x

. (3.25)

Finally, by (3.20) and (3.25), we also have

‖u‖L∞([0,1]×Rd) 6 sup
z
‖(u+ + u−)1[0,1]×Bz1 ‖∞

. |||u1[0,1]|||L̃2,2
t,x

+ |||f1[0,1]|||Lq4,p4
t,x

. |||f1[0,1]|||Lq4,p4
t,x

.

The proof is complete.

4. Weak solutions of SDEs with rough coefficients

In this section we present an application of the global boundedness (1.10) in
SDEs, and show the existence of weak solutions to SDE (1.13) with rough coeffi-
cients. First of all, we recall the following notion of weak solutions to SDE (1.13).

Definition 4.1. Let F := (Ω,F ,P; (Ft)t>0) be a stochastic basis and (X,W ) a
pair of Ft-adapted processes defined thereon. Given (s, x) ∈ R+×Rd, we call triple
(F, X,W ) a weak solution of SDE (1.13) with starting point x ∈ Rd at time s if

(i) P(Xt = x, t ∈ [0, s]) = 1 and W is an Ft-Brownian motion;
(ii) for all t > s, it holds that P-a.s.,∫ t

s

(
|σ(r,Xr)|2 + |b(r,Xr)|

)
dr <∞,

and

Xt = x+
√

2

∫ t

s

σ(r,Xr)dWr +

∫ t

s

b(r,Xr)dr.

Recall p0, p1 from (1.7) and the convention that the repeated indices will be
summed automatically, for instances,

∂ia
ij =

d∑
i=1

∂ia
ij , ∂i∂ja

ij =

d∑
i,j=1

∂i∂ja
ij .

We introduce the following assumptions on σ and b:

(H̃σ) Suppose that there are a sequence of d×d-matrix functions σn ∈ L∞(R+;C∞b ),
(p2, q2) ∈ Idp0

and κ0 > 0 such that for all n ∈ N,

|||λ−1
n |||p0

+ |||µn|||p1
+ |||∂iaijn |||L̃p1,∞

x,t
+ |||(∂i∂jaijn )+|||L̃q2,p2

t,x
6 κ0, (4.1)

where an := σnσ
∗
n, λn and µn are defined as in (1.5) by an. Moreover, for

some p3, q3 ∈ [2,∞] with (p3

2 ,
q3
2 ) ∈ Idp0

and for any T,R > 0,

sup
n
|||σn|||L̃q3,p3

t,x
=: κ1 <∞, lim

n→∞
‖(σn − σ)1[0,T ]×BR‖Lq3,p3

t,x
= 0. (4.2)

(H̃b) Let b = b1 + b2 satisfy (Hb) and belong to L̃q4,p4

t,x for some (p4, q4) ∈ Idp0
.
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Let Θ be defined by (1.9). Below we shall write

Θ̃ :=
(

Θ, pi, qi, κ0, κ1, |||b|||L̃q4,p4
t,x

)
.

We have the following existence result.

Theorem 4.2. Under (H̃σ) and (H̃b), for any (s, x) ∈ R+ × Rd, there is a weak
solution (F, X,W ) for SDE (1.13) starting from x at time s. Moreover, for any

(p, q) ∈ Idp0
and T > s, there are θ ∈ (0, 1) and constant C = C(T, Θ̃, p, q) > 0 such

that for any s 6 t0 < t1 6 T and f ∈ L̃q,pt,x ,

E

(∫ t1

t0

f(r,Xr)dr
∣∣∣Ft0

)
6 C(t1 − t0)θ|||f |||L̃q,pt,x . (4.3)

In the following proof, we assume s = 0 and x ∈ Rd. Let σn be as in (H̃σ) and
bn(t, x) = b ∗ ρn(t, x) be the mollifying approximation of b. In particular,

σn, bn ∈ L∞([0, T ];C∞b (Rd)), (4.4)

and the following SDE admits a unique strong solution (cf. [16]):

dXn
t = bn(t,Xn

t )dt+
√

2σn(t,Xn
t )dWt, Xn

0 = x. (4.5)

Note that the generator of SDE (6.1) is given by

L σn,bn
t f(x) = (σikn σ

jk
n )(t, x)∂i∂jf(x) + bjn(t, x)∂jf(x)

= ∂i(a
ij
n (t, ·)∂jf)(x) + b̃jn(t, x)∂jf(x),

where
aijn := σikn σ

jk
n , b̃jn := bjn − ∂iaijn .

In particular, by (H̃σ), one sees that (Ha) holds for an uniformly in n, and (Hb)

holds for b̃n = b1,n + (b2,n − ∂iai·n) uniformly in n, where bi,n := bi ∗ ρn.
We first show the following key Krylov estimate (see [19]).

Theorem 4.3. Under (H̃σ) and (H̃b), for any (p, q) ∈ Idp0
and T > 0, there are

θ = θ(p, q, d, p0) ∈ (0, 1) and C = C(T, Θ̃, p, q) > 0 independent of starting point x

such that for any 0 6 t0 < t1 6 T and f ∈ L̃q,pt,x ,

sup
n

E
(∫ t1

t0

f(s,Xn
s )ds

∣∣∣Ft0

)
6 C(t1 − t0)θ|||f |||L̃q,pt,x . (4.6)

Proof. Below we drop the super and subscripts n for simplicity. Without loss of
generality, we may assume f ∈ C∞0 (Rd+1). Fix t1 ∈ (0, T ] and consider the following
backward PDEs:

∂tu+ L σ,b
t u = f, u(t1) = 0.

Under (4.4), it is well known that there is a unique solution u ∈ L∞loc([0, t1];C∞b (Rd))
so that (cf. [16])

u(t, x) =

∫ t1

t

(L σ,b
s u− f)(s, x)ds, t ∈ [0, t1].

By Itô’s formula, for any t0 6 t1, we have

u(t1, Xt1)− u(t0, Xt0) =

∫ t1

t0

f(s,Xs)ds+
√

2

∫ t1

t0

(σ∗∇u)(s,Xs)dWs.

Taking conditional expectations with respect to Ft0 , we obtain

E
(∫ t1

t0

f(s,Xs)ds
∣∣∣Ft0

)
6 ‖u‖L∞([t0,t1]×Rd). (4.7)
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On the other hand, since (p, q) ∈ Idp0
, we can choose q′ < q so that

1
p <

(
1− 1

q′

)(
2
d −

1
p0

)
.

Thus by the assumptions, (1.10) of Theorem 1.3, there exists a constant C =

C(T, θ̃, p, q) > 0 independent of n such that

‖u‖L∞([t0,t1]×Rd) .C |||f1[t0,t1]|||Lq′,pt,x
.C (t1 − t0)θ|||f |||Lq,pt,x ,

where θ = 1
q′ −

1
q and the second inequality is due to Hölder’s inequality. Substi-

tuting it into (4.7), we obtain (4.6). �

We need the following simple lemma.

Lemma 4.4. Let (Xt)t>0 be a right continuous stochastic process on a filtered
probability space (Ω,F ,P; (Ft)t>0). Suppose that for some Y ∈ L1(Ω) and A > 0,

|Xt| 6 Y, E(Xt|Ft) 6 A, P− a.s.
Then for any finite stopping time τ , it holds that

E(Xτ |Fτ ) 6 A, P− a.s.

Proof. Let τn be a sequence of decreasing stopping times with values in D :=
{k · 2−n : k, n ∈ N} and so that τn → τ as n→∞. Note that for each n ∈ N,

E (Xτn |Fτn) = E

(∑
t∈D

1{τn=t}Xt|Fτn

)
=
∑
t∈D

1{τn=t}E (Xt|Ft) 6 A.

By the dominated convergence theorem and Fτ ⊂ Fτn , we have

E (Xτ |Fτ ) = lim
n→∞

E (Xτn |Fτ ) = lim
n→∞

E (Xτn |Fτn |Fτ ) 6 A.

The proof is complete. �

Remark 4.5. By this lemma, one sees that (4.6) is equivalent to that for any

stopping time τ 6 T , δ ∈ (0, 1) and f ∈ L̃q,pt,x ,

sup
n

E

(∫ τ+δ

τ

f(s,Xn
s )ds

∣∣∣Fτ

)
6 Cδθ|||f |||L̃q,pt,x . (4.8)

Lemma 4.6. Under (H̃σ) and (H̃b), for any T > 0, there are θ ∈ (0, 1) and

constant C = C(T, Θ̃) > 0 such that for all δ ∈ (0, 1),

sup
n

E

(
sup
t∈[0,T ]

sup
s∈[0,δ]

|Xn
t+s −Xn

t |1/2
)
6 Cδθ/2 (4.9)

and

sup
n

E

(
sup
t∈[0,T ]

|Xn
t |

)
6 C. (4.10)

Proof. We only prove (4.9). Let τ be any stopping time less than T . Notice that

Xn
τ+t −Xn

τ =

∫ τ+t

τ

bn(s,Xn
s )ds+

√
2

∫ τ+t

τ

σn(s,Xn
s )dWs, t > 0.

By Burkholder’s inequality and (4.8), we have

E

(
sup
t∈[0,δ]

|Xn
τ+t −Xn

τ |

)
. E

∫ τ+δ

τ

|bn|(s,Xn
s )ds+

(
E
∫ τ+δ

τ

|σn(s,Xn
s )|2ds

)1/2

6 Cδθ|||bn|||L̃q4,p4
t,x

+ Cδθ|||σn|||L̃q3,p3
t,x

6 Cδθ,



18 XICHENG ZHANG

where C is independent of n and δ. Thus by [20, Lemma 2.7], we obtain (4.9). �

Let C be the space of all continuous functions from R+ to Rd, which is endowed
with the locally uniformly metric so that C becomes a Polish space. Let Qn be
the law of (Xn

· ,W·) in product space C× C. For each x ∈ Rd, by Lemma 4.6 and
[16, Theorem 1.3.2], the law of Xn

· is tight in C. By Lemma 4.6 and Prokhorov’s
theorem, there are a subsequence still denoted by n and Q ∈ P(C× C) so that

Qn → Q weakly.

Now, by Skorokhod’s representation theorem, there are a probability space (Ω̃, F̃ , P̃)

and random variables (X̃n, W̃n) and (X̃, W̃ ) defined on it such that

(X̃n, W̃n)→ (X̃, W̃ ), P̃− a.s. (4.11)

and

P̃ ◦ (X̃n, W̃n)−1 = Qn = P ◦ (Xn,W )−1, P̃ ◦ (X̃, W̃ )−1 = Q. (4.12)

Define F̃n
t := σ(W̃n

s , X̃
n
s ; s 6 t). Notice that

P(Wt −Ws ∈ ·|Fs) = P(Wt −Ws ∈ ·)

implies that

P̃(W̃n
t − W̃n

s ∈ ·|F̃n
s ) = P̃(W̃n

t − W̃n
s ∈ ·).

In other words, W̃n
t is an F̃n

t -Brownian motion. Thus, by (6.1) and (4.12) we have

X̃n
t = x+

∫ t

0

bn
(
s, X̃n

s

)
ds+

∫ t

0

σn
(
s, X̃n

s

)
dW̃n

s . (4.13)

Moreover, by (4.6), we also have

sup
n

Ẽ
(∫ t1

t0

f(s, X̃n
s )ds

∣∣∣F̃t0

)
6 C(t1 − t0)θ|||f |||L̃q,pt,x . (4.14)

In order to take the limits, we recall a result of Skorokhod [15, p.32].

Lemma 4.7. Let {fn(t), t > 0, n ∈ N} be a sequence of measurable F̃n
t -adapted

processes. Suppose that for every T, ε > 0, there is an Mε > 0 such that

sup
n

P̃

{
sup
t∈[0,T ]

|fn(t)| > Mε

}
6 ε,

and also,

lim
n→∞

P̃

{
sup
t∈[0,T ]

|fn(t)− f(t)| > ε

}
= 0.

Then it holds that for every T > 0,∫ T

0

fn(t)dW̃n
t →

∫ T

0

f(t)dW̃t in probability as n→∞.

Lemma 4.8. For each t > 0, the following limits hold in probability as n→∞,∫ t

0

bn
(
s, X̃n

s

)
ds→

∫ t

0

b
(
s, X̃s

)
ds, (4.15)∫ t

0

σn
(
s, X̃n

s

)
dW̃n

s →
∫ t

0

σ
(
s, X̃s

)
dW̃s. (4.16)
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Proof. We only prove (4.16). For simplicity, we shall write σ∞ := σ and drop the
tilde. For each n ∈ N∞ = N ∪ {∞}, let σεn(t, x) := σn ∗ ρε(t, x) be the mollifying
approximation of σn. It suffices to show the following two limits: for fixed ε > 0,∫ t

0

σεn
(
s,Xn

s

)
dWn

s →
∫ t

0

σε∞
(
s,Xs

)
dWs in probability n→∞, (4.17)

and

lim
ε→0

sup
n∈N∞

E
∣∣∣∣∫ t

0

(σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
)dWn

s

∣∣∣∣2 = 0. (4.18)

Clearly, limit (4.17) follows by Lemma 4.7. We look at (4.18). For R > 0, we define

τnR := inf{t > 0 : |Xn
t | > R}.

By (4.10), we have

lim
R→∞

sup
n

P(τnR 6 t) 6 lim
R→∞

sup
n

1

R
E

(
sup
s∈[0,t]

|Xn
s |

)
= 0. (4.19)

For (4.18), by Itô’s isometry we have

E
∣∣∣∣∫ t

0

(σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
)dWn

s

∣∣∣∣2
6 E

∫ t

0

|σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
|2ds =: InR(ε) + JnR(ε),

(4.20)

where

InR(ε) := E
(

1{τnR>t}

∫ t

0

|σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
|2ds

)
,

JnR(ε) := E
(

1{τnR6t}

∫ t

0

|σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
|2ds

)
.

For InR(ε), since (p3

2 ,
q3
2 ) ∈ Idp0

, by (4.14) we have

InR(ε) 6 E
(∫ t

0

1|Xns |6R|σ
ε
n

(
s,Xn

s

)
− σn

(
s,Xn

s

)
|2ds

)
. ‖1[0,t]×BR(σεn − σn)‖2Lq3,p3

t,x
,

where the implicit constant is independent of n, ε,R. For each R > 0, since

lim
n→∞

sup
ε∈(0,1)

‖1[0,t]×BR(σεn − σε)‖Lq3,p3
t,x

6 lim
n→∞

‖1[0,t]×B2R
(σn − σ)‖Lq3,p3

t,x
= 0,

and for each n ∈ N∞,

lim
ε→0
‖1[0,t]×BR(σεn − σn)‖Lq3,p3

t,x
= 0,

it follows that for each R > 0,

lim
ε→0

sup
n
InR(ε) . lim

ε→0
sup
n
‖1[0,t]×BR(σεn − σn)‖2Lq3,p3

t,x
= 0. (4.21)

For JnR(ε), since (p3

2 ,
q3
2 ) ∈ Idp0

, one can choose γ > 1 being close to 1 so that

( p3

2γ ,
q3
2γ ) ∈ Idp0

. By Hölder’s inequality and (4.6) we have

JnR(ε) 6 (P(τnR 6 t))
γ−1
γ

(
E
∫ t

0

|σεn
(
s,Xn

s

)
− σn

(
s,Xn

s

)
|2γds

) 1
γ

. (P(τnR 6 t))
γ−1
γ |||σεn − σn|||

2γ

Lq3,p3
t,x

. (P(τnR 6 t))
γ−1
γ ,
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where the implicit constant is independent of ε, n,R. By (4.19), we have

lim
R→∞

sup
n

sup
ε
JnR(ε) = 0. (4.22)

Combining (4.20), (4.21) and (4.22), we obtain (4.18). The proof is complete. �

Proof of Theorem 4.2. It follows by taking limits for both sides of (4.13) and Lemma
4.8. As for (4.3), it follows by taking limits for (4.14) with f ∈ C0(R+ × Rd). �

5. Strong Markov selection

In this section we use Krylov’s Markov selection theorem to show the existence of

a strong Markov solution under (H̃σ) and (H̃b). Let ωt be the coordinate process
on the continuous function space C and Bt := σ{ωs : s 6 t} the natural σ-filtration.
We first recall the following notion of local martingale solutions to SDE (1.13).

Definition 5.1. Let (s, x) ∈ R+ ×Rd. A probability measure P ∈ P(C) is called a
local martingale solution of SDE (1.13) starting from x at time s if

(i) P(ωt = x, t ∈ [0, s]) = 1 and for each t > s,

P
(
ω :

∫ t

s

(|b(r, ωr)|+ |(σσ∗)(r, ωr)|)ds <∞
)

= 1.

(ii) For any f ∈ C∞(Rd), the process

Mf
t (ω) := f(ωt)− f(ωs)−

∫ t

s

L σ,b
r f(ωr)dr

is a continuous local Bt-martingale after time s.

The set of all the local martingale solutions of (1.13) is denoted by Mσ,b
s,x ⊂ P(C).

By Itô’s formula, it is easy to see that the law of a weak solution in Definition
4.1 is a local martingale solution. Moreover, we also have the following opposite
conclusion (see [8, p314, Proposition 4.11]).

Theorem 5.2. For any P ∈Mσ,b
s,x, there is a weak solution (F, X,W ) starting from

x at time s, where F = (Ω,F ,P; (Ft)t>0) is a stochastic basis, and so that

P = P ◦X−1.

One also needs the following notion about Krylov’s estimate (see Theorem 4.3).

Definition 5.3. Let p, q ∈ [1,∞) and s > 0. We call a probability measure P ∈
P(C) satisfy the Krylov estimate with indices p, q and starting from s if for any
T > s, there are constants κ, θ > 0 such that for any s 6 t0 < t1 6 T and
f ∈ C0(R+ × Rd),

EP
(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) 6 κ(t1 − t0)θ‖f‖Lq,pt,x . (5.1)

We shall denote by Kp,qs,T the set of all the above P.

Remark 5.4. By a standard approximation, (5.1) holds for all f ∈ Lq,pt,x .

Now we show the following main result of this section.

Theorem 5.5. Assume (H̃σ) and (H̃b). For given (s, x) ∈ R+ × Rd, let

C (s, x) := ∩(p,q)∈Idp0
,T>sK

p,q
s,T ∩M

σ,b
s,x.
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Then C (s, x) is a non-empty convex subset of P(C) and satisfies (C1), (C2) and
(C3) in appendix. In particular, there is a measurable mapping

R+ × Rd 3 (s, x) 7→ Ps,x ∈ C (s, x)

so that for each fixed (s, x) ∈ R+ × Rd and finite stopping time τ > s, there is a
Ps,x-null set N ∈ Bτ such that for all ω /∈ N ,

Ps,x(·|Bτ )(ω) = Pτ(ω),ωτ(ω)
(·).

Proof. First of all, by Theorem 4.3, for each (s, x), C (s, x) is non-empty and convex,
and for given (p, q) ∈ Idp0

, the constants κ, θ appearing in (5.1) are independent of
s, x.

Verification of (C1) Let (sn, xn) converge to (s, x) and Pn ∈ C (sn, xn). We
want to show that (Pn)n∈N is tight. By the equivalence between martingale solutions
and weak solutions, for each n ∈ N, there exists a weak solution (Fn, Xn,Wn)
starting from xn at time sn, where Fn := (Ωn,Fn,Pn; (Fn

t )t>0), so that

Pn = Pn ◦ (Xn)−1.

Note that

Xn
t = xn +

√
2

∫ t

sn

σ(r,Xn
r )dWn

r +

∫ t

sn

b(r,Xn
r )dr, t > sn.

Since Pn ∈ ∩(p,q)∈Ip0 ,T>sn
Kp,qsn,T , and the constants κ, θ appearing in (5.1) are in-

dependent of n, as in Lemma 4.6, one can show that for each T > sup sn + 1,

sup
n

En

(
sup
t∈[0,T ]

sup
s∈[0,δ]

|Xn
t+s −Xn

t |1/2
)
6 Cδθ/2, δ ∈ (0, 1),

where En stands for the expectation with respect to Pn. Thus (Pn)n∈N is tight.
Let P be any accumulation point of Pn. If necessary, by substracting a subsequence,
without loss of generality we assume Pn weakly converges to P. For given compact
support continuous function f , by taking weak limits for

EPn
(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) 6 κ(t1 − t0)θ‖f‖Lq,pt,x ,

one sees that

P ∈ ∩(p,q)∈Ip0
,T>sKp,qs,T .

Moreover, as in the proof in Section 4, one can show that P ∈Mσ,b
s,x.

Verification of (C2) Let P ∈ C (s, x) and τ > s be a finite stopping time. Let
Qω be a r.c.p.d. of P(·|Bτ ). By [16, Theorem 6.1.3], there is a P-null set N1 ∈ Bτ
such that for all ω /∈ N1,

Qω ∈Mσ,b
τ(ω),ωτ(ω)

. (5.2)

On the other hand, for fixed p, q ∈ Idp0
, δ ∈ (0, 1) and T > s+ δ, since P ∈ Kp,qs,T , we

have for all t ∈ [s, T − δ] and f ∈ C0(R+ × Rd),

EP

(∫ t+δ

t

f(r, ωr)dr
∣∣∣Bt) 6 κδθ‖f‖Lq,pt,x , P− a.s.

By Lemma 7.4, there is a P-null set N = N(p, q, f, T ) ∈ Bτ such that for all ω /∈ N
and T > τ(ω) + δ, t ∈ [τ(ω), T − δ],

EQω
(∫ t+δ

t

f(r, ωr)dr
∣∣∣Bt) 6 κδθ‖f‖Lq,pt,x , Qω − a.s.,
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Since C0(R+ × Rd) and Idp0
are separable, one can find a common P-null set N2

such that for all ω /∈ N2 and (p, q) ∈ Idp0
, δ ∈ (0, 1), T > τ(ω) + δ, t ∈ [τ(ω), T − δ),

f ∈ C0(R+ × Rd),

EQω
(∫ t+δ

t

f(r, ωr)dr
∣∣∣Bt) 6 κδθ‖f‖Lq,pt,x , Qω − a.s.

In other words,

Qω ∈ ∩(p,q)∈Ip0
,T>τ(ω)Kp,qτ(ω),T ,

which together with (5.2) yields that there is a P-null set N such that for all ω /∈ N ,

Qω ∈ C (τ(ω), ωτ(ω)).

Verification of (C3) Let P ∈ C (s, x) and τ > s be a finite stopping time. For
any Bτ -measurable kernel C 3 ω 7→ Qω ∈ P(C) with

Qω ∈ C (τ(ω), ωτ(ω)), ∀ω ∈ C.

By [16, Theorem 6.1.2], one knows that

P⊗τ Q ∈Mσ,b
s,x. (5.3)

For fixed p, q ∈ Idp0
and T > s, we want to show that there are κ, θ independent of

(s, x) such that for any s 6 t0 < t1 6 T ,

EP⊗τQ
(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) 6 κ(t1 − t0)θ‖f‖Lq,pt,x , P⊗τ Q− a.s., (5.4)

which means that

P⊗τ Q ∈ ∩(p,q)∈Ip0 ,T>s
Kp,qs,T .

We make the following decomposition:

EP⊗τQ
(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) = I1 + I2 + I3 + I4,

where

I1 := 1{τ6t0}E
P⊗τQ

(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) ,

I2 := 1{t0<τ6t1}E
P⊗τQ

(∫ τ

t0

f(r, ωr)dr
∣∣∣Bt0) ,

I3 := 1{t0<τ6t1}E
P⊗τQ

(∫ t1

τ

f(r, ωr)dr
∣∣∣Bt0) ,

I4 := 1{t1<τ}E
P⊗τQ

(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) .

For I1, noting that

I1 = 1{τ6t0}E
P⊗τQ

(∫ t1∨τ

t0∨τ
f(r, ωr)dr

∣∣∣Bt0∨τ) ,
by Lemma 7.3 below, there is a P⊗τ Q-null set N ∈ Bτ so that for all ω /∈ N ,

EP⊗τQ
(∫ t1∨τ

t0∨τ
f(r, ωr)dr

∣∣∣Bt0∨τ) = EQω
(∫ t1∨τ

t0∨τ
f(r, ωr)dr

∣∣∣Bt0∨τ)
6 κ(t1 − t0)θ‖f‖Lq,pt,x , Qω − a.s.

Hence,

I1 6 κ(t1 − t0)θ‖f‖Lq,pt,x , P⊗τ Q− a.s.
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For I2, since P⊗τ Q|Bτ = P|Bτ , we have

I2 = 1{t0<τ6t1}E
P
(∫ τ

t0

f(r, ωr)dr
∣∣∣Bt0) 6 κ(t1 − t0)θ‖f‖Lq,pt,x .

For I3, since (P⊗τ Q)(·|Bτ )(ω) = Qω, we have

I3 = 1{t0<τ6t1}E
P⊗τQ

(∫ t1

τ

f(r, ωr)dr
∣∣∣Bt0∧τ)

= 1{t0<τ6t1}E
P
(
EQ·

(∫ τ

t0∧τ
f(r, ωr)dr

) ∣∣∣Bt0∧τ)
6 κ(t1 − t0)θ‖f‖Lq,pt,x .

Lastly, for I4 we have

I4 = 1{t1<τ}E
P
(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0) 6 κ(t1 − t0)θ‖f‖Lq,pt,x .

Combining the above calculations, we obtain (5.4). The proof is competed by
Theorem 7.2 below. �

6. Examples

For R > 1, let φR : [0,∞)→ [0,∞) be a smooth increasing function with

φR(r) = r, r 6 R; φR(r) = R+ 1, r > 2R.

For α ∈ R and n ∈ N, define

f
(α)
R (r) := (φR(r))α, f

(α)
R,n(r) := (φR(r + 1

n ))α.

Clearly,

f
(α)
R (r) = rα for r < R and f

(α)
R,n(r) = (r + 1

n )α for r + 1
n < R.

Below we provide two examples to illustrate the assumption (H̃σ).

Example 6.1. Let d > 3 and 0 < α < (d2 − 1) ∧ ( 1
2 + 1

d−1 ). Let

σ(x) = f
(−α2 )

R (|x|2)Id×d.

We verify (H̃σ) for σn(x) = f
(−α2 )

R,n (|x|2)Id×d. Note that

an(x) = (σnσ
∗
n)(x) = f

(−α)
R,n (|x|2)Id×d.

Thus,

λn(x) = µn(x) = f
(−α)
R,n (|x|2).

In particular, we have

λ−1
n (x) 6 φαR(|x|2 + 1) ∈ L̃∞(Rd),

and for p1 <
d

2α ,

µn(x) 6 φ−αR (|x|2) ∈ L̃p1(Rd).
On the other hand, by the chain rule, we have

∂ia
ij
n (x) = 2xj(f

(−α)
R,n )′(|x|2)

and

∂i∂ja
jj
n (x) = ∆f

(−α)
R,n (| · |2)(x) = 2d(f

(−α)
R,n )′(|x|2) + 4|x|2(f

(−α)
R,n )′′(|x|2).

Note that

(f
(−α)
R,n )′(r) = −αφR(r + 1

n )−α−1φ′R(r + 1
n )
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and

(f
(−α)
R,n )′′(r) = −αφR(r + 1

n )−α−1(φ′R(r + 1
n ) + φ′′R(r + 1

n ))

+ α(α+ 1)φR(r + 1
n )−α−2(φ′R(r + 1

n ))2.

It is easy to see that for p1 <
d

2α+1 ,

|∂iaijn (x)| 6 2α|x|−2α−11{|x|262R} ∈ L̃p1(Rd),

and due to α < d
2 − 1,

∂i∂ja
jj
n (x) 6 Cα,R.

Hence, (4.1) holds for p0 = ∞, p1 ∈ (d−1
2 , d

2α+1 ) and p2 = q2 = ∞. Moreover, if

p3 <
d
α , then

|σn(x)| 6 φ−
α
2

R (|x|2) ∈ L̃p3(Rd).

Thus, (4.2) holds for p3 ∈ (d, dα ) and q3 = ∞. Therefore, (H̃σ) is satisfied for the
above σn(x). In particular, by Theorem 4.3, there exists at least one solution for
the following singular SDE:

dXt = φR(|Xt|2)−α/2dWt + b(Xt)dt, X0 = x,

where α ∈ (0, (d2 − 1)∧ ( 1
2 + 1

d−1 )) and b ∈ L̃p for some p > d
2 satisfies (divb)− = 0.

Proposition 6.2. Let d > 3, α ∈ (0, (d2 − 1) ∧ ( 1
2 + 1

d−1 )), β ∈ (0, 2α) and λ > 0.

For each x ∈ Rd, the following SDEs admits a unique strong solution:

dXt = |Xt|−αdWt + λXt|Xt|−β−1dt, X0 = x. (6.1)

Proof. Let b(x) := λx|x|−β−1, and for R ∈ N, let σR(x) = φR(|x|2)−α/2I. Since

λ > 0 and β < 2, it is easy to see that b ∈ L̃p for any p ∈ (d2 ,
d
β ) and (divb)− ≡ 0.

Let XR
t solve the following SDE:

XR
t = x+

∫ t

0

σR(XR
s )dWs +

∫ t

0

b(XR
s )ds.

Let Φ : R+ → R+ be a smooth function with Φ(r) = 1 for |r| 6 1 and Φ(r) = r for
r > 2. By Itô’s formula, it is easy to see that

sup
R∈N

E

(
sup
t∈[0,T ]

Φ(|XR
t |2)

)
6 C.

From this, by Chebyshev’s inequality, we derive that

lim
R→∞

P

(
sup
t∈[s,T ]

|XR
t | > R

)
= 0,

which together with Theorem 5.5 implies that the assumptions of Theorem 7.5 is
satisfied. So, there exists a solution to SDE (6.1). To show the pathwise uniqueness,
note that

|∇b(x)| 6 C|x|−β−1,

and for any R > 0,∫
BR

|x|−(β+1)d det(σσ∗)−1(x)dx =

∫
BR

|x|−(β+1)d+2αddx <∞.

Thus by [18, Theorem 1.1] and the computations in Example 1 of [18], we obtain
the uniqueness. �
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Example 6.3. Let d = 2 and α ∈ (0, 1
2 ). Consider the following diffusion matrix:

σ(x) =

f (α2 )

R (|x2|2), 0

0, f
(α2 )

R (|x1|2)

 .

Let us define

σn(x) :=

f (α2 )

R,n (|x2|2), 0

0, f
(α2 )

R,n (|x1|2)

 , an(x) :=

f (α)
R,n(|x2|2), 0

0, f
(α)
R,n(|x1|2)

 .

Then

λn(x) = f
(α)
R,n(|x2|2) ∧ f (α)

R,n(|x1|2), µn(x) = f
(α)
R,n(|x2|2) ∨ f (α)

R,n(|x1|2).

Clearly, we have

λ−1
n (x) = f

(−α)
R,n (|x2|2) ∨ f (−α)

R,n (|x1|2)

and

∂ia
ij
n (x) = ∂i∂ja

ij
n (x) = 0.

Thus, (4.1) holds for p0 ∈ (1, 1
2α ), p1 = ∞ and p2 = q2 = ∞. Moreover, it is

easy to see that (4.2) holds for q3 = ∞ and any p3 ∈ ( 2p0

p0−1 ,∞). Therefore, (H̃σ)

holds for the above σn(x). As in Proposition 6.2, by Theorems 5.5 and 7.5, for any
starting point X0 = x ∈ R2, there exists at least one solution for the following two
dimensional degenerate SDE:{

dX1
t = |X2

t |αdW 1
t + b1(Xt)dt,

dX2
t = |X1

t |αdW 2
t + b2(Xt)dt,

where α ∈ (0, 1
2 ) and b = (b1, b2) ∈ L̃p(R2) for some p > 1

1−2α , and for some K ∈ N,

|b(x)| 6 C|x|, |x| > K.

We would like to say some words about the range of p. Intuitively, when Xt moves
to the unit ball, smaller α means stronger noise and so the drift b could be more
singular. While, the uniqueness for the above example is left open, even for b = 0.

7. Appendix

We first recall the following lemma (cf. [16, Theorem 6.1.2]).

Lemma 7.1. Let τ be a finite stopping time and C 3 ω 7→ Qω ∈ P(C) be a Bτ -
measurable probability kernel. Given a probability measure P ∈ P(C), there exists
a unique probability measure P⊗τ Q ∈ P(C) so that

(P⊗τ Q)|Bτ = P|Bτ , (P⊗τ Q)(·|Bτ )(ω) = Qω(·).

In particular,

(P⊗τ Q)(Γ) =

∫
C
Qω(Γ)P(dω), ∀Γ ∈ B := ∨t>0Bt.

For each (s, x) ∈ R+ × Rd, let C (s, x) be a non-empty convex subset of P(C)
with

P{ω : ωs = x} = 1.

We suppose that {C (s, x) : (s, x) ∈ R+ × Rd} satisfies

(C1) Let (sn, xn) converge to (s, x). For any sequence Pn ∈ C (sn, xn), there is a
subsequence nk and P ∈ C (s, x) so that Pnk converges to P.
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(C2) (Disintegration) Let P ∈ C (s, x) and τ > s be a finite stopping time. For
any r.c.p.d. (Pω)ω∈C of EP(·|Bτ ), there is a P-null set N ∈ Bτ so that

Pω ∈ C (τ(ω), ωτ(ω)), ω /∈ N.

(C3) (Reconstruction) Let P ∈ C (s, x) and τ > s be a finite stopping time. For
any Bτ -measurable kernel C 3 ω 7→ Qω ∈ P(C) with

Qω ∈ C (τ(ω), ωτ(ω)),∀ω ∈ C,

it holds that

P⊗τ Q ∈ C (s, x).

We have the following strong Markov selection theorem, whose proofs are com-
pletely the same as in [16, Theorem 12.2.3] (see also [5] and [6, Theorem 2.7]). We
omit the details.

Theorem 7.2. Under (C1), (C2) and (C3), there is a measurable selection

R+ × Rd 3 (s, x) 7→ Ps,x ∈ C (s, x)

so that for any (s, x) ∈ R+×Rd and finite stopping time τ > s, ω 7→ Pτ(ω),x(τ(ω),ω)

is a r.c.p.d. of Ps,x with respect to Bτ . More precisely, there is a Ps,x-null set
N ∈ Bτ such that for all ω /∈ N ,

Ps,x(·|Bτ )(ω) = Pτ(ω),ωτ(ω)
(·).

The following two simple lemmas are used in the proof of Theorem 5.5 (see [6]).

Lemma 7.3. Let G ⊂ C be two countably generated sub σ-algebras of B. Given
P ∈ P(C), let Qω be a r.c.p.d. of P with respect to G . Then there is a P-null set
N ∈ G depending on C and ξ such that for all ω /∈ N ,

EP(ξ|C ) = EQω (ξ|C ), Qω − a.s.

Proof. Let A ∈ G and B ∈ C . By definition, we have∫
A

EQω (1BEP(ξ|C ))P(dω) =

∫
A

EP(1BEP(ξ|C )|G )(ω)P(dω)

= EP(1A1Bξ) =

∫
A

EQω (1Bξ)P(dω)

=

∫
A

EQω (1BEQω (ξ|C ))P(dω).

Hence, for each B ∈ C , there is a P-null set NB ∈ G so that for all ω /∈ N ,

EQω (1BEP(ξ|C )) = EQω (1BEQω (ξ|C )).

Since C is countably generated, one can find a common null set Nξ,C so that for
all ω /∈ N and B ∈ C ,

EQω (1BEP(ξ|C )) = EQω (1BEQω (ξ|C )),

which in turn yields the desired result. �

Lemma 7.4. Let τ be a finite stopping time and Qω be a r.c.p.d. of P with respect
to Bτ . Let Xt be a bounded continuous process. Suppose that for any t > 0,

EP(Xt|Bt) 6 A, P− a.s.

Then there is a P-null set N ∈ Bτ such that for all ω /∈ N and t > τ(ω),

EQω (Xt|Bt) 6 A, Qω − a.s.
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Proof. By Lemma 4.4, we have

EP(Xt∨τ |Bt∨τ ) 6 A, t > 0.

By Lemma 7.3, there is a P-null set N such that for all ω /∈ N and all rational
number t > 0,

EQω (Xt∨τ |Bt∨τ ) 6 A, Qω − a.s.
For fixed ω /∈ N , since (cf. [16, p34. (3.15)])

Qω{ω′ : τ(ω′) = τ(ω)} = 1,

we have for all rational number t > τ(ω),

EQω (Xt|Bt) = EQω (Xt∨τ |Bt∨τ ) 6 A, Qω − a.s.

Now for general t > τ(ω), let tn ↓ t be rational numbers. By the dominated
convergence theorem, we have

EQω (Xt|Bt) = lim
tn↓t

EQω (Xtn |Bt) = lim
tn↓t

EQω (Xtn |Btn |Bt) 6 A.

The proof is complete. �

The following result provides a way of constructing a global solution from local
solutions.

Theorem 7.5. Suppose that for each R ∈ N and (s, x) ∈ R+ × Rd, there is at
least one local martingale solution PRs,x ∈ MσR,bR

s,x so that (s, x) 7→ PRs,x is Borel
measurable, where

σR(t, x) := σ(t, χR(x)x), bR(t, x) := b(t, χR(x)x),

and

χR(x) = 1, |x| 6 2R−1, χR(x) = 0, |x| > 2R.

Fix (s0, x0) ∈ R+ × Rd. If for each T > s0 and any choice of PRs0,x0
from MσR,bR

s0,x0
,

lim
R→∞

PRs0,x0

(
sup
t∈[s,T ]

|ωt| > R

)
= 0, (7.1)

then there is at least one local martingale solution P ∈Mσ,b
s0,x0

. In particular, there
is a global weak solution (F, X,W ) for SDE (1.13).

Proof. Without loss of generality, we assume (s0, x0) = (0, 0). Let τ0 = 0. We
define a sequence of stopping times recursively by

τn := inf{t > τn−1 : |ωt| > 2n−1} = inf{t > 0 : |ωt| > 2n−1}, n ∈ N.

Let Pns,x ∈Mσn,bn
s,x be as in the assumptions. Define for n ∈ N,

Qnω := Pn+1
τn(ω),ωτn(ω)

, ω ∈ C.

Since (s, x) 7→ Pn+1
s,x is measurable, ω 7→ Qnω is a Bτn -measurable probability kernel

on C× B, i.e., for each Γ ∈ B, ω 7→ Qnω(Γ) is Bτn-measurable, and for each ω ∈ C,

Qω ∈ P(C). Let P̃1 ∈Mσ1,b1
0,0 . Define for n > 2,

P̃n+1 := P̃1 ⊗τ1 Q1 ⊗τ2 · · · ⊗τn Qn.

By the construction and Lemma 7.1, one sees that

P̃n+1|Bτn = (P̃n ⊗τn Qn)|Bτn = P̃n|Bτn ,

and by [16, Theorem 1.2.10],

P̃n ∈Mσn,bn
0,0 .
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Moreover, by (7.1), for each T > 0,

lim
n→∞

P̃n(τn < T ) = 0.

Finally, by [16, Theorem 1.3.5], there is a unique P ∈ P(C) so that for each n ∈ N,

P|Bτn = P̃n|Bτn .
The proof is complete. �
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