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Abstract. In this paper, we prove that stochastic porous media equa-
tions over σ-finite measure spaces (E,B, µ), driven by time-dependent
multiplicative noise, with the Laplacian replaced by a self-adjoint tran-
sient Dirichlet operator L and the nonlinearity given by a maximal mono-
tone multi-valued function Ψ of polynomial growth, have a unique solu-
tion. This generalizes previous results in that we work on general measur-
able state spaces, allow non-continuous (nonlinear) monotone functions
Ψ, for which, no further coercivity assumptions are needed, but only
that their multi-valued extensions are maximal monotone and of at most
polynomial growth. The result in particular applies to cases where E is a
manifold or a fractal, and to non-local operators L, as e.g. L = −(−∆)α,
α ∈ (0, d

2
) ∩ (0, 1].
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1 Introduction

The purpose of this paper is to solve multi-valued stochastic porous media equations (SPMEs)
on (E,B, µ) of the following type:{

dX(t)− LΨ(X(t))dt 3 B(t,X(t))dW (t), in [0, T ]× E,
X(0) = x on E (x ∈ F ∗

e ),
(1.1)
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where (E,B) is a standard measurable space (see [31]) with a σ-finite measure µ. (L,D(L))
is the generator of a symmetric strongly continuous contraction sub-Markovian semigroup
on L2(µ), which additionally is assumed to be the generator of transient Dirichlet form (cf.
Section 2.1 below). Ψ(·) : R → 2R denotes a maximal monotone graph with polynomial
growth (cf. (H1) in Section 3 below). B is a Hilbert-Schmidt operator-valued map fulfilling
certain Lipschitz and growth conditions (cf. (H2) and (H3) in Section 3 below). W is
an L2(µ)-valued cylindrical Ft-adapted Wiener process on a probability space (Ω,F ,P)
with normal filtration (Ft)t≥0. Explicit assumptions and more explanations will be given in
Section 3.

One motivation for studying this equation is that an important problem from physics,
i.e., the following self-organized criticality (SOC) model, is of type (1.1):

dX(t) = ∆H(X(t)− xc)dt+ (X(t)− xc)dW (t), (1.2)

where H is the Heaviside function and xc is the critical state (see [9, 19]). Eq (1.2) is a
continuum version of the original sand pile model or the Bak-Tang-Wiesenfeld (BTW) model
[3, 2] via the cellular automaton algorithm. SOC systems have the properties of a critical
point as attractor and to reach spontaneously a critical state. Finite time extinction for fast
diffusions, which are also special cases of (1.1), will be done in future work. Apart from the
SOC phenomenon mentioned above, Eq (1.1) models the dynamics of flows in porous media,
the phase transitions (including melting and solidification processes), diffusion processes in
kinetic gas theory, heat transfer in plasmas and population dynamics.

At least since [14], SPMEs with maximal monotone (possibly multi-valued) functions Ψ,
have been studied in a variety of papers, see e.g. [8, 6, 7, 5, 10, 15, 24] and the references
there in. (For the deterministic case, we refer to [38] including its references.) In the special
case with E being Rd, d ≥ 3, L is equal to the Laplace operator ∆ and B is time-independent
linear multiplicative, in [10, Section 4] the existence and uniqueness of solutions in H−1 for
(1.1) were proved. Here H−1 is the dual space of H with

H = {ϕ ∈ S ′(Rd); ξ 7→ |ξ|F(ϕ)(ξ) ∈ L2(Rd)},

where S ′(Rd) is the space of all tempered distributions on Rd and F(ϕ) is the Fourier
transform of ϕ. The intention of this paper is to obtain analogous results as in [10, Section4]
on more general spaces and more general operators L.

A natural approach to get the existence of solutions for (1.1) is to consider approximating
equations of the following form with initial value Xλ(0) ∈ F ∗

e (:=dual of the extended
transient Dirichlet space with generator L; see Section 2.1):

dXλ − L(Ψλ(Xλ) + λXλ)dt = B(t,Xλ)dW (t), t ∈ (0, T ). (1.3)

Here λ > 0 and

Ψλ(x) =
1

λ

(
x− (1 + λΨ)−1(x)

)
∈ Ψ

(
(1 + λΨ)−1(x)

)
is the Yosida approximation of Ψ. Then passing to the limit λ → 0 we solve (1.1). In [35]
the authors construct a suitable Gelfand triple with F ∗

e as pivôt space and prove existence
and uniqueness of solutions for the following stochastic generalized porous media equation
in the state space F ∗

e :

dX(t) = (LΨ(t,X(t)) + Φ(t,X(t)))dt+B(t,X(t))dW (t),

2



where L is as above, but Ψ is only a single-valued map (as is Φ) and Ψ satisfies a certain
coercivity condition, which is not assumed in this paper. So, our result is more general in the
case Φ = 0. In [36] the results in [35] are improved to initial conditions in the dual space of
the Dirichlet space generated by L which is larger than F ∗

e , but to achieve this, the condition
that the Dirichlet form is local and satisfies Nash’s inequality has to be imposed. However,
all these results are restricted to single-valued continuous functions Ψ, not including the case
of noncontinuous functions Ψ, which is covered in this paper. As said before, another main
point of this paper is that we can drop the coercivity assumption on Ψ made in [35, 36], only
assuming its maximal monotonicity and its polynomial growth. In this paper we analyze
(1.1) also in Lm+1(µ) (i.e., with initial condition x ∈ Lm+1(µ)), where m ∈ (1,∞) being the
exponential in the polynomial growth condition for Ψ (see Hypothesis (H1) in Section 3). A
crucial ingredient in our proofs is, therefore, an Lp(µ)-Itô formula, which in the case E = Rd

was proved in [26]. In the latter paper approximations by convolution with smooth functions
were crucial. Since our space E has no further structure, we could not use this approach
in our case. As a substitute we use an Lp-Itô formula in expectation to get some crucial
a priori Lp(µ)-estimates for our approximating solutions. We include a complete proof for
this type of Lp(µ)-Itô formula in Appendix 7 of this paper. In comparison with [10], i.e.,
the special case E = Rd, L = ∆, we use the same strategy of proof, i.e., we use a similar
”triple approximation” to solve equation (1.1). But due to our much more general situation,
our proofs are much more involved with a substantial number of obstacles to be overcome,
which do not occur in [10].

This paper is organized as follows. In Section 2, we introduce some notations and recall
some known results for preparation. In addition, we prove some necessary technical auxiliary
results, which will be used to construct the solutions to (1.1) in F ∗

e . In Section 3, we will
present our assumptions and the two main results for (1.1) and (1.3). Detailed proofs of the
existence and uniqueness results for (1.3) will be given in Section 4, while the ones for (1.1)
will be given in Section 5. Some examples that are covered under our framework will be
presented in Section 6, including nonlocal operators L. In order to make the main structure
of the proofs more transparent, we shift the proofs of some estimates to Appendix 7.1. In
addition, we include a detailed proof of an Lp(µ)-Itô formula in expectation in Appendix
7.2, which is crucial for the proof of our main result. In Appendix 7.3, some explanations
are included to justify the application of Itô’s formula on Gelfand triples (see e.g. [29]) in
our cases.

2 Notations and preliminaries

2.1 Dirichlet spaces and auxiliary results

Let (E,B, µ) be a σ-finite measure space, which we fix in the entire paper. We assume that
(E,B) is a standard measurable space (i.e., σ-isomorphic to a Polish space, see [31]). This
assumption is used in the proof of the Lp(µ)-Itô formula in expectation, but also in the proof
of Lemma 4.1 below, where we apply [36, Lemma 5.1], in which this assumption on (E,B) was
crucially used. Let (Pt)t≥0 be a strongly continuous, symmetric, sub-Markovian contraction
semigroup on L2(µ). Let (L,D(L)) be its infinitesimal generator (see e.g. [18, 30]), which is
a negative definite self-adjoint operator on L2(µ). We use 〈·, ·〉 and | · |2 for the inner product
and the norm in L2(µ) respectively. More generally, we set 〈f, g〉 := µ(fg) :=

∫
fgdµ for

any two measurable functions f , g such that fg ∈ L1(µ). For the rest of this paper we fix
(Pt)t≥0 with generator (L,D(L)) on L2(µ) with (E,B, µ) as above.
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Consider the Γ-transform Vr(r > 0) of (Pt)t≥0

Vru = Γ(
r

2
)−1

∫ ∞
0

s
r
2
−1e−sPsuds, r > 0, u ∈ L2(µ).

From [17] and [23], we can define the Bessel-potential space (F1,2, ‖ · ‖F ∗1,2) by

F1,2 := V1(L2(µ)), with norm ‖u‖F1,2 = |f |2, for u = V1f, f ∈ L2(µ),

where the norm | · |2 is defined as |f |2 = 〈f, f〉2 := (
∫
E
|f |2dµ)

1
2 . From [17], we know that

V1 = (1− L)−
1
2 , so that F1,2 = D

(
(1− L)

1
2

)
and ‖u‖F1,2 = |(1− L)

1
2u|2.

The dual space of F1,2 is denoted by F ∗1,2 and F ∗1,2 = D((1 − L)−
1
2 ), it is equipped with the

norms

‖η‖F ∗1,2,ν := 〈η, (ν − L)−1η〉
1
2
2 , η ∈ F ∗1,2, 0 < ν <∞.

Denote the duality between F ∗1,2 and F1,2 by F ∗1,2
〈·, ·〉F1,2 .

Consider the Dirichlet form (E , D(E )) on L2(µ) associated with (L,D(L)), i.e.,

D(E ) := F1,2, and

E (u, v) := µ(
√
−Lu

√
−Lv), u, v ∈ F1,2.

Let D(E ) be equipped with the inner product E1 := E + 〈·, ·〉2.
If (E , D(E )) is a transient Dirichlet space, that is, there exists g ∈ L1(µ)∩L∞(µ), g > 0,

such that Fe ⊂ L1(g · µ) continuously, let (E ,Fe) be the corresponding extended Dirichlet
space (see [18]), which is the completion of F1,2, with respect to the norm

‖ · ‖Fe := E (·, ·)
1
2 .

Then F1,2 = Fe ∩ L2(µ). Let F ∗
e be its dual space with inner product 〈·, ·〉F∗e and corre-

sponding norm ‖ · ‖F∗e , which is induced by the Riesz map Fe 3 u 7→ E (·, u) ∈ F ∗
e . Denote

the duality between F ∗
e and Fe by F∗e 〈·, ·〉Fe . Both Fe and F ∗

e are Hilbert spaces. For more
background knowledge on Dirichlet forms, we refer to [18, 30]. From now on we assume:

(L.1) The symmetric Dirichlet form (E , D(E )) associated with (L,D(L)) is transient.

Consider the inner product Eν := E + ν〈·, ·〉2, ν ∈ (0,∞), on F1,2, i.e.,

‖v‖2
F1,2,ν

:= E (v, v) + ν

∫
|v|2dµ = ‖v‖2

Fe
+ ν

∫
|v|2dµ, for v ∈ F1,2, (2.1)

and

‖l‖F ∗1,2,ν :=F ∗1,2
〈l, (ν − L)−1l〉

1
2
F1,2

:= sup
v∈F1,2

‖v‖F1,2,ν≤1

l(v), l ∈ F ∗1,2, (2.2)

‖l‖F∗e := sup
v∈Fe
‖v‖Fe≤1

l(v), l ∈ F∗e . (2.3)

Since F1,2 ⊂ Fe continuously and densely, we have

F∗e ⊂ F ∗1,2 continuously and densely. (2.4)
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Proposition 2.1 Let l ∈ F ∗
e . Then ν 7→ ‖l‖F ∗1,2,ν is decreasing,

lim
ν→0
‖l‖F ∗1,2,ν = sup

ν>0
‖l‖F ∗1,2,ν = ‖l‖F∗e , (2.5)

‖l‖F ∗1,2 ≤ ‖l‖F ∗1,2,ν ≤
1√
ν
‖l‖F ∗1,2 , ∀ 0 < ν < 1. (2.6)

Proof Firstly, note that for all l ∈ F ∗1,2 and 0 < ν ′ ≤ ν <∞, we have

‖l‖F ∗1,2,ν =: sup
v∈F1,2

‖v‖F1,2,ν≤1

l(v) ≤ sup
v∈F1,2

‖v‖F1,2,ν′≤1

l(v) = ‖l‖F ∗
1,2,ν′

,

i.e., ∀ l ∈ F ∗1,2, ‖l‖F ∗1,2,ν is decreasing in ν. In particular, the first equality in (2.5) and the

first inequality in (2.6) hold.
Let l ∈ F ∗

e . Since F ∗
e ⊂ F ∗1,2 continuously and densely, we have l ∈ F ∗1,2 and

‖l‖F ∗1,2,ν = sup
v∈F1,2

‖v‖F1,2,ν≤1

l(v) ≤ sup
v∈Fe
‖v‖Fe≤1

l(v) = ‖l‖F∗e .

Hence ∀ l ∈ F ∗
e ,

lim
ν→0
‖l‖F ∗1,2,ν = sup

ν>0
‖l‖F ∗1,2,ν ≤ ‖l‖F∗e . (2.7)

To prove the converse inequality of (2.7), fix l ∈ F ∗
e and let ε, δ ∈ (0, 1). Then there

exists vε ∈ F1,2 with ‖vε‖Fe = 1 and

l(vε) ≥ ‖l‖F∗e − ε.

Let ν0 := δ2

1+|vε|22
. From (2.1), we see that

‖vε‖F1,2,ν0
=
√
‖vε‖2

Fe
+ ν0|vε|22 ≤

√
1 + δ2 ≤ 1 + δ,

so for v̄ε := vε
1+δ

, we have
‖v̄ε‖F1,2,ν0

≤ 1.

Consequently,

lim
ν→0
‖l‖F ∗1,2,ν = sup

ν>0
‖l‖F ∗1,2,ν

≥ ‖l‖F ∗1,2,ν0 ≥ l(v̄ε) =
1

1 + δ
l(vε) ≥

1

1 + δ
(‖l‖F∗e − ε),

letting δ → 0, ε→ 0, yields the desired converse inequality. Hence (2.5) is proved.
It remains to prove the second inequality in (2.6). But

‖l‖F ∗1,2 = sup
‖v‖F1,2≤1

l(v) =
√
ν sup√

ν‖v‖F1,2≤1

l(v) ≥
√
ν sup
‖v‖F1,2,ν≤1

l(v) =
√
ν‖l‖F ∗1,2,ν .

�
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2.2 Gelfand triples

Let H be a separable Hilbert space with inner product 〈·, ·〉H and let H∗ be its dual space.
Let V be a reflexive Banach space, such that V ⊂ H continuously and densely. Then for its
dual space V ∗ it follows that H∗ ⊂ V ∗ continuously and densely. Identifying H and H∗ via
the Riesz isomorphism we have that

V ⊂ H ⊂ V ∗

continuously and densely. Let V ∗〈·, ·〉V denote the dualization between V ∗ and V (i.e.

V ∗〈z, v〉V := z(v) for z ∈ V ∗, v ∈ V ). Then it follows that

V ∗〈z, v〉V = 〈z, v〉H , for all z ∈ H, v ∈ V. (2.8)

(V,H, V ∗) is called a Gelfand triple.

In [37], we constructed a Gelfand triple with V := L2(µ), H := F ∗1,2 and proved the
following two lemmas.

Lemma 2.1 The map (1− L) : F1,2 → F ∗1,2 is an isometric isomorphism. In particular,〈
(1− L)u, (1− L)v

〉
F ∗1,2

= 〈u, v〉F1,2 for all u, v ∈ F1,2. (2.9)

Furthermore, (1 − L)−1 : F ∗1,2 → F1,2 is the Riesz isomorphism for F ∗1,2, i.e., for every
u ∈ F ∗1,2,

〈u, ·〉F ∗1,2 =F1,2〈(1− L)−1u, ·〉F ∗1,2 . (2.10)

Lemma 2.2 The map
1− L : F1,2 → F ∗1,2

via the continuous embedding F ∗1,2 ⊂ (L2(µ))∗ extends to a linear isometry

1− L : L2(µ)→ (L2(µ))∗,

and for all u, v ∈ L2(µ),

(L2(µ))∗〈(1− L)u, v〉L2(µ) =

∫
E

u · v dµ. (2.11)

The following lemma was shown in [35, Lemma 3.3(i)].

Lemma 2.3 The map L̄ : Fe → F ∗
e defined by

L̄v := −E (v, ·), v ∈ Fe (2.12)

(i.e. the Riesz isomorphism of Fe and F ∗
e multiplied by (-1)) is the unique continuous linear

extension of the map

D(L) 3 v 7→ µ(Lv·) ∈ F ∗
e . (2.13)

For simplicity, we write L instead of L̄ and u instead of ū below. Throughout the paper,
let L2([0, T ]× Ω;L2(µ)) denote the space of all L2(µ)-valued square-integrable functions on
[0, T ]× Ω, and C([0, T ]; F ∗

e ) the space of all continuous F ∗
e -valued functions on [0, T ]. For

two Hilbert spaces H1 and H2, the space of Hilbert-Schmidt operators from H1 to H2 is
denoted by L2(H1, H2). For simplicity, the positive constants c, C, C1, C2, C3, C4, C5 and
Cp used in this paper may change from line to line. We would like to refer to [29, 33] for
more background information and results on SPDEs and [8] on SPMEs.
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3 Assumptions and Main Results

In addition to condition (L.1) above, we study Eq.(1.1) under the following assumptions.

(H1) Ψ(·) : R → R is a maximal monotone graph (cf. Remark 3.1 (iii) below) such that
0 ∈ Ψ(0) and there exist C ∈ (0,∞) and m ∈ [1,∞) such that

sup{|η|; η ∈ Ψ(r)} ≤ C|r|m, ∀ r ∈ R. (3.1)

(H2) Let K := L1(µ)∩L∞(µ)∩F ∗
e . B : [0, T ]×K ×Ω→ L2(L2(µ), L2(µ)) is progressively

measurable, i.e. for any t ∈ [0, T ], this mapping restricted to [0, t] × K × Ω is measurable
w.r.t. B([0, t]) ×B(K) ×Ft, where B(·) is the Borel σ-field for a topological space. For
simplicity, below we will write B(t, u) meaning the mapping ω 7→ B(t, u, ω), and B(t, u)
satisfies:

(i) There exists C1 ∈ [0,∞) such that for all ν ∈ (0,∞),

‖B(·, u)−B(·, v)‖L2(L2(µ),F ∗1,2,ν) ≤ C1‖u− v‖F ∗1,2,ν for all u, v ∈ K on [0, T ]× Ω.

(ii) There exists C2 ∈ (0,∞) such that for all ν ∈ (0,∞),

‖B(·, u)‖L2(L2(µ),F ∗1,2,ν) ≤ C2‖u‖F ∗1,2,ν for all u ∈ K on [0, T ]× Ω.

(H3)(i) There exists C3 ∈ (0,∞) satisfying

‖B(·, u)‖L2(L2(µ),L2(µ)) ≤ C3|u|2 for all u ∈ K on [0, T ]× Ω.

(ii) There exist an orthonormal basis {ek}k≥1 of L2(µ) and C4 ∈ (0,∞) satisfying∫
E

( ∞∑
k=1

|B(·, u)ek|2
) p

2dµ ≤ C4|u|pp, for all u ∈ K on [0, T ]× Ω.

(H4) There exists a symmetric, positive, bilinear mapping Γ : F1,2×F1,2 → L1(µ) satisfying:
(i)

E (u, u) =

∫
1

2
Γ(u, u)dµ, for all u ∈ F1,2;

(ii) There exists a constant C5 ∈ (0,∞) such that

Γ(ϕ(u), ϕ(u)) ≤ C5Γ(u, ϕ(u)), ∀ u ∈ F1,2,

for every non-decreasing Lipschitz function ϕ : R→ R with ϕ(0) = 0.

Remark 3.1 (i) (2.5) and (H2)(i) imply that for all u, v ∈ K,

‖B(·, u)−B(·, v)‖2
L2(L2(µ),F∗e ) ≤ C1‖u− v‖2

F∗e
on [0, T ]× Ω. (3.2)

(ii) We emphasize that (H4)(ii) is automatically fulfilled, if (E , D(E)) is a local Dirichlet
form.
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(iii) A multi-valued function Ψ : R→ 2R is called maximal monotone if it is monotone,
i.e.

(u− v)(x− y) ≥ 0, ∀x ∈ Ψ(u), y ∈ Ψ(v), u, v ∈ R,

and (I + Ψ)(R) = R. If Ψ is the sub-differential ∂j : R → 2R of a lower semi-continuous
convex function j : R→ (−∞,+∞], i.e.,

∂j(r) = {ζ ∈ R : j(r) ≤ ζ(r − r) + j(r), ∀r ∈ R},

then Ψ is maximal monotone. Conversely, every maximal monotone function Ψ is of the
form ∂j, where j is such a lower semicontinuous convex function on R (see [4, (2.51)] for
its definition). This function j is called the potential of Ψ. We note that by [4, (2.51)] and
(H1), it follows that |j(r)| ≤ C|r|m+1, r ∈ R.

(iv) If Ψ̃ : R→ R is an increasing function and if {ri|i ∈ N} ⊂ R is the set of all r ∈ R
for which Ψ̃ is discontinuous in r, then one gets a maximal monotone multivalued function
Ψ : R→ 2R by filling the gaps, i.e., define

Ψ(r) :=

{
Ψ̃(r), for r /∈ {ri|i ∈ N},
[Ψ̃(rj − 0), Ψ̃(rj + 0)], else.

This is a well-known fact (see [4, page:54]). Hence our result covers non-continuous nonlin-
earities Ψ, as is indicated in the title of the paper.

(v) By (L.1) there exists g ∈ L1(µ) ∩ L∞(µ), g > 0, µ-a.e., such that Fe ⊂ L1(g · µ)
continuously and it was proved in [35] (see the last part of the proof of Proposition 3.1 in
[35]) that the linear space

G := {h · g|h ∈ L∞(µ)}
is dense in F ∗

e . Furthermore, obviously G ⊂ L1(µ)∩L∞(µ). Hence it follows that K (defined
in (H2)) is dense in F ∗

e , and hence in (F1,2, F
∗
1,2,ν0

) for every ν0 > 0. Therefore, by (H2)(i)
the map

K 3 u −→ B(t, u) ∈ L2(L2(µ), F ∗1,2,ν0)

can be extended uniquely to a Lipschitz continuous map on all of F ∗1,2,ν0 . Furthermore,
(H2)(ii) trivially also holds for this extension, as well as (3.2). We shall use this extension
below without further notice.

Definition 3.1 Let x ∈ F ∗
e . An F ∗

e -valued adapted process X = X(t) is called strong
solution to (1.1) if there exists q ∈ [2,∞) such that the following conditions hold:

X is F ∗
e − valued continuous on [0, T ], P− a.s.;

X ∈ Lq(Ω× (0, T )× E);

there is η ∈ L q
m (Ω× (0, T )× E) such that

η ∈ Ψ(X), dt⊗ P⊗ dµ− a.e. on Ω× (0, T )× E;

and P-a.s., ∫ ·
0

η(s)ds ∈ C([0, T ]; Fe), (3.3)

X(t) = x+ L

∫ t

0

η(s)ds+

∫ t

0

B(s,X(s))dW (s) for all t ∈ [0, T ].
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Theorem 3.1 below is the main existence and uniqueness result for Eq.(1.1).

Theorem 3.1 Assume that (L.1), (H1)-(H4) are satisfied and let m be as in (3.1). Let
p ∈ [2,∞) and x∈ Lp(µ) ∩ L2(µ) ∩ L2m(µ) ∩F ∗

e . Then there is a unique strong solution X
to (1.1) such that

X ∈ L2
(
Ω;C([0, T ]; F ∗

e )
)
∩ L∞

(
[0, T ]; (Lp ∩ L2 ∩ L2m)(Ω× E)

)
. (3.4)

Theorem 3.1 will be proved in Section 5. The proof is based on an approximating equation
of (1.1). More precisely, in Section 4 we shall establish the existence of solutions for the
following Yosida approximating equation of (1.1){

dXλ − L(Ψλ(Xλ) + λXλ)dt = B(t,Xλ)dW (t), t ∈ [0, T ],

Xλ(0) = x on E.
(3.5)

Here λ > 0 and

Ψλ(x) =
1

λ

(
x− (1 + λΨ)−1(x)

)
∈ Ψ

(
(1 + λΨ)−1(x)

)
is the Yosida approximation of Ψ, which is monotone and 2

λ
-Lipschitz ([8, page:13]). We

recall that (see [4, page:38, Proposition 2.2]) Ψλ is single-valued and for all r ∈ R

|Ψλ(r)| ≤ inf |Ψ(r)|, (3.6)

lim
λ→0

Ψλ(r) = Ψ0(r), (3.7)

where Ψ0(r) is the unique element in Ψ(r) with minimal absolute value. This element exists,
since Ψ(r) is convex and closed for all r ∈ R (see [4, page:29, Proposition 2.1]). Obviously,
Ψ0 is increasing. Note that Ψλ = ∂jλ with

jλ(r) := inf
{ |r − r|2

2λ
+ j(r); r ∈ R

}
, ∀r ∈ R, (3.8)

where j is the potential of Ψ (see Remark 3.1 (iii)).
We have the following result for Eq.(3.5).

Theorem 3.2 Assume that (L.1), (H1)-(H4) are satisfied and let m be as in (3.1). Let
λ ∈ (0, 1), p ∈ [2,∞), m as in (3.1) and x ∈ F ∗

e ∩ L2m(µ) ∩ L2(µ) ∩ Lp(µ). Then (3.5) has
a unique strong solution

Xλ ∈ L2(Ω;C([0, T ]; F ∗
e )) ∩ L∞

(
[0, T ]; (Lp ∩ L2 ∩ L2m)(Ω× E)

)
, (3.9)

satisfying ∫ ·
0

Ψλ(Xλ(s)) + λXλ(s)ds ∈ C([0, T ]; Fe) P-a.s., (3.10)

and P-a.s.,

Xλ(t) = x+ L

∫ t

0

Ψλ(Xλ(s)) + λXλ(s)ds+

∫ t

0

B(s,Xλ(s))dW (s), ∀t ∈ [0, T ]. (3.11)
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Moreover, there exists C ∈ (0,∞) such that for all λ, λ′ ∈ (0, 1), t ∈ [0, T ],

E|Xλ(t)|pp ≤ C|x|pp, ; (3.12)

E
∫ T

0

∫
E

|Ψλ(Xλ(t))|
p
mdµdt ≤ C|x|pp, (3.13)

E
[

sup
0≤t≤T

‖Xλ(t)‖2
F∗e

]
≤ C

(
‖x‖2

F∗e
+ |x|2m2m

)
, (3.14)

E
[

sup
0≤t≤T

‖Xλ(t)−Xλ′(t)‖2
F∗e

]
≤ C(λ+ λ′)(|x|22 + |x|2m2m). (3.15)

4 Proof of Theorem 3.2

As said in the introduction, the proof of Theorem 3.2 is based on the strategy in [10, Section
4], but with major modifications.

Proof For each fixed λ, firstly we consider the following approximating equation for (3.5){
dXν

λ(t) + (ν − L)
(
Ψλ(X

ν
λ(t)) + λXν

λ(t)
)
dt = B(t,Xν

λ(t))dW (t), in (0, T )× E,
Xν
λ(0) = x ∈ L2(µ) ∩ Lp(µ),

(4.1)

where ν ∈ (0, 1). By [37, Lemma 3.1], (4.1) has a unique solutionXν
λ ∈ L2

(
Ω;L∞([0, T ];L2(µ))

)
∩

L2
(
Ω× [0, T ];F1,2

)
∩ L2(Ω;C([0, T ];F ∗1,2)).

To prove that (3.9)-(3.14) hold with Xν
λ replacing Xλ, with a constant C independent of

ν and λ, we consider the following approximating equation for (4.1).{
dXν,ε

λ (t) + Aν,ελ (Xν,ε
λ (t))dt = B(t,Xν,ε

λ (t))dW (t), in (0, T )× E,
Xν,ε
λ (0) = x ∈ L2(µ) ∩ Lp(µ),

(4.2)

where Aν,ελ : F ∗1,2 → F ∗1,2, defined by

Aν,ελ (x) =
1

ε

(
x− (I + εAνλ)

−1(x)
)
, x ∈ F ∗1,2, ε ∈ (0, 1),

is the Yosida approximation of the operator Aνλ(x) := (ν−L)(Ψλ(x)+λI(x)), ∀ x ∈ D(Aνλ) :=
F1,2. Here and below I denotes the identity map on the respective space. Clearly, I + εAνλ :
F1,2 → F ∗1,2 is a bijection, since so is Ψλ + λI : F1,2 → F1,2. Furthermore, since obviously Aνλ
with domain F1,2 is monotone on F ∗1,2, it follows that Aνλ is maximal monotone on F ∗1,2. Fix
x ∈ F ∗1,2 and set y := Jε(x) := (I + εAνλ)

−1x ∈ F1,2, i.e., (I + εAνλ)(y) = x, equivalently,

y + ε(ν − L)(Ψλ + λI)(y) = x. (4.3)

In particular, (Ψλ + λI)(y) ∈ D(L), if x ∈ L2(µ).

Before giving the well-posedness result for (4.2), we need some preparations.

Lemma 4.1 For all 0 < ε < 1, we have

‖Jε(x)− Jε(x̃)‖F ∗1,2,ν ≤ ‖x− x̃‖F ∗1,2,ν ,∀ x, x̃ ∈ F
∗
1,2. (4.4)

|Jε(x)− Jε(x̃)|2 ≤
1√
νελ
|x− x̃|2, ∀ x, x̃ ∈ L2(µ). (4.5)

|Jε(x)|p ≤ |x|p, ∀ x ∈ Lp(µ) ∩ L2(µ), 2 ≤ p <∞. (4.6)
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Proof Firstly, let us prove (4.4). For x, x̃ ∈ F ∗1,2, set y := Jε(x) and ỹ := Jε(x̃), we have

y − ỹ + εAνλ(y)− εAνλ(ỹ) = x− x̃. (4.7)

Taking the scalar product of y − ỹ with both sides in (F ∗1,2, ‖ · ‖F ∗1,2,ν ), we get

〈y − ỹ, y − ỹ〉F ∗1,2,ν + ε〈Aνλ(y)− Aνλ(ỹ), y − ỹ〉F ∗1,2,ν = 〈x− x̃, y − ỹ〉F ∗1,2,ν . (4.8)

For the second term in the left hand-side of (4.8), by (2.10), we know

〈Aνλ(y)− Aνλ(ỹ), y − ỹ〉F ∗1,2,ν
=
〈
(ν − L)((Ψλ + λI)(y)− (Ψλ + λI)(ỹ)), y − ỹ

〉
F ∗1,2,ν

= F1,2

〈
(Ψλ + λI)(y)− (Ψλ + λI)(ỹ), y − ỹ

〉
F ∗1,2

=
〈
(Ψλ + λI)(y)− (Ψλ + λI)(ỹ), y − ỹ

〉
2
≥ 0, (4.9)

Since y − ỹ ∈ F1,2 ⊂ L2(µ).
(4.8) and (4.9) imply

‖y − ỹ‖2
F ∗1,2,ν

≤ ‖x− x̃‖F ∗1,2,ν · ‖y − ỹ‖F ∗1,2,ν ,

from which (4.4) follows.
Secondly, to prove the Lipschitz continuity of Jε in L2(µ), we take x, x̃ ∈ L2(µ) and apply

F ∗1,2

〈
·, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

to both sides of (4.7). Then

F ∗1,2

〈
y − ỹ, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

+F ∗1,2

〈
εAνλ(y)− εAνλ(ỹ), (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

= F ∗1,2

〈
x− x̃, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

. (4.10)

For the second term in the left hand-side of (4.10), by (2.8)-(2.10) (under the Gelfand triple
F1,2 ⊂ L2(µ) ⊂ F ∗1,2), we obtain

F ∗1,2

〈
εAνλ(y)− εAνλ(ỹ), (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

= F ∗1,2

〈
(I − L)(ε(Ψλ + λI)(y)− ε(Ψλ + λI)(ỹ)), (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

+F ∗1,2

〈
ε(ν − 1)((Ψλ + λI)(y)− (Ψλ + λ)(ỹ)), (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

= ε‖(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)‖2
F1,2

+ ε(ν − 1)|(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)|22
≥ νε|(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)|22. (4.11)

For the first term in the left hand-side of (4.10), since Ψλ is monotone, by (2.8) (under the
Gelfand triple F1,2 ⊂ L2(µ) ⊂ F ∗1,2), we know

F ∗1,2

〈
y − ỹ, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
F1,2

=
〈
y − ỹ, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

〉
2

≥ λ|y − ỹ|22. (4.12)
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Similarly, since x, x̃ ∈ L2(µ), by (2.8), we have

F ∗1,2
〈x− x̃, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)〉F1,2

= 〈x− x̃, (Ψλ + λI)(y)− (Ψλ + λI)(ỹ)〉2. (4.13)

Taking (4.11), (4.12) and (4.13) into (4.10), by Young’s inequality, we obtain

λ|y − ỹ|22 + νε
∣∣(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

∣∣2
2

≤ |x− x̃|2 ·
∣∣(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)

∣∣
2

≤ 1

νε
|x− x̃|22 + νε

∣∣(Ψλ + λI)(y)− (Ψλ + λI)(ỹ)
∣∣2
2
, (4.14)

and therefore

|y − ỹ|22 ≤
1

νελ
|x− x̃|22,

which yields (4.5) as claimed.
Now, let us prove (4.6). Let x ∈ L2(µ) ∩ Lp(µ), p ≥ 2. Since the function h(r) :=

r|r|p−2(1 + k|r|p−2)−1 is Lipschitz, and h(0) = 0, we have h(y) ∈ F1,2, because y ∈ F1,2.
Hence applying F ∗1,2

〈
·, y|y|p−2(1 + k|y|p−2)−1

〉
F1,2

, k > 0, to both sides of (4.3), we obtain

F ∗1,2

〈
y,

y|y|p−2

1 + k|y|p−2

〉
F1,2

+F ∗1,2

〈
ε(ν − L)(Ψλ(y) + λy),

y|y|p−2

1 + k|y|p−2

〉
F1,2

= F ∗1,2

〈
x,

y|y|p−2

1 + k|y|p−2

〉
F1,2

. (4.15)

Under the Gelfand triple F1,2 ⊂ L2(µ) ⊂ F ∗1,2, by (2.8), (4.15) yields

〈
y,

y|y|p−2

1 + k|y|p−2

〉
2

+F ∗1,2

〈
ε(ν − L)(Ψλ(y) + λy),

y|y|p−2

1 + k|y|p−2

〉
F1,2

=
〈
x,

y|y|p−2

1 + k|y|p−2

〉
2
. (4.16)

For the second term in the left hand-side of (4.16), since x ∈ L2(µ), y ∈ F1,2 ⊂ L2(µ), from
(4.3) we deduce that

(ν − L)(Ψλ(y) + λy) ∈ L2(µ).

Then by (2.8), we know

F ∗1,2

〈
ε(ν − L)(Ψλ(y) + λy),

y|y|p−2

1 + k|y|p−2

〉
F1,2

=
〈
ε(ν − L)(Ψλ(y) + λy),

y|y|p−2

1 + k|y|p−2

〉
2
.

To estimate the term above, notice that for all Lipschitz and increasing function g : R→ R
with g(0) = 0, we have ∫

E

(ν − L)
(
Ψλ(y) + λy

)
· g(y)dµ ≥ 0, (4.17)

because on one hand, Ψλ is Lipschitz and monotone with Ψλ(0) = 0, then obviously,∫
E

ν
(
Ψλ(y) + λy

)
· g(y)dµ ≥ 0. (4.18)
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On the other hand, we can prove the following term, i.e.,〈
(−L)(Ψλ(y) + λy), g(y)

〉
= E

(
Ψλ(y) + λy, g(y)

)
= lim

ε→0
E (ε)

(
Ψλ(y) + λy, g(y)

)
, (4.19)

is non-negative. Indeed, by [36, Lemma 5.1], with p being the kernel corresponding to
P := (I − εL)−1, we know, setting f := Ψλ + λI,

E (ε)
(
f(y), g(y)

)
:=

1

ε

〈
f(y),

(
I − (I − εL)−1

)
g(y)

〉
2

=
1

2ε

∫
E

∫
E

(
(f(y(ξ̃)))− f(y(ξ))

)
·
(
g(y(ξ̃))− g(y(ξ))

)
p(ξ, dξ̃)µ(dξ)

+
1

ε

∫
E

(1− P1(ξ))f(y(ξ))g(y(ξ))µ(dξ),

since f, g are monotone with f(0) = g(0) = 0 and P1 ≤ 1, we deduce that

E (ε)
(
f(y), g(y)

)
≥ 0,

which implies that (4.19) is non-negative. As a short remark, the assumption that (E,B)
is a standard measurable space is needed in [36, Lemma 5.1] to ensure the existence of the
kernel p above.

Thus, ∫
E

|y|p

1 + k|y|p−2
dµ ≤

∫
E

xy|y|p−2

1 + k|y|p−2
dµ.

Letting k → 0 and by Hölder’s inequality, we obtain

|y|pp ≤
∫
E

xy|y|p−2dµ ≤ |x|p|y|p−1
p .

Hence, since y = Jε(x),

|Jε(x)|p ≤ |x|p.

�

As shown in Lemma 4.1, Jε is Lipschitz in both L2(µ) and F ∗1,2. Since Aν,ελ = 1
ε
(I − Jε),

Aν,ελ is also Lipschitz in L2(µ) and F ∗1,2. If x ∈ F ∗1,2, (4.2) has a unique adapted solution
Xν,ε
λ ∈ L2(Ω;C([0, T ];F ∗1,2)) and by Itô’s formula (see e.g. [29, Theorem 4.2.5]) we have

E‖Xν,ε
λ (t)‖2

F ∗1,2,ν
+ 2E

∫ t

0

〈
Aν,ελ (Xν,ε

λ (s)), Xν,ε
λ (s)

〉
F ∗1,2,ν

ds

= ‖x‖2
F ∗1,2,ν

+ E
∫ t

0

‖B(s,Xν,ε
λ (s))‖2

L2(L2(µ),F ∗1,2,ν)ds

+2E
∫ t

0

〈Xν,ε
λ (s), B(s,Xν,ε

λ (s))dW (s)〉F ∗1,2,ν , t ∈ [0, T ],

which, by virtue of (H2)(ii) and the fact that the second term on the left hand-side is
nonnegative by (4.4), yields

E‖Xν,ε
λ (t)‖2

F ∗1,2,ν
≤ eC2T‖x‖2

F ∗1,2,ν
, ∀ε > 0, t ∈ [0, T ], x ∈ F ∗1,2. (4.20)
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Similarly, if x ∈ L2(µ), we know that Xν,ε
λ ∈ L2(Ω;C([0, T ];L2(µ))) and again by Itô’s

formula we obtain

E|Xν,ε
λ (t)|22 + 2E

∫ t

0

〈
Aν,ελ (Xν,ε

λ (s)), Xν,ε
λ (s)

〉
2
ds

= |x|22 + E
∫ t

0

‖B(s,Xν,ε
λ (s))‖2

L2(L2(µ),L2(µ))ds

+2E
∫ t

0

〈Xν,ε
λ (s), B(s,Xν,ε

λ (s))dW (s)〉2, (4.21)

which, by virtue of (H3)(i) and the fact that the second summand on the left hand-side is
nonnegative by (4.6) applied to p = 2, yields

E|Xν,ε
λ (t)|22 ≤ eC3T |x|22, ∀ε > 0, t ∈ [0, T ], x ∈ L2(µ). (4.22)

Lemma 4.2 For p ∈ (2,∞) and x ∈ Lp(µ)∩L2(µ), we have that Xν,ε
λ ∈ L∞

(
[0, T ];Lp(Ω;Lp(µ))

)
.

Proof For α,R > 0, consider the set

KR =
{
X ∈ L2

(
[0, T ];C([0, T ];L2(µ))

)
, e−pαtE|X(t)|pp ≤ Rp, t ∈ [0, T ]

}
.

Since, by (4.2), Xν,ε
λ is a fixed point of the map

F : X 7→ e−
•
εx+

1

ε

∫ •
0

e−
•−s
ε Jε(X(s))ds+

∫ •
0

e−
•−s
ε B(s,X(s))dW (s),

obtained by iteration in L2
(
Ω;C([0, T ];L2(µ))

)
, it suffices to show that F leaves the set KR

invariant for α,R > 0 large enough. By (4.6) we have that for X ∈ KR, t ≥ 0[
e−pαtE

∣∣∣e− tεx+
1

ε

∫ t

0

e−
t−s
ε Jε(X(s))ds

∣∣∣p
p

] 1
p

≤ e−αte−
t
ε |x|p + e−αt

[
E
(∫ t

0

1

ε
e−

t−s
ε |X(s)|pds

)p] 1
p

≤ e−(α+ 1
ε

)t|x|p + e−αt
∫ t

0

1

ε
e−

t−s
ε

(
E|X(s)|pp

) 1
pds

≤ e−(α+ 1
ε

)t|x|p +
R

1 + αε
. (4.23)

Set

Y (t) =

∫ t

0

e−
t−s
ε B(s,X(s))dW (s), t ≥ 0.

Then Y is a solution to the following SDE on L2(µ):dY (t) +
1

ε
Y (t)dt = B(t,X(t))dW (t), t ≥ 0,

Y (0) = 0,

equivalently,
d
(
e
t
εY (t)

)
= e

t
εB(t,X(t))dW (t), t ≥ 0, Y (0) = 0.
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By Hypothesis (H3)(ii), we may apply Theorem 7.1 in the Appendix with u(t) replaced by
e
t
εY (t). Then by Hölder’s and Young’s inequality and (H3)(ii), we obtain for t ∈ [0, T ]

E
∣∣e tεY (t)

∣∣p
p

=
1

2
p(p− 1)E

∫ t

0

∫
E

∣∣e sεY (s)
∣∣p−2 ·

∞∑
k=1

∣∣e sεB(s,X(s))ek
∣∣2dµds

≤ 1

2
p(p− 1)E

∫ t

0

(∫
E

|e
s
εY (s)|p−2· p

p−2dµ
) p−2

p ·

(∫
E

( ∞∑
k=1

|e
s
εB(s,X(s))ek|2

) p
2
dµ

) 2
p

ds

=
1

2
p(p− 1)E

∫ t

0

|e
s
εY (s)|p−2

p ·

(∫
E

( ∞∑
k=1

|e
s
εB(s,X(s))ek|2

) p
2
dµ

) 2
p

ds

≤ 1

2
p(p− 1)E

∫ t

0

(
|e sεY (s)|p−2

p

) p
p−2

p
p−2

+

( ∫
E

(∑∞
k=1 |e

s
εB(s,X(s))ek|2

) p
2dµ
) 2
p
· p
2

p
2

ds

=
1

2
(p− 1)(p− 2)E

∫ t

0

|e
s
εY (s)

∣∣p
p
ds+ (p− 1)E

∫ t

0

∫
E

( ∞∑
k=1

|e
s
εB(s,X(s))ek|2

) p
2
ds

≤ 1

2
(p− 1)(p− 2)E

∫ t

0

|e
s
εY (s)

∣∣p
p
ds+ C4(p− 1)E

∫ t

0

|e
s
εX(s)|ppds, (4.24)

and therefore, by Gronwall’s lemma, we obtain

E
∣∣e tεY (t)

∣∣p
p
≤ C4(p− 1)e

(p−1)(p−2)T
2

∫ t

0

E|e
s
εX(s)|ppds

≤ C4(p− 1)e
(p−1)(p−2)T

2

∫ t

0

Rpe( p
ε

+pα)sds

≤ CT,pR
pε

(1 + εα)p
e

(1+εα)pt
ε , (4.25)

which yields

e−pαtE|Y (t)|pp ≤
CT,pεR

p

(1 + εα)
, ∀t ∈ [0, T ]. (4.26)

Then, by formulas (4.23), (4.26), we infer that for α large enough and R ≥ 2|x|p, the map
F leaves KR invariant as claimed. �

Lemma 4.3 For all p ∈ [2,∞) and x ∈ Lp(µ) ∩ L2(µ), there exists Cp ∈ (0,∞) such that

sup
t∈[0,T ]

E|Xν,ε
λ (t)|pp ≤ Cp|x|pp, ∀ε, λ, ν ∈ (0, 1). (4.27)

Proof Applying the Itô formula to |Xν,ε
λ (t)|pp (see Theorem 7.1 in the Appendix), we obtain

E|Xν,ε
λ (t)|pp = |x|pp − pE

∫ t

0

∫
E

Aν,ελ (Xν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|p−2dµds

+
1

2
p(p− 1)E

∫ t

0

∫
E

|Xν,ε
λ (s)|p−2 ·

∞∑
k=1

|B(s,Xν,ε
λ (s))ek|2dµds. (4.28)
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Recall that Aν,ελ (Xν,ε
λ (s)) = 1

ε
(Xν,ε

λ (s)− Jε(Xν,ε
λ (s))), so we have∫

E

Aν,ελ (Xν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|p−2dµ

=
1

ε

∫
E

|Xν,ε
λ (s)|pdµ− 1

ε

∫
E

Jε(X
ν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|p−2dµ. (4.29)

By Hölder’s inequality and (4.6), we conclude

1

ε

∫
E

|Xν,ε
λ (s)|pdµ− 1

ε

∫
E

Jε(X
ν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|p−2dµ

≥ 1

ε

∫
E

|Xν,ε
λ (s)|pdµ− 1

ε

[
|Jε(Xν,ε

λ (s))|p · |Xν,ε
λ (s)|p−1

p

]
≥ 1

ε

∫
E

|Xν,ε
λ (s)|pdµ− 1

ε
|Xν,ε

λ (s)|p · |Xν,ε
λ (s)|p−1

p

= 0. (4.30)

By (4.28)-(4.30) and using a similar argument as in (4.24), we get

E|Xν,ε
λ (t)|pp ≤ |x|pp +

1

2
(p− 1)E

∫ t

0

(p− 2)|Xν,ε
λ (s)|pp + 2C4|Xν,ε

λ (s)|ppds

= |x|pp +
1

2
(p− 1)(p− 2 + 2C4)E

∫ t

0

|Xν,ε
λ (s)|ppds.

As a result, by Gronwall’s lemma, we obtain,

ess supt∈[0,T ]E|X
ν,ε
λ (t)|pp ≤ Cp|x|pp, ∀ ε, λ, ν ∈ (0, 1).

Since t 7→ |Xν,ε
λ (t)|p is lower semi-continuous and hence so is t 7→ E|Xν,ε

λ (t)|pp, (4.27) follows.
�

Lemma 4.4 Let p ∈ [2,∞), x ∈ L2(µ) ∩ Lp(µ) and Xν,ε
λ as above. Then as ε −→ 0, we

have
Xν,ε
λ −→ Xν

λ strongly in L2(Ω;C([0, T ];F ∗1,2)),

where Xν
λ is the solution to (4.1). Furthermore, there exists Cp ∈ (0,∞) such that

sup
t∈[0,T ]

E|Xν
λ(t)|pp ≤ Cp|x|pp, ∀ λ, ν ∈ (0, 1). (4.31)

Proof We prove the lemma in two steps, which are given as two claims.

Claim 4.1 For each x ∈ L2(µ), the sequence {Xν,ε
λ } is Cauchy in L2(Ω;C([0, T ];F ∗1,2)).

Proof Let ε, η > 0. Applying the Itô formula ([29, Theorem 4.2.5] with V := L2(µ),
H := F ∗1,2,ν , α = 2, X0 = x) to ‖Xν,ε

λ −X
ν,η
λ ‖2

F ∗1,2,ν
, we have

d‖Xν,ε
λ (t)−Xν,η

λ (t)‖2
F ∗1,2,ν

+2
〈
(ν − L)

(
(Ψλ + λI)(Jε(X

ν,ε
λ (t)))− (Ψλ + λ)(Jη(X

ν,η
λ (t)))

)
, Xν,ε

λ (t)−Xν,η
λ (t)

〉
F ∗1,2,ν

dt

= 2
〈
Xν,ε
λ (t)−Xν,η

λ (t),
(
B(t,Xν,ε

λ (t))−B(t,Xν,η
λ (t))

)
dW (t)

〉
F ∗1,2,ν

+
∥∥B(t,Xν,ε

λ (t))−B(t,Xν,η
λ (t))

∥∥2

L2(L2(µ),F ∗1,2,ν)
dt. (4.32)
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The second term in the left hand-side of the above equality, by (4.3), (2.10) and (2.8), is
equal to

2
〈
(Ψλ + λI)(Jε(X

ν,ε
λ (t)))− (Ψλ + λI)(Jη(X

ν,η
λ (t))), Jε(X

ν,ε
λ (t))− Jη(Xν,η

λ (t))
〉

2
dt

+ 2
〈
(ν − L)

(
(Ψλ + λI)(Jε(X

ν,ε
λ (s)))

)
− (ν − L)

(
(Ψλ + λI)(Jη(X

ν,η
λ (s)))

)
,

ε(ν − L)
(
(Ψλ + λI)(Jε(X

ν,ε
λ (s)))

)
− η(ν − L)

(
(Ψλ + λI)(Jη(X

ν,η
λ (s)))

)〉
F ∗1,2,ν
dt. (4.33)

Taking (4.33) into (4.32), then taking expectation of both sides, we obtain for all t ∈ [0, T ]

E sup
r∈[0,t]

‖Xν,ε
λ (r)−Xν,η

λ (r)‖2
F ∗1,2,ν

−2E
[

sup
r∈[0,t]

∣∣∣ ∫ r

0

〈
Xν,ε
λ (s)−Xν,η

λ (s), (B(s,Xν,ε
λ (s))−B(s,Xν,η

λ (s)))dW (s)
〉
F ∗1,2,ν

∣∣∣]
+2E

∫ t

0

〈
(Ψλ + λI)

(
Jε(X

ν,ε
λ (s))

)
− (Ψλ + λI)

(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(Xν,η

λ (s))
〉

2
ds

≤ 2E
∫ T

0

∣∣〈(ν − L)
(
(Ψλ + λI)(Jε(X

ν,ε
λ (s)))

)
− (ν − L)

(
(Ψλ + λI)(Jη(X

ν,η
λ (s)))

)
,

ε(ν − L)
(
(Ψλ + λI)(Jε(X

ν,ε
λ (s)))

)
− η(ν − L)

(
(Ψλ + λI)(Jη(X

ν,η
λ (s)))

)〉
F ∗1,2,ν

∣∣ds
+E

∫ t

0

∥∥B(s,Xν,ε
λ (s))−B(s,Xν,η

λ (s))
∥∥2

L2(L2(µ),F ∗1,2,ν)
ds

≤ 3(ε+ η)E
∫ T

0

‖(ν − L)(Ψλ + λI)(Jε(X
ν,ε
λ (s)))‖2

F ∗1,2,ν
+ ‖(ν − L)(Ψλ + λI)(Jη(X

ν,η
λ (s)))‖2

F ∗1,2,ν
ds

+E
∫ t

0

∥∥B(s,Xν,ε
λ (s))−B(s,Xν,η

λ (s))
∥∥2

L2(L2(µ),F ∗1,2,ν)
ds

≤ 3(ε+ η)(
2

λ
+ λ+ C5)eC3T |x|22 + E

∫ t

0

C1‖Xν,ε
λ (s)−Xν,η

λ (s)‖2
F ∗1,2,ν

ds, (4.34)

where we used Proposition 7.1 (see Appendix) and (H2)(i) in the last inequality. For the
second term in the left hand-side of (4.34), by using the Burkholder-Davis-Gundy inequality
for p = 1, we obtain for all t ∈ [0, T ],

E
[

sup
r∈[0,t]

∣∣∣ ∫ r

0

〈
Xν,ε
λ (s)−Xν,η

λ (s), (B(s,Xν,ε
λ (s))−B(s,Xν,η

λ (s)))dW (s)
〉
F ∗1,2,ν

∣∣∣]
≤ E

[ ∫ t

0

‖Xν,ε
λ (s)−Xν,η

λ (s)‖2
F ∗1,2,ν

· C1‖Xν,ε
λ (s)−Xν,η

λ (s)‖2
F ∗1,2,ν

ds
] 1

2

≤ E
[

sup
r∈[0,t]

‖Xν,ε
λ (r)−Xν,η

λ (r)‖2
F ∗1,2,ν

· C1

∫ t

0

‖Xν,ε
λ (s)−Xν,η

λ (s)‖2
F ∗1,2,ν

ds
] 1

2

≤ 1

4
E sup
r∈[0,t]

‖Xν,ε
λ (r)−Xν,η

λ (r)‖2
F ∗1,2,ν

+ C1E
∫ t

0

‖Xν,ε
λ (s)−Xν,η

λ (s)‖2
F ∗1,2,ν

ds. (4.35)

Substituting (4.35) into (4.34), we obtain

1

2
E sup
r∈[0,t]

‖Xν,ε
λ (r)−Xν,η

λ (r)‖2
F ∗1,2,ν

+2E
∫ t

0

〈
(Ψλ + λI)

(
Jε(X

ν,ε
λ (s))

)
− (Ψλ + λI)

(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(Xν,η

λ (s))
〉

2
ds

≤ 3(ε+ η)(
2

λ
+ λ+ C5)eC3T |x|22 + 3C1E

∫ t

0

sup
r∈[0,s]

‖Xν,ε
λ (r)−Xν,η

λ (r)‖2
F ∗1,2,ν

ds.
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By Gronwall’s lemma, we obtain

E sup
t∈[0,T ]

‖Xν,ε
λ (t)−Xν,η

λ (t)‖2
F ∗1,2,ν

+4E
∫ t

0

〈
(Ψλ + λI)

(
Jε(X

ν,ε
λ (s))

)
− (Ψλ + λI)

(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(Xν,η

λ (s))
〉

2
ds

≤ 6(ε+ η)(
2

λ
+ λ+ C)e(6C1+C3)T |x|22. (4.36)

Since by the monotonicity of Ψλ the second term on the left hand-side of inequality (4.36)
is nonnegative, letting ε, η → 0, we see that {Xν,ε

λ } is Cauchy in L2(Ω;C([0, T ];F ∗1,2)). �

From Claim 4.1, we know there exists X̃ ∈ L2(Ω;C([0, T ];F ∗1,2)) such that

lim
ε→0

Xν,ε
λ = X̃ in L2(Ω;C([0, T ];F ∗1,2)), (4.37)

Claim 4.2 X̃ = Xν
λ .

Proof We have

lim
ε→0

∫ ·
0

B(s,Xν,ε
λ (s))dW (s) =

∫ ·
0

B(s, X̃(s))dW (s) in L2(Ω;C([0, T ];F ∗1,2)), (4.38)

since by the BDG inequality for p = 1 and (H2)(i), we have

E sup
r∈[0,T ]

∥∥∥∫ r

0

(B(s,Xν,ε
λ (s))−B(s, X̃(s)))dW (s)

∥∥∥2

F ∗1,2,ν

≤ CE
∫ T

0

‖B(s,Xν,ε
λ (s))−B(s, X̃(s))‖2

L2(L2(µ),F ∗1,2,ν)ds

≤ CTE sup
s∈[0,T ]

‖Xν,ε
λ (s)− X̃(s)‖2

F ∗1,2,ν
.

Next we show that (Ψλ + λ)(X̃) ∈ L2((0, T );L2(Ω;F1,2)) and that (4.1) is satisfied. From
Lemma 4.3 we know that {Xν,ε

λ } is bounded in L2((0, T ) × Ω × E) and therefore along a
subsequence, again denoted by {ε}, we have

lim
ε→0

Xν,ε
λ = X̃ weakly in L2((0, T )× Ω× E). (4.39)

From (4.3) and (7.4), we know

E
∫ T

0

‖Xν,ε
λ (s)− Jε(Xν,ε

λ (s))‖2
F ∗1,2,ν

ds

= ε2E
∫ T

0

‖(ν − L)(Ψλ(Jε(X
ν,ε
λ (s))) + λJε(X

ν,ε
λ (s)))‖2

F ∗1,2,ν
ds

≤ ε

2
(
2

λ
+ λ+ C5)eC3T |x|22, (4.40)

which yields,

lim
ε→0

Jε(X
ν,ε
λ ) = X̃ in L2((0, T );L2(Ω;F ∗1,2)). (4.41)
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Recall from (4.6) that

|Jε(Xν,ε
λ (t))|2 ≤ |Xν,ε

λ (t)|2, ∀ t ∈ [0, T ]. (4.42)

Therefore, we infer by (4.39) and (4.40) that

lim
ε→0

Jε(X
ν,ε
λ ) = X̃, weakly in L2((0, T )× Ω× E). (4.43)

By the monotonicity of Ψλ, it follows from (4.36) that Jε(X
ν,ε
λ ), ε ∈ (0, 1), is Cauchy in

L2((0, T )× Ω× E), so the convergence in (4.43) is strong and thus

lim
ε→0

(Ψλ + λI)(Jε(X
ν,ε
λ )) = (Ψλ + λI)(X̃) in L2((0, T )× Ω× E), (4.44)

since Ψλ + λI is Lipschitz.
From (7.4), we know that (ν−L)(Ψλ+λI)(Jε(X

ν,ε
λ )), ε ∈ (0, 1), is bounded in L2([0, T ]×

Ω;F ∗1,2), so (Ψλ + λI)(Jε(X
ν,ε
λ )) is bounded in L2([0, T ];L2(Ω, F1,2)). Hence there exists a

subsequence, again denoted by {ε} such that

lim
ε→0

(Ψλ + λI)(Jε(X
ν,ε
λ )) = (Ψλ + λI)(X̃) weakly in L2([0, T ]× Ω;F1,2). (4.45)

It is then easy to see that also

lim
ε→0

∫ ·
0

(Ψλ + λI)(Jε(X
ν,ε
λ (s)))ds =

∫ ·
0

(Ψλ + λI)(X̃(s))ds

weakly in L2([0, T ]× Ω;F1,2), and thus

lim
ε→0

(ν − L)

∫ ·
0

(Ψλ + λI)Jε(X
ν,ε
λ (s))ds = (ν − L)

∫ ·
0

(Ψλ + λI)(X̃(s))ds

weakly in L2([0, T ]× Ω;F ∗1,2).
Consequently, taking into account (4.37), (4.38), as ε→ 0, we can pass to the weak limit

in L2([0, T ]× Ω;F ∗1,2) in the equation

Xν,ε
λ (t) = x+ (ν − L)

∫ t

0

(Ψλ + λI)(Jε(X
ν,ε
λ (s)))ds+

∫ t

0

B(s,Xν,ε
λ (s))dW (s),

and since each term is a P-a.s. continuous path in F ∗1,2, we conclude that X̃ is a strong
solution to (4.1) in the sense of Definition 3.1 in [37]. Furthermore, by the uniqueness part

of [37, Lemma 3.1], it follows that Xν
λ = X̃ a.e. in (0, T )× Ω× E. �

By (4.39) and Lemma 4.3, Claim 4.1 implies (4.31). This completes the proof of Lemma
4.4. �

Remark 4.1 By Lemma 4.4 we know that

Xν
λ(t) = x+ (ν − L)

∫ t

0

(
Ψλ(X

ν
λ(s)) + λXν

λ(s)
)

+

∫ t

0

B(s,Xν
λ(s))dW (s), t ∈ [0, T ].

But, since Xν
λ = X̃, by (4.45) we may interchange (ν − L) with the integral w.r.t. ds.
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Let us now continue to prove Theorem 3.2. Choose 0 < ν ≤ ν0 ≤ 1, rewrite (4.1) as

dXν
λ(t) + (ν0 − L)(Ψλ(X

ν
λ(t)) + λXν

λ(t))dt

= (ν0 − ν)(Ψλ(X
ν
λ(t)) + λXν

λ(t))dt+B(t,Xν
λ(t))dW (t). (4.46)

Now by Remark 4.1 we may apply Itô’s formula ([29, Theorem 4.2.5]) to ‖Xν
λ−Xν′

λ ‖2
F ∗1,2,ν0

,

ν, ν ′ ∈ (0, ν0], to obtain for all t ∈ [0, T ], λ ∈ (0, 1),

‖Xν
λ(t)−Xν′

λ (t)‖2
F ∗1,2,ν0

+2

∫ t

0

∫
E

(
Ψλ(X

ν
λ(s)) + λXν

λ(s)−Ψλ(X
ν′

λ (s))− λXν′

λ (s)
)
· (Xν

λ(s)−Xν′

λ (s))dµds

= 2(ν ′ − ν)

∫ t

0

〈
Ψλ(X

ν
λ(s))−Ψλ(X

ν′

λ (s)), Xν
λ(s)−Xν′

λ (s)
〉
F ∗1,2,ν0

ds

+2(ν ′ − ν)

∫ t

0

〈
λXν

λ(s)− λXν′

λ (s), Xν
λ(s)−Xν′

λ (s)
〉
F ∗1,2,ν0

ds

+

∫ t

0

‖B(s,Xν
λ(s))−B(s,Xν′

λ (s))‖2
L2(L2(µ),F ∗1,2,ν0

)ds

+2

∫ t

0

〈
Xν
λ(s)−Xν′

λ (s),
(
B(s,Xν

λ(s))−B(s,Xν′

λ (s))
)
dW (s)

〉
F ∗1,2,ν0

. (4.47)

Since (Ψλ(r) − Ψλ(r
′))(r − r′) ≥ 0 for r, r′ ∈ R, L2(µ) ⊂ F ∗1,2 continuously, by Minkowski

inequality, Young’s inequality and (H2)(i), (4.47) yields for all t ∈ [0, T ],

‖Xν
λ(t)−Xν′

λ (t)‖2
F ∗1,2,ν0

+

∫ t

0

∫
E

2λ|Xν
λ(s)−Xν′

λ (s)|2dµds

≤ 2(ν ′ − ν)
√
ν0

∫ t

0

(|Ψλ(X
ν
λ(s))|2 + |Ψλ(X

ν′

λ (s))|2) · (‖Xν
λ(s)−Xν′

λ (s)‖F ∗1,2,ν0 )ds

+2λ|ν ′ − ν|
∫ t

0

‖Xν
λ(s)−Xν′

λ (s)‖2
F ∗1,2,ν0

ds

+2

∫ t

0

〈
Xν
λ −Xν′

λ , (B(s,Xν
λ(s))−B(s,Xν′

λ (s)))dW (s)
〉
F ∗1,2,ν0

+

∫ t

0

C1‖Xν
λ(s)−Xν′

λ (s)‖2
F ∗1,2,ν0

ds

≤ 2(ν ′ + ν)2

ν0

∫ t

0

|Ψλ(X
ν
λ(s))|22 + |Ψλ(X

ν′

λ (s))|22ds

+2

∫ t

0

〈
Xν
λ(s)−Xν′

λ (s), (B(s,Xν
λ(s))−B(s,Xν′

λ (s)))dW (s)
〉
F ∗1,2,ν0

+(C1 + 2λ+ 1)

∫ t

0

‖Xν
λ(s)−Xν′

λ (s)‖2
F ∗1,2,ν0

ds. (4.48)

Taking expectation to both sides of (4.48), by the BDG inequality for p = 1, and by the fact
that, by (H1), |Ψλ(r)| ≤ C|r|m, ∀r ∈ R, with C independent of λ, taking (H2)(i) and (4.27)
into account, we obtain for all t ∈ [0, T ],

1

2
E
[

sup
s∈[0,t]

‖Xν
λ(s)−Xν′

λ (s)‖2
F ∗1,2,ν0

]
+ 2λE

∫ t

0

|Xν
λ(s)−Xν′

λ (s)|22ds

≤ CT (ν + ν ′)2

ν0

|x|2m2m + CE
∫ t

0

sup
r∈[0,s]

‖Xν
λ(r)−Xν′

λ (r)‖2
F ∗1,2,ν0

ds. (4.49)
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Hence by Gronwall’s lemma, we have for some CT ∈ (0,∞)

E
[

sup
s∈[0,T ]

‖Xν
λ(s)−Xν′

λ (s)‖2
F ∗1,2,ν0

]
+ 2λE

∫ T

0

|Xν
λ(s)−Xν′

λ (s)|22ds

≤ CT (ν + ν ′)2

ν0

|x|2m2m, ∀ λ ∈ (0, 1), ν, ν ′ ∈ (0, ν0]. (4.50)

Hence there exists an (Ft)t≥0-adapted process Xλ ∈ L2(Ω;C([0, T ];F ∗1,2))∩L2((0, T )×Ω×E)
such that

lim
ν→0

{
E
[

sup
s∈[0,T ]

‖Xν
λ(s)−Xλ(s)‖2

F ∗1,2,ν0

]
+ 2λE

∫ T

0

|Xν
λ(s)−Xλ(s)|22ds

}
= 0. (4.51)

Consequently, by (H2)(i) we can pass to the limit with ν → 0 in (4.1) to obtain

Xλ(t) = x− lim
ν→0

(ν − L)

∫ t

0

Ψλ(X
ν
λ(s)) + λXν

λ(s)ds

+

∫ t

0

B(s,Xλ(s))dW (s), t ∈ [0, T ], (4.52)

where the limit exists in L2(Ω;C([0, T ];F ∗1,2)). Furthermore, it follows by (4.51), since Ψλ is
Lipschitz, that

lim
ν→0

∫ ·
0

Ψλ(X
ν
λ(s)) + λXν

λ(s)ds =

∫ ·
0

Ψλ(Xλ(s)) + λXλ(s)ds, (4.53)

in L2(Ω;C([0, T ];L2(µ))), hence in L2(Ω;C([0, T ];F ∗1,2)). Writing ν−L = (1−L)+(ν−1)I,

(4.52) and (4.53) imply that the convergence in (4.53) holds even in L2(Ω;C([0, T ];F1,2))
and that the second term on the right hand-side of (4.52) is equal to

L

∫ t

0

Ψλ(Xλ(s)) + λXλ(s)ds,

which shows that Xλ is a solution of (3.11) in the sense of Definition 3.1 in [37] with state
space F ∗1,2.

Now let us prove that, since x ∈ F ∗
e (⊂ F ∗1,2), which so far we have not used, that Xλ

is indeed a solution of (3.11) on the smaller state space F ∗
e and that (3.12)-(3.15) hold.

Note that (3.10) trivially holds, since the convergence in (4.53) is in L2(Ω;C([0, T ];F1,2))
and since F1,2 ⊂ Fe continuously.

To prove (3.12) we observe that by (4.51) it follows that as ν → 0, Xν
λ → Xλ in dt⊗ P-

measure. Hence we have by Fatou’s lemma and (4.31) for all ϕ ∈ L1([0, T ];R)∫ T

0

|ϕ(t)|E|Xλ(t)|ppdt ≤ lim
ν→0

inf

∫ T

0

|ϕ(t)|E|Xν
λ(t)|ppdt

≤ |ϕ|L1([0,T ];R)Cp|x|pp,

which implies (3.12). Now (3.13) follows by (H1).
To prove (3.14) we note that by exactly the same arguments as in the proof of (4.50),

except for using (H2)(ii) instead of (H2)(i), we obtain

E
[

sup
s∈[0,T ]

‖Xν
λ(s)‖2

F ∗1,2,ν0

]
+ λE

∫ T

0

|Xν
λ(s)|22ds

≤ CT
(
‖x‖2

F ∗1,2,ν0
+ ν0|x|2m2m

)
, ∀ λ ∈ (0, 1), ν ∈ (0, ν0]. (4.54)
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Hence we get by Fatou’s lemma

E
[

sup
t∈[0,T ]

‖Xλ(t)‖2
F ∗1,2,ν0

]
+ λE

∫ T

0

|Xλ(s)|22ds

≤ CT
(
‖x‖2

F ∗1,2,ν0
+ |x|2m2m

)
, ∀ λ ∈ (0, 1). (4.55)

Letting ν0 → 0 and taking (2.5) into account, we get

E
[

sup
t∈[0,T ]

‖Xλ(t)‖2
F∗e

]
+ λE

∫ T

0

|Xλ(s)|22ds ≤ CT
(
‖x‖2

F∗e
+ |x|2m2m

)
, ∀ λ ∈ (0, 1), (4.56)

hence (3.14) follows.

Now let us prove that Xλ is a solution to (3.5) with state space F ∗
e . By (3.10) and

Lemma 2.3, we have

L

∫ ·
0

Ψλ(Xλ(s)) +Xλ(s)ds ∈ L2(Ω;C([0, T ]; F ∗
e )).

Furthermore, letting ν → 0 in (H2)(ii), we conclude from (4.55) that the stochastic integral
in (3.11) is in L2(Ω;C([0, T ]; F ∗

e )) as well. Since x ∈ F ∗
e , (3.11) (which holds in F ∗1,2) implies

that Xλ ∈ L2(Ω;C([0, T ]; F ∗
e )). So, altogether this implies that Xλ is a strong solution of

(3.5) with state space F ∗
e in the sense of (3.9)-(3.11).

Now finally we prove (3.15). Firstly, we have

d(Xν
λ(t)−Xν

λ′(t)) + (ν0 − L)
(
Ψλ(X

ν
λ(t))−Ψλ′(X

ν
λ′(t)) + λXν

λ(t)− λ′Xν
λ′(t))

)
dt

+(ν − ν0)
(
Ψλ(X

ν
λ(t))−Ψλ′(X

ν
λ′(t)) + λXν

λ(t)− λ′Xν
λ′(t))

)
dt

=
(
B(t,Xν

λ(t))−B(t,Xν
λ′(t))

)
dW (t)

By Remark 4.1 we may apply Itô’s formula ([29, Theorem 4.2.5]) to 1
2
‖Xν

λ − Xν
λ′‖2

F ∗1,2,ν0
, to

obtain for ν ∈ (0, ν0], t ∈ [0, T ],

1

2
‖Xν

λ(t)−Xν
λ′(t)‖2

F ∗1,2,ν0

+

∫ t

0

∫
E

(
Ψλ(X

ν
λ(s)) + λXν

λ(s)−Ψλ′(X
ν
λ′(s))− λ′Xν

λ′(s)
)
· (Xν

λ(s)−Xν
λ′(s))dµds

+(ν − ν0)

∫ t

0

〈
Ψλ(X

ν
λ(s)) + λXν

λ(s)−Ψλ′(X
ν
λ′(s))− λ′Xν

λ′(s), X
ν
λ(s)−Xν

λ′(s)
〉
F ∗1,2,ν0

ds

=
1

2

∫ t

0

∥∥B(s,Xν
λ(s))−B(s,Xν

λ′(s))
∥∥2

L2(L2(µ),F ∗1,2,ν0
)
ds

+

∫ t

0

〈
Xν
λ(s)−Xν

λ′(s), (B(s,Xν
λ(s))−B(s,Xν

λ′(s)))dW (s)
〉
F ∗1,2,ν0

. (4.57)

Since r = λΨλ(r) + (I + λΨ)−1(r), for all r ∈ R, we have for all r′ ∈ R

(Ψλ(r)−Ψλ′(r
′))(r − r′) =

[
Ψλ(r)−Ψλ′(r

′)
]
·
[
(I + λΨ)−1(r)− (I + λ′Ψ)−1(r′)

]
+
[
Ψλ(r)−Ψλ′(r

′)
]
·
[
λΨλ(r)− λ′Ψλ′(r

′)
]
. (4.58)

Note that the first summand in the right hand-side is nonnegative since Ψ is maximal
monotone and since Ψλ(r) ∈ Ψ((I+λΨ)−1(r))(see [4, page:61]). Plugging (4.58) into (4.57),
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and using that ‖ · ‖F ∗1,2,ν0 ≤
1√
ν0
| · |2 and (H2)(i), we obtain for ν ∈ (0, ν0], t ∈ [0, T ]

1

2
‖Xν

λ(t)−Xν
λ′(t)‖2

F ∗1,2,ν0

+

∫ t

0

∫
E

(
Ψλ(X

ν
λ(s))−Ψλ′(X

ν
λ′(s))

)
·
(
λΨλ(X

ν
λ(s))− λ′Ψλ′(X

ν
λ′(s))

)
dµds

+

∫ t

0

∫
E

(
λXν

λ(s)− λ′Xν
λ′(s)

)
·
(
Xν
λ(s)−Xν

λ′(s)
)
dµds

≤ (ν0 − ν)
√
ν0

∫ t

0

∣∣Ψλ(X
ν
λ(s)) + λXν

λ(s)−Ψλ′(X
ν
λ′(s))− λ′Xν

λ′(s)
∣∣
2
·
∥∥Xν

λ(s)−Xν
λ′(s)

∥∥
F ∗1,2,ν0

ds

+
C1

2

∫ t

0

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν0

ds

+

∫ t

0

〈
Xν
λ(s)−Xν

λ′(s), (B(s,Xν
λ(s))−B(s,Xν

λ′(s)))dW (s)
〉
F ∗1,2,ν0

. (4.59)

By the Burkholder-Davis-Gundy inequality (for p = 1) we get for all λ, λ′ > 0, t ∈ [0, T ]

1

4
E
[

sup
s∈[0,t]

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν0

]
≤ C(λ+ λ′ + ν0)E

∫ t

0

(
|Ψλ(X

ν
λ(s))|22 + |Ψλ′(X

ν
λ′(s))|22 + |Xν

λ(s)|22 + |Xν
λ′(s)|22

)
ds

+CE
∫ t

0

sup
r∈[0,s]

‖Xν
λ(r)−Xν

λ′(r)‖2
F ∗1,2,ν0

ds. (4.60)

Hence by (H1), (4.31) and Gronwall’s lemma, there exists CT ∈ (0,∞) independent of ν0,
such that for all ν ∈ (0, ν0], λ, λ′ ∈ (0, 1),

E
[

sup
t∈[0,T ]

‖Xν
λ(t)−Xν

λ′(t)‖2
F ∗1,2,ν0

]
≤ CT (λ+ λ′ + ν0)(|x|22 + |x|2m2m). (4.61)

Then letting ν → 0, we obtain

E
[

sup
t∈[0,T ]

‖Xλ(t)−Xλ′(t)‖2
F ∗1,2,ν0

]
≤ CT (λ+ λ′ + ν0)(|x|22 + |x|2m2m), (4.62)

so by letting ν0 → 0 in (4.62) and taking into account (2.5) we obtain (3.15). Consequently,
Theorem 3.2 is proved. �

5 Proof of Theorem 3.1

After all our preparations, to deduce that the solution Xλ, λ ∈ (0, 1), of equation (3.5) as
λ→ 0 converges to the unique solution of equation (1.1) is now in principle quite standard
(at least for experts on stochastic porous media equations), maybe except for proving (3.3).
Since, however, there is no proof in the literature that covers our general case, we give a
complete presentation of the arguments in this section.
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Proof Let Xλ be as in Theorem 3.2. Then it follows by Theorem 3.2 that there exists a
process X ∈ L2(Ω;C([0, T ]; F ∗

e )) such that, as λ→ 0,

Xλ → X strongly in L2(Ω;C([0, T ]; F ∗
e )),

Xλ → X weak-star in L∞([0, T ]; (Lp ∩ L2 ∩ L2m)(Ω× E)),

λXλ → 0 strongly in L2([0, T ]× Ω× E), (5.1)

Ψλ(Xλ) → η weakly in L
m+1
m ([0, T ]× Ω× E) ∩ L2([0, T ]× Ω× E).

By (5.1) and (H2)(i) we may take the limit λ→ 0 in (3.11) in L2(Ω;C([0, T ]; F ∗
e )) to obtain

that

X = x+ lim
λ→0

L

∫ ·
0

Ψλ(Xλ(s)) + λXλ(s)ds

+

∫ ·
0

B(s,X(s))dW (s), (5.2)

where we have used that by (2.5) we may take the limit ν0 → 0 in (H2)(i). By Lemma 2.3
we conclude that

lim
λ→0

∫ ·
0

Ψλ(Xλ(s)) + λXλ(s)ds (5.3)

exists in L2(Ω;C([0, T ]; Fe)), hence by (L.1) in L2(Ω;C([0, T ];L1(g · µ))) for some g ∈
L1(µ) ∩ L∞(µ), g > 0. Hence the limit in (5.3) coincides with the limit in dt ⊗ P ⊗ dµ-
measure. Therefore,

∫ ·
0
η(s)ds ∈ L2(Ω;C([0, T ]; Fe)) and (5.2) implies

X(t) = x+ L

∫ t

0

η(s)ds+

∫ t

0

B(s,X(s))dW (s), t ∈ [0, T ]. (5.4)

Hence X(t), t ∈ [0, T ], is a solution to (1.1) in the sense of Definition 3.1 if we can show that

η ∈ Ψ(X), dt⊗ P⊗ µ− a.e.. (5.5)

For this it suffices to show that

lim
λ→0

supE
∫ T

0

∫
E

Ψλ(Xλ)Xλdµdt ≤ E
∫ T

0

∫
E

ηXdµdt. (5.6)

Indeed, since Ψλ = ∂jλ, where jλ is as in (3.8), we have for all λ ∈ (0, 1)

E
∫ T

0

∫
E

Ψλ(Xλ)(Xλ − Z)dµdt ≥ E
∫ T

0

∫
E

jλ(Xλ)− jλ(Z)dµdt, (5.7)

for all Z ∈ Lm+1((0, T ) × Ω × E), since Xλ, |Ψλ(Xλ)| ∈ (L
2
m ∩ L2)((0, T ) × Ω × E) ⊂

L
m+1
m ((0, T )× Ω× E).

Let Ψ0 be as defined in (3.7) and define the integral (see [4, page:54])

j(r) :=

∫ r

0

Ψ0(s)ds, r ∈ R.

Then j is a continuous and convex function on R satisfying

0 ≤ j(r) ≤ rΨ0(r),∀r ∈ R, (5.8)
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because Ψ(0) = 0. Recall that by [4, page:48, Theorem 2.9]

jλ ≥ 0, (5.9)

lim
λ→0

jλ(r) = j(r),∀r ∈ R, (5.10)

jλ(r) ≤ j(r),∀r ∈ R. (5.11)

Consequently, for all Z ∈ Lm+1((0, T )× Ω× E)

lim
λ→0

supE
∫ T

0

∫
E

jλ(Xλ)− jλ(Z)dµdt ≥ E
∫ T

0

∫
E

j(X)− j(Z)dµdt. (5.12)

Indeed, by (5.8), (5.9) and (H1)

|jλ(z)| ≤ C|z|m+1

and hence by Lebesgue’s dominated convergence theorem,

lim
λ→0

E
∫ T

0

∫
E

jλ(Z)dµdt = E
∫ T

0

∫
E

j(Z)dµdt.

Furthermore, by (3.6), (3.7), (H1) and because X ∈ L2m((0, T )×Ω×E) we have as λ→ 0,
Ψλ(X)→ Ψ0(X) in L2((0, T )× Ω× E), hence

lim
λ→0

supE
∫ T

0

∫
E

jλ(Xλ)− j(X)dµdt

= lim
λ→0

supE
∫ T

0

∫
E

jλ(Xλ)− jλ(X)dµdt

≥ lim
λ→0

supE
∫ T

0

∫
E

Ψλ(X)(Xλ −X)dµdt

= 0.

Hence by (5.6), (5.7) and (5.12), we have ∀Z ∈ Lm+1((0, T )× Ω× E),

E
∫ T

0

∫
E

η(X − Z)dµdt ≥ E
∫ T

0

∫
E

(
j(X)− j(Z)

)
dµdt.

This yields

E
∫ T

0

∫
E

η(X − Z)dµdt ≥ E
∫ T

0

∫
E

ζ(X − Z)dµdt, (5.13)

for all Z ∈ Lm+1((0, T )×Ω×E) and ζ ∈ Lm+1
m ((0, T )×Ω×E) such that ζ ∈ Ψ(Z) a.e. on

(0, T )× Ω× E.
By virtue of assumption (H1), Ψ is maximal monotone in Lm+1((0, T ) × Ω × E) ×

L
m+1
m ((0, T )× Ω× E), so by [4, page:34, Theorem 2.2] one knows that the equation

J(Z) + Ψ(Z) 3 J(X) + η, (5.14)

where J(Z) = |Z|p−2Z, has a unique solution Z ∈ Lm+1((0, T )× Ω× E).
Now if in (5.13), we take Z to be the solution of (5.14) and ζ := J(X) − J(Z) + η, we

obtain

E
∫ T

0

∫
E

(J(X)− J(Z))(X − Z)dµdt ≤ 0,

25



i.e.,

E
∫ T

0

∫
E

(|X|p−2X − |Z|p−2Z)(X − Z)dµdt ≤ 0.

Since J : r → |r|p−2r is strictly increasing, it follows that

E
∫ T

0

∫
E

((|X|p−2X − |Z|p−2Z)(X − Z)dµdt = 0.

Hence X = Z a.e. on (0, T ) × Ω × E, and thus by (5.14), we have η ∈ Ψ(X), P ⊗ dt ⊗ µ,
a.e..

It remains to prove (5.6). By Appendix 7.3 we may apply Itô’s formula from [29, Theorem
4.2.5] to the process in (3.5) to obtain

1

2
E‖Xλ(t)‖2

F∗e
− E

∫ t

0
V ∗
〈
L̃
(
Ψλ(Xλ(s)) + λXλ(s)

)
, Xλ(s)

〉
V
ds

=
1

2
‖x‖2

F∗e
+

1

2
E
∫ t

0

‖B(s,Xλ(s))‖2
L2(L2(µ),F∗e )ds, (5.15)

By (7.16), where L̃ and V are as in Appendix 7.3, we know that

− V ∗
〈
L̃
(
Ψλ(Xλ(s)) + λXλ(s)

)
, Xλ(s)

〉
V

=

∫
E

(
Ψλ(Xλ(s)) + λXλ(s)

)
·Xλ(s)dµ. (5.16)

By Appendix 7.3 we may also apply Itô’s formula from [29, Theorem 4.2.5] to the process
in (5.4) to obtain by (7.16)

1

2
E‖X(t)‖2

F∗e
+ E

∫ t

0

∫
E

η ·X(s)ds

=
1

2
‖x‖2

F∗e
+

1

2
E
∫ t

0

‖B(s,X(s))‖2
L2(L2(µ),F∗e )ds. (5.17)

Letting λ→ 0 in (5.15) after plugging in (5.16), using (5.2) and comparing with (5.17), we
obtain (5.6) (even with ” = ” replacing ” ≤ ”).

Uniqueness
Suppose X1, X2 are two strong solutions to (1.1). We have with L̃ as in Appendix 7.3{

d(X1 −X2)− L̃(η1 − η2)dt = (B(t,X1)−B(t,X2))dW (t), in [0, T ]× E,
X1 −X2 = 0 on E,

(5.18)

where ηi ∈ Ψ(Xi), i = 1, 2, a.e. on Ω× (0, T )× E.
As above we may apply Itô’s formula to get

1

2
d‖X1 −X2‖2

F∗e
− V ∗

〈
L̃(η1 − η2), X1 −X2

〉
V
dt

=
1

2

∥∥B(t,X1)−B(t,X2)
∥∥2

L2(L2(µ),F∗e )
dt

+
〈
X1 −X2, (B(s,X1)−B(s,X2))dWt

〉
F∗e
. (5.19)
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Since Ψ is monotone, by (7.16) we have

E
∫ T

0
V ∗
〈
− L̃(η1 − η2), X1 −X2

〉
V
dt

= E
∫ T

0

∫
E

(η1 − η2) · (X1 −X2)dµdt ≥ 0. (5.20)

Therefore, integrating (5.19) from 0 to t and taking expectation, by (5.20) and Remark 3.1
(i), we obtain

E‖X1 −X2‖2
F∗e
≤ C1

∫ t

0

E‖X1 −X2‖2
F∗e
ds, ∀t ∈ [0, T ],

and by Gronwall’s inequality we get X1 = X2, P−a.s.. Thus Theorem 3.1 is proved. �

6 Applications

Example 6.1 (Example for B, see [36, Remark 2.9])

(M) Let N ∈ N∪{+∞} and ek ∈ L2(µ)∩L∞(µ), 1 ≤ k < N , be an orthonormal system
in L2(µ) such that for every 1 ≤ k < N there exists ξk ∈ (0,∞) such that for all ν ∈ (0,∞)

|F ∗1,2〈x, eku〉F1,2| ≤ ξk‖x‖F ∗1,2,ν‖u‖F1,2,ν , ∀ u ∈ F1,2, x ∈ F ∗1,2.

(M) means that each ek is a multiplier in (F ∗1,2, ‖ · ‖F ∗1,2,ν ) with norm independent of ν > 0.

Choose µk ∈ (0,∞) such that

∞∑
k=1

µ2
k(ξ

2
k + |ek|2∞) <∞, (6.1)

and define for x ∈ F ∗1,2, B(x) ∈ L2(L2(µ), F ∗1,2) by

B(x)h :=
∞∑
k=1

µk〈ek, h〉x · ek, h ∈ L2(µ). (6.2)

Indeed, (extending {ek|k ∈ N} to an orthonormal basis of L2(µ) by (M)) we have for
x ∈ F ∗1,2, ν ∈ (0,∞)

‖B(x)‖2
L2(L2(µ),F ∗1,2,ν) =

∞∑
k=1

‖B(x)ek‖2
F ∗1,2,ν

=
∞∑
k=1

µ2
k‖xek‖2

F ∗1,2,ν
≤

∞∑
k=1

µ2
kξ

2
k‖x‖2

F ∗1,2,ν
,

which implies (H2)(ii), and since x→ B(x) is linear, assumption (H2)(i) follows.
From (6.1) and (6.2), we see that for x ∈ L2(µ), B(x) ∈ L2(L2(µ), L2(µ)), since

‖B(x)‖2
L2(L2(µ),L2(µ)) =

∞∑
k=1

|B(x)ek|22 =
∞∑
k=1

µ2
k|xek|22 ≤

∞∑
k=1

µ2
k|ek|2∞|x|22,

which implies (H3)(i). Similarly, for x ∈ L2(µ) ∩ Lp(µ) ⊂ Lp(µ),(∫
E

( ∞∑
k=1

|B(x)ek|2
) p

2dµ
) 2
p ≤

∞∑
k=1

(∫
E

|B(x)ek|pdµ
) 2
p

=
∞∑
k=1

µ2
k|xek|2p ≤

∞∑
k=1

µ2
k|ek|2∞|x|2p,

which implies (H3)(ii).
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Example 6.2 (Example for local E)
Suppose (E , F1,2) is a local transient Dirichlet form with generator L such that it ad-

mits a carré du champ Γ ([12, Definition 4.1.2]), which is a unique positive symmetric and
continuous bilinear map from F1,2 × F1,2 into L1(µ) such that

E(uw, v) + E(vw, u)− E(w, uv) =

∫
wΓ(u, v)dµ, ∀u, v, w ∈ F1,2. (6.3)

From [12, Propostion 6.1.1], we know that then

E(u, v) =
1

2

∫
Γ(u, v)dµ, u, v ∈ F1,2,

which implies (H4)(i).
By [12, Corollary 7.1.2], we know that for every Lipschitz function ϕ : R → R which

satisfies ϕ(0) = 0,

Γ(ϕ(u), v) = ϕ′(u)Γ(u, v), ∀ u, v ∈ F1,2, (6.4)

where ϕ′ is any version of the derivatives (defined Lebesgue-a.e.) of ϕ. Furthermore, if ϕ is
nondecreasing, then

Γ(u, ϕ(u)) = ϕ′(u)Γ(u, u) ≥ 0, ∀ u ∈ F1,2,

and

Γ(ϕ(u), ϕ(u)) = ϕ′(u)Γ(u, ϕ(u)) ≤ ess supr∈R ϕ
′(r)Γ(u, ϕ(u)), ∀ u ∈ F1,2,

which implies (H4)(ii).

There is a abundance of examples of such Dirichlet forms on very general state spaces E, as
e.g. finite or infinite dimensional manifolds. We refer e.g. to [12, 18, 30] and also [20].

Example 6.3 (Example for nonlocal E)
As is well-known, under quite general assumptions according to the Beurling-Deny rep-

resentation formula a Dirichlet can be written as the sum of a local Dirichlet form E (1) (i.e.
if it has a square field operator, it satisfies (6.4)) and a non-local part E (2) (see [18, Section
3.2] or [21] for details). A typical form of E (2) is as follows

E (2)(u, v) =

∫
E

∫
E

(u(x)− u(y))(v(x)− v(y))J(x, dy)m(dx), u, v ∈ D(E (2)),

where J is a kernel from E to E and m is a σ-finite measure on (E,B). Therefore,

E (2)(u, v) =

∫
E

Γ(u, v)dm, u, v ∈ D(E (2)),

where for x ∈ E

Γ(u, v)(x) =

∫
(u(x)− u(y))(v(x)− v(y))J(x, dy).
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Clearly, Γ does not satisfy (6.4), but it satisfies our condition (H4)(ii). Indeed, for every
non-decreasing Lipschitz function ϕ : R→ R with ϕ(0) = 0 and u ∈ D(E (2)) we have

Γ(ϕ(u), ϕ(u)) =

∫
E

(
ϕ(u(x))− ϕ(u(y))

)2

J(x, dy)

≤ Lipϕ
(∫

E

1{u(x)≥u}(u(x)− u(y))
(
ϕ(u(x))− ϕ(u(y))

)
J(x, dy)

+

∫
E

1{u(x)<u}(u(y)− u(x))
(
ϕ(u(y))− ϕ(u(x))

)
J(x, dy)

)
= LipϕΓ(u, ϕ(u)).

A concrete example of this is the following very classical case.
Let E = Rd, µ = dx and let ”ˆ” resp. ”ˇ” denote Fourier transform, i.e.,

f̂(x) = (2π)−
d
2

∫
exp[i〈x, y〉Rd ]f(y)dy,

resp. its inverse. Define for α > 0

(−∆)αu :=
(
|x|2αû

)ˇ
(∈ L2(Rd; dx)), u ∈ C∞0 (Rd).

Then (−∆)α is a symmetric linear operator on L2(Rd; dx) with dense domain C∞0 (Rd). Hence
the form

D(α)(u, v) :=
1

2

∫
ûv̂|x|2αdx, u, v ∈ C∞0 (Rd),

is closable, where ”¯” means complex conjugation. Its closure (D(α), Hα,2(Rd)) is hence a
symmetric closed form on L2(Rd; dx). If α ∈ (0, d

2
) ∩ (0, 1], it is a transient Dirichlet form

and for some constant cα,d > 0

E(u, v) = cα,d

∫ ∫
(u(x)− u(y))(v(x)− v(y))

|x− y|2α+d
dxdy, u, v ∈ Hα,2(Rd).

For more details we refer to [30, page:43] and [35].

Remark 6.1 Theorem 3.1 also applies to transient Dirichlet forms, where the corresponding
state space E is a fractal, (see e.g. [28]).

7 Appendix

7.1 Auxiliary results

In this part we aim to prove (7.4), which has been used in the proof of Claim 4.3.

Lemma 7.1 For all x ∈ F ∗1,2 and all ε > 0, we have〈
(ν − L)((Ψλ + λI)(Jε(x))), x

〉
F ∗1,2,ν

=
〈
(Ψλ + λI)(Jε(x)), Jε(x)

〉
2

+ ε‖(ν − L)((Ψλ + λI)(Jε(x)))‖2
F ∗1,2,ν

. (7.1)

For all x ∈ L2(µ),〈
(ν − L)(Ψλ + λI)(Jε(x)), x

〉
2

=
〈
(ν − L)(Ψλ + λI)(Jε(x)), Jε(x)

〉
2

+ ε
∣∣(ν − L)(Ψλ + λI)(Jε(x))

∣∣2
2
. (7.2)
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Proof Recall that

Aν,ελ =
1

ε
(I − Jε) = (ν − L)(Ψλ + λI)(Jε),

For x ∈ F ∗1,2, to prove (7.1), we rewrite〈
(ν − L)((Ψλ + λI)(Jε(x))), x

〉
F ∗1,2,ν

=
〈
(ν − L)((Ψλ + λI)(Jε(x))), Jε(x)

〉
F ∗1,2,ν

+
〈
(ν − L)((Ψλ + λI)(Jε(x))), ε(ν − L)

(
(Ψλ + λI)(Jε(x))

)〉
F ∗1,2,ν

=
〈
(Ψλ + λI)(Jε(x)), Jε(x

〉
2

+ ε‖(ν − L)((Ψλ + λI)(Jε(x)))‖2
F ∗1,2,ν

.

The proof of (7.2) is analogous due to the fact that Jε is 1√
νελ

-Lipschitz in L2(µ), so Aν,ελ ∈
L2(µ) if x ∈ L2(µ). �

Lemma 7.2 For each x ∈ L2(µ), T > 0, and 0 < ε < 1, there exists C > 0 such that
∀ ν ∈ (0, 1), λ ∈ (0,+∞),

E|Xν,ε
λ (s)|22 +2E

∫ t

0

〈
(ν − L)(Ψλ + λI)(Jε(X

ν,ε
λ (s))), Jε(X

ν,ε
λ (s))

〉
2
ds≤eC3T |x|22, ∀t∈[0, T ].(7.3)

Proof Applying Itô formula to |Xν,ε
λ |22, we obtain

d|Xν,ε
λ (t)|22 + 2

〈
(ν − L)((Ψλ + λI)(Jε(X

ν,ε
λ (t)))), (Xν,ε

λ (t)
〉

2
dt

= ‖B(t,Xν,ε
λ (t))‖2

L2(L2(µ),L2(µ))dt+ 2
〈
Xν,ε
λ , B(t,Xν,ε

λ (t))dW (t)
〉

2

which by (7.2) yields,

d|Xν,ε
λ (t)|22 + 2

〈
(ν − L)((Ψλ + λI)(Jε(X

ν,ε
λ (t)))), Jε(X

ν,ε
λ (t))

〉
2
dt

+2ε
∣∣(ν − L)((Ψλ + λI)(Jε(X

ν,ε
λ (t))))

∣∣2
2
dt

= ‖B(t,Xν,ε
λ (t))‖2

L2(L2(µ),L2(µ))dt+ 2
〈
Xν,ε
λ , B(t,Xν,ε

λ (t))dW (t)
〉

2
.

Taking expectation of both sides, by (H3)(i) we get

E|Xν,ε
λ (t)|22 + 2E

∫ t

0

〈
(ν − L)((Ψλ + λI)(Jε(X

ν,ε
λ (s)))), Jε(X

ν,ε
λ (s))

〉
2
ds

+2εE
∫ t

0

∣∣(ν − L)((Ψλ + λI)(Jε(X
ν,ε
λ (s))))

∣∣2
2
ds

≤ |x|22 + C3E
∫ t

0

|Xν,ε
λ (s)|22ds.

Then by (4.17) and Gronwall’s lemma we get (7.3) as claimed. �

Proposition 7.1 For x ∈ L2(µ), t ∈ [0, T ] and 0 < ε < 1, ν ∈ (0, 1), we have

E
∫ t

0

∥∥(ν − L)
(
(Ψλ + λI)(Jε(X

ν,ε
λ (s)))

)∥∥2

F ∗1,2,ν
ds ≤ 1

2
(
2

λ
+ λ+ C5)eC3T |x|22. (7.4)
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Proof Let x ∈ L2(µ). Then∥∥(ν − L)
(
(Ψλ + λI)(Jε(x))

)∥∥2

F ∗1,2,ν

= ‖(Ψλ + λI)(Jε(x))‖2
F1,2,ν

=

∫
1

2
Γ
(
(Ψλ + λI)(Jε(x)), (Ψλ + λI)(Jε(x))

)
dµ

+ν
〈
(Ψλ + λI)(Jε(x)), (Ψλ + λI)(Jε(x))

〉
2

≤ C5

∫
1

2
Γ
(
Jε(x), (Ψλ + λI)(Jε(x))

)
dµ+ ν(

2

λ
+ λ)〈(Ψλ + λI)(Jε(x)), Jε(x)〉2

≤ (
2

λ
+ λ+ C5)〈Jε(x), (Ψλ + λI)(Jε(x))〉F1,2,ν

= (
2

λ
+ λ+ C5)〈(ν − L)(Ψλ + λI)(Jε(x)), Jε(x)〉2,

where in the first inequality we used (H4) and the fact that r(Ψλ(r) + λr) ≥ 0 for all r ∈ R,
and the last equality comes from the fact that (Ψλ + λI)(Jε(x)) ∈ D(L). Now from (7.3),
we get the assertion. �

7.2 The Lp-Itô formula in expectation

The purpose in this section is to prove Theorem 7.1 below, which has been used in Lemmas
4.2 and 4.3.

Let `2 be the space of all square-summable sequences in R and p ∈ [1,∞). In addition, to
the real-valued Lp-space, Lp(µ) := Lp(E, µ) we consider the `2-valued Lp-space Lp(µ; `2) :=
Lp(E, µ; `2). We set

|g|pp := |g|pLp(µ;`2) =

∫
E

‖g(x)‖p`2µ(dx) =

∫
E

( ∞∑
k=1

|gk(x)|2
) p

2
µ(dx).

Let P denote the predictable σ-algebra on [0, T ] × Ω corresponding to (Ω,F , (Ft)t≥0).
For p ∈ [1,∞) we set

Lp(T ) := Lp([0, T ]× Ω,P;Lp(µ))

and

Lp(T ; `2) := Lp([0, T ]× Ω,P;Lp(µ; `2)),

equipped with its standard Lp-norms. Since (E,B) is a standard measurable space, by
definition there exists a complete metric d on E, such that (E, d) is separable, i.e., a Polish
space, whose Borel σ-algebra coincides with B. Below we fix this metric d and denote the
corresponding set of all bounded continuous functions by Cb(E).

Let E be all g = (gk)k∈N ∈ L∞([0, T ] × Ω;L∞(µ; `2) ∩ L1(µ; `2)) such that there exists
j ∈ N and bounded stopping times τ0 ≤ τ1 ≤ · · · ≤ τj ≤ T such that

gk =

{ ∑j
i=1 g

i
k1(τi−1,τi], if k ≤ j;

0, if k > j,
(7.5)

where gik ∈ Cb(E) ∩ L1(µ), 1 ≤ i ≤ j.

31



Claim 7.1 E is dense in Lp(T ; `2) for all p ∈ [1,∞).

Proof Let f = (fk)k∈N ∈ Lq(T ; `2), with q := p
p−1

, be such that

Lq(T ;`2)〈f, g〉Lp(T ;`2) = E
∫ T

0

∫
E

∞∑
k=1

fkgkdµds = 0 ∀g ∈ E .

Now let σ ≤ τ be two stopping times and k ∈ N. Define g ∈ Lp(T ; `2) by g = (gkδik)i∈N,
where

gk := gkkI(σ,τ ]

and gkk ∈ Cb(E) ∩ L1(µ). Then g ∈ E , hence

0 = Lq(T ;`2)〈f, g〉Lp(T ;`2)

= E
∫ T

0

∫
E

fkg
k
kdµ I(σ,τ ](t)dt,

which implies that ∫
E

fkg
k
kdµ = 0 dt⊗ P− a.s.,

since all sets of the type (σ, τ ] generate the σ-algebra P and since fk is P-measurable.
Therefore, since Cb(E) ∩ L1(µ) is dense in Lp(µ),

fk = 0 in Lq(µ) dt⊗ P− a.s., for all k ∈ N.

Now the assertion follows by the Hahn-Banach theorem. �

Remark 7.1 Let S be the set of all functions f ∈ L∞([0, T ] ⊗ Ω;L∞(µ) ∩ L1(µ)) such
that there exist l ∈ N and bounded stopping times τ ′0 ≤ τ ′1 ≤ · · · ≤ τ ′l ≤ T such that

f =
∑l

i=1 f
i1(τ ′i−1,τ

′
i ]
, where f i ∈ Cb(E) ∩ L1(µ), 1 ≤ i ≤ l. Similarly to Claim 7.1, one can

prove that S is dense in Lp(T ) for all p ∈ [1,∞).

Define M : E 7−→
⋂
p≥1 L

p(Ω;C([0, T ];Lp(µ))) as follows:

M(g)(t) =

∫ t

0

gdW (s) :=
∞∑
k=1

∫ t

0

gkdWk(s)

=

j∑
i,k=1

gik
(
Wk(t ∧ τi)−Wk(t ∧ τi−1)

)
, t ∈ [0, T ], g ∈ E . (7.6)

Let us note that the right hand-side of (7.6) is P-a.s. for every t ∈ [0, T ] a continuous µ-
version of M(g)(t) ∈ Lp(E, µ), which for every x ∈ E is a continuous real-valued martingale
and is equal to

∞∑
k=1

∫ t

0

gk(s, x)dWk(s), x ∈ E, t ∈ [0, T ]. (7.7)

Claim 7.2 Let p ∈ [2,∞). Then M extends to a linear continuous map M from Lp(T ; `2)
to Lp(Ω;C([0, T ];Lp(µ))), such that M(g) is a continuous martingale in Lp(µ) for all g ∈
Lp(T ; `2).

32



Proof We have

E
[

sup
t∈[0,T ]

∫
E

∣∣ ∫ t

0

gdW (s)
∣∣pdµ]

= E
[

sup
t∈[0,T ]

∫
E

∣∣∣ ∞∑
k=1

∫ t

0

gk(s, x)dWk(s)
∣∣∣pdµ]

≤
∫
E

[
E sup
t∈[0,T ]

∣∣∣ ∞∑
k=1

∫ t

0

gk(s, x)dWk(s)
∣∣∣p]dµ

≤ cp

∫
E

[
E
〈 ∞∑
k=1

∫ ·
0

gk(s, x)dWk(s)
〉 p

2

T

]
dµ

= cp

∫
E

E
( ∞∑
k=1

∫ T

0

g2
k(s, x)ds

) p
2
dµ

= cpE

[∫
E

(∫ T

0

|g(s, x)|2`2ds
) p

2
dµ

] 2
p
· p
2

≤ cpE

[∫ T

0

(∫
E

|g(s, x)|p`2dµ
) 2
p
ds

] p
2

≤ cpT
p
2
−1E

∫ T

0

∣∣g(s, ·)
∣∣p
Lp(µ;`2)

ds, (7.8)

where we have used the BDG inequality applied to the real-valued martingale in (7.7) in
the third step, the assumption that p ≥ 2 and Minkowski’s inequality in the sixth step and
Hölder’s inequality in the last step. Hence the first part of the assertion follows.

To prove the second let g ∈ Lp(T ; `2). It suffices to prove that for all f ∈ Lq(µ) with
q := p

p−1
, ∫

E

f M(g)(t)dµ, t ∈ [0, T ],

is a real-valued martingale (see e.g. [29, Remark 2.2.5]). But since for some gn ∈ E , n ∈ N,
we have ∀ t ∈ [0, T ] that

M(gn)(t) −−−−→n→∞ M(g)(t) in Lp(Ω;Lp(µ)),

it follows that ∫
E

f M(gn)(t)dµ −−−−→n→∞
∫
E

f M(g)(t)dµ in L1(Ω).

So, we may assume that g ∈ E . But in this case by (7.6) it follows immediately that∫
E
f M(g)(t)dµ, t ∈ [0, T ], is a real-valued martingale. �

Below we define for g ∈ Lp(T ; `2), p ∈ [2,∞),∫ t

0

g(s)dW (s) := M(g)(t), t ∈ [0, T ],

where M is as in Claim 7.2.
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Now we fix p ∈ [2,∞) and consider the following process

u : Ω× [0, T ]→ Lp(µ),

defined by

u(t) := u(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dW (s), (7.9)

where u(0) ∈ Lp(Ω,F0;Lp(µ)), f ∈ Lp(T ) and g ∈ Lp(T ; `2).

Theorem 7.1 ”Itô-formula in expectation” Let p ∈ (2,∞), f ∈ Lp(T ), g ∈ Lp(T ; `2).
Let u be as in (7.9). Then for all t ∈ [0, T ],

E|u(t, x)|pp = E|u(0)|p + E
∫ t

0

∫
E

p|u(s, x)|p−2u(s, x)f(s, x)µ(dx)ds

+
1

2
p(p− 1)E

∫ t

0

∫
E

|u(s, x)|p−2|g(s, x)|2`2µ(dx)ds. (7.10)

Remark 7.2 In the case E = Rd, µ =Lebesgue measure, N. Krylov proved Itô’s formula
for the Lp-norm of a large class of W 1,p-valued stochastic processes in his fundamental paper
[26]. In particular, Lemma 5.1 in that paper gives a pathwise Itô formula for processes u as
in (7.9), which immediately implies (7.10). The proof, however, uses a smoothing technique
by convoluting the process u in x with Dirac-sequence of smooth functions, which is not
available in our more general case, where (E,B) is just a standard measurable space with
a σ-finite measure µ, without further structural assumptions that we wanted to avoid to
cover applications e.g. to underlying spaces E which are fractals. Fortunately, the above Itô
formula in expectation is enough to prove all main results in this paper without any further
assumptions. After the preparations above, its proof is quite simple.

We recall the following well-known result (see e.g. Theorem 21.7 in [11]):

Lemma 7.3 Let p ∈ [1,∞), vn, v ∈ Lp(µ) such that vn → v in µ-measure as n→∞ and

lim
n→∞

|vn|p = |v|p.

Then
lim
n→∞

vn = v in Lp(µ).

Proof of Theorem 7.1 By Claim 7.1 and Remark 7.1, we can find fn ∈ S, n ∈ N, and
gn ∈ Lp(T ; `2), n ∈ N, such that as n→∞

fn → f in Lp(T ), (7.11)

and

gn → g in Lp(T ; `2). (7.12)

For n ∈ N, define

un(t) := u(0) +

∫ t

0

fn(s)ds+

∫ t

0

gn(s)dW (s). (7.13)
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By (7.9), (7.11), (7.12) and Claim 7.2, it follows that as n→∞,∫ ·
0

fn(s)ds →
∫ ·

0

f(s)ds,∫ ·
0

gn(s)dW (s) →
∫ ·

0

g(s)dW (s), (7.14)

un → u,

in Lp(Ω;C([0, T ];Lp(µ))).
Applying the Itô formula to the real-valued semi-martingale |un(t, x)|pp for each x ∈ E,

and integrating w.r.t. x ∈ E and ω ∈ Ω, we obtain

E
∫
E

|un(t, x)|pµ(dx) = E|u(0)|p + E
∫
E

∫ t

0

p|un(s, x)|p−2un(s, x) · fn(s, x)dsµ(dx)

+
1

2
p(p− 1)E

∫
E

∫ t

0

|un(s, x)|p−2 · |gn(s, x)|2`2dsµ(dx). (7.15)

Note that by Lemma 7.3 and (7.14)

|un(s)|p−2un(s) → |u(s)|p−2u(s) in L
p
p−1 (µ),

|un(s)|p−2 → |u(s)|p−2 in L
p
p−2 (µ),

as n → ∞. Hence by (7.11) and (7.12) we may pass to the limit n → ∞ in (7.15) to get
(7.10). �

7.3 Justification for applying Itô’s formula to the processes in
(3.5) and (5.4)

To apply the Itô formula from [29, Theorem 4.2.5] we have to consider the equations (3.5) and
(5.4) in an appropriate Gelfand triple. We need the following two lemmas whose assertions
are special cases of [35, Proposition 3.1].

Lemma 7.4 Fe ∩ L
m+1
m (µ) is dense both in Fe and L

m+1
m (µ).

Define

V := {u ∈ Lm+1(µ)|∃ C ∈ (0,∞) such that |µ(uv)| ≤ C‖v‖Fe , ∀ v ∈ Fe ∩ L
m+1
m (µ)}.

By Lemma 7.4, V is a subspace of F ∗
e and can be symbolically written as V = Lm+1(µ)∩F ∗

e .
We note that V is reflexive, since Lm+1(µ) and F ∗

e is reflexive, hence so is Lm+1(µ) ×F ∗
e .

But

V 3 u 7→ (u, µ(u ·)) ∈ Lm+1 ×F ∗
e

is a homeomorphic isomorphism, mapping V onto a closed subspace of Lm+1 ×F ∗
e , which

is reflexive.

Lemma 7.5 (i) V is dense both in F ∗
e and Lm+1(µ).

(ii) For the map L := L : Fe → F ∗
e defined in Lemma 2.3 we have for all v ∈ Fe∩L

m+1
m (µ),

u ∈ V ,

〈Lv, u〉F∗e = −µ(vu). (7.16)
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Now we set H := F ∗
e and consider the Gelfand triple

V ⊂ H ⊂ V ∗.

Consider the operator

L : Fe ∩ L
m+1
m (µ)→ F ∗

e ⊂ V ∗,

as V ∗-valued, i.e., Lv = −µ(v ·) ∈ V ∗. Then by Lemma 7.5, L is continuous w.r..t the norm

| · |m+1
m

on Fe ∩ L
m+1
m (µ), hence by Lemma 7.4 has a unique continuous linear extension

L̃ : L
m+1
m (µ)→ V ∗,

such that

V ∗〈L̃v, u〉V = µ(vu), ∀v ∈ L
m+1
m (µ), u ∈ V. (7.17)

Now we consider equation (5.4) in the large space V ∗. Then, since η ∈ Lm+1
m ([0, T ]×Ω×

E),

L

∫ t

0

η(s)ds = L̃

∫ t

0

η(s)ds =

∫ t

0

L̃η(s)ds ∈ V ∗,

so

X(t) = x+

∫ t

0

L̃η(s)ds+

∫ t

0

B(s,X(s))dW (s), t ∈ [0, T ],

and the Itô formula from [29, Theorem 4.2.5] applies. Likewise, it applies to the process in
(3.5), since by the same argument we get for (3.5)

X(t) = x+

∫ t

0

L̃(Ψλ(Xλ(s)) + λXλ(s))ds+

∫ t

0

B(s,Xλ(s))dW (s), t ∈ [0, T ].
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[3] P. Bántay, I.M. Iánosi, Self-organization and anomalous diffusion, Phys. Rev. A,
185(1992), 11-14.

36



[4] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
Springer Monographs in Mathematics, Springer, New York, 2010.
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[9] V. Barbu, G. Da Prato, M. Röckner, Stochastic porous media equations and self-organized
criticality, Commun. Math. Phys. 285, (2009)901-923.
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[29] W. Liu, M. Röckner, Stochastic Partial Differential Equations: an Introduction.
Springer International Publishing Switzerland, 2015.
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