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Abstract

To characterize the Neumann problem for nonlinear Fokker-Planck equations, we
investigate distribution dependent reflecting SDEs (DDRSDEs) in a domain. We first
prove the well-posedness and establish functional inequalities for reflecting SDEs with
singular drifts, then extend these results to DDRSDEs with singular or monotone co-
efficients, for which a general criterion deducing the well-posedness of DDRSDEs from
that of reflecting SDEs is established. Moreover, three different types of exponential
ergodicity are derived for DDRSDEs under dissipative, partially dissipative, and fully
non-dissipative conditions respectively.
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1 Introduction

Because of intrinsic links to nonlinear Fokker-Planck equations/mean-field particle systems
and many other applications, distribution dependent (McKean-Vlasov) SDEs have been in-
tensively investigated, see for instances the monograph/surveys [10, 18, 39] among many
other references. To characterize the Neumann problem for nonlinear Fokker-Planck equa-
tions in a domain, we aim to develop a counterpart theory for distribution dependent re-
flecting SDEs (DDRSDES for short).

The only reference we know on this topic is [1], where DDRSDEs are studied in a con-
vex domain for coefficients satisfying the Wo-Lipschitz condition in the distribution variable
and the semi-Lipschitz condition in the space variable. We will work on a general frame-
work where D may be non-convex and the coefficients could be singular in both space and
distribution variables.

We first state the fundamental assumption on the domain in the study of reflecting
SDEs, then introduce the link of DDRSDEs and nonlinear Neumann problems, and finally
summarize the main results derived in the paper with an example of (singular) granular
media equation with Neumann boundary.

1.1 Assumption on the domain

Let D C R be a connected open domain with boundary D. For any z € 0D and r > 0,
let
Npr={n€R*: |n|=1,B(x—rn,r)ND =0},

where B(xz,r) = {y € R?: |z — y| < r}. Since .4, is decreasing in 7 > 0, we have

Ny = Upso My = hf([)l Ny, € 0D.
T

We call 4, the set of inward unit normal vectors of D at point x. When 0D is differentiable
at x, 4, is a singleton set. Otherwise .4, may be empty or contain more than one vectors.



For instance, letting D be the interior of a triangle in R?, at each vertex z the set .4} contains
infinite many vectors, whereas for D being the exterior of the triangle .4 is empty at each
vertex point .

Following [27, 35], throughout the paper we make the following assumption on D, which
automatically holds for D = R¢ where 0D = 0.

(D) Either D is convex, or there exists a constant 79 > 0 such that A; = A, ,, # 0 and
(1.1) sup inf {{v,n(y)) : y € B(z,r0) NOD,n(y) € A} >ro, x€ID.

veER? |v|=1
Remark 2.1. We present below some facts on assumption (D).
(1) According to [35, Remark 1.1], for any z € 0D and r > 0, n € .4, if and only if

_ 7|2 _
_|y2x|’ e D.
T

so that the condition A4, = A ,, in (D) implies

| 2

(y —x,n) >

Jy-=

, y€ D,r € 9D,n(z) € A,.
27"0

(1.2) (y —z,n(r)) >
When D is convex, (D) holds for any 9 > 0 so that

(1.3) (y —x,n(x)) >0, ye D,r € dD,n(x) € N,
and (1.1) holds if d = 2 or D is bounded, see [40].

(2) When 9D is C'-smooth, for each x € 9D the set .4, is singleton. If n(z) € .4} is
uniformly continuous in z € D, then (1.1) holds for small ry > 0. In particular, (D)
holds when 0D € C? in the following sense.

Definition 1.1. For any r > 0, let
0D = {x € D : dist(z,0D) < 7“}, 0_,.D = {x € D¢ : dist(x,0D) < r},
01D := (0, D)UJ_.D, D,:=DU(J_.D).

For any k € N, we write 9D € CF if there exists a constant ry > 0 such that the polar

coordinate map
I:0D x [—ro,r0] 2 (0,p) = 0+ pn(0) € Oypy D

is a Ck-diffeomorphism, such that (6(x), p(x)) := I~'(x) having bounded and continuous
derivatives in x € 0i,,D up to the k-th order, where 6(x) is the projection of x to D and

(1.4) p(r) = dist(z, D)1, py(z) — dist(z,0D)1s_, py(z), * € Ispy D.

Moreover, for € € (0,1), we denote 9D € CF™ if it is in CF with V¥p and V*6 being e-
Holder continuous on 9,,D. Finally, we write 0D € C’f Lt it is CF with V*p being Lipschitiz
continuous on 0, D.

Note that 9D € CF does not imply the boundedness of D or D, but any bounded C*
domain satisfies 9D € CF.



1.2 DDRSDE and nonlinear Neumann problem

Let Z(D) be the space of all probability measures on the closure D of D, equipped with
the weak topology. Consider the following DDRSDE on D C R

(1.5) dX; = by( Xy, Lx,)dt + 04( Xy, Lx, ) AW, + n(X;)dl, t >0,

where (W})i>0 is an m-dimensional Brownian motion on a complete filtration probability
space (2, {%}i>0,P), Ly, is the distribution of Xy, n(x) € A for x € D, I; is an adapted
continuous increasing process which increases only when X; € 9D, and

b:[0,00) x Dx Z(D) = R% 0:]0,00) x Dx Z(D)—R'@R™

are measurable. When different probability measures are considered, we denote by Zxp the
distribution of a random variable X under the probability P.

Definition 1.2. (1) A pair (Xi,;)i>0 is called a solution of (1.5), if X; is an adapted
continuous process on D, [; is an adapted continuous increasing process with dl; supported
on {t >0: X; € 0D}, such that P-a.s.

t
|6 2]+ o (6, 2P < 0, 22 0,
0
and for some measurable map 0D > z — n(z) € A;, P-a.s.

t t t
Xt:X0+/ br(Xr,ng)dr+/ ar(Xr,fxr)dWTjL/ n(X,)dl,, t=>0.
0 0 0

In this case, [; is called the local time of X; on 9D. We call (1.5) strongly well-posed for
distributions in a subspace P C P (D), if for any .Z;-measurable variable X, with Zx, € P ,
the equation has a unique solution with .y, € P for t > 0; if this is true for P = P (D),
we called it strongly well-posed.

(2) A triple (X, 1, W) is called a weak solution of (1.5), if W; is an m-dimensional
Brownian motion under a probability space and (X4, [;);>0 solves (1.5). (1.5) is called weakly
unique (resp. jointly weakly unique), if for any two weak solutions (Xj,!l;, W;);>0 under
probability P and (X’t, th, Wt)tzo under probability IED, Lxop = "%Xo@ implies Z(x, 1,),50/P =
L% iolB (resp. Lxu 1 Wi)isolP = "ZXhtht)tzO'HS)' We call (1.5) weakly well-posed for dis-
tributions in & C P (D), if it has a unique weak solution for initial distributions in 2 and
the distribution of the solution at any time is in 32; it is called weakly well-posed if moreover
P = 2(D).

(3) We call (1.5) well-posed (for distributions in ), if it is both strongly and weakly

by

well-posed (for distributions in &?).

To characterize the nonlinear Fokker-Planck equation associated with (1.5), consider the
following time-distribution dependent second order differential operator:

1 _
(1.6) Ly, = Etr{(ataf)(-,u)VQ} + Vi, t>0,p€ P(D),
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where V and V? are the gradient and Hessian operators in R? respectively, and V, is the
directional derivative along v € RY. Assume that for any p € C([0, 00); (D)),

(1.7) oi () = ou(w, ), b () == bi(x, )

satisfy ||o#[|? + [b*] € L} ([0, 00) x D;dt pus(dz)).

Let C%(D) be the class of C2-functions on D with compact support satisfying the Neu-
mann boundary condition V,f|sp = 0. By Itd’s formula, for any (weak) solution X; to
(1.5), py := Zx, solves the nonlinear Fokker-Planck equation

(1.8) Oypue = Lj e with respect to C3(D), ¢ >0

for probability measures on D, in the sense that u. € C([0,00); (D)) and

(1.9) /fdut ol f /us(Lsuf) s, 120, f e C3(D).

On the other hand, by establishing the “superposition principle” as in [3, 4] based on [43],
under reasonable conditions we may prove that a solution to (1.8) also provides a weak
solution to (1.5). We leave this to a future study.

To understand (1.8) as a nonlinear Neumann problem on D, let L; ,, be the adjoint oper-
ator of Ly ,: for any g € Lj,.(D, (lo¢(z, ) |1* + |be(, pe)])d), Lf g is the linear functional
on C2(D) (the class of C*-functions on D with compact support) given by

(1.10) C2(D) BfH/{thutg}(x)dx = /D{thyutf}(a:)dx

Assume that Zy, has a density function py, i.e. p; == ZLx, = pi(x)dz. It is the case under
a general non-degenerate or Hérmander condition (see for instance [7]), and it follows from
Krylov’s estimates (2.20) or (2.56) below. When 0D € C?, (1.8) implies that p; solves the

following nonlinear Neumann problem on D:
(1.11) Oipr = Ly ,,pt, Vinptlop =0, t >0
in the weak sense, where L ,, := Ly ,,(z)ds, and for a function g on 9D
Ving = Vo,orng + divap(groo/n)
for the divergence divgp on 0D and the projection 7 to the tangent space of dD:
v = v — (v,n(z))n(x), ve R xecaD.

If in particular co*n = An holds on [0,00) x 0D for a function A # 0 a.e., Vinptlop = 0 is
equivalent to the standard Neumann boundary condition Vyp;|ap = 0.
We now deduce (1.11) from (1.9). Firstly, by (1.10), (1.9) implies

[ toteria = [ (rona)as + / ds [ (L2, p)@)s, J € CGRD)EZ 0
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so that O0yp; = Ly, pi- Next, by the integration by parts formula, (1.9) implies

[umwis= [ G+ [ ds [ outo s
= [ o+ [ [0+ [ (Vi = po e} a)ir )
- [ U@+ [ t ( [ o0)@dr+ [ {1 Vesrinp + fdwaD(psmsa:n)}(x)dx) ds

= /D (fpe)(z)dz + /0 ds 8D{f(vt,npt)}<x>da:, feCk(D),t>0.

Thus, vt,npt|8D = 0.

1.3 Summary of main results

Theorems 2.1-2.3 provide sufficient conditions for the well-posedness and functional inequal-
ities of reflecting SDEs with singular drifts. These results generalize the corresponding ones
derived in recent years for singular SDEs without reflection, and improve some existing re-
sults for reflecting SDEs. The essential difficulty in the study of singular reflecting SDEs is
explained in the beginning of Section 2.

Theorems 3.1-3.4 present the weak and strong well-posedness of the DDRSDE (1.5)
under different conditions, where the first result applies to locally integrable drifts with the
distribution dependence bounded by ||-||,var + W} (see Section 2 for definitions of probability
distances), the second result includes a general criterion deducing the well-posedness of (1.5)
from that of reflecting SDEs, and the last two results work for the monotone case with the
dependence on distribution given by Wy(k > 1) or more general Wy, induced by a cost
function .

Theorems 4.1 and 4.2 establish the log-Harnack inequality for solutions to (1.5) with
respect to the initial distributions, which in particular implies the gradient estimate and
entropy-cost inequality for the distributions of the solutions. The first result applies to the
singular case and the other works for the monotone case.

Theorems 5.1, 5.3 and 5.5 include different types of exponential ergodicity for (1.5)
with time-homogenous coefficients, under dissipative, partially dissipative, and fully non-
dissipative conditions respectively.

To conclude this section, we consider an example of (1.11) arising from kenetic mechanics, see
[9, 11, 15] and references within for the study without reflection when D = R?. For simplicity,
we only consider bounded domain, but our general results also work for unbounded domains.

Example 1.1 (Granular media equation with Neumann boundary). Let D be a
bounded domain with 9D € C’,? L For a potential V : D — R and an interaction functional
W : RY — R, consider the following nonlinear PDE for probability density functions on D:

Oror = Aot + diV{QtVV + 0t V(W * Qt)}7 Vnoiop =0,
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where (W 9;)(x) := [pa W(z — 2)0,(2)dz. It is easy to see that this equation is covered by
(1.11) with
b(z,u) = —=VV(x) — V(W % M)(x) o(z, pu) = V21,

where I, is the d % d identity matrix, and (W * p)(z) == [pa W(x — 2)u(dz).

(1) If V and W are weakly differentiable with ||VVVHC>O < oo and |[VV| € LP(D) for some
p > dV 2, then Theorem 3.1 with £ = 0 implies that the associated SDE (1.5) is well-
posed, and Theorem 4.2 provides some functional inequalities for the solution. These
results apply to W (z) := |x|*> which is of special interest from physics [5].

(2) If D is convex, V and W are second-order differentiable with V2V > A, for some A > 0
and ||[V2W || is small enough, then Theorem 5.1 implies the exponential ergodicity of
the solution in both the relative entropy and the L2-Wasserstein distance.

(3) If D is convex, there exists a constant K > 0 such that
(VV(2) = VV(y).z —y) < Ko —y*, z,y€eD,

and ||V2W || is small enough, then Theorem 5.3 or Theorem 5.5 implies the exponen-
tial ergodicity of the solution in W;.

Note that when D is non-convex, we may make a transform to make it convex so that
Theorems 5.1, 5.3 and 5.5 apply, see [46, 49] for the conformal change of metric making a
non-convex domain convex.

2 Reflecting SDE with singular drift

Let o(x, ) = o¢(z) and by(z, ) = by(x) do not depend on p, so that (1.5) reduces to the
following reflecting SDE on D:

(2.1) dX, = by(X,)dt + 0, (X)W, + n(X,)dl, t € [0,T],

where T' > 0 is a fixed time. The associated time dependent generator reads
1
(2.2) L;:= §tr{atafv2} + V,, t€][0,T].

The problem of confining a stochastic process to a domain goes back to Skorokhod [37, 38],
and has been well developed under monotone (or locally semi-Lipschitz) conditions, see
the recent work [17] and references within. In this section, we solve (2.1) with a singular
(unbounded on bounded sets) drift.

SDEs with singular coefficients have already been well investigated by using Zvokin’s
transform [59] and Krylov’s estimate [23], see for instances [24, 53, 54, 57| and references
within. However, the corresponding study for singular reflecting SDEs is very limited. With
great effort overcoming difficulty induced by the local time, in the recent work [55] Yang
and Zhang were able to prove the well-posedness of (2.1) for bounded C? domain, bounded
b and o = I;. So, the general setup we discussed here is new in the literature.

7



Before moving on, let us explain the main difficulty of the study by considering the
following simple reflecting SDE on D:

(2.3) dX; = by(X,)dt + V2dW, + n(X;)dl,, t e [0,T],

where Wt is the d-dimensional Brownian motion and fo || b dt < oo for some p,q > 2

HLP Rd
with ¢ » +2 . < 1. When A > 0 is large enough, the unique solution of the PDE

((9t -+ A —+ Vbt)ut = )\Ut — bt, te [O,T],U/T =0
satisfies
-2’

see 24, 57]. Thus, for any ¢t € [0, T, ©; := id+u; (id is the identity map) is a homeomorphism
on R? and by It6’s formula, Y; := ©,(X;) solves

1
1 q
foll + 190l < 5. Nl = ( [ 190l 1) <

dY; = Mug 0 O, HY)dt + AW, + {(Vue) 0 O, H(Y;)dW, + {n(X,) + Vau (X,) iy

When D = R? we have [, = 0 so that this SDE is regular enough to have well-posedness,
which implies the same property of (2.3) since ©; is a homeomorphism, see [24]. When
D # R?, to prove the pathwise uniqueness of Y; by applying It0’s formula to [Y; — Y;|?, where
Yt @t(Xt) for another solution Xt of (5.39) with local time lt, one needs to find a constant
¢ > 0 such that

(0:(Xy) — O4(Xy), (0 4 Viue) (X)) dly + (04(Xy) — ©4(Xy), (n+ Viauy) (X,)))dly

(2.4) i i
S C|Xt — Xt| (dlt + dlt)

This is not implied by (1.2) except for d = 1, since only in this case the vectors O;(x) — O, (y)
and (n + Vyue)(z) are in the same directions of # — y and n(z) respectively for large A > 0.

To overcome this difficulty, we will construct a Zvokin’s transform by solving the associ-
ated Neumann problem on D, for which Vatilop = 0. Even in this case, ©; may also map a
point from D to D¢ such that (1.2) does not apply. To this end, we will construct a modified
process of | X; — X;|? by using a function from [13]. Our construction simplifies that in [55]
and enables us to work in a more general framework.

2.1 Conditions and main results

We first recall some functional spaces used in the study of singular SDEs, see for instance
[53]. For any p > 1, LP(R?) is the class of measurable functions f on R? such that

1f Nl Lo ey := (/Rd \f(a:)\pd:c>p < 0.

For any € > 0 and p > 1, let H*?(R?) := (1 — A)~2 LP(R?) with

/]

ew@a) = |[(1— A)2 fl|pomay < 00, f € HPRY.

8



For any z € R? and r > 0, let B(z,7) := {x € R? : |# — z| < r} be the open ball centered
at z with radius r. For any p,q > 1 and ¢, < t;, let LE(to, 1) denote the class of measurable
functions f on [tg, 1] x R? such that

t1 %
i = 50 ([ Mo filleodt) < o0
z€R4 to

For any € > 0, let ﬁ;’p(tg,tl) be the space of f € f){l’(to,tl) with

1
q
gﬂeﬁp(Rd)dt> < 00

for some g € C5°(R?) satisfying g|p(,1) = 1, where C5°(R?) is the class of C™ functions on
R? with compact support. We remark that the space HP(to,t1) does not depend on the
choice of g. When tq = 0, we simply denote

Eg(tl) = EZ(O,tl), ﬁ;’p(tl) = ﬁ;’p(O,tl), t1 > 0.

t1
TPr—— ( [ s+
z€R4

to

For a domain D C RY we denote f € i{;(to,tl,D)(:: Eg’(tl,D) for to = 0), if f is a
measurable function on [tg, ;] x D such that
||f||[~/g(to,t1,D) = ||1Df||£g(to,t1) < 0.

A vector or matrix valued function is said in one of the above introduced spaces, if so are
its components.
We will take (p, q) from the class

d 2
A = {(p,q)-p,qe(l,oo), z_9+5<1}’

and use the following assumptions on the coefficients b and o. Let || - || denote the uniform
norm for real (or vector/matrix) valued functions.

(AJ") (D) holds, a := oo* and b are extended to measurable functions on [0,T] x R, b has
decomposition b = b + b with b§0)|Dc = 0, such that the following conditions hold:

(1) a; is invertible with ||a]|o + ||a oo < 00, and

(2.5) lim  sup  [lay(x) — ai(y)]| = 0.
e—=0 |lz—y|<e,te[0,T]

(2) There ezists (pa, q2) € S such that |V € Eg; (T). Moreover, b is locally bounded
on [0,T] x R, and there exist a constant L > 1 and a function p € CZ(D) such that

b () — b7 ()]

(2.6) VO || :=  sup <L,
te[0,T),xy |=T - y|
(2.7) 0", Vi)lp = =L, (Vpm)ap =1, te[0,T].

(A7%) (ASP) holds with | Vol|? € Zgi(T) and |b©|? € ig; (T) for some (p1,q1), (P2, q2) € H .

9



Remark 2.1. Each of the following two conditions implies the existence of p in (2.7):

a) 0D € C? and there exists a constant K > 0 such that b(l), n)lpp > —K fort € [0,T];
b t

(b) D is bounded and there exist € € (0,1) and 2y € D such that
(2.8) (g —x,n(x)) > ¢elr — x|, =€ ID.

Indeed, if (a) holds then there exists ro > 0 such that p € C%(9,,D). Let h € C*([0,00))
with h(r) = r for r € [0,70/4] and h(r) = ro/2 for r > ry/2. By taking p = h o p we have
p € CYD), (Vp,n)|sp = 1, and for any x € D letting Z € 9D such that |z — z| = p(x), we
deduce from (2.6) that

B (@), Vi) = K (p() {0 (), (@) + B (@) = 07 (@), n(@) } > =1+ r0) LW
Therefore, (2.7) holds for some (different) constant L. Next, if (b) holds, by (2.8) we may

take p(z) = Ny/1+ |z — xo|? for large enough N > 1 such that (Vp,n)|sp > 1. So, by the
boundedness of D and b € C([0,T] x R?), (2.7) holds for some constant L > 0.

Assumption (Ag’b) will be used to establish Krylov’s estimate for functions f € N, ¢)c.r EZ(T),

which is crucial to solve singular SDEs, see Lemma 2.5 below. To improve this estimate for
(p, q) satisfying % + % < 2 as in the case without reflecting (see [53]), we introduce one more
assumption.

Consider the following differential operators on D:

bV 1
(2.9) L7 :§tr(at0tv2)+vbgn, te[0,7].

Let {Pf ;bm}TZtthZszo be the Neumann semigroup on D generated by Lf’b<1), that is, for any
€ C3(D), and any t € (0,7, po scfo. is the unique solution of the PDE
b s,t [0,t]
(2.10) Ostiy = —L‘S”bmus, Vats|ap = 0 for s € [0,1), u; = ¢.

For any t > 0, let C,'*([0,¢] x D) be the set of functions f € Cy([0,t] x D) with bounded
and continuous derivatives 0, f, Vf and V2f.

(AS") 0D € C>" and the following conditions hold for o and b on [0,T] x D:
(1) a; := 007 is invertible, (2.5) holds for x,y € D and there exists (p1,q.) € X such that
lallse + lla™ oo + Vol 221 7,5y < 00

(2) b = bV + 50 with Vabilop = 0, [0V ]l + [[Lap(b) ) o < o0 and 0] €
Lr2(T, D) for some (p2, q2) € A with py > 2.

(3) For any ¢ 6705([)) and t € (0,T], the PDE (2.10) has a unique solution P,f’t’b(l)gb €
01,1’2([0, t] x D), such that for some constant ¢ > 0 we have

b

(2.11) |[VIPT )l < c(t — 8) 72|V 9|los, 0<s<t<T, i=12¢cCD),

where VO¢ := ¢.

10



Remark 2.2. (1) Let p € C%(9,,D) for some ry > 0. Since Vplop = n, ||[VOW | +
11op(b™), n)||s < oo implies |15, p(bY), Vp)|leo < oo, which will be used in the proof of
Lemma 2.6 below.

(2) (AS°)(3) holds if D is bounded with 9D € C*t* for some a € (0,1), and there exists
¢ > 0 such that

(2.12) {|bi"(2) = bV ()] + llar(@) — as (W)} < et — 8|+ |z —y|?), s,t€[0,T), 2,y € D.

Indeed, 0D € C*™ implies n € C'T*(9D), so that (2.12) implies estimates (3.4) and (3.6)

in [12, Theorem VI.3.1] with ¢ = oo for the Neumann heat kernel p‘;’f(l)(x, y) of P; tb( ' We

note that according to its proof, the condition (3.3) therein is assumed for some o € (0, 1)

rather than all « € (0,1). In particular, V2pgf( )(~, y)(z) and 8Sp;'7’f(l)(x, y) are continuous in

(s,z) € [0,1] x D, and there exists a constant ¢ > 1 such that
_ ‘2 _
Vil () (@) < et — s|"Fe @, 0<s<t<T,z,yeD,i=012,
_le—y? =

070" ()| = 117" B2 (y)@)| < elt — 5| Fe T, 0<s<t<TryeD.
These properties imply (2.11).

The following are main results of this section, where Theorem 2.2 improves the main result
(Theorem 6.3) in [55] for bounded C® domain D, bounded drift b and ¢ = I;. Moreover,

going back to the case without reflection (i.e. D = R?), Theorem 2.3 covers the main result
(Theorem 1.1) of [25] where b() = 0 is considered.

Theorem 2.1 (Weak well-posedness). If either (AT") or (AS") holds, then (2.1) is weakly
well-posed. Moreover, for any k > 1 there exists a constant ¢ > 0 such that

(2.13) E[ sup |Xf|ﬂ < {1+ [z|f), B <e e D,
te[0,7)

where (X7, 17) is the (weak) solution of (2.1) with X§ = .

Theorem 2.2 (Well-posedness). Assume that one of the following conditions holds:
(i) d=1 and (A7) holds;
(i1) (AZ") holds with py > 2.

Then (2.1) is well-posed, and for any k > 1, there exists a constant ¢ > 0 such that

(2.14) E| sup | X7 — X/|*| <clz —y|*, z,y€D.
t€[0,T

Consequently, for any p > 1 there exists a constant ¢(p) > 0 such that
P f(x) =E[f(X])], € D,t>0,f€ % (D)
satisfies

(2.15) IVP.f| < c(p)(RIVfP)7, feCHD), tel0,T)

11



Theorem 2.3 (Functional inequalities). Assume that (AJ") holds with p; > 2. Then there
exist a constant C > 0 and a map c: (1,00) — (0,00) such that

(2.16) VA < %(Pwﬁ, te0.7],f € (D), p> 1,
(2.17) B — () <ICPRIVSP [eClD). tel0.T],
Clz —y|?

(2.18) P,log f(x) <log P, f(y) + t€[0,T),z,y € D,0 < f € %(D).

t

To prove these results, we first establish Krylov’s estimates under different conditions,
then prove the weak and strong well-posedness by using Girsanov’s transform and Zvokin’s
transforms respectively.

2.2 Krylov’s estimate and It6’s formula

A crucial step in the study of singular SDEs is to establish Krylov’s estimate [23]. To this
end, we first introduce the following lemma taken from [56, Theorem 2.1, which extends
[53, Theorem 3.2] where b") = 0 is considered. See [53, 57] and references within for earlier
assertions.

Lemma 2.4. Assume (Ag’b). Forany 0 <ty <t; <T and f € f/{]’(to,tl) for some p,q > 1,
the PDE

(219) (at + Lt)u? = AUZ\ + ft7 te [t07 tl]’ U/tAl - 0’

has a unique solution in ﬁg’p(to,tl). Moreover, for any 0 € [0,2),p’ € [p, 00| and ¢ € [q, 0]
with %—i—% <2—-0+ z% + %, there exist constants )\Olc >0 incteasing in ||p® Hig’g () (i-e. they
do not have to be changed when b® is replaced by b® with ||b(0)||E§§(T) < ||b(0)||E§§(T)), such
that for any A > Ao and 0 <tqg <t; <T,A> Xy and f € f/{z’(to, t1), the solution satisfies

d_2

Lo—o+d4 L 2
AQ( pld e q)HU)\Hﬁg,’p/(to,tl) + ||(at + vb<1>)u)\Hi/g(to,t1) + ||u>\||ﬁg’p(t0,t1) S C”f”i/g(to,tl)'

By estimating the local time, this result enables us to derive the following Krylov’s
estimate (2.20) and Khasminskii’s estimate (2.21).
Lemma 2.5. Assume (AJ"). Let (p,q) € A .

(1) There exist a constant i > 1 depending only on (p,q), and a constant ¢ > 1 increasing
in Hb(O)HE%(T), such that for any solution X; of (2.1), and any 0 <ty < t; < T, the
following estimates hold.

t

EEUR / £(X)]ds

o) <y f € Bltat)m>1
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(221) ]E(efto |ft(Xt)|dt’gto) S exp [C+ C||f||i[~/il‘1’(t0,t1)}7 f S E5<t07t1)7

(2.22) sup ]E(e’\(lT_lio)’ﬁto) <) x> 0.
tOG[O’T}

(2) For any u € C([0,T] x RY) with continuous Vu and
(2.23) lulloo + [IVtelloo + [18e + Vi ull zg(ry + IVl gy < 00,
we have the following Ité’s formula for a solution X, to (2.1):

(2.24) dug(Xy) = (0 + Le)ug(Xe)dt + (Vue(Xy), 0e( X)) dWe) 4+ (V) (X )dly.

Proof. (1) By first using | f| An replacing n then letting n — oo, we may and do assume that
f is bounded and nonnegative. By Lemma 2.4, for any (p/,q¢) € £, (2.19) has a unique
solution satisfying

A ([l loo + 11V loo) + 10 + Vi Ju|

S Cl”‘fHZ/p:(to,tl)’ /\ Z )\07
q

+[lull

~ 2 !
L) (tost1) S (tot1)

(2.25)

where £ > 0 depends on (p/,¢') and A, ¢ > 0 are constants increasing in ||6(® || 2 (1)

To apply Ito’s formula, we make a standard mollifying approximation of u*, which is
extended to R by letting u} :=  for t € R Let 0 < ¢ € Cg°(R*!) such that
Jgasr 0(2)dz = 1. For any n > 1, let

A
Uipvig)nt

(2.26) u " () =ttt édﬂ up (r —1y)o(ns,ny)dsdy, tecR,zecR
Then
lim {110, + V) (™ — UA)||[~/fl’:(t0,t1) + |l — uAHqu;p/(tO’tl)} =0, (¢,¢) e,
so that as shown in the proof of [54, Lemma 5.4],
(2.27) = (8, + Ly — Nu"
satisfies
(229) T [1F = £, =0 (0 €
and (2.25) with (p/,¢') = (p, q) implies
(2.29) 1™ oo + || VUM 0s < ANl zposny: 7= 1A > Ao

13



Let

Tk = inf{ [to, T : Iy — Uy, + / |bs(X)|ds > k:} k>1.

By [54, Lemma 5.2] and (2.1), there exists a map ¢ : [1,00) — (0, 00) such that

t1NATE
(2.30) E(/ gs(Xs)d5> < c(B)9l 2oty k= 1,9 € Li(to, ).

to

Applying Itd’s formula to u™", we deduce from (2.27) and (2.29) that
€ An
2cA” HfHLp(to t1) > E{utl/\Tk th/\Tk) uto (Xto)}f}\to}

L1ATE tINATE
(2.31) =E( / (0s + LoJuy™(X)ds + / {Vnxoul ™ HX,)dl,

to to
t1NATE
> E( [ e
t
AYA n)
E "(X,)ds|.Z
(2.32) (/to fo () tO)
< gy (24 A+ A B, — ol F)}, 1ok = 1A >0,

7.)

Fo) = Mg 0+ X Ellun, = 1l )},

Therefore,

Combining this with (2.30), we find a subsequence ,, — oo such that

t1NTE t1NTE
E / 1 SXSdsy)—nmE(/ 1 i} (X,)ds
(2.33) ( ) B0,k fs(X5) o Jim ) B(o.g) fI(Xs)

< el iz 2 + A+ ATEly — | Fig) s A >0,k > 1

»)

On the other hand, by (2.7) and the boundedness of o, we find a constant ¢; > 0 such that
(2.34) dp(X,) > —crdt — e [b0(X,)|dt + dly + (VA(X,), 00(X)dW,).

So, (2.33) with (p, q) = (p2, ¢2) implies

t1ATE
Bl ~ 1l Fa) < rlt — ) +aB( [ BOCC)s| 7, ) + 17l
to

S 02(1 + )\) + CQA_E]E(ZH/\T;C — lt0|ﬂt0), t e [tO,T], A > 0, kf 2 ]_

holds for some constant ¢, > 0 increasing in ||6(® || izr)- Taking A > 0 large enough such
that coA™¢ < %, we arrive at

]E(lh/\’rk - lt0|yto) S C3, k Z 1
for some constant c3 > 0 increasing in ||b()|| iz(r)- Letting k — oo gives

(235) E(ltl — lt0|ﬁt0) S Cs, t() S tl S T.
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This and (2.33) with k& — oo imply (2.20) for m = 1, which further yields the inequality for
any m > 1 as shown in the proof of [54, Lemma 3.5]. Moreover, taking ¢’ € (2, ¢) such that
(p,q') € A, (2.20) for m = 1 with (p,q¢’) replacing (p, q) yields

E( / £(X,)ds

This and [54, Lemma 3.5] with ifl’, replacing L} imply (2.21) for i = £
(2.21) with (2.34), b©@ € L2(T) and ||0* V||« < 00, we derive (2.22).

(2) We first extend u to R4 by letting u; = uy+ o for t € R, and consider its mollifying
approximation u{™ defined above. Then ||¢||s < 0o and (2.23) imply

(2.36) Tim {Ju = u" oo + [V (u = a8 oo + 100 + Le) (u = )|z} = 0.

a=q’
yto) < C“f”i/z/(to,tl) < C(tl - to) o ”fo/g(to,tl)'

combining

Combining this with |||l < 0o and (2.20), we obtain

lim sup |u{ }(Xt) —u(Xy)| =0, P-as.

n—00 tE[O T

lim Vnu{"} S)dl, = / Vatts(X,)dl,, P-as.

n—o0

(2.37) T
lim E / (95 + L) (ul™ — u,)|(X,)ds = 0,
0

n—oo

lim E sup

N0 40,17

/0 (Tl —w)(X,), 0u(X,)d W] = 0.

Therefore, we prove (2.24) by letting n — oo in the following It6’s formula:

00 =l (x)+ [ (0, 4+ L) (™)(X.)ds

+ / t(ngn}(Xs),as(Xs)dWSH / t(vnugn})(xs)dzs, te[0,7T].

O

To improve Lemma 2.5 for (p,q) € £ with g + % < 2, we first extend Lemma 2.4

to the Neumann boundary case. For any k € N, let Cy*([to,t1] x D;R%) be the space of
f e C’b([to,tl] x D;R?) with bounded and continuous derlvatlves in x € D up to order k.

Let Cp*([to, t1] x D,Rd) denote the space of f € C*([to, 1] x D;R?) with bounded and
continuous 0, f.

Lemma 2.6. Assume (AJ°) but without the condition ||VO’||E§% (r.py < 0. Then (AZ") and
the following assertions hold.

(1) For anyA>0,0<ty<t; <T andb, f € C’g’z([to,tl] x D;RY), the PDE
o,b® ~ -
(2.38) 0+ LY + V5, =N = fi, @) = Vaiy|ap = 0,1 € [to, 1]

has a unique solution @ € Cp*([to, t1] x D;R%).
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(2) For any (p,q), (0',¢) € # and b e C2([0,T) x D;RY), there exist a constant € > 0
depending only on (p,q) and (p',q"), and constants Ao, c > 0 increasing in ||bH

such that for any 0 < tq <t; <T and f € C*([to, t1] x D; R%),

TD)7
(2.39)  X(l[aMoo + IV8 M z2(00,01,0)) < N zer2 00,00 A 2 Ao (When p>2),

(2.40) NIVir oo < el fllizgem,py: A2 Aoy
and there exists decomposition @ = M + a™? such that

AL A1) ),
V3 1||L5(t0,t1,D)+||<8t+vb<1>)u 1||L§;(t0,t1,D)+||V2U 2||[~/§:(t07t1’D)

(2.41) o
110+ V)81 < a0y A= o
q

Proof. (1) Let V := C)*([to, t1] x D;R%), which is a Banach space under the norm

lullv.w = sup e M {lugfloo + [Vurlloo + VPl }, uweV

t€to,t1]

for N > 0. To solve (2.38), for any A > 0 and u € V, let

t1 )
M) = / e NI PTG,y — AL s € [t 1)
Then (A3") implies ®*(u) € C}*([to, 1] x D) with

(242) (95 + LIM" = N)@N(u) = f, — Vi us, s € [to, ], V@) (u)]op = 0,8 (u) = 0.

So, it suffices to prove that ®* has a unique fixed point @* € V :
t
(2.43) ;= / e A Pgb {V5,a — fijdt, s € [to,t],

which, according to (2.42), is the unique solution of (2.38) in Cy”([to, t1] x D;R?).
For any u, @ € V, by ||b||lss < 0o, we find a constant ¢; > 0 Such that

t1 B t
192 () — B (@) < / 1ol lI¥ (s — ) ot < / IV — ) .

Similarly, (2.11) with ¢ = 1 implies
t1 N
[V{®*(u)s — ()} |oo < C/ (=) 72 [|bell o IV (1t — U)ot
t
<or [ (6=9) M0 @)t
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while (2.11) with ¢ = 2 and [|b||se + || Vbi||lse < 00 yield

V202 (1) — BX(@)} oo < / (t— 5| V{3, (n — @)} _dt
<6 / (= 8) IV (e — ) oo + 1V (e — 1) } .

Combining these with (2.42) and the boundedness of @ and b € C"'([to, t1] x D; R%), we find
a constant cs > 0 such that

12 (w) — (@) [lv.

t1
<y sup / e NI (¢ — )73 {Jluy — Talloo + |V (1 — ) [|oc + | V(e — )| et

SE[to,tl]

t1
< ooflu — v,y sup ]/ e*N(t*S)(t _ S)*%dt,

SE[to,tl
So, ®* is contractive under the norm || - ||y v for large enough N > 0, and hence has a unique
fixed point @* in V.

(2) To prove (2.39) and (2.41), we extend the PDE (2.38) to a global one such that
estimates in Lemma 2.4 apply. By (AJ"), there exists ro > 0 such that

@ :0_yyp — OpyD; 0 —1n(6) — 0+ rn(d), re|0,r),0 €D

is a C;’L—diﬂ“eomorphism (i.e. it is a homeomorphism with V¢ bounded and Lipschitz
continuous) and pp := dist(-, D) € CZ(D,,), recall that D,, = {pp < ro}. For any vector
field v on 9,,D, v* := (¢~ ")*v is the vector field on 9°, D := 0_,,D \ dD given by

(v*,Vg)(z) = (v, V(g o9 ")) (p(2)), z€d, D, ge (L, D).
We then extend bgl) and b, to R? by taking

(2.44) b = 1p6" + h(pp/2)an, p(01)", bi= 1pbi+ 1o, p(Bi)"

where h € C*°(R) such that 0 < h < 1, h|(—soro/a) = 1 and hlp/2,00) = 0. Since (AJ") implies
115V o < 00 and V,bM|sp = 0, we have ||[Vb ||, < co. Let

(2.45) o(x) == xlp(z) + cp(x)lang(x), x € D,,.
We extend @ to [tg, t;] x R? by setting

(2.46) uy = h(pp)(@; 0 @), t € [to, ta]

We claim that

(2.47) up € CpH(RY), ¢ € [to, 1],
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where C}*(D,,) is the class of C}-functions f on D,, with Lipschitz continuous V f. Indeed,
since ¢ is a Cy"~diffecomorphism from d_,, D to d,,D, ¢ € CY"(D,, \ dD) with bounded
and continuous first and second order derivatives, which together with @} € CZ(D) yields
u} € CPF(R?\ dD). So, we only need to verify that @} o ¢ € C*(D,,). To this end, for any
r€0_,,D and v € RY, let

v = v — (v,n(0(z)))n(f(z))

be the projection of v € T,R? to the tangent space of 9D, recall that §(x) is the projection
of z to D, i.e. x = 0(x) — pp(x)n(f(x)) for pp(x) := dist(z, D). We have

Vo@(2) = Viyn@@)m@@) @) + Vad(2)
(2.48) = lop(z)[{v,n(0(x)))n(0(z)) + {1p — 189T0D}(x)<va n(f(z)))n(0(z))

+ 70 + pp(2)(Va,om) (0(2)).
Since @) € C2(D) with Vai|op = 0, (2.48) yields
(2.49) V(i 0 @)(w) = (Vo) 0 p(x) = 210 p(x)(v,n(0(2))) - (n(0(x)), (Var) o o(x))
. + pD(x) (V(vmvn)(g(x))ﬂ?) o @(x), x € D,,.

Combining this with Vi) € C}(D), Vyaiitlop = 0 and n, Vn are Lipschitz continuous on
d_n,D) due to dD € CP*, we conclude that V(@) o ¢) is Lipschitz continuous on D,,.

Next, we construct the PDE satisfied by u*. By (2.48), we see that (V@)(V@)* = Q
holds on D, \ 0D, where @ is a d x d symmetric matrix valued function given by

<Q(JZ>U1,?}2> = <U17@2> + pD(CL’>2<(VMU1n)(Q($)), (vﬂxvzn)(e(‘r))>
+ PD(JI){<U1 — 215, p(x){v,n(0(x)))n(0(z)), (Vr,u,n)(0(2)))
+ (vy — 2157T0D(x)(1)2, n(f(x)))n(6(zx)), (Vﬁvln)(é’(x)»}, x € Dyy,v1,v9 € R,

Then by taking ro > 0 small enough, on D,, the matrix-valued functional () is bounded,
invertible, Lipchitz continuous, and symmetric with

1
Qil(l’) > §Id, T e DTO'

We extend a; := %atag“ from D to R? by letting

(2.50) a; = h(pp/2)(a; o )Q + (1 — h(pp/2))s.

Since (2.5) holds for x,y € D, with this extension of a it holds for all z,y € R?. Combining
this with (2.44), Remark 2.1(a) for the existence of p, and noting that b, = bgl) + 1Db§0)
extends b from D to R?, we see that (AJ") holds.

Since h(pp/2), h(pp) € CZ(RY) with h(pp/2) =1 on {h(pp) # 0}, and since (V@)? = Q
on D,, \ 9D, by (2.38), (2.44), (2.50) and (2.47), we see that u; in (2.46) solves the PDE

(2.51) (9 + tr{a V) + Vo 5 Jud = X + f + 12, ¢ € [to, 0], =0,
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where outside the null set 0D,
1= (hopp)fio @ +2(a:V(ho pp), V{ii} o 3}),
b
© @ oA+ Vi) (ho po).
By (2.48), h € C>([0,00)) with support supph C [0,70/2], |lalle + [[10,,0 V0 pllee < 00
according to (A5") and Remark 2.2(1), we find a constant ¢ > 0 such that

1 ~ ~ 2 g ~ ~
D < Lpperny (£l +1VE) 0 &, FP] < iy amy {1+ B} 0 6.

Since | f| + [b] + |@*| is bounded on [0,7] x D, so is | fV| + [f®] on [0,T] x R%. Hence, by
Lemma 2.4, the PDE (2.51) has a unique solution in H2"(to, 1), for each i = 1,2 and A > 0,
the PDE

(2.52) (0, + tr{a,V*} + V = xa} o+ f e fto,t] il =0

b 45,/ Ju

has a unique solution in H 377’ (to,t1) as well, and there exist constants ¢, co > 0 increasing
in ||b||ip/(T D) such that
ql I

d
(2.53) N5 M oo + ATV 1
. < Cl||f(1)||1i§(to,t1) < 02(||f’|£5;§(t0,t1,D) + ”ui\HEg(to,tl,D))? p> 2,
1q_d_2
(2 54) )\2(1 5 q)HvuA,lHOO + ||V2U>\71||[~,Iq’(to,t1) + ||(8t + Vb(l))u/\,lnzg(tmtl)
) - W11 < ~ A
<alf ||Lg(t0,t1) > C2(||f||L%;(t0,t1,D) + @ ||L5(t01t17D))’
and
i 1*%7% s ) ’
A2y )(||u/\2||oo + [[Vu™? o) + ||V2u/\2||ip/'(t0,t1)
(2.55) ’

100+ V)0 ) S TP 2700y S 204 1Bl 0,01
q q

By taking large enough A\ > 0 increasing in ||b|| i we derive from (2.53) and (2.55)

that

(T,D)’

1
Al ALy ~A |
[u™ oo + [[Vu ||Lg(t0,t1) < 5(||f||5§g(t07t17p) + |la ||Lg(t0,t1,D)>v

1
[0 loe + VU200 < S8 oor A = o

Noting that the uniqueness of (2.51) and (2.52) implies u}* = u;"' +u;"?, this and the definition
of u yield

2
18 o + IV | 25000000 < D162 oo + IV | 25 00009)
=1
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—_

< 5 U@ oo + 1l z272 00,y F 182127000,

2
so that
L P 1 P S
This together with (2.53)-(2.55) implies (2.39), (2.40) and (2.41) for some ¢, > 0. O

Lemma 2.7. Assume (AJ?) but without the condition ||VU||E§%(T,D) < 00. For any (p,q) €

A with p > 2, there exist a constant i > 1 depending only on (p,q), and a constant ¢ > 1
increasing in Hb(O)HLfg(T,D)’ such that for any solution (Xi)icjor) of (2.1), and any 0 <ty <
tl S T7

(2.56) E(/t:l | fs(X)|ds

@57) B M Z) <exp e+l

" 2
) <y o 1€ B m>1

)], f € L2(to, ), to € [0,T].

Proof. As explained in the proof of Lemma 2.5 that it suffices to prove (2.56) for m = 1. In
the following, all constants are increasing in ||6(®|| i72(r) When b varies. We first observe

that by approximation arguments, it suffices to prove this estimate for f € C5°([to, 1] x R?).
Indeed, let A; be the conditional distribution of X; under P(-|%,). Then a bounded function
f on [tg,t1] x D with compact support can be approximated by functions {f{"},s; C
00 d . .
C5°([to, t1] x R?) under the norm || - [|;zvg % (at (A (da)4day)’ 5O that the estimate for functions

in Cg°([to, t1] x D) implies the same estimate for bounded functions with compact support.
Moreover, by applying the estimate to 1pon)(|f| A V) and letting N — oo, we conclude
that the estimate for bounded functions Wlth compact support also implies that for f €
Lp/2(t0,t1) So, below we assume f € C5°([tg, t1] x RY).

Let (b°™),>1 be the mollifying approximations of 6 = 15b("). We have
(2.58) 6% | 222y < 6N zz2ay,  im (169 = 6O 2 ) = 0.

By Lemma 2.6 for (f,0,---,0) replacing f, there exist constants ¢, Ao > 0 such that for any
A > Ao, the following PDE on D

(2.59) (0 + LT + Vi = Nuy™ = fi, t € [to,11), Vaty"|op = 0,up" =0

has a unique solution in CV2([ty,t,] x D), and for some constant ¢; > 0 we have

260) 0l < alflzgpy 170l S @ll s A2 Aain > 1

Moreover, since (A5") implies (AJ?) due to Lemma 2.6, by (2.20) for f = [b(© — 97|, we
find a constant ¢y > 0 such that

t1
(2.61) ]E(/ 6@ — 07| (X,)ds
to

ff) <l = gy 72 1.
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By (2.59) and ™" € C,*([to, t1] x D), we have the following Itd’s formula

dup™(Xy) = (8 + Lo)up™(X)dt + dM,
={fi + Vb@fbg,nu?’”}(Xt)dt + dM,

for some martingale M;. Combining this with (2.60) and (2.61), we obtain

t1
0 0,n
([ x|z ) <l e = =8 i
0

Therefore, by (2.58), we may let n — oo to derive (2.56) for m = 1. O

2.3 Weak well-posedness: proof of Theorem 2.1

We first introduce some known results for the reflecting SDE with random coefficients:
(262) dXt = Jt(Xt)dt + St(Xt)th + H(Xt)dlt, te [0, T],

where (W;)¢cpo,r) is an m-dimensional Brownian motion on a complete filtration probability
space (Qa {ﬁt}tG[O,TbP)a

J [0, T] x QxR = RY S:[0,7T] x QxR - R'@ R™

are progressively measurable, and [; is the local time of X; on dD. Let A be the set of
increasing functions h : (0,1] — (0,00) such that fol % = oo, and let I" be the class of

oo ds

increasing functions v : [0,00) — [1,00) such that [ = oo. When D is convex the

0 ~(s)
following result goes back to [40], and in general it is mainly summarized from [17, Theorem
1, Corollary 1 and Theorem 2|, where the condition in the first assertion is more general

than that stated in [17, Theorem 1.1]:

Hst(x) - St(yw%{S + 2(1‘ - Y, Jt(x) - Jt(y)> < gth(‘x - y‘2)7 te [O7T}7x7y € D:
since in the proof of this assertion, one only uses the upper bound of
19:(X:) = Se(Yo)llzrs + 2(X — Yo, Ju(Xe) — Ju(Y)),

so that the present condition is enough for the pathwise uniqueness. In Theorem 2.8(3), the
term tr{S;S;V?V;} was formulated in [17, Theorem 1.1] as ||S;(z)||*AV;(x), which should be
changed into the present one according to 1t6’s formula of V;(X;). Moreover, when S and J
are bounded and deterministic, the weak existence is given in [34, Theorem 2.1].

Theorem 2.8 ([17, 34, 40]). Assume (D).

(1) For any two solutions X, and Y; of (2.62) with Xo = Yy € D, if there exist h € A and
a positive L' ([0, T])-valued random variable g such that P-a.s.

19:(Xy) — Se(Yo)llTrs + 2(Xe = Yy, Ji(Xy) — J(Y2)) < (| Xy = Yi[?), ¢ €[0,T],

then X; =Y, up to life time.
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(2) If P-a.s. S and J are continuous and locally bounded on [0,00) x D, then for any
initial value in D, (2.62) has a weak solution up to life time. If S and J are bounded
and deterministic S and J on [0,T] x D, (2.62) has a global weak solution.

(3) If either D is bounded, or there exist 1 <V € CY2([0,T] x D) with

lim inf Vi(z) =00, VaVilap <0,

z€D,|z|—00 t€[0,T]
and a positive L*([0, T)-valued random variable g such that P-a.s.

tr{S;S; V?Vi} + 2(VV (x), Ji(x)) + 20,Vi(x)
<gn(V(x)), te€[0,T],z €D

holds for some v € T', then any solution to (2.62) is non-explosion.

Next, we apply Theorem 2.8 to (2.1) with coefficients satisfying the following assumption,
where (1,) is known as monotone or semi-Lipschitz condition, which comparing with (1,)
allows o to be unbounded.

(H1) b and o satisfying the following conditions.
(1) One of the following conditions holds:

(1a) (AZ") holds with |Vo||? € Efl’(T) for some (p,q) € A, or (AS") holds. Moreover, there
exists a constant K > 0 such that

(2.63) (x — 5y, b(x) — b(y)) < K|z —y|*, t€][0,T],z,y € D.
(1) There exists an increasing function h : [0, 00) — [0, 00) with fol %hr(r) = 00, such that
(2.64) 2(z =y, bi(2) = be(y)" + lloe(x) — (W) s < hllw—yl*), t €[0,T], 2,y € D.

(2) |||l < e(1+|-1|?) holds for some constant ¢ > 0, there exist zo € D and 0D C 0D
such that

(2.65) (x — zo,n(x)) <0, x€dD\ID, n(x) € AN,
and when dD # 0 there exists a function p € C2(D) such that

(2.66)  (Vp,m)lop = 1p, [ S%p_ {lle*Vpll + [[tr{oo*V?5}| + (b, Vp) "} < K.
0,T]x D

According to (1.3) and Remark 2.1(a), (H1)(2) holds with p = 0 if either D is convex,

and it holds with p = p in p,, 2D for some ro > 0 when 9D € Cf and |o|| + (b, Vp)~ is
bounded on [0,T] X 0,,D.
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Lemma 2.9. Assume (D) and (H1)(1). Then the reflecting SDE (2.1) is well-posed up to
life time. If (H1)(2) holds, then the solution is non-explosive, and for any k > 0 there exists
a constant ¢ > 0 such that

(2.67) E[ sup |ng|’f} < (14 |z"), xeD,tel0,T]
te(0,7)

(2.68) SUPE@MZ%_Z?O”ﬁto) <c, 0Zt0<t <T,
zeD

where (XF,17) is the solution with X¢ = x, and [F == fo ) (X)dIy.

To prove this result, we need the following lemma on the maximal functional for nonneg-
ative functions f on D:

AMpf(x) = sup |BO7“|/O (Ipf)(x+y)dy, =€ D.

re(0,1)
Lemma 2.10. Let 9D € C?.

(1) For any real function f on D with |V f| € Li (D),

f(2) = fW)| < cle —yl(Ap|V fl(z) + Ap|VfI(y) + | fllx), ae z,y€D.

(2) There exists a constant ¢ > 0 such that for any nonnegative measurable function f on
0,7] x D,
bl iprpy < clflliprpy, Pra=1.

Proof. We only prove (1), since (2) follows from [53, Lemma 2.1(ii)] with 15 f replacing f.
Let ¢ be in (2.45). Take 0 < h € Cy°(R) with h(r) = 1 for r < ro/4 and h(r) = 0 for
r > 1ro/2. We then extend a function f on D to f on R? by letting

f(x) = {hopp}fop,
where pp is the distance function to D. Then there exists a constant ¢ > 0 such that
VI <1V 1+ elo_,, on(1f 0 @+ [V 0 §).

By [57, Lemma 5.4] and the integral transform z — @(x) with |[(V@) ™| bounded on d_,, D
we find constants c;, cy > 0 such that for any x,y € D,

f(x) = f)| = |f(z) — f(y)l
< cile —y| (AN fl(@) + AV 1) + 1 fllo }
< colz — yl{ oIV f(z) + bV fI(y) + | fllo }

where 4 = .#p for D = R, O
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Proof of Lemma 2.9. (1) We first prove the existence and uniqueness up to life time. Since
o and b are locally bounded, by a truncation argument we may and do assume that o and
b are bounded. Indeed, let for any n > 1 we take

ot (@) = o ({LA (o/a])}), 0" (@) := Bllal /m)bu(@), t> 0,2 € D,
where h € C5°([0,00) with 0 < h < 1 and hlp,y; = 1. Then o™ and bt are bounded on
[0,7] x D and for some constant K,, > 0,
(b () = b (), 7 — )t
< h(lzl/n){b(@) = buy), @ = v) " + |R(lzl/n) = hlyl/n)[{B(y), = = )
< (@) = bi(y),w —y) "+ Kalz —yf?, t€[0,T],2,y € D, Jy| < |al.

So, by the symmetry of b (2)=bf" (y), z—y)* in (z,y), under (1,), o and b} are bounded
on [0, 7] x D and satisfy (2.63) with K + K, replacing K; while (1,) and
{1 A/l e = {1 A (n/lyD)}yl <z =yl

imply that o™ and (™} are bounded and satisfy (2.64) for 2h(r) + K,r replacing h(r).
Therefore, if the well-posedness is proved under (H1) for bounded b and o, the SDE is
well-posed up to the hitting time of dB(0,n) for any n > 1, i.e. it is well-posed up to life
time.

When o and b are bounded, the weak existence is implied by Theorem 2.8(2). By the
Yamada-Watanabe principle, it suffices to verify the pathwise uniqueness. Let X; and Y; be
two solutions starting from x € D. By Lemma 2.10(1) and (H1)(1),

| Xy — Yi|?, under (1,),

loe(Xe) — oe(Y) [l s + 2(X0 — Vi, 0 (X)) — 0i(Y2)) < {h(|Xt —Yi?), under (1),

where for some constant ¢ > 0
g = {1+ M| Vol (X)) + Al Vorl (V).

So, by Theorem 2.8(1), it suffices to prove fOT g¢dt < oo under (1,). By Lemma 2.10, this
follows from (2.20) under condition (AJ") with ||Vo|? € Z{I’(T) for some (p,q) € ', or
(2.56) under condition (A5").

(2) To prove the non-explosion, we simply denote (X;,l;) = (X7, I7) and let

Tpi=inf{t >0:|Xy| >n}, n>1
By (H1)(2), we find a constant ¢; > 0 such that
(2.69) dp(X,) > —Kdt + dM, + dly, t € [0,T]

holds for dM; := (04(X;)*Vp(X;), dW;) satisfying d(M); < K2dt. This implies (2.68). Next,
by (H1), we find a constant ¢; > 0 such that

2(be(), @ — w0} + llow(@)Ils

24



= 2(bi() — bi(wo), = — @0) + [|ov(2) — 04(w0) [
+2(be(wo), & — wo) + [low(wo) [[3rs + 2(0e(w0), oe()) s
S Cl(]. =+ |.I' — 5(70’2), T &€ D

Then by (H1)(2) and It6’s formula, for any & > 2 we find a constant ¢ > 0 such that
A1X, — zo|* < eo(1+ | Xy — 2o|F)dt + dM, + k| X, — 20"~ 1dl,,

where M, is a local martingale with d(M), < ¢5(14|X; — z[*)2dt. By BDG’s inequality and
(2.68), we find constants c3, ¢y > 0 such that

= sup (14 X, —x0/"), n>1,t€[0,T]
s€[0,tATR]

satisfies

t t 3 -
En{™ <1+ |z —zof" + CgE/ i ds + 2csE* (/ ]77;{”}\st> + kE [|77f"}|%lt]
0 0

t
< En,i{"}+64(1+\x|k)+c4/ En{"ds, t€[0,T].
0

N | —

By Gronwall’s lemma, we obtain
Elp{"] < 2e(1+ |e[)e**!, t€[0.T)x € D.n>1,
which implies the non-explosive of X; and (2.67) for some constant ¢ > 0. O

Proof of Theorem 2.1. Let X, = x € D. We consider the following two cases respectively.
(a) Let (AT") hold. Then (H1) holds for b replacing b. By Lemma 2.9, the reflecting
SDE

(2.70) dX, = b7 (X)) dt + oy (X,)dW, + n(X,)dl,

is well-posed with (2.67) holding for all ¥ > 1 and some constant ¢ > 0 depending on k.
By Lemmas 2.5-2.7, (2.68) and (AJ") with [b@2 LA(T), we see that (2.21) holds for

f = [b@2, so that for some map ¢ : [1,00) — (0,00) independent of the initial value z,
(2.71) supE®|Rp|F < c(k), k>1

zeD
holds for

Ry := efoHos (o) 0 HX). W) =3 [ o3 (020D) UV P(Xds 4 ¢ [0, 7.

By Girsanov’s theorem,
t
W, =W, — / {07 (0,07) WO} (X,)ds, te€0,T]
0
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is an m-dimensional Brownian motion under the probability measure Q := RrP. Rewriting
(2.70) as )
dXt = bt(Xt)dt + Ut(Xt)th + n(Xt)dlt,

we see that (Xt,lt,Wt)te[()’T] under probability Q is a weak solution of (2.1). Moreover,
letting Eg be the expectation under Q, by (2.67) and (2.71), for any £ > 1 we find a
constant ¢(k) > 0 independent of = such that

Eq| sup [X,I"] = B[Ry sup | X"
te[0,7 te[0,7)

< (B[R3]))*(E sup |Xt]2’“])2 <k)(1+ |2]*), zeD

t€[0,T]
for some constant ¢ > 0. Similarly, (2.68) and (2.71) imply
Eget't < C(k), k>1

for constants C'(k) > 0 independent of x. So, (2.13) holds for this weak solution.
To prove the weak uniqueness, let (X, 1, Wi)tepo,r) under probability P be another weak
solution of (2.1) with X, = z, i.e.

(272) dXt = bt()?t>dt —+ O't<Xt)th —+ H(Xt>dZt, t e [O, T], X() = XT.
It suffices to show

(2.73) Zx,, = Lxuln)

It)eeio,r)IP tefo,771Q-

By Lemma 2.5 the estimate (2.21) holds for X; and f = |[b{® |2, so that
(2.74) FpetJo W70l o oo 3 5 0,
By Girsanov’s theorem, this and (AJ”) imply that
G(X, W) =T, +/ [02(0,07) B} (K, )ds, t € [0,T]
is an m-dimensional Brownian motion under the probability Q := R(X, W)P, where
R(X, W) := e~ Jo ot (o) 0 WX dWa)= 5 i o3 (a0t 10 HE) s,
Reformulating (2.72) as
dX; = BV (X,)dt + 0,(X)dG, (X, W) + n(X,)dl, t € [0,T],

and applying the well-posedness of (2.70) which implies the joint weak uniqueness, we con-
clude that

"%Xt 1;,Ge (X ))te 0,7 @ = "%Xtvlt’wt)te[o,THP‘
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Noting that
R(X, W)™ = o I Hot(oson) oy (Ro)Pas g %) (X, 7)),
this implies that for any bounded continuous function F' on C([0,T7; R % [0, 50)),
Es[F(X,D)] = Eg[R(X, W) ' F(X, )]
G(X, W)t Jo Mot o6} Xolds p )]
— Bp[R(X, W) le~ Jo Hoieard) bV} X0Pds p x )]
= Ep[RrF(X,1)] = Eg[F(X,1)].

Therefore, (2.73) holds.
(b) Let (A5”) hold. By Lemma 2.7, (2.71) and (2.74) hold, so that the desired assertions
follow from Girsanov’s transforms as shown in step (a). O

2.4 Well-posedness: proof of Theorem 2.2

The weak existence is implied by Theorem 2.1. By the Yamada-Watanabe principle, it
suffices to prove estimate (2.14) which in particular implies the pathwise uniqueness as well
as estimate (2.15):

P, — P, X7y — Xy
VP, f|(z) :zlimsup‘ tf(2) — Bif(y)] SlimsupE[’ﬂ i)~ [( t)q
Day—z |'1j - y| Day—ax ‘x —_ y‘
XP) — FXDPN\G (E[XF - XY 7]\ 5
< o (XD SN L BN = X7
Day—az |Xt - X; |p ‘ZIZ’—y‘PTl

< e(p)(BIVSI")?(x), =€ D.te(0,1).f €ClD).

Let (Xt(i), lf@) be two solutions of (2.1) with Xéi) =29 € D,i=1,2. Below we prove (2.14)
in situations (i) and (i7) respectively.

Proof of Theorem 2.2 under (i). In this case, D is an interval or a half-line. For any A\ > 0,
let u) be the unique solution to (2.19) with ty = 0,¢, = T and f = —b(®)| that is,

2.75 0+ Loup = xu} — b, t€[0,T],u = 0.

( t t t ) » VT

By (2.25) with f = —b® ¢ igg; (T'), we take large enough A > 0 such that
1

(2.76) [t lloo + 1Vt oo < 55 Ml g22ea gy < 00

Then

O)(x) =z +u(z), T€R

is a diffeomorphism and there exists a constant C' > 0 such that
1
(2.77) S5lT =l <160(2) — W) < 2z —yl, wyeRtE,T].
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Let (Xt(i),lgi)) solve (2.1) for Xéi) =29 € D,i=1,2, and let
v = ed(x{) = X+ (X)), i=12
By Itd’s formula in Lemma 2.5(2),
(2.78) 4y, = B,(v/Ndt + Sy (Y Naw, + {1 + Vur (X Nn(xXN)ar?, i=1,2
holds for
(279)  Byw):= {0 + X ({01} (@), Eelw) = {(1+ V) } ({67} (@)

By (2.76), (2.79) and ||[VbM ||, < 1 due to (AS"), we find nonnegative functions F; and F,
such that

(2.80) IVB||+ ||[VE|]? < Fy + F, Fye LP(T), i=1,2
Since d = 1, for any x € 0D and y € D we have y — x = |y — z|n(x), so that (2.76) implies
(2.81) (0} (y) — 67(2), {1+ Vup(z) fn(w)) > ly — 2](1 — [Vu'[|)* > 0.

Combining this with (2.78) and It6’s formula, up to a local martingale we have

1 2 1 2
Y Y ORk < gpy )y @pk { B ™) = B RIS = S0 s } it

1 2 1 2
|Yt()_Y;()| |Y;()—Yt()|2

So, by Lemma 2.10, we find a constant ¢; > 0 and a local martingale M, such hat
R e S Y| Y YO, 1 an,
0
where
(282) %= /0 t{l + Mp(IVBU| + IVEP) (V) + p (|VBL] + V) (v2) pds.

Combining this with (2.80), (2.21), Lemma 2.10 and the stochastic Gronwall lemma (see [36]
or [54]), for any k > 1 and p € (3,1), we find constants ¢, c3 > 0 such that

2 2
(B[ sup ©2(xX1) ~ 02X} = (B sup [y - v,2)F)
s€[0,1] 5€[0,¢]

p—1

< elYg" - Y7 (Eeri ) T < |0 (aV) - O3,
This together with (2.77) implies (2.14) for some constant ¢ > 0. O

To prove (2.14) under (A5"), we need the following lemma due to [55, Lemma 5.2], which
is contained in the proof of [13, Lemma 4.4]. Let Vi and V5 be the gradient operators in
the first and second variables on R? x R
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Lemma 2.11. There exists a function g € CH*(R? x RY) N C?((R?\ {0}) x R?) having the
following properties for some constants ks > 1 and ki € (0,1) :

(1) kalz]* < g(z,y) < kalzf?, z,y € RY

(3) |ViVig(z,y)| < kolz>™%, 4,5 € {0,1,2},i+j < 2,2,y € R%

Proof of Theorem 2.2 under (ii). Let b%" be the mollifying approximation of b(®) = 1.
By Lemma 2.6, there exists A\g > 0 such that for any A > \g and n > 1, the PDE

(2.83) (0 + L+ Vipn_yo = Nup™ = =", uz" = Vau"|op =0,

has a unique solution in C,*([0,T] x D), and there exist constants ¢, ¢ > 0 such that

A (Il oo + V6 o) + 11(8e + Vi) )u 222 7,0y + IV 1222 7.y

2.84
B Oy A2 e L

Then for large enough Ay > 0, O} := id + u)"" satisfies
1 _
(2.85) sle—ul” < 107" (x) = O™ ()P < 2z =y, A= No,z,y € D.

Since dD € CP", there exists a constant o > 0 such that p € C?(d,, D) with V2p Lipschitz
continuous on 0,,D. Take h € C*°([0,00);[0,00)) such that ' > 0, h(r) = r for r < ry/2
and h(r) = rg for r > rg.

Let (X7, 1{7) solve (2.1) starting at 2@ € D for i = 1,2. Alternatively to | X\ — X2,
we consider the process

Hy = g(02"(X{") — €}"(X;), V(ho p)(X;V)), t€[0,T],

where ¢ is in Lemma 2.11. By Lemma 2.11(1) and (2.85), we have
k
(2.86) §1|X§” — X2 < H, <2k XY — X2, teo,T].

Simply denote
&= 0"(X) =0 (), = V(ho p) (X)),

By It6’s formula, (2.83) and V,0"|sp = n due to Vyhu;"|op = 0, we have

dg, = {A M) = A"(X@) <b“’> - b%”)(Xf”) — (b - b?’"xxt‘”)}dt
dn, = LtV(h o p)(X(l) dt + { v2 ho p) at} D, + {v V(h o p)}(Xf”)dzP
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Hence, [t0’s formula for H; reads
(2.88) dH, = At + BPaiY — BAA1® + d,,
where
Ay = (Vag(€em), ™ (X) = " (X))
+(Vag(&m)s Vyo_pn 0" (X)) = Vyor_n 02" (X))

+(Vag(&m)s LiV(ho p)(X{")) + (Vigl€m), NNy

(2.89)
+ (ViVag(&m), Nioo(X) V2 (ho p)(X)))
+(V3g(&.m), {[V3(ho p)lowo; V3 (ho p) }(XI)) e
N, ={(verMo (X)) — {(Vver™ e (X )
Bt(l) 3:<V19(§t, M), n(Xt(l)>> + <V29(ft, M), Va{V(ho P)}(Xt(l)»,
(2.90) @) @
B, 3:<V19(§t777t)7n(xt >>7
251) dM, = (V1g(&.m), [{(VO™)a 3 (XM) — {(VO™)a } (X )] dW;)

+(Vag(&e. ), [{T3(h o p)yor] ()W),
In the following we estimate these terms respectively.
Firstly, (1.2) implies

2
n n T — y n —~
(O} (x) — 0" (y), n(x)) < lz =y o | + |V} ool — y|, =€ dD,ye D.

Combining this with (2.84), we find constants €y, A; > 0 such that for any A > Ay,
(07" (z) - @?fl(y), n(z)) < k|0;"(z) — 6" (y)],
x€0D,ye D, |lx—y| <eyp,n>1,t€]0,T].

So, Lemma 2.11 yields

(V1g(67"(x) = 07" (y):n(x)), 0()) < kalipeyize) |07 () — O7" (y)]

(292) —11\n An 2 a
< kogy 107" (2) — 07" (Y)Y, x€9D,ye D,n>1,te0,T].

Next, by the same reason leading to (2.92), we find a constant ¢; > 0 such that

);
(Vig(07" (z) — 67" (y), (hop)(fﬂ)),n( )

> (V19(0}" () ~ 017 (). (1)), (1)
(2.93) V19(67" (x) — 67" (1), ( () — V1g(0," () — 0" (y), V(h o p)(2))]
> —Lfpyisetbosy 07" (2) — O7" (y)[?

— 1Ml V1 V29(67" () — @?"(y), Veol®F" () — O7" ()
> —c1|0)"(z) — 0" ()2, x € D,yedD,n>1,tel0,T].
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Moreover, by (A3°) and h o p € C2*(D), there exists a constant C' > 0 such that
LAV (hop)} < CO+ 7)), t€[0.T)

Combining this with Lemma 2.11, Lemma 2.10, (2.86), and (2.89)-(2.93), we find a constant
K > 0 such that

A < K — o0 2(x M)+ o - bo’"|2<X§2>>}

+K|X§1)—X§2)|2{1+|b(°| +Z///DHV{ VoMo (X }

. < KX - XL 3 v ivei o)

B < KIX{V = X1, =B < KXV - X
Combining these with (2.86) and (2.88), for any k£ > 1, we find a constant ¢; > 0 such that
oy UHESalXi - XEPO{Y PG + Y - 0 PGT) bt
' tolxV - xP PR + kM,

where

t 2
(295) L =10 1@ ¢ / {1+!bg°)|(X§1))+Z.///D}|V{(V@§’")as}HQ(XS@)}ds.
=1

0

For any m > 1, let
T =inf {t >0 X - Xt(2)| >m}.

By (2.86) and (2.94), we find a constant ¢ > 0 such that

Tm

296) XD, - XSG b [ X0 - XPPAZ 4 i
0
holds for some local martingale M, and
G (t) = calz® — 2P P* 4 cym2E—D /"”m {168 — 62" P(X V) + B — 277 (X[P) }ds.
0
Since (A5") and (2.84) imply
sup [[V{(VO*")o}|| < Fi + F

for some 0 < F; € Lpl(T),z = 1,2, by (2.56), (2.57), the stochastic Gronwall lemma, and
Lemma 2.10, for any p € (% 1) there exist constants ¢z, cq > 0 such that

2 c2p 1-p
(B] swp |X{ = XP]) < eafBe™ ) TEG, (1)

s
SE[0,tATm]

< C4(’(£(1) . $(2)|2k + mQ(kfl)Hb(O) o bo,n”ﬂgg(T))? n,m > 1.

By first letting n — oo then m — oo and applying (2.58), we prove (2.14) for some constant
c> 0. [
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2.5 Functional inequalities: proof of Theorem 2.3

Let {Ps;}i>s>0 be the Markov semigroup associated with (2.1), i.e.
Poif(x) = BFA(XZ,), t2s.f € B(D),
where (X7, ):>s is the unique solution of (2.1) starting from z at time s. We have

(2.97) Pof(x) = E(Po f)(XT), s€[0.t].f € Cy(D),

where X7 := X§ . By (2.15) for (2.1) from time s, for any p > 1, we have

D=

(2.98) VP f| < c(p) (P VIP)», 0<s<t<T, feCD).
If P,f € CY2([0,t] x D) for f € C%(D) such that
(2.99) (0s+ Ly)Poyf =0, f€CX(D),VaPsiflop =0,

then the desired inequalities follow from (2.98) by taking derivative in s to the following
reference functions respectively:

Ps{Ps,t(5+f)}pa Ps{PS,t(€+f)}2’ Ps{lOgPS,t(5+f)}<x+5(y_3)/t)> SE[Oat]a

see for instance the proof of [52, Theorem 3.1]. However, in the present singular setting it is
not clear whether (2.99) holds or not. So, below we make an approximation argument.

(a) Proof of (2.16). Let {b°"},>; be the mollifying approximations of 6. By (A3"), for
any f € C%(D) and t € (0,T], the equation

t
b (1)
uy, = Py +/ Ps‘f;b (ng,nuzt)dr, s €[0,¢].

S

has a unique solution in C**([0,¢] x D), and P7,f := u?, satisfies
(2.100) (0 + LI + V)P f =0, s € [0,4], f € C3(D).
By this and 1t6’s formula for the SDE
AXT7 = (07 + b)Y (XEdE + o (XI AW, > s, X5 =,

we obtain
P f(x) =Ef(XS)), 0<s<t.

Let X; solve (2.1) from time s with X, = x, and define
RS = efos@?’dwr)_%fos ‘E,@PdT? fg = {gZ(o‘SU:)_l(bgO) _ b?n)}(Xs), s E [07t]
By Girsanov’s theorem, we obtain

|Porf — Psntf|($) = [E[f(X:) — Ref (X))
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< [ lloo (B B — 1) || fle, 0<s<EST,
where ¢ > 0 is a constant and due to (2.57), ¢, — 0 as n — oco. Consequently,
(2.101) |Psif — Pliflloo < enllflloey m>1,0<s<t<T.

Moreover, the proof of (2.98) implies that it holds for PJ, replacing P, uniformly in n > 1,
since the constant is increasing in [|b(| i#2 (), Which is not less that (|60 in (T). Thus,

0<s<t<T,feCYD),n>1.

“e\»—‘

(2.102) VLS| < clp)(PLIV )7,

Now, let 0 < f € C%(D) and t € (0,T]. For any ¢ > 0 and p € (1,2], by (2.102), (2.100),
(2.101), (AS*) and Ito’s formula, we find constants ¢;, ¢, > 0 such that

d(e + P PP(X,) = {ple + PLfy 0 — b7 VL)
+p(p— 1) (e + Pl f)P~ 2|0 VP! fI?HX,)ds + dM,
> {egle + PP VPP — et |[ V]l b = 007} (X, )ds +dM,, s € [0,8],e > 0

holds for some martingale M,. By (2.20), Holder’s inequality, and ||b(® — 6%7|| 2y — 0 as
n — 0o, we find a constant c3 > 0 and sequence ¢, — 0 as n — oo such that

ent Pie+ )P — (PP +e)" > o / P(e+ P2 fyr2 (W P s
0

t n p 2 t n 2
> 02/ (BIVELIT) —ds > Cg/ VEL:]| —ds, €€ (0,1).
(P +Pr )y (P + P f)r} 5

Thus, for any z € D and « # y € B(x,0) C D for small § > 0 such that
r,:=x+r(y—x) €D, rel01],

this implies

| [L(P.P f () — PP (y))ds]
RIS = BRI < [Car [ 1w ezl

[ 2on) (s )

S/1c§1/2{5n—l—Pt(a—i—f)p}é(x—Fr(y x))</0(5+PP”tfp) BIC: )dsfdr.

0

Combining this with (2.101) and letting n — co,e — 0, we obtain

B () ~ Pif (u) <1/01( e >(/Ot(Ptfp>zy(xr)ds>§dr‘

|z =yl Tt
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Letting y — = we prove (2.16) for some constant ¢ depending on p, for p € (1,2] and all
f € C%(D). By Jensen’s inequality the estimate also holds for p > 2, and by approximation
argument, it holds for all f € %,(D).

(b) Proof of (2.17). By (2.102), Ito’s formula and (A3?), we find a constant ¢, > 0 and
a martingale M, such that

d(Pr A (Xs) = 2{(VPIf, 00 — 60 + |02V P 1P H(X)ds + dM,
SC4{||Vf||oo|b£0)—bS”|+ | VP HX)ds + dM;, s € [0,1].

Integrating both sides over s € [0, t], taking expectations and letting n — oo, and combining
with (2.20) and (2.101), we prove (2.17).

(c) Proof of (2.18). Let 0 < f € C}(D). By taking It6’s formula to PJ',(e + f)(X,) for
e > 0 and taking expectation, we derive

d
EPS log P {e + [} = —Ps|0:VlogP£tf|2 + P(b” — bg’”,VlogPQt(é + 1))

For any =,y € D, let v : [0,1] — D be a curve linking x and y such that |%,| < c|z — y| for
some constant ¢ > 0 independent of z,y. Combining these with (A3") and (2.15) for p = 2
we find a constant c¢5 > 0 such that

Polog{e + f}(x) —log PMe + f}(y / L P 1og P2, f(ay0)ds

t
< / {ct™ o — Y|V P.log P f (vae)| — PeloiV log P2y f12} (ee)ds
0
t 12 12
S05/ Lt I ot [PPSO ol
o 1 t

Therefore, (2.18) holds.

3 Well-posedness for DDRSDEs

To characterize the dependence on the distribution, we will use different probability dis-
tances. For a measurable function

Y : D x D — [0,00) with ¥(x,y) = 0 if and only if z =y,

we introduce the associated Wasserstein “distance” (also called transportation cost)

Wy (p,v) = inf U(a,y)n(de, dy), p,ve P(D),

T€C (V) J Dx D

where € (u,v) is the set of all couplings for p and v. In general, W, is not necessarily a
distance as it may be infinite and the triangle inequality may not hold. In particular, when
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¥(x,y) = |z — y|* for some constant k > 0, the L*~Wasserstein distance W, := (Wd,)ﬁ is
a complete metric on the space
_ _ 1
Pu(D) = {ne PD): |ule:= null-")* < oo},

where u(f) := [ fdp for f € L*(i). When k = 0 we set ||u|lo = 1 such that F,(D) = 2 (D)
and Wy reduces to the total variation norm

1 1
Wo(p, v) = sl = vlvar == 5 sup |u(f) —v(f)] = sup |u(A) —v(A)],
2 211 Ac#(D)

where %(D) is the Borel o-algebra of D. We will also use the weighted variation norm for
k> 0:

H,U_VHk,var ‘= Sup ’/,L(f)—l/(f”, M,V € f@k(D)
|fI<1+[F

According to [42, Theorem 6.15], there exists a constant ¢ > 0 such that
(3.) 152 =l + W )% < cllt = Vlars 1,0 € Z4(D),

However, when k& > 1, for any constant ¢ > 0, Wy(u,v) < ¢||[pt — V|| var does not hold.
Indeed, by taking

p==0, v=>01-n""""5+n"1"%5,, n>1ecR?withle|=1,

we have Wy (i1, v) = n~*, while
1 1 3
It =Vl war = 27 N80 = Gnelliwar <27 {00(T 4 ) 4 0ne(T+]- )} < = m >0,
so that lim,, . W = oo for k > 1.

In Theorem 3.1 below, we use the enlarged probability distance || - || yar + Wy to measure
the distribution dependence of the DDRSDE (1.5). For any subspace & of &(D) and any
T € (0,00], let C([0, T]; &) be the set of all continuous maps from [0, 77N [0, c0) to & under

the weak topology. For any p € C([0,00); Z(D)), let o and b* be in (1.7).

3.1 Singular case

We make the following assumption. Recall that b}’ := b;(-, u;) for u € C([0, 0); Z(D)).

(A1) Let T >0 and k > 0. o* = o does not depend on i, and there exists i € Py (D) such
that at least one of the following two conditions holds.

(1) (Ag’i’) holds for b := b(-, i), and there exist a constant « > 0 and 1 < f € EZg(T,D)
such that for any t € [0,T], z € D, and p,v € P%(D),
(3.2) V(@) = BV @)] < fulw) + allul,
(3.3) b () = b} ()] < fe(@){llre = Vllisoar + Wielp,v) }
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(2) (AT’I;) holds with f in (3.2)-(3.3) satisfying | f|* € ig(T,D) for some (p,q) € X .

Since b{") is regular, (3.2) gives a control for the singular term of b*. Moreover, (3.3) is
a Lipschitz condition on by(z,-) in || - ||kver + Wy with a singular Lipschitz coefficient.
Theorem 3.1. Assume (Al).

(1) (1.5) is weak well-posed up to time T for distributions in (D). Moreover, for any
v € P(D), and any n > 0, there exists a constant ¢ > 0, such that

(3.4) ]E[ sup | X¢|"
t€[0,T]

| < et 1x01), Eer <

holds for the solution with Lx, = .

(2) (1.5) is well-posed up to time T for distributions in Py(D) in each of the following
situations:

(1) d=1 and (A1)(2) holds.
(i7) (A1)(1) holds with p, > 2 in (AY).

To prove Theorem 3.1, we first present a general result on the well-posedness of the
DDRSDE (1.5) by using that of the reflecting SDE (2.1).
For any k > 0,y € &, N > 2, let

PN = {1 e Cl0, 11 24(D) : o =7, sup e (1+p(| 1) < N},

te[0,7
Then as N 1 o0,

(3.5) PN 2L = {p e C(0,T]; 2(D =7}.
For any p € @kTW, we will assume that the reflecting SDE
(36) d)(iuﬂ,y = bt(X#”y, Mt)dt + O't(Xf7’y)th + Il(XtMﬁ)dl#N, te [O, T], ng,'y =7
has a unique weak solution with
Hg(,u) = ngﬂ S @k(D), t e [O,T]

(H2) Let k> 0,7 > 0. For any v € Z,(D) and i € g@,ﬂ, (3.6) has a unique weak solution,
and there exist constants p,q > 1, Ny > 2 and increasing maps C : [Ny, 00) — (0, 00)
and F' : [Ny, 00) x [0,00) — (0, oo) such that for any N > Ny and u € @MN, the
(weak) solution satisfies

(3.7) H (1) = Lt € Py s
(3.8) (E[(1+ [XE79)2|X£7])7 < C(N)(1+ [XER), ¢ €[0,T],
t 2
E J(XP)ds) < C P
5o ([ a0xenas) < cloliy

Bell (X0 < F(N, liglg0p), t € [0,T), 9 € Li(t, D).
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Obviously, when k = 0, conditions (3.7) and (3.8) hold for Ny = 2.

Theorem 3.2. Assume (H2) and let 0" = o do not depend on pi. Assume that there exist
a measurable map T : [0,T] x D x Z(D) — R™ such that

(3.10) bi(x,v) — by(x, 1) = op(2)T(x, v, 1), =€ D,t€0,T),v,u€ P(D).
(1) If there exists f > 1 with |f|* € LE(T) such that
(3'11) |Ft<:L',V, ,U)‘ < ft(x)HV - MHk,varu T € D7t € [OaTLVa,u € f@k(D>7
Then (1.5) is weak well-posed up to time T for distributions in E?ik(l_)) If, furthermore,
in (H2) the SDE (3.6) is strongly well-posed for any v € P(D) and p € P}, so is
(1.5) up to time T for distributions in Py (D).

(2) Let k> 1 and there exists f > 1 with |f|* € LE(T) such that for any p,v € Py (D),

(3.12) ITe(z, v, )] < fi(@) {1V = plliwar + Wi, )}, (t2) € [0,T] x D.
If for any v € P.(D) and N > Ny, there exists a constant C(N) > 0 such that for
any p,v € Wk,TAfV,

t
(3:13) WaCH] (), H] ) < ON) [l = vy + Wil )™ s, ¢ € 0.7,
0

then assertions in (1) holds.

Proof. Let v € 2,(D). Then the weak solution to (3.6) is a weak solution to (1.5) if and
only if p is a fixed point of the map H” in ,@,CTN. So, if H” on @,CTN has a unique fixed point
in Z[_, then the (weak) well-posedness of (3.6) implies that of (1.5). Thus, by (3.5), it

suffices to show that for any N > Ny, H” has a unique fixed point in 3sz WN By (3.7) and
the fixed point theorem, we only need to prove that for any N > Ny, H” is contractive with
respect to a complete metric on ﬁijV

(1) For any A > 0, consider the metric

Wk,)\,var(ﬂfa V) ‘= Sup e_At”Mt - Vt”k,varv JURZAS 1@]:7»5\[
te[0,7)

Let (X;"7,1;"") solve (3.6) for some Brownian motion WW; on a complete probability filtration
space (Q2,{#},P). By (3.9), (3.11) or (3.12) with |f[> € L (T), we find a constant ¢, > 0
depending on N such that

T [0%] 2
sup E<62f0 [Ts (X5 s ps)] ds|ﬁ0) S C%,

M,VEW,CT,’WN
T 2
sup E((/ gs(Xé”)dS)
HeZyy 0
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Then by Girsanov’s theorem,

¢
W, =W, —/ Ly (X5 v, pus)ds, t€0,7T)
0

is a Brownian motion under the probability Q := R;P, where
R, = — oo (D (XEY waype) dWe) =5 [ [0 (XEY s e )\st te0,7]
is a P-martingale. By (3.10), we may formulate (3.6) as
AX[ = by(XP7, vy)dt + oy (XP7) AW, + n(XP7) AT, ¢ € [0,T], Lypr = 7.
By the weak uniqueness due to (H2), the definition of || - ||x.par, (3.8) and (3.10), we obtain

1H7 (1) = HY (W) lkoar = sup [E[(R, = 1) F(X)]|

| FI<1+]- |

(3.15) < B[(1+[XP719)| R~ 1] <E[{E((1+ X797

NI
NI

}

{E(|R: - 1]*|#0) }

|

|

N|=

0)
< CINB[(1+ |57 (el 068 TP 1 7))

Moreover, (3.14) implies

E(efot ‘Fs(stlﬁst,lls)Pds _ 1|§0)

t
< E(efé IFo(XE wasise) s / T (X4, v, 1) [Pds ,%)

TENY

< ofe(( [ 1000 - i) |5)]
2
SCle Wk)\var(ﬂa { ((/ |fs XMW |2 —2A(t=s) >

< et 27y Wieawar (1, v)%, £ € 0,7,

D=

")

Combining this with (3.15) and the definition of Wy 44, we obtain

(3.16)  Wirwer(H (1), H'(1)) < C(NY(L+~(] - ")) erv/eN Wi swar (11, v), A > 0,

where

g(A) := sup Hf2e’2A(t")HE5(t) 10 as A1 oo.

t€[0,T7]

So, H7 is contractive on (t@gﬁv,wk,)\mr) for large enough A > 0.
(2) Let k > 1. We consider the metric Wm,wr = Wi xvar + Wi\, where

Wia(p,v) = sup e MWy (u, 1), p,v e L@kTyN
t€(0,7]
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By using (3.12) replacing (3.11), instead of (3.16) we find constants {C(N,\) > 0} >0 with
C(N,\) — 0 as A — oo such that

(3.17) Weswar (H (1), H'(v)) < C(N, )\)Wm,wr(u, v), A\>0,u,v€E QZkTVN
On the other hand, (3.13) yields

1

WaH (), 1) < s (€0 / (I = v+ W) pts )

t€[0,T]

~ o C(N)zx _~

< Wi s ar (11, 7) 50D (C<N> [ emenas ) < QO )y A >0,
te[0,7) 0 (2)\]{)%

Combining this with (3.17), we concluded that H” is contractive in ,@g 7N under the metric

Wh Avar When A is large enough, and hence finish the proof. O

Proof of Theorem 3.1. Let v € 2,(D) be fixed. By (3.2), for any i = 1,2, condition (Aab)
implies (A7"") for any 1 € C([0, 00); P4(D)). So, by Theorem 2.1, (A1) implies the weak
well-posedness of (3.6) for distributions in (D) with

(318)  H}(n) € Pu(D), ENT < o0, A>0,v€ P(D), e C([0,00); P4(D)),
and also implies the strong well-posedness of (3.6) in each situation of Theorem 3.1(2).

Moreover, by Lemma 2.5 and Lemma 2.7, (A1) implies that (3.9) holds for any (p,q) € 4,

as well as for (p,q) = (p2/2,¢2/2) under (A3?), (3.10) with (3.11) holds for & < 1 due to
(3.1), and (3.10) with (3.12) holds for £ > 1. Therefore, by Theorem 3.2, it remains to verify
(3.4), (3.7), (3.8), and (3.13) for £ > 1. Since (3.8) and (3.7) are trivial for £ = 0, we only

need to prove:
o (3.4);

8) and (3.7) for k > 0;

3) for k > 1 for case (i);
3

(3.
(3.1
e (3.13) for k > 1 for case (ii).
(a) We first prove that under (A1), there exit a constant ¢ > 0 and an increasing function

¢:[1,00) = (0, 00) such that for any m > 1 and u € 2/,

E(/Ot ‘fs(ng‘Y)\st)m <c(m)+ c(m)</0 HMSH%dS)m,

(3.19) : ¢
E exp [m/o ]fS(X;‘”)Fds] < ¢(m) exp [C/o H,usHids], t €[0,7],

where X/"7 solves (3.6). We will prove these estimates by Lemmas 2.5 and 2.7 for the
following reflecting SDE:

A ~

AdX, = by(X,)ds + 0o (X)dW, + n(X,)dl,, Xo= X475 € [0,1.
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By (2.57) under (A1)(1), and (2.21) under (A1)(2), for any m > 1 we find a constant
c1(m) > 0 such that

(3.20) Eem o (BP0 < 0 (m), ¢ € [0,T].

Let 7, = {[07(0507) (04 — by) }(X,), and
R, = elo(=dWs)=3 fy slPds pi = T, _/ yedr, s € [0,t].
0

By Girsanov’s theorem, (Ws)se[o,t] is a Brownian motion under R,P, and the SDE for X,
becomes ) ) ) . o R
dXs = VW (X,)ds + o4(X,)dW, + n(X,)dls, Xo= X§"7,s€[0,t].

So, by (3.2), (3.20) and Hélder’s inequality, we find constants ¢y, ¢, ¢(m) > 0 such that

Eem 3 V(X0 Pas _ B[R em 10080P] < (Ee2m I3 (R 5 (g R2))

< /o1 (2m) (Ee fé{w&”|2+<fs+auus||k>2}<f<s>ds)% < c(m)ecJo lusllids,

Next, taking co(m) > 0 large enough such that the function r — [log(r +ca(m))]™ is concave
for r > 0, so that this and Jensen’s inequality imply

(/ o (X5 ds) < E([log(ca(m) + ef(f\fs(xé‘”)ﬁdsﬂm)
< [log(ea(m) + Beh ™ < cfm) + c(m) </ Husuzd5>m

holds for some constant ¢(m) > 0. Therefore, (3.19) holds.
(b) Proof of (3.7). Simply denote X; = X{"". By (3.2), the boundedness of o and the

condition on b in (AJ”) which follows from (AJ”) due to Lemma 2.6, we find a constant
¢; > 0 such that

Ly, = —tr{UtUtv }+ vb ) Lab(l) = —tr{UtUtv P+ V; by

satisfy
o, () ~
Liup > LY b — |l — b | IVp| > —ci(fe + |lpeelle)

Since (n, p)|sp > 1, by It6’s formula we obtain
(3.21) dp(Xy) = —er{ fi(Xe) + || pellie }dt + dM, + di;

for some martingale M, with (M); < ct for some constant ¢ > 0. This together with (3.19)
yields that for some constant kg > 0,

k
Rt < k:0+k0E</ (F.(X +||us|]k}ds) .
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Combining this with (2.20), (3.3), (3.19) and ||o||s < oo, and using the formula
t t
Xy =Xo+ / b (X5)ds + / 0s(Xs)dW, + n(Xy)dl, ZLx, =,
0 0

we find constants k1, ks > 0 such that

t k
Eu+wxm»Skmrwwm>+hE( ﬂXA+uxX9H4mmadQ

(3.22)

[SEyi e

t
§k2+k2E</ {|XS|2+||MS||§}ds) , tel0,T].
0

(b1) When k > 2, by (3.22) we find a constant k3 > 0 such that
t
B+ X0 < ko [ (BN + li}ds, ¢€ 0.7)
0

By Gronwall’s lemma, and noting that p € ngyN, we find constant k4 > 0 such that

t

t
E(1+ [ X)) < ky + k4/ (1 + |lps|[F)ds < kg + k4NeNt/ e N=9ds < 2k, t € [0,T).
0 0

Taking Ny = 2k, we prove

sup e M (1+ | Hy(p)|f) = sup e ME(1+[X,[*) < No <N, N> No,p€ 2.,
te[0,T] t€[0,T]

so that (3.7) holds.
(b2) When k € (0,2), by BDG’s inequality, and by the same reason leading to (3.22), we
find constants ks, kg, k7 > 0 such that

‘ 3
Uy = E[ sup (1 + |Xs’k)} < ks + k5E(/ {17 + ||:us||z}d5>

s€[0,t]

t &
S%+mﬂ{hng| (/«Xﬁ@)}+&(/w%%®)
sel0,t 0

1 2
gk:6+§Ut+k7/ Usds+k6(/ ||us||ﬁds> , tel0,T].
0 0

By Gronwall’s lemma, we find constants kg, kg > 0 such that for any u € @,Z’ 7N ,

t
wu+m%SMS@+@(/mwmQ
0

t 5
< kg + ksNeNt( / e_2N(t_s)/kds> < ks + koN'"2eN ¢ e [0, 7).
0
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Thus, there exists Ny > 0 such that for any N > N,

sup e M(1+ | H,(1)|}) = sup e ME(1+ |X,[*) < ks + koN' "2 < N, pe P

k Y0
t€[0,T] t€[0,T)]

which implies (3.7). o

(¢) Proofs of (3.8) and (3.4). Simply denote (X;,[;) = (X7, 1"7) in (3.6) for u; = i1, t €
[0, T]; that is,
(3.23) dX, = b(X,)dt + o(X)dW, + n(X,)dl, ZLg, =7

By (A1) and Theorem 2.1, this SDE has a unique weak solution, and for any n > 1 there
exists a constant ¢ > 0 such that

(3.24) E| sup |Xt|”‘f(0] < (14 | Xo|"), Ee'r <.

te[0,T]

So, by (3.3), Lemma 2.5, Lemma 2.7 under (Ag’i)), and Girsanov’s theorem,

W, =W, — / {07 (0s07) T H X)W (X,) — by(X,) bds, t€[0,T]
is a Q-Brownian motion for Q := R7P, where
Ry := ef(f({ff;*(vsa:)*l}( DB (Xo)=bs (X)) }dWe)—3 [ {ok(os0t) ™ 1}(Xs){b?(Xs)—i?s(f(s)}ﬁds.

By (A1), (3.24), Lemma 2.5 when |f]* € f/g(T) for some (p,q) € ', and Lemma 2.7 when

(Agj’) holds, we find an increasing function F' such that
E(|Rr[?|Z) < E(efo HeEPlns—illewar+WalusdPds| 20y < (| llir),
where ||ullx.r := sup,co.r (| - |¥). Reformulating (3.23) as
dX, = b (X,)dt + oy (X)dW, + n(X,)dl, Ly, =1,

by the weak uniqueness we have £ o = Zxun, so that (3.24) with 2n replacing n implies

%}

3 R
) ) ERIFE < 1+ 1K) F el

|

90] :EQ[ sup | X,|"
te[0,T

te(0,7)

< (]E[ sup | Xy[*"

te[0,7)

Since sup TN || ¢/l is a finite increasing function of N, this implies (3.8).
el

Finally, since X; := X}"7 solves (1.5) with initial distribution 7 and p; = Ly, (i.e. pisthe
fixed point of H7), and since H” has a unique fixed point in 9’ N for some N > 0 dependmg

on v as proved in the proof of Theorem 2.1 using (3.9) and (3.7), we have Zx € Q”;;FVN,
hence (3.4) follows from (2.13).
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(d) Proof of (3.13) for k > 1 in case (7). Let u; and ©; be constructed for b* replacing
b in the proof of Theorem 2.2 under (A7") for d = 1. Let Xél) = XZ be F;-measurable
with 2 o) = 7,7 = 1,2. As explained in the beginning in the present proof, the following
0
reflecting SDEs are well-posed:
dX —b (X d (1 My 37D
= 0O¢ ,,ut) t+0-t(Xt )th +n(Xt )dlt s
dX? = by(XP, v)dt + oy (X)AW, + n(XP)di?, ¢ e [0,T).

Then instead of (2.78), the processes
Y= epx), i=1,2

satisfy

x{)
X

w,
I

dv Y = By(vV)dt + (V)W + {1 + v (X[Y)
ay,? = Bt(Y(Q) )dt + SV, + {1+ Ve (xP)
+ {bt Vt) - bt(Xt(2)7 Mt)}dt-

n(

} d
In( d

By (3.3), Yo(l) = YO(Q), Ito’s formula to |Yt(1) — Yt(2)|2k with this formula replacing (2.78), the
calculations in the proof of Theorem 2.2 under (AT?) for d = 1 yield that when X is large
enough,
t
|ﬁ”4@ﬁéﬁ/ww—wwwz+m
0
t
wer [V = VP LX)l vl + W) Y
0

t t
<q/WwW4?W%z+q/ﬂ%—%mw+wm@mf%ww@temﬂ
0 0

holds for some constant ¢; > 0 depending on N uniformly in u € PN some martingale

My, %, in (2.82), and

k'y’

%=+ /|f5X2 |%-1ds < . + /|f5X2 |*ds.

By the stochastic Gronwall lemma, Lemma 2.5, we find a constant c; > 0 depending on N
such that

2 t
(2, = ¥2])" < o [l = sl Wi}t
0

s€[0,¢]

which implies (3.13) since by (2.77) and the definition of H7, there exists a constant ¢ > 0
depending on N such that

1 2 1 2
B, — V2[R > o(EB]1XY — XPM? > Wy (H] (1), H) (v)*
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(e) Proof of (3.13) for k > 1 in case (ii). Let u)"" solve (2.83) for L; = Ly,,,b© = b,ﬁ‘”(-, Vi)
and the mollifying approximation b = by (-, 4,). Then in (2.87) the equation for & becomes

ag = L (X[0) = xa (X)) + (0 = o) (x ()
— (02 = B2 (XP) + b(X P, 1) — by(X ,ut)}dt
+{[(VOra] (X)) — (VO ™o (X 2) YW, + n(XM)di¥ — n(X?)dl”

So, as shown in step (d) by (3.3), instead of (2.96), we have

| Xt

ATm

tATm B R
X< Gl en [ X, = X2, PR, O
0
for some local martingale M,
t
% =% +/ |f(XP)2ds, te]0,T]
0

for % in (2.95), and due to Xél) = Xéz) = X in the present setting,
Gin(t) = / {eam?t=Y Z 60 = 60" (XY + (1t = Vsllnwar + Wil v5)) ™ s
0

By the stochastic Gronwall inequality, Lemma 2.7 and (3.19), we find a constant ¢ > 0 such
that

Wi (H (1), Hy () < <1E|X<” — XD hy?

3.25
(3:25) < climinf lim inf EG,,, / {Ilis = Vsllthsar + Wi, vs)** }ds.
m—r0o0 n—oo
Thus, (3.13) holds. O

3.2 Monotone case

For any k > 0, 2,(D) is a complete metric space under the L*-Wasserstein distance Wy,
where Wo(u, v) == 1| — V|| ver and

1

Vk _
)= it ([ ealtatanan) L wve 20) k>0
DxD

e (p,v)

In the following, we first study the well-posedness of (1.5) for distributions in 2, (D) with
k > 1, then extend to a setting including k = 1.

(A2) Let k > 1. (D) holds, b and o are bounded on bounded subsets of [0,00) x D x (D),
and the following two conditions hold.
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(1) For any T > 0 there exists a constant K > 0 such that

”Ut(xnu“) - O-t(ya V)“%IS + 2<$ - Y, bt(xnu) - bt(yv V>>+
< K{|lz -yl + |z — y[Wi(p,v) + LpsyWi(p,v)*}, t €[0,T), 2,y € D, p,v € P(D).

(2) There exists a subset 9D C dD such that
(3.26) (y —z,n(x)) >0, z€dD\ID, ye D,
and when OD # 0, there exists p € C2(D) such that plap = 0, (Vj,n)|op > 15, and
(3.27) sup — {[l(of")"Vall*(z) + ()", V)~ (2)} < oo, € C(0,T]; Zu(D)).

(t,2)€[0,T|x D

(A2)(1) is a monotone condition, when k > 2 it allows o;(z, 1) depending on p, but
when k € [1,2) it implies that o4(x, 1) = o4(2) does not depend on p.

(A2)(2) holds for 9D = §) when D is convex, and it holds for 9D = dD if D € C? and
for some r > 0

sup — {[l(ef")"Vpll*(z) + (0}, Vo)~ (2)} < o0, p€ C([0,T]; Zu(D)),

(t,@)€[0,T]xdpy D
where in the second case we may take p = hop for 0 < h € C*°([0,00)) with h(r) = r for

r <ro/2 and h(r) = ry for r > ry. In general, (A2)(2) includes the case where 0D is partly
convex and partly CZ.

Theorem 3.3. Assume (A2). Then (1.5) is well-posed for distributions in P (D), and for
any T > 0, there exist a constant C' > 0 and a map c : [1,00) — (0,00) such that for any
solution (X3, l;) of (1.5) with Lx, € P(D),

(3.28) E[ sup ]Xtﬂ < O(1+E| X",
te[0,7)
~ R T
(3.29) Ee" < ¢(n), n>1,lp ::/ 15p(Xy)dly.
0

Proof. Let X, be .Zy-measurable with v := Zx, € @k(D) Then
@ky—{NGC OT]@k 7}
is a complete space under the following metric for any A > 0:

Wz’T(/L, v) = sup e “Wy(u,vp), p,v € 9’,@
t€[0,T]

By Lemma 2.9, (A2) implies the well-posedness of the following reflecting SDE for any
nE Py

(3.30) dX} = b(XY, pe)dt + o (XY p) AW, + (XAl X = Xo,
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and the solution satisfies

(3.31) ]E[ sup ]Xf\k] < 00.
t€[0,T]

So, as explained in the proof of Theorem 3.2, for the well-posedness of (1.5), it suffices to
prove the contraction of the map

P, 3 H(p) = Lxe € Py,

under the metric WQ’T for large enough A > 0.
Denote

= | p(XEE, T = / Lp (X0, £ 0
0 0
By (1.2), (A2) and It6’s formula, for any k£ > 1 we find a constant ¢; > 0 such that
(3.32) d|X!' — X7|* < e {|X!" = XV|* + W, v)* }t + %yx; — X7 [F(dlf + dly) + dM,
for some martingale M; with
A(M)y < e {| X} = X712 + W (pee, 1) > }dt.

To estimate fot | X# — XY [*(dlF + dlY), we take
(3.33) 0 < h € C([0,00)) such that ' <0, h'(0) = —(1+ 2ry k), h(0) =1,
where 79 > 0 is in (1.2). Let

Fla.y) = e = y/*{(ho p)@) + (ho H)(y)}. =,y € D.
By (A2)(2), we have plop = 0 and Vaplap > 155, so that (3.33) and (1.2) imply

VaF (-, XU (XE)Al + VP (X, ) (XAl < —XF = X7[8(al + diy).
Therefore, by (A2) and applying [t6’s formula, we find a constant ¢, > 0 such that
AF(XE, XY) < e {|XE — XY+ Wiy, ) plt — | XF — XJE(EE + ) + A1,

for some martingale M,. This and F(X, X¥) = F(X,, Xo) = 0 imply
t ~ R ¢
(3.34) ]E/ | XF — XY|P(d* 4 dIY) < 02/ {E|XF — XY|* + Wi (ps, vs)* }ds.
0 0

Substituting (3.34) into (3.32) and applying BDG’s inequality, we find a constant c¢; > 0
such that
G = sup [XF— X5, te[0,T]

s€[0,t]
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satisfies
t

(3.35) E¢ < 03/ {E¢, +Wk(,us,ys)k}ds, t e [0,7T],
0

so that for any A > c3,

t t
E¢, < 63/ ecg(t_s)wk(,us,ys)de < Cgek/\tWQ’T(ﬂ, l/)k/ e~ (RA=cs3)(t=5) 4
0 0

kAt

(3.36)

W27T(M7 ]j)k’ t e [07 T]'
3

Therefore, H is contractive in W27T for large A\ > 0 as desired.
It remains to prove (3.28) and (3.29). Let X; be the unique solution to (1.5). By (A2),
for any k£ > 1, we find a constant ¢(k) > 0 such that

(3.37) d|Xy|" < c(B){1 + | X + EIX [ bt + k| X |F2(X0, 00( X, Ly, )AWE) + | X P,

where dl, := 15, (X;)dl;. By applying 1t6’s formula to (1 + |X;|*)(h o p)(X), similarly to
(3.34) we obtain

(3.38) E/t(l + | X, [F)dl, < &(k) /tE{l + | X ¥ }ds

for some constant ¢(k) > 0. Combining (3.38) with (3.37) and using Gronwall’s lemma, we
derive

E[ sup |Xtyk} < (1 +E| X))
te[0,T

for some constant ¢ > 0. Substituting this into (3.37) and using BDG’s inequality, we prove
(3.28) for some constant ¢ > 0.
Finally, by (A1)(2) and applying It6’s formula to p(X;), we prove (3.29). O

We now solve (1.5) for distributions in
Py(D) = {p e P(D):|lplly = n((] - ) < oo},

where 1) belongs to the following class for some x > 0:

W, = {1 € C%((0,50)) N C*([0,50)) : (0) = 0, ¥](om) > 0, 18/l < 00

(3.39) r/(r) + {07} () < s(r) for v > 0},
Let
(3.40) Wy (p,v) := inf (|l —y))w(dz,dy), p,v e Py(D).

ﬂ-ecg(}"ﬂ/) DxD

If ¢/ < 0 then Wy, is a complete metric on &;,. In general, it is only a complete quasi-metric
since the triangle inequality not necessarily holds.
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(A3) (D) holds, oy(x, ) = o(x) does not depend on i, b and o are bounded on bounded
subsets of [0,00) X D x Py(D) for some ¢ € V. and k > 0. Moreover, for any T > 0
there exists a constant K > 0 such that

loe(2) = ae(W)llzrs + 202 — y, belw, 1) — bi(y, v))*
< Klz—yl{|lz —y| + Wy(p,v)}, t€0,T],2,y € D,p,ve Py(D).

Theorem 3.4. Assume (A3) and (A2)(2). Then (1.5) is well-posed for distributions in
Py(D), and

(3.41) E[ sup w(yxty)} <00, T>0,%y, € P2yD).

t€[0,T]
Proof. Let Xy be Fy-measurable with Ey (| X|) < oo, and consider the path space
Py = {pneC([0,T]; Py(D)) : o = Lx, }-
For any A > 0, the quasi-metric

Wou(p,v) := sup e MWy (e, 1), p,v € ﬁfg
te[0,T

is complete. By Lemma 2.9, (A3) implies the well-posedness of the SDE (3.30) for any
p € Z%. By (A2)(2) and It6’s formula for v := /1 +[X}' — X[?, we find a constant
¢; > 0 such that

dye < er{llpelly + et + 7 XY — Xo, o (X[)AWS) + di,

where di* := 15, (X}*)dl/*. Combining this with ¢ € W, and the linear growth of ||o|| implied
by (A3), we find a constant ¢, > 0 such that

(342) () < eafllpells + 0 (ve) }dt + ¢ (v XY = Xo, o (X[ )AWE) + ¢ ()l
Next, by (A2)(2), ¥ € ¥, which implies ¢'(y;) < k() since v, > 1, and applying It6’s
formula to ¥ () {||5]lcc — A(X}')}, we find a constant ¢3 > 0 such that similarly to (3.34),

(3.43) E/O Y (s)dll < KE/O V()i < CaE/O {1+ llpslls + (1 XED s, ¢ € [0,T].

Combining this with (3.42), r¢/(r) < k¥ (r), the linear growth of o; ensured by (A3), and
applying BDG’s inequality, we obtain

E| sup ¢(|X/])] < oc.
te[0,7)

Consequently, (3.41) holds for solutions of (1.5) with Zx. € 22]. So, as explained in the
proof of Theorem 3.2, it remains to prove the contraction of the map

Py > p— H(p) = Lxu € P
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under the metric W, ,, for large enough A > 0.
By (1.2), (A2)(2), [|¢'|lc < 0o and 79'(r) < kt)(r), we obtain

(3.44) Valo(l —uD}@) < 5 -Lap(e)b(le =), w€aD,y € D.

Combining this with (A3) and It6’s formula, we find a constant ¢4 > 0 such that
(3.45) dw(| Xy = X)) < exf (I XE = X))+ Wy, ) bt -earp (| X7 = X7 ) (A +ly) -y

for some martingale M,.
On the other hand, let ¢ = 52 and take h € C'*°([0,00)) with ' > 0, h(r) = r for r < ¢/2
and h(r) = e for r > . Consider

= (XY = XP{2e = ho pXY) —ho p(X)}-
By (3.44), (A2)(2), ¢ = 52 and It6’s formula, we find a constant ¢; > 0 such that

2ek = ~ ~
e < s {(XE = XY1) W) Yt 4 (57— DJ(XE = XY (dE -+ dlf) + b,
1 - - -
= es{W(1XY = XY1) + Wo s 1)}t — Su(1 XY = X7+ dTY) + A,

Since X} = X{ = X, this implies
t ~ ~ t
B [ (X2 = XD+ A7) < 200 [ {00 - X2 + Wl )}
0 0
Substituting this into (3.45), we find a constant ¢g > 0 such that
t
W), Hi(v)) < BO(XE = X7) < o [ Walinv)ds, 1 0.7),
0
so that H is contractive in W, 4, for large A > 0. Therefore, the proof is finished. m

4 Log-Harnack inequality and applications

As a limit version of the dimension-free Harnack inequality with power founded in [44], the
log-Harnack inequality was introduced in [47] for diffusion semigroups on Riemannian man-
ifolds, see [49] for a general theory on these types of Harnack inequalities and applications.
In this section, we study the log-Harnack inequality and applications for DDRSDEs with
singular drift or under monotone conditions.

4.1 Singular case
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(A4) Let 0D € CP* and T > 0. oy, ) = oy(x), and there exists ji € Py(D) such that

(Aab) holds with py > 2, where b := b(-, i) with reqular term b . Moreover, there exist
a constant o >0 and 1 < f, f € Lq2 (T') such that

(41) (@) = b (@) < filz) +allulle, pe PaD), (t,3) €[0,T) x D,

(42)  |bi(2) = ) (2)| < flx)Wa(p,v), p,v € Po(D),(t,x) € [0,T] x D.

According to Theorem 3.1, (A4) implies the well-posedness of (1.5) up to time 71" for
distributions in 5(D). Let

Pru= %, for X;solving (1.5) with Zx, = u € P(D), t>0.
We consider
PAW) = [ FA(P0. 2 0.0€ ZuD),f € B(D).
where %,,(D) is the class of all bounded measurable functions on D.
Theorem 4.1. Assume (A4). For any N > 0, let Py n(D) :={u € Po(D) : ||ulla < N}.

(1) For any N > 0, there exists a constant C(N) > 0 such that for any v € Py x(D) and
any t € [0, T, the following inequalities hold:

(4.3) WP, Piv)* < C(N)Wa(p,v)?, € P5(D),

(44)  Pilog f) <log Pif (1) + o Wa(n, )2, 0 < f € ByD).n € Pan(D).

C(N)

—WQ(:UH V)27 ne QQ,N(DL

@s) P Pl t

< Ent(Pv|Pp) <

var

e [PI0) = RS /2O
(46) VRSl = tmsup e Shi < V2, f € (D).

(2) If (4.2) holds for o = 0, then there exists a constant C' > 0 such that
(4.7) Wo (P}, Prv)? < CWy(pu,v)?, v € Py (D).

Moreover, if either || flloo + || flloo < 00 01 D is bounded, then (4.4)-(4.6) hold for some
constant C replacing C(N) and all p,v € P5(D).
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Proof. (1) Since the relative entropy of p with respect to v is given by

Ent(vjp) = sup  v(logg),
g€#+(D),u(9)=1

(4.4) is equivalent to

(43) Ent (PP < COW0)2, 1€ (0.T], 1.0 € Pan(D).

By Pinsker’s inequality
1
Sl = v, < Ent(wln),

we conclude that (4.8) implies (4.5), which further yields (4.6). So, we only need to prove
(4.3) and (4.8). B
For any u,v € P5(D), let X, solve (1.5) for £x, = i, and denote

= Pip=%x,, vv:=Fv, =%, tcl0,T],
where X, solves

dX; = by( Xy, vp)dt + o (Xy)dW;, t € [0,T], Xo = Xo.
Let o and b := b(-, i) = b + b satisfy (Agb) Consider the decomposition

b = by () = 0 + 00, b0 =y — bV,

By (3.4) and (4.2), there exists a constant K (/N) > 0 such that
(49) 0 < 101+ KN fey lvl2 < N, t e [0.7)

So, by Theorem 2.2 and Theorem 2.3, the estimate (2.14) and the log-Harnack inequality
(2.18) hold for solutions of (2.1) with b” replacing b with a constant depending on N; that
is, there exists a constant ¢;(N) > 0 such that

(4.10) Wy (i, )* < er(N)Wy(p, v)?, t € 1[0,T], n € Po(D),
(4.11) Ent(v|) = f>osy(1;):1(Ptf)<y) < 01(tN)W2(,u, V)2, t€(0,T], u€ Py(D).

Moreover, repeating step (e) in the proof of Theorem 2.2 for k = 2 and (X;, X;) replacing
(Xt(l), Xt(Q)), and using (4.2) replacing (3.3), instead of (3.25) where ||s — vs|[3 ., disappears
in the present case, we derive

¢
WQ(,Utaﬂt)4 < (E|X; — Xt‘Q)Q < 02(N)/ WZ(usal/s)4d37 te0,T]
0
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for some constant co(N) > 0. This together with (4.10) yields
W, ve)* < 8Wo(pue, fie)* + 8Wa(fir, 1)
t
< 8er(N)2Wa (1, 1) + 8es(N) / Wa(ta, ) Ads, t € [0,T].
0

Therefore, Gronwall’s inequality implies (4.3) for some constant C'(N) > 0.
On the other hand, let ||u|l2 < N and define

Ry := exp [—/tm,dvm —lf |vs|2ds},
¥s 1= {05 (0s07) T () [BE (X5) = B(X)].

By Girsanov’s theorem, we obtain

() ane={(Fec0)} —B{(BlRIX)} <ERE

As shown in [19, p 14-15], by combining this with the Young inequality (see [2, Lemma 2.4])

(4.12) 1(fg) < u(flog f) +logu(e?), f,g>0,u(f)=1,pue P(D),
we derive
dv, dv, dji,
Ent = | d log — + log d
el / o8 <dut> " /D{ ¢ qm dut} .
_ dy, diy dﬁt _
. = Ent lo di, < 2Ent | d

(4.13) n (Vt‘/lt)+/D (d,u) gd o it nt (v |fi) + log - [t

djz
= 2Ent (v i) + log/_ <m> dpy < 2Ent(v|ji) + log ER}.
D t

By (4.2), (4.3), ||[0*(06*)||eo < 00 and (2.57) due to (A5""), we find constants c5(N), c4(N) >
0 such that

(E 2)? < Fe ca(NYWa(uw)? [ fo(Xs)2ds

+E|c W2 :u7 (/ fs dS)ec3(N)W2 pov) fo fs(X )2d3:|

1
S 1 +C3(N)W2 ,LL, |: (/ fs s ) :| [Ee263( )WQ(“’V)2 f(ffs(XS)st] ?

< 1+ a(N)Wa(p,v)*.

Combining this with (4.11) and (4.13), we prove (4.8) for some constant C'(N) > 0.

(2) When a = 0, (4.9) holds for K(N) = K independent of N, so that (4.10) and (4.11)
hold for some constant C;(N) = C; > 0 independent of N and all p,v € P5(D), and in
(4.14) the constant C5(NN) = C5 is independent of N as well. Consequently, (4.7) holds and

(4.14)

E[Rg] < EeCsWa(iv)? [y f+(Xs)?ds < eCWa(u.v)?

if || f]looc < 00, and when D is bounded we conclude that C4y(N) = Cy in (4.14) is uniform
in N > 0.. Therefore, (4.4) and hence its consequent inequalities hold for some constant
independent of N. ]
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4.2 Monotone case

(A5) (D) and (A2)(2) hold, o¢(x, 1) = o1(x) does not depend on p and is locally bounded on
[0,00) x D, oo™ is invertible, b is bounded on bounded subsets of [0,00) x R x P, (D),
and for any T > O there exists a constant L > 0 such that

lov(2) = o:(Wl7zs + 20a =y, bulw, 1) = bi(y, )" < Ll — y|* + Llz — y|Wa(p, v),
lov(2)(owoy) (@) < L, t€[0,T],2,y € D,p,v € Po(D).
By Theorem 3.3, (A5) implies that (1.5) is well-posed for distributions in %y(D).

Theorem 4.2. Assume (A5). Then for any T > 0, there exists a constant C' > 0 such that
the following inequalities hold for allt € (0,T] and v € Py(D):

(4'15) W2(Pt*u7 Pt*y>2 < CWQ(:“) V)27 IS '@2([))7
C _ _
(4.16) Plog f(v) <log P,f(u) + ?WQ(/,L, V)2, 0< fe€B(D),uc PyD),
1 * * 2 * * C 2 B
(417) §||Ptu“_PtV||var < Ent(Pt V|Pt M) < ?Wg(,u, V) y HE l@2(D)

L [Pif (1) = Pf W) _ V20|l
(4.18) IVEf () lw, ‘_ulfﬁlfnu\\%z Wo(n.0) < v

Proof. As explained in the proof of Theorem 4.1 that it suffices to prove (4.15) and (4.16).
To this end, we modify the proof of [50, Theorem 4.1] as follows.
Firstly, for ug, vy € P(D), let (Xo, Yy) be Fyp-measurable such that

(419) "%XO = Mo, XYO = 1), E|X0 — Y()|2 = WQ(MO) V0)2.

Denote
pe = Plug, vy = Py, t>0.

Let X, solve (1.5). We have
(4.20) dX, = by(Xy, p)dt 4 oy (X)) AW, + n(X,)dl*, t€[0,T],
where ¥ is the local time of X; on dD. Next, for any t, € (0,7] consider the SDE

av, ={bi(¥;, 1) + Ut(m{ﬁ(atﬁ);}(){”(& —%) bt

+ o (V) AW, +n(Y)dlY, t€[0,),

(4.21)
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where [} is the local time of Y; on dD. For the constant L > 0 in (A5), let

1
(4.22) ¢ = Z(1 - eL(t_t°)>, t € [0,ty).

The construction of Y; goes back to [48] for the classical SDEs, see also [50] for the extension
to DDSDEs. According to Theorem 2.8, (A5) implies that (4.21) has a unique solution up

to times y
n
Tom i= n(—)i—l /\inf{t € [0,to) : |Yy| > m}, n,m>1.

Let h be in (3.33) for k = 2. By (1.2) and (A2)(2), we have

(V{1 +hop)| —zo’ }(Ye),n(Yy))dll <0, =€ D,
so that (A5), for any n > 1 we find a constant ¢(n) > 0 such that

d{ 1+ hop)(Y)|Y; — xol? }<c )1+ VA dt +dM;, t €10, Tpm], n,m > 1

holds for some martingale M,;. This implies lim,, o Ty m = éo—ﬁl, and hence (4.21) has a
unique solution up to time #o.

Next, let Y; solve the SDE
(4.23) AY; = by (Y, v)dt + 0y (Vy)dW, + n(V)dly , Yo = Yo,t € [0, 7],

where lf is the local time of ¥; on dD. By (A5), (1.2) and It6’s formula, we find a constant
¢ > 0 such that

t
EWFWWSWmeV+@/{H&—KF+WMm%VMS
(4.24) - 0 )
+_E/ |Xs_}~/s’2(dl~§+djz/>7 Le [OuT]

To 0

For h in (3.33) with k£ = 2, we deduce from (A2)(2) that

— X, — V2l

(4.25) <V{|Xt—-|2(hop(Xt)—i—hop)}(Y; Y;g >d?f <
| I < —|X, = YA

(V{T: — Pl o p(T) + o p)} (X,),m(X,) )l
So, applying 1t0’s formula to
= |Xe = Yo (ho p(Xo) + ho p(Yh)),
and using (A5) and (1.2), we find a constant ¢z > 0 such that
gy < es{| Xy = Vil + Walpu, )2 Yt + dM, — | X, — Yi[P(d¥ + dl))

holds for some martingale M;. This together with (4.24) yields
t
BIX, ~ Vi < Wa(uo,v0)? + B+ (ca+ ca) [ {BIX = T 4 Wali, )}
0
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t
< 3W2(,u0, 1/0)2 + 2(02 + 03)/ E|Xs — Y5|2d8, t € [O,T],

0

where we have used the fact that Wa(yu,, v5)* < E[X, — Y,|? by definition. By Gronwall’s
lemma, this and Wy (i, 14)? < E| X, — Y;|?, we find a constant ¢4 > 0 such that

(4.26) Wa (g, 2)? < EIX, = Vi < eaWa(po, 10)?, t € [0, T,

so that (4.15) holds.
Moreover, for any n > 1, let

ton .
(4.27) T 1=~ i - Anf{t € [0,0) 1 | X, = Yi| > n}.

By Girsanov’s theorem,
t
~ 1
W, =W, +/ g{a;‘(asaj;)—1}(Xs)(Xs —Y,)ds, t€0,7,)
0 S

is an m-dimensional Brownian motion under the probability Q,, := R,P, where

* *y—1 2
T & (ol (0u0l) THX) (XamYa) dWe)— § fn Hoalrees) Ol g,

(4.28) R,:=¢e ° & €52
Then (4.20) and (4.21) imply

X; Y,
ax, = {b(Xi, ) = ==
t

AY; = b(Yy, v)dt 4 o, (Y;)dW; +n(Y)dlY, t € [0,7,],n > 1.

1 X
(4.29) }dt + 0 (Xo)dW, + n(X,)dl;,

Combining this with (A5), (1.2), (4.26) and [t6’s formula, we obtain

V2
d’Xt }/t‘ _th
&
{L|Xt — Y + LIX;, — Vi Wy (s, 14)) X —Yt|2(2+§ﬁ)}dt
- & &
X - Vi -
(4.30) + %(dlzx +di)
2 2 |1X - YiP2+ ¢ - L& - ~ Y2, -
< {L Wg(ﬂtﬂ/t) _| t tl( +2§t gt 2)}dt+u(dlg{+dl~z/)
2 & &
L2 W,y (119, 11)? | Xy — Y2 X - Y| -
_{ 2 267 } g i di), tefon),

where dM; := £%<Xt — Y, {0 (Xy) — at(}ﬁ)}dVVt> is a Q,-martingale. By (4.25) for (Y;,1))
replacing (Y, l?), and applying It6’s formula to v, := \ng_thF(h o p(Xy) + hop(Y;)), we find
a constant ¢s > 0 such that

X, — Y2 -

e (@ +dly), te0,7),n>1

dyy < esydt + dM; — ¢
¢
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holds for some Q,-martingale M,. This and (4.19) imply that for some constants cg, c; > 0,
Eg, Yinm, < e“TEyy < %WQ(IJJ(L )2,
Eq, /0 %(dzx +dlY) < WQ(MO,VO) Cn>1,t>0.

Combining this with (4.26), (4.30) and (A5), we derive

E[R, log R,] = Eg,[log R,] = %E@n /0 [{or(0s07)~ |}£(8|2 (X, — YS)PdS

(4.31) .
< t—WQ(Mo,Vo)Q; n=>1
0
for some constant ¢ > 0 uniformly in ¢y € (0,7T). Therefore, by the martingale convergence
theorem, R, := lim,,_, R, exists, and

ot (00t) 1 t ol (rs0d) T JXa)(Xo Yo)I? 4
N, i=e¢ s {o3(0s0) T HXS) (Xs=Y50),dWe) =3 [ AL d . te0,t)

is a P-martingale. .
Finally, let Q := N, [P. By Girsanov’s theorem, (W});cj0.4,) is an m-dimensional Brownian
motion under the probability Q, and (X}):c(o.4) solves the SDE

X, —Y, .
(4.32) dX, = {bt(Xt,ut) - tg t}dt + oy (X)dW, + n(X,)dIX, te[0,t).

t

Let (Y3)ie[o,t0) SOlve
(4.33) AY; = b(Yy, 1) dt 4+ 0, (Y)dW, + n(Y,)dlY, ¢ € [0,t].

By the well-posedness of (1.5), this extends the second equation in (4.29) with £y, o = v,
Moreover, (4.31) and Fatou’s lemma implies

1 to X.—Y. 2

_EQ/ [{o3(0s03) 1 HX . s)(Xs 5)| ds

(4.34) 2 " Jo €| .

= E[N;, log N;,] < liminf E[R, log R,] < t—WQ(uo, )%,
n—oo 0

which in particular implies Q(X;, = Y;,) = 1. Indeed, by (A5), if X; (w) # Y, (w) then
there exists a small constant ¢ > 0 such that

{03 (0:0?) " HX) (X = Yo)IP(w) 2 &, s € [to — &, o],

which implies [)° Hos(oaos) ES(')Z(S)(XS_YS)P(w)ds = 00. So, (4.34) implies Q(X;, = Y;,) = L.

Combining this with the Young’s inequality (4.12), we arrive at
Py, log f(ro) = E[Ny, log f(Yy,)] = E[Ny, log f(Xy,)] < E[Ny, log Ny + log E[f (Xy,)]
c
< log P, f (ko) + t—Wz(Mo, w)?, to € (0,T].
0

Hence, (4.16) holds. O
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5 Exponential ergodicity

When (b;,0,) = (b,0) does not depend on ¢, the SDE (1.5) is time homogeneous. In this
case, a probability measure fi is called P-invariant, if P/ji1 = j holds for all ¢ > 0, where
Pl = ZLx, for the solution with Zx, = p.

There are already many results derived for the ergodicity of McKean-Vlasov SDEs (i.e.
DDSDEs) on RY, see for instances [9, 11, 14, 15, 16, 26, 28, 41] among other references.
It should be possible to extend most results to the reflecting setting. In this section, we
investigate the exponential convergence of P}y to it as ¢ — oo for three different situations
considered in [51] for DDSDEs. For simplicity, we only consider convex D, for which the
local time on boundary does not make trouble in the study. When D is non-convex, we may
make a conformal change of metric to make it convex so that our proofs apply to the new
metric in place of the usual distance |z — y|, see [46, 49] for the technique developed for
diffusion processes on non-convex domains. We leave this to the future study.

5.1 Dissipative case: exponential convergence in entropy and W,

In this part, we study the exponential ergodicity of P in entropy and Wy, such that the
corresponding result derived recently in [33] for DDSDEs is extended to DDRSDEs.

Theorem 5.1. Let D be convex and (o, b) satisfy (A2) withk = 2. Let K1, Ky € L, .([0,00); R)
such that

. 2(bu(r. 1) — by, )2~ ) + o) — o0l s
. < Ki(t)e =yl + Ka(t)Wa(p,v)?, ¢ > 0.

Then (1.5) is well-posed for distributions in P5(D), and P} satisfies

(5.2) Wy (P, Prv)? < efot(KlJrKQ)(r)d’”Wg(u, V), v € Py(D), t >0,

Consequently, the following assertions hold.

(1) If (by,00) does not depend on t and A = —(K; + K3) > 0, then P} has a unique
wnvariant probability measure i1 such that

(53) WQ(R*“7/7J)2 < e_)‘twg(,u,ﬁ)Q, RS ‘QQ(D)v t=>0.

If moreover o(x, u) = o¢(x) does not depend on pu and oo* is invertible with |||l +
|(00*) 7Yoo < 00, then there exists a constant ¢ > 0 such that

(5.4) Ent(P; uljt) < ce MW, i), > 1€ Py(D).

(2) If moreover o(x, ) = o(p) does not depend on x, then there exists a constant ¢ > 0
such that i1 satisfies the following log-Sobolev inequality and Talagrand inequality:

(5.5) a(f*log %) < cu(IVf), [ e Cy(RY), a(f?) =1,
(5.6) Wo (s, 1)* < cEnt(p|i), pe P,
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(3) If furthermore o(x, u) = o is constant with oo* invertible, then there exists a constant
¢ > 0 such that

Wo (P s, 1) + Ent(P/ u|fz)

2.7 _
(5.7) < ce ™ min {Wa(p, 0)?, Ent(ulp)}, t>1,u € Po(D).

Proof. The well-posedness is ensured by Theorem 3.3. Sine D is convex, (1.3) holds. For
any u,v € P5(D), let X[ and X} be Fy-measurable such that

(5.8) Ly =1, Lxy =v, E|X{ - XgP =Wa(u,v)%,

By (5.1), (1.3), and applying Itd’s formula to | X} — X7 |?, where (X!');>0 and (X})¢>o solve
(1.5), we obtain

dI X} — X7 1P < {K(8)| X} = X7+ Ko (t)Wa (P, Piv)? pdt + dM,

for some martingale M;. Combining this with (5.8), Wy(P}u, Pfv)? < E|X} — X/]?, and
Gronwall’s lemma, we prove (5.2).

(1) Let (by,0¢) do not depend on ¢t and A := —(K; + K3) > 0. Then (5.2) implies the
uniqueness of P-invariant probability measure i € P,(D) and (5.3).

Next, the existence of i follows from a standard argument by showing that for xy € D,
{P} 0z h+>0 18 @ Wo-Cauchy family as ¢ — oo. Since the term of local time does not make
trouble due to (1.3), the proof is completely similar to that of [50, Theorem 3.1] for the case
D =R? so we skip the details to save space.

Finally, when o.(z, 1) = o4(x) and oo* is invertible with ||o||ee + [|(00*) 7|l < o0, by
Theorem 4.2, (A2) with £ = 2 implies the log-Harnack inequality

Ent(Puli) < cWo(u, 1)?, 1€ Po(D)

for some constant ¢ > 0. So, (5.4) follows from (5.3) and P} = PfPf | fort > 1.
(2) Let o(z, u) = o(p) be independent of x. Consider the SDE

(5.9) dX;7 = b(X7, p)dt + o(p)dW, + n(X7)dl;, t>s,X§=xz€D.
The associated Markov semigroup {P,};>o is given by
Pif(z) =Ef(X"), t>0,f € By(D),r € D.
Let P be given by
(Brp)(f) == u(Bif), pe 2(D),t>0,f € #(D).
Since (5.1) with x = y implies Ky > 0, we have
(5.10) Ky <-)A<0.

As explained in the above proofs of (5.2) and (5.3), this implies that P} has a unique invariant
probability measure i such that

(5.11) lim Pif(z) = a(f), fe€Cy(D),xeD.
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Since [ is the unique invariant probability measure of P, and when the initial distribution
is 1, the SDE (5.9) coincides with (1.5), we conclude that fi = . Hence, (5.11) yields

(5.12) i(F) = lm Pof(za). f € Cy(D)o € D

Now, by It6’s formula, (1.3) and (5.1) with (b, 0;) independent of ¢, we obtain
1XF — XP)2 <Mz —yl)?, 2,y€ D,t>0.

This and (5.10) imply

|Pif () — Pif ()| E|f(XF) - F(XD)

|V P,.f(z)| := lim sup < lim sup
(5.13) Yy |z —y| Yy |z —y|
— AL . |f(th) _f(Xty)| —\t/2 1/
<e 2 limsupE _ — =e PV fl(x), t>0,feCy(D).
yre | XF — XY

On the other hand, we have
8tptf:-iptf7 <n7vptf>|8D:()7 tZOafGCJQV(D))

where C%,(D) is the set of f € CZ(D) satisfying with (n, Vf)|sp = 0, and
- 1
L:= §tr{(66*)v2} + Vip, 0:=0(n), s>0.

So, by Itd’s formula, for any € > 0 and f € C%,(D),

|6*V P,_, f2|?

{(Proale+ P)los Prsle + P} (X) = {5

}dt+dM§, s €10,t]

holds for some martingale (M?)scjo4. Combining this with (5.13), we find a constant ¢ > 0
such that for any f € C%(R?),

B{(e+ f)log(e + fA)} — (e + Bif?) log(e + P.f?)

t ‘5,*vpt7 f2|2 t o
= | P.m———" " ds < 4(c1|]| 2/ e MNP P IV f|2ds
| P s < gl IV

¢
= 4(cl||a||oo)2(pt|Vf|2)/ e M9 ds < cpt|Vf|2, t>0,e>0.
0

By letting first € | 0 then t — oo, we deduce from this and (5.12) that

a(f*log f?) < ei(IV ), f e CX(D),a(f*) =1

holds for some constant co > 0. This implies (5.5) by an approximation argument, indeed
the inequality holds for f € H'?(j1) with u(f?) = 1. According to Lemma 5.2 below, (5.6)
holds.

(3) Let o be constant with oo* invertible. Then (5.7) follows from (5.3), (5.4) and
(5.6). O
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The following result on the Talagrand inequality is known by [6] when fi(dz) = ¢V®dz
for some V € C(RY), which is first proved in [31] on Riemannian manifolds under a curvature
condition, see also [45] for more general results. We extend it to general probability measures
for the above application to fi which is supported on D rather than R?.

Lemma 5.2. Let ¢ > 0 be a constant and i € P5(R?). Then the log-Sobolev inequality (5.5)
implies (5.6).

Proof. By an approximation argument, we only need to prove for yu = pp for some density
0 € Cy(RY) Let Pt(o) be the Ornstein-Uhlenbeck semigroup generated by A — z - V on R
We have

VPO f < PV, PO(f10g £2) < tPONV R+ (PO f)10g PO, f € CHRY.
Combining this with (5.5), we see that i, := (P”)*/i satisfies
fir(f21og f7) = (P (f21og f2)) < tiu([VF12) + a((P” £2)log P £?)
< tu(|VIT°) + cﬂ(\vW 2) + (/%) log fu(f°)
< (t+ (VI + m(f)log i (f?), fe Cy(RY), >0,

where the last step follows from the gradient estimate VP f| < P{”|V f|, which and the

Schwarz inequality imply
|VP<°>f2|2 _ BUrviny

‘V v f2 (0)f2

Therefore, fi; satisfies the log-Sobolev mequality with constant ¢ + ¢ and has smooth strictly
positive density. According to [6], we have

Wa(p, fir)® < (t+ )Ent(ulfi), p € Pao(R?).

Since W (jig, ji) — 0 as t — 0, and u = i with o € Cy(R?), this implies

IV,

Wa(p, f)* = thz(Maﬁt) < lim(t + ¢)Ent (u|/i,)
= hm(t—f-c) ((P( '0)log P” 0) = cji(olog o).

Therefore, (5.6) holds. O

5.2 Partially dissipative case: exponential convergence in W,

In this part, we consider the partially dissipative case such that [51, Theorem 3.1] is extended
to the reflecting setting. Let ¢ € ¥, and W, be given in (3.40). Then W, is a complete
quasi-metric on the space

Zy(D) = {pe 2(D): p(] ) < oo}.
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(A6) oy(z, ) = oy(x) does not depend on .

(1) (Ellipticity) There exist o € C([0,00); (0,00)) and 6 € B([0,00) x D; R* ® RY) such
that
oi(x)oy(2)" = ala + 64(2)64(x)", t > 0,2 € D.

(2) (Partial dissipativity) Let v € Y, in (3.39) for some k > 0, v € C([0,00)) with
v(r) < Kr for some constant K > 0 and all r > 0, such that

(5.14) 200" (r) + (V) (r) < =Gb(r), r=0,6>0

holds for some for some ¢ € C(]0,00);R). Moreover, b € C([0,00) x D x 24(D)), and
there ezists 0 € C([0,00);[0,00)) such that

(bl ) = bl ), 2 =) + 51160(x) — 50l s

(5.15) ) .
< |z —yl{0Wy(p.v) +1(lx —yD}, t=0,2,y € D, p,v € Py(D).

Theorem 5.3. Let D be convex and assumei(AG), where " < 0 if 6 is non-constant. Then
(1.5) is well-posed for distributions in Py(D), and P} satisfies

(5.16)  Wy(Prp, Pv) < e  Ilemlvlddogy, (1 0) -t > 0,00 € 2,(D).

Consequently, if (b, 0v,Ct,0;) do not depend on t and ¢ > 0||¢'||w, then P has a unique
invariant probability measure i € Py (D) such that

(5.17) Wy (P, ) < o O (1), ¢ >0, € (D).

Proof. Since D is convex, the proof is similar to that of [51, Theorem 3.1]. We outline it
below for complement.

By Theorem 3.4, the well-posedness follows from (A6)(1) and (A6)(2). Next, according
to the proof of Theorem 5.1(2) with Wy, replacing Wy, the second assertion follows from the
first. So, in the following we only prove (5.16).

For any s > 0, let (X, Y;) be Z;-measurable such that

(5.18) L. = Pip, B, = Plv, W, (P, Piv) = E(|X, - Y.

Let Wt(l) and Wt@) be two independent d-dimensional Brownian motions and consider the
following SDE:

(5.19) dX; = bi(X,, Prp)dt + ardW ) + 6,(X)dW +n(X)dlY, t> s,

where [X is the local time of X; on dD. By Theorem 5.1, (A6)(1) and (A6)(2) imply that
this SDE is well-posed and

Vo dW Y 4 6(X) AW, = oy(X,)dW,

61



for the m-dimensional Brownian motion
t
W, = / {o7(0,00) " XV dWY +6,(X,)dWP ), ¢ > s,

so that the weak uniqueness of (1.5) implies Zx, = P}, P = Pu,t > s, where for v € 2,
we denote P,y = Ly, for X; solving (5.19) with Ly, = 7.
To construct the coupling with reflection, let

xr —

u(m,y):| r#ycR

x—yl|’
We consider the SDE for ¢t > s:
(5.20) dY; = by(Y;, Prv)dt+/ar {1i—2u(X;, V) @u(Xy, Yi) L yery bW 46, (V) AW alY,

where
T:=inf{t > s:Y, = X;}

is the coupling time. Since the coefficients in noises are Lipschitz continuous outside a
neighborhood of the diagonal, according to Theorem 2.8, (5.20) has a unique solution up to
the coupling time 7. When ¢ > 7, the equation of Y; becomes

(5.21) AY; = by(Yy, Prv)dt 4 JardW " + 6,(Y;)dw,? +diY,

which is well-posed under (A6)(1) and (A6)(2) according to Theorem 3.4. So, (5.20) is
well-posed and %y, = P;v by the same reason leading to #x, = P/u. Since D is convex,
(1.3) holds. So, by (A6)(1) and (A6)(2) for ¢» € ¥ with ¥ < 0 when &; is non-constant,
and applying It6’s formula, we obtain

dp(|X; = Yil) <{00'(1X; = Vi)W (P 11, Pv) — Gab(| X — Yil) pdt
(5.22) +P([ X = Vi) [2¢a_t<U(Xt, i), th(”>
+ <u(Xt, Y2, (6:(X:) — &t(Y;))dWFN, s<t<r.
By a standard argument and noting that ¢ (| X¢ar, Yiar|)1{r<sp = 0, this implies
- SR [(| Xonr — Yine|)] = E[el SPEY (| Xpnr — Yins])]

tAT
SEG(X, — Ya]) + ¢/ / 6,0l SWW, (PP, Pro)dr, > s.

Consequently,

Ew(lxt/\T - }/;f/\‘r’)

(523) ted ’ AT te d
< HSBUX, V) + [ [ 0 F TP P, €2 s
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On the other hand, when ¢ > 7, by (A6)(2) and applying It6’s formula for (5.19) and (5.21),
we find a constant C' > 0 such that

Ay (|X; — Yi|) <{CW(|1Xs — Yi)dt + 0|0 || oo W (P 2, Prv) }dt
+ ' (1X = YiD{6:(X0) — 6u(Yo) Yu(Xy, Ye), dW,2).

Noting that (| X, — Y;|) = 0, we obtain
t
Epmﬂwwﬁ—ym}gmmuéﬁﬁE/ 0, W, (P, Prv)dr, t>s.
tAT

Combining this with (5.23) and (5.18), we derive
W (P, Prv) < Bib(1X, — Yil) = B(Xonr — Vi) + E[Lary (1, — Yi])]

t
< e L SIEY(|X, — Vi) 4 |1 || seeC Y / 0, W (P* i, P*v)dr

s

t
f— e_fs CrdTWd}(Ps*lu’ P:]/) + ||1/}/||ooeC(t_$)/ QTW¢(P:M, P:l/)dr, t Z S.

s

Therefore,
dr Wy (B i, Byv) — Wy (P, Pr
— Wy (P, Pv) := limsup wlFrp Fv) w(Esp Piv)
dS t\LS t— S
< (G = Osl1¥ loo) W (P, PYv), s > 0.
This implies (5.16). O

As a consequence of Theorem 5.3, we consider the non-dissipative case where Vb, (-, 1) ()
is positive definite in a possibly unbounded set but with bounded “one-dimensional puncture

mass” in the sense of (5.26) below.
Let Wy, = W, and £,(D) = P,(D) for 1(r) = r, and define

Sp(x) == sup {(Vob (-, p)(z),v) : t>0,|v| <1,pue P(D)}, ze€D.

(A6) (3) There exist constants g, 0y, 62, 5 > 0 such that

1 _
(5.24) slloe(@) = o)l < bole —yl’, t= 0,2,y € D;

(5.25)  Sp(x) < 01, |b(, 1) — by(x,v)| < BWy(u,v), t>0,2 € D,u,ve P (D);

(5.26) (:= sup /1{5b(x+sv)>92}ds < 00.
R

z,wED,|v|=1
According to the proof of [51, Corollary 3.2], the following result follows from Theorem 5.3.
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Corollary 5.4. Let D be convezr. Assume (A6)(1) and (A6)(3). Let

v(r) = (61 + 92){(@"_1) A 7"} — (03 — Og)r, >0,
(527) b o— 2 5(92 - 90) /OO te% fg v(u)dudt
0

J° te3s o dugy 20

Then there exists a constant ¢ > 0 such that
W (P}, Prv) < ce ™ ™W,(u,v), t>0,u,ve P (D).
If (by, 01) does not depend on t and Oy > 0y with

402

(QQ - 90)(f0°° tei IOtV(")d“dt)?’

(5.28) B <

then k > 0 and P} has a unique invariant probability measure ji € (D) satisfying

Wi (P, i) < ce™™ Wy (u, i), t>0,u€ (D).

5.3 Non-dissipative case: exponential convergence in W gy
Finally, we consider the fully non-dissipative case such that [51, Theorem 2.1] is extended
to the reflecting setting. Recall that for any ¢t > 0 and p € & (D),
1 * 2
Ly, = §tr(aa )V + Vy,.

We assume the following Lyapunov condition.

(A7) (Lyapunov Condition) There exists a function 0 <V € C?(D) with (VV,n)|sp < 0,
lim,| 00 V(2) = 00 and

{ VV(z) = VV(y)|
lz —y{1+V(z) +V(y)}
low(2)[]? - [VV(2)] + [loe()]” - [VV (y)]
+ 1+ V(z)+V(y) } = 0

sup
t>0;x,y€D

(5.29)

such that for some Ko, K1 € L,.([0,00);R) and any
pe Py(D):={pe PD): V) < oo},

we have

(5.30) Lo,V < Ko(t) — Ki(H)V, t>0.
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Next, we introduce the monotone condition with respect to a weighted Wasserstein dis-
tance induced by V and a function ¢ in the following class for some [ > 0:

¥y 1= { € CA([0,1]: [0,00)) = (0) = ¥/(1) = 0,40y > 0}

For each 1) € U, we extend it to the half line by setting ¥ (r) = ¢ (r A1), so that v’ is
non-negative, Lipschitz continuous with compact support, and satisfies

[0/ ]loc = sup [¢'(r)] = sup ¢'(r) € (0, 00).
r>0 re(0,0)

For any constant 3 > 0, define the quasi-distance on £y (D):

Woor )= nt [ wllo=y)(1+8V(@) + BV () n(dady). v € Zu(D)

TEE (1)

To prove the exponential convergence of F;" under Wy, g/, the dependence on distribution
for the drift will be characterized by

i ¥z =y + BV (2) + BV (y))m(dz, dy)
B3N W)= R T, 90 — D)+ V() + BV(y)r(de, dy)

Wy gv (14,V)

Obviously, Wy sv (1) 2 fromiuvi=soy -

(A8) (Local monotonicity) o satisfies (A6)(1), b is bounded on bounded set in [0,00) X D x
Py (D). Moreover, there exist K,0,q € L}, ([0,00);[0,00)) and a function ¢ € ¥, for
some | > 0 satisfying

(5.32) 200" (r) + Kb/ (r) < —qup(r), r € [0,1],
such that

1., .
(be(, p) = by, v), v —y) + §H<7t($) —61(y) s
< K|z — y|2 + 04|z — y|W¢,BV<N7 v), z,y € D,pu,ve Py(D).

(5.33)

By (AT), V(z) — oo as || — oo, when K (t) > 0 and [ is large enough, we have

e K()V(2) + Ki(8)V(y) — 2K0(1)
(5.34) Gp(t) = |x1—rgl;\f>l iV T V()

Moreover, (A6)(1) and (A7) imply

> 0.

il e YV () = VV(y)|
aw@%—Ww“Wwﬁm{M—yHﬂ4+V@ﬁ+V@H

{60() — 60()}(67VV) (@) + (6;VV) ()]
" o —yl{B + V() + V() }<“
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for any 5,1 > 0. For constants Ky, (; 3,23 and ¢ given in (A7), (A8), (5.34) and (5.35)
respectively, let

(536) Al,ﬂ(t) ‘= min {Cl,ﬂ(t)u qr — 2K0(t)ﬁ — Oflﬁ(t)}.

The following result enables us to extend assertions in [51, Examples 2.1 and 2.2] to the
present setting with convex D.

Theorem 5.5. Let D be conver. Assume (AT) and (A8), where " < 0 if 6,(-) is non-
constant. Then (1.5) is well-posed for distributions in Py (D), and P} satisfies

(537) Ww,BV(Pt*% Pt*’/) <e fg{Am(S)_es}dSWT/)ﬂV(M7 V): t>0,pve ‘@V(D)

Consequently, if (o4, b;) does not depend on t and N g > 0, then Py has a unique invariant
probability measure i € Py (D) such that

(5.38) Wy v (P, 1) < e M=y, gy (u, 1), ¢ >0, € Py(D).

Proof. We first prove the well-posedness. Let X, be Fp-measurable with Zy, =: v €
Py (D). For any T > 0 and

p e €y = {neC(0,T]; 2v(D =1},
consider the following reflecting SDE on D:
(539) dxél = bt(X{fua ,ut) =+ Ut(‘X#)th + n(Xt)st,/u X(lf = XOat € [07 T]

According to Theorem 2.8, (A8) implies that this SDE is well-posed up to life time. By
(VV.n)|sp < 0 and (5.24) in (A7), and applying It6’s formula, we obtain

AV(XY) = L, V(X dE + (VV(X]), 0o (XF)dWy) + (VV(XE), n(X]))d Ly,
< {Ko(t) — Ky (VX)) bt + (VV(XF), 00(X)dWy),

By Gronwall’s lemma and limjg_o V(2) = oo, this implies the non-explosion of X} and

So, as shown in the proof of Theorem 3.2, it suffices to verify the contraction of H on ‘5&7T
under the quasi-metric

W¢,V,A(Mu v) = SElp]e_MWd),V(/vbt, Vi), M,V E %&T
te[o0,T

for large A > 0. Let p,v € CJ.1.. By (A8), (n,VV)|sp <0, (1.3), and applying It6-Tanaka
formula, we find a constant C; > 0 such that

A X‘u XV
d‘Xtu — X;/’ < Cl(Wd,’ngut, Vt) + ‘X“ ny)dt + <m {Ut t(Xty)}th>
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Then the remainder of the proof is as same as that of [51, Lemma 2.3].

Next, we prove (5.37) which implies (5.38) in the time homogenous case. For any p,v €
Py (D), let Xo,Yy be Fy-measurable such that

Ly =t Loy = v, E[0(|Xo — Yol)(1+ BV (Xo) + BV (Y0))] = Wy 0 (1, 0.

Let (Xt,Y;) be the coupling constructed in the proof of Theorem 5.1. By (n,VV)|sp <0
and (1.3), the local time terms does not make any trouble when we apply 1t6’s formula to
(| Xy = Yy|) or V(X;) + V(Yy). So, by repeating step C in the proof of [51, Theorem 2.1],
we prove (5.37). O
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