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Abstract

For any divergence free initial datum ug with ||uglleo + [|Vuo||zr + [[Vuollzr < o0
for some p > d (d > 2), the well-posedness and smoothness are proved for incompressible
Navier-Stokes equations on R? or T4 := R? / Z%, up to a time given by the initial datum and
two constants coming from the upper bounds of the heat kernel and the Riesz transform.
A mild well-posedness is also proved for LP-bounded initial data. The blow-up is proved
for both type solutions with finite maximal time.
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1 Introduction and main results

Consider the following incompressible Navier-Stokes equation on F :=R? or R?/Z? (d > 2):
8tut = /@Aut — (Ut : V)Ut — th,

1.1 d .
(1.1) v-ut::Zaiu;:o, t € [0,7],
=1

where T' > 0 is a fixed time, and
wi=(u',- ,u?) [0,T]x E=-RY ¢:[0,T] x E—R.

This equation describes viscous incompressible fluids, where u is the velocity field of a fluid
flow, g is the pressure, and x > 0 is the viscosity constant. The real-world model in physics is
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for d = 3, for which a challenging problem is to prove the well-posedness and characterize the
regularity of solutions.
For any p € [1, 00|, let LP be the space of (real or vector valued) functions f on E such that

T ( / |f<x>|pdx)’l’ <o,

where we normalize the volume measure when E = T?. For d = 3, Leray [5] proved the weak
existence for ug € L? and studied the blow-up property. See [2, 6, 8] and references within for
the blow-up in L?,p > 3, and see [7, 9] and references within for the study using probabilistic
approaches.

In this paper, we consider solutions of (1.1) in the class

U= {f:[0T] x E =Rt ||flloc + [V fllpoe + IV*fllpoe < 00}

for some p > d, where for a function f on [0,7] x E,

[flle =" sup  [fi(@)], [[fllpeo := sup [[fellze-
E t€[0,T]

(t,x)€[0,T] x

By the Sobolev embedding theorem, f € %, for some p > d implies
IV flloo < (V2 fllze + IV fllr) < 00

for some constant ¢ > 0.
For any n € Z*, we denote f € %" if it is a function on E with

Ifllgg =Y IV fllow <00, VOf = f.
=0

For any « € (0,1), we write f € 6" if
V" f(x) = V" (y)]

nta (= n 4+ Su < Q.
11l | flle; up iz — g

Lemma 1.1. Let P, = e"? be the heat semigroup generated by kA, and let
Ry = (1+V(=A)'VIPB, t>0.

For any p € (1,00), we have

(1.2) sup | %] |r < 1+ [|[V(=A)IV - || < 00,

where || - ||z is the operator norm in LP, and
ap = sup t2 | V& » < oo,
£>0
(1.3) N
By = sup t? || Zs|| Lr— e < 00,
>0

where || - || Lr— e is the operator norm from LP to L.
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Proof. We first observe that V(—A)~'V- is a bounded operator in L? for functions £ — R?,
so that (1.2) follows from the LP-contraction of P,. This is implied by the LP-boundedness
of the Riesz transform V(—A)~2 (for E = T it is restricted to functions f € LP(E) with
p(f) == [ f(z)dz = 0), see [1], and the fact that

d
IV(=8)7V - fllon = | 30 V=2)"0{F* = w1 pore)}

‘LF

<D IVEA) 20, (= 8) = = u( ) pra ],

d
< DIV = i)
i=1

Next, it is classical that for some constant ¢ > 0 we have

HVPtHLP S Ct_%7 ”Pt - u(')lE:Td|’LP—>L°‘> S Ctiﬁ, t > 0.

Combining this with (1.2) we prove (1.3). O
For p > d, let
| (2p — )T %"
p — P
1.4 Opr =12 (01,05): 0< b, < L 0<fy< L
. i {0 0 <<l 0 < B

For any initial datum ug and (0y,6:) € ©, 7, we solve (1.1) in the class
Loy, (u0) := {7 : [0, T] x E=R": 79 =g, |7l <01, [[VY[lpoo < b2}
The main result of the paper is the following.
Theorem 1.2. Let p € (d,0), (01,02) € O, 1, and let ug : [0,T] x E — R? satisfy
Veoug =0, [Juolle + Vol + | VU0l r < 0

and

2p—d
2p028,T >

o <61 - = ,
R

| Vuol|zr < 62 (1 — 291apﬁ>.

(1.5)

Then the following assertions hold.
(1) (1.1) has a unique solution (u, V) with
(1.6) w€ %, [Vollo + V9l < oo.
Moreover, the solution satisfies u € ', ,(uo) and

(1.7) Vor =V(=A)T'V - {(u- VIw}, te[0,T].



(2) If |luol| e + | Vo oo < 00 then |Jullpco + || VUlloo < 00. If moreover Y 7 | ||[Viugl|1r < 00
for some n > 3, then

n

(1.8) D AIVeullpoo + 1V 0llpoo } < o0,
i=1
Consequently,
(1.9) sup {[lwl| s + IVl . 1 a} < oo
t€[0,T] ¢, v P

If furthermore ||V™ug||oo < 00, then

(1.10) sup {[Jullgp + [Vorllgn1 } < oo.
te[0,T

By taking for instance

1 2p —d
01(T) = 4 \/T’ 92(T) = T op—a>
p 4pB, T 2

(1.5) holds for (61,6) = (61(T),62(T)) € O, 1 if

61(2T)’ Vgl r < 02<T)-

[uolloe <

By Theorem 1.2, (1.1) has a unique solution (u;, V) satisfying (1.6) for

1 2 2p —d g
1.11 T = T (ug) = min (—) : (—) } > 0.
e st = { (o) (G

We may apply this assertion to (1.1) starting from time 7§ (ug) with initial datum ugs (), such
that (1.1) has a unique solution satisfying (1.6) for

T =T} (ug) := T (uo) + T (uzs (up))-

Repeating this procedure, we have the well-posedness of (1.1) up to the maximal time

(1.12) C(uo) ==Y Ty (uo),

where T (uo) 1= T4 (Ur,_, (uo)) With

n—1

Tn—1(ug) == ZT;‘(UO), n > 1.

=0

Moreover, (1.6) holds for any 7" € (0,((up)). We have the following blow-up result at time
¢(uo)-



Theorem 1.3. Let V-ug = 0 and ||ug]|so+|Vuol 2o +|| VUl zr < 00 for somep € (d,00). Then
(1.1) has a unique solution up to time ((ug) such that (1.6) holds for all T € (0,((ug)). When

C(uo) < o0, for any continuous increasing function ¢ : [0, 00) — [0, 00) with [~ @dr < 00,

2p

(1.13) timsup 6 [Juel|2, + [1VuelI 757 ) (¢(uo) = £) = oo.

t—)C(uo)

In the following three sections, we prove Theorem 1.2(1), Theorem 1.2(2) and Theorem 1.3
respectively. Finally, in Section 5 investigate the mild well-posedness and blow up for (1.1)
with |lug||r < oo.

2 Proof of Theorem 1.2(1)

We first introduce an equivalent equation of (1.1) where Vg, is formulated with wu,.

Lemma 2.1. For a solution (u, V) of (1.1) satisfying (1.6), the formula (1.7) holds so that
(1.1) becomes

(2.1) By = kAuy — {1+ V(=A)'V - M(u - V)], ¢€[0,T), V-ug=0.

On the other hand, if u € %, solves (2.1), then it solves (1.1) with @ given by (1.7) such that
(1.6) holds.

Proof. Let (u, V) solve (1.1) such that (1.6) holds. By Duhamel’s formula, we have
u, = Paug — /Ot P o{(us - V)u, + Vo, }ds, t€[0,7].
Taking divergence both sides and using V - u; = 0, we derive
/Ot P {V - [(us - V)ug] + Ap, }ds =0, t € 0,7

Therefore, (1.7) holds.
On the other hand, if u € %, solves (2.1), then it solves (1.1) with o given by (1.7). By
(1.2), we see that (1.6) holds. O

To solve (2.1), we present the following lemma.

Lemma 2.2. Forp € (£,00), let (61,02) € O,7. If ug satisfies (1.5), then

t
(2.2) u) = Pug — / %t_s{(% : V)%}ds, te0,7)
0

defines a map u : L'y, p,(ug) — Loy g, (uo); v+ u”.



Proof. Let v € T'g, p,(up). By (1.3), VP, = P,V and the LP-contraction of P, for any v €
Ly, 0,(up) we have

t
H@Mswwm+&ﬁﬁ‘ﬁ$MwVMMMs

t
_d
< HuOHoo+Bp!h|\OOHWHp,oo/(t—s) 2 ds
0

2p—d
2pB, T 2»
2p —d

< luol|oo + 0105,

and

t
IVl < lluoll e +0‘p/0 (t=5)72] (s - V)l ds

< IVuollze + 20, VT [V]lo0 | VY llp oo
< [|[Vuol|» + 2apﬁ9192-

Combining these with (1.5) we obtain
[u7]loe < 61, VU [p00 < b,

Therefore, u” € Ty, g, (up).
[l

Finally, we introduce a result concerning the regularity of Kolmogorov equations. For any
p,q > 1, a (real or vector valued) function f on [0, 7] x E is said in the class L?, if

. :
WM%Z(/IMMMQ c
0

Lemma 2.3. Let p,q € (1,00) with % +§ < 1. Forany f:[0,T] x E — R® with f € Ly,
(2.3) (0 + kA)ug = fy, t€[0,T],ur =0
has a unique solution in
HP? = {f:[0,T] x E—=RY |[fllop + IV fllzp + IV?fllp < o0},
and the unique solution satisfies
(2.4 fulloo + [Vl + 192l < €|l

for some constant ¢ > 0 independent of f.



Proof. When E = R? the assertion follows from Theorem 10.3 and Remark 10.4 in [4]. When
E = T? we extend f; from T¢ to R? by letting

fllx+k) = fi(x), z€0,1)% ke’
Then
r :
||f||LP ‘= sup (/ |’13(z,1)ft||%pdt) < 0,
0

z€R4

where B(z,1) is the unit ball in RY. By [10, Theorem 3.1], (2.3) for R? replacing T¢ has a
unique solution in the class

Hy? = {u: [0, T] x R = R% lullzp + [ Vullzz + [V?ullzz < oo},
and the solution satisfies (2.4) for f/{; replacing LP. By the periodicity of fi, u(- + k) for k € Z¢

also solve the equation, so that the uniqueness implies u;(- + k) = u;. Therefore, restricting to
T?, u is the unique solution of (2.3), and (2.4) holds. O

We are now ready to prove the first assertion in the main result.

Proof of Theorem 1.2(1). By Lemma 2.1, it suffices to prove that (2.1) has a unique solution
satisfying u € %,, and the solution satisfies u € I'y, 9, (o).

(a) We first prove that the map u defined in Lemma 2.2 has a unique fixed point in Iy, g, (uo).
By (1.3), for any 7,72 € 'y, 4, (1) we have

~ t (i . .
n@—mus%A@—ﬂ%MwVM—wame
t
< Bp/o (t = 5) "2 {175 = Fslloo [V lpoo + 1Fllcc IV (s = Fs) [l 20 }ds
<ﬁp(91\/‘92) / (t—s)" {H% Fslloo + ”V(%_;VS)HLP}dsa t€[0,T],
0
and similarly,
t
||V(UZ - uz)HLP < O‘p/o (t—s)"2 H('Ys “V)vs — (s - V);}’/S”Lpds
t
< ap(el \4 92)/ t_ 3 {H% :YSHOO + HV(% - :}/S)HLP}dSa te [0>T]'
0
p—d
Letting C' := ({ﬁpTW} + ap) (01 V 05), we derive

i — oo + 1V (] — )| o

(2.5) 3 3
<0 [[(t=5) Ml =2l + 196e = s s, 1€ 0.7



For any A > 0, let

pﬂ%%:=?%g”ﬂw—%MﬁWVhrJMM&,vﬁGFme)
t€lo,

Then (2.5) yields ]
p}\<u’y’u’y) < EAP)\('Y, ’?)a 7,7 € F91,92(u0)7

where

T
€)= C’/ t72eMdt — 0 as A — oo,
0

So, when A is large enough, the map w : g, 9,(ug) — Lo, 0,(uo) is contractive in the complete
metric py. By the fixed point theorem, u has a unique fixed point v € I'y, 4,(uo). So, the
equation

(2.6) m:awif%ﬂmwvmmatemﬂ

has a unique solution in Iy, g, (ug).
(b) We intend to prove that u solves (2.1) with || V?ul|, . < co. Let

(2.7) foi= 1+ V(=AY ) (ur—e - Vur—}, te€0,7).

By (1.2) and u € Ty, p,(uo), we have [|f[|;» < oo for any ¢ > 1. Let ¢ € (;Tpd,oo) such that
d 4 % < 1. By Lemma 2.3, the PDE

p
(O + kA)uy = fy, up =20

has a unique solution satisfying

(2.8) lilloc + [ Viilloe < 00, [|V?@l1g < oo

Since Ur_. solves the PDE

(2.9) Olip—y = KAUp_y — fr—y, t€10,T], tp_o =0,

by Duhamel’s formula and (2.7), we obtain
t
= — / P (14 V(=2)V ) (- V)] s
Ot
= —/ %t,s[(us . V)us} }ds, t€0,7].
0
Combining this with (2.6) we get

(2.10) ug = Poug + Ur—y, t€1[0,7],

so that (2.8) and (2.9) yield that u solves (2.1) and by [|[V?u||z» < oo, we have [[Vul| 1z < oc.
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By Sobolev embedding theorem, ||VZug||z» < oo and ||[Vug||» < 0o imply ||[Vuglle < 00,
which together with (2.8) and (2.10) implies ||Vu|lo < 0o. Combining this with (2.6), (1.3)
and 0,0,%,_s = 0;%;—50; for 1 <1,j < d, we obtain we find constants ¢y, c3 > 0 such that for

q € (;2,00),

t
IV ulir < V%00l + [ |9 V10 D)l
0

t
= %/0 (t = 5) "2 ([ulloo I V2usll o + V]l ool [Vt ) ds

T 'R
< 20, VT ||Vl oo [Vt poo + ap\lullooIIVQUIILg(/ 8_2”—”018) < oo, tel0,T].
0

Therefore, ||VZu||, < co. Hence, (1.6) holds.
(c) If (1.1) has another solution (@, V) satisfying (1.6) and with @y = ug, by Lemma 2.1
we have Vi, = V(=A)7'V - {(@ - V)& } and

t
'I]t = PtU() — / %t_s{(as . V)as}dS, t e [O,T]
0

Combining this with (2.6) and repeating the argument in step (a) with u,@ € %,, we prove
Ut = ﬂt. ]

3 Proof of Theorem 1.2(2)

We first introduce a simple lemma collecting two inequalities, where (3.1) is well known and
(3.2) is included in [3, Lemma 2.10].

Lemma 3.1. Let p € (1,00). For any m € N and o € [0, %], there exists a constant ¢ > 0 such
that for any function f,

(3.1) V™ Pofllr < ct™||(1 = A)2 " f|l», t>0.

Moreover, for any a > 0, there exists a constant ¢ > 0 such that for any functions f,g,
(1= A)*(fg) = f(1 = A)%llLs

< c(IVAllsll(T = 2)**2gllze + gllocll(1 = D) f| 1)

Proof of Theorem 1.2. Let (u, V) be the solution given in Theorem 1.2(1) with || Vug||s < 00.
(2) By IVt llooHlulloo-H [Vl oo [Vt e+ 7l < 00, (1.3) and 030, %, = 0
for 1 <i,7 < d, we find constants ¢, ca > 0 such that (2.6) implies

(3.2)

_d+p

t
RN | Ny I e (O [
t dip
< IVl + 1 [ (= 55 (VP 0 + [Vt Vit 1} <
0
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Thus,

2
(3.3) D Vil < oo
=0

Similarly, by (1.2) and (2.6), we find a constant ¢ > 0 such that |Jug||» < 0o and u € Ty, g, (uo)
imply

][ po0 < |uollzr + ¢ SUP / [t ||oo | Vus|| eds < [Jug|| e + cT0162 < o0.

(b) By the Sobolev embeddlng theorem, (1.8) implies (1.9). By (1.2) and (1.7), to get (1.8)
it suffices to prove

(3.4) Z [V ul[p,o0 < 00
i=0

Assume that for some 2 < m <n — 1 we have

(3.5) D IViuflpee < 00,
i=0

it remains to prove ||V |, < oo. By the Sobolev embedding theorem, (3.5) and |u|s <
oo imply

(3.6) sup |ugflgm-r < sup fug| -2 < oo.

te[0,7] t€[0,T] @,

By (1.2), (2.6), (3.5), (3.6) and the fact that (3.1) yields
IV (1= A) Pl < et 4V
for some constant ¢ > 0, we find constants ¢;, ¢y > 0 such that for any t € [0, T,
[V = A) R o — [ = A) o
< /Ot(t — )71 V" (g - V)] .

Combining this with the fact that

ds <ecp, te€]0,T].

2m+41 2m 1 2m, 1

1= A)" 7 fllee + (L= A) " flle + [|[(1 = A) "7 V[l
< c(|Ifllee + 1V = A) 75 £l|10)
for some constant ¢ > 0, we derive
(3.7) 11— A) 5 e + (1= A) 5 ullp oo + [[(1 = A) 5 < 0.
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Moreover, (3.1) with @ = —3 and (3.2) with a = 2= imply

2m—1

IV P flloe < et — 8)7T(1 =AY fl o,
(1= A5 (fg) — F(1 = A) "5 gl
2m+41 2m—1

< c(IVAllsoll(X = 2) 75 gllze + 11 = A) 7 fllzsllgll)

for some constant ¢ > 0. By combining these with (1.2), we find constants ¢, ¢4, c5 > 0 such
that

V™ gl = V™ | o

2m—1

= 63/0 (t =) 31 = 2" (1 4+ V(=2)7'V ) [(us - V)] ||, ds

2m—1

T [(ug - V)us]”Lpds

< 64/0 (t—5)7%]|(1 - A)

2m—1

t
§C5/0(t—S)_4{|IVus\|oo|\(1—A) T+ (1VPusllocl (1 = A)

2m—1

1= )5 Vs .

2m—+1
4 USHLP

This together with (3.3), (3.5) and (3.7) implies || V™|, o < 00.
Finally, when [|V™ug||« < 00, by (1.9), to prove (1.10) it suffices to show that

sup [|[V™u|eo < 0.
t€[0,T]

This can be shown as in step (a) using V" to replace V? and applying (1.9).

4 Proof of Theorem 1.3

If (1.13) does not hold, then there exists a constant ¢ > 0 such that

2p

O(lluellze + 1Vuell 57) (Cluo) — 1) < e, t € [0,¢(uo)).

So,
_2p
An = ||U'Tn—1(’u0)||go _|_ ||vu7’n_1(u0)||[2/1;2_d7 n Z 1
satisfies .
X c
ZTk<u0) = ((uo) = To—1(ug) < oA n>1
k=n n
By (1.11) we find a constant ¢; > 0 such that
* . -2 _% C1
Tk (UO) > €1 min {HuTk71(u0)Hooﬂ Hvuﬂﬁl(uo)HLP } > A_k, k > n.
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Then for some constant ¢y > 0 we have

) » ¢
e < > 1.
Boim 2 Al <Gy 2l

Therefore,
1

. CE T eB) T
Noting that ¢! is increasing while B,, is decreasing to 0 as n — 0o, the linear interpolation
(Bs)sefi,o0) Of (By)n>1 satisfies
1 1

(@B = o By

Since [;* @ds < 00, this implies that

e8] o] —1
—00 > / gb_l(CQBs_l)st = —02/ ¢ (T)dr > —00,
1 c

_ 2
231 ! r

B.=B,,1— B, < — s € [n,n+1).

which is impossible. Thus, (1.13) has to be true.

5 The mild well-posedness

By Lemma 2.1, in the regular case as in Theorem 1.2, the solution of (1.1) is given by (1.7)
and (2.6). Since V - u; = 0, we may reformulate (1.5) as

d ¢
(5.1) uy = Poug — Z/ ai%t,s{uius}ds, t €[0,T].
i=1 70

This leads to the following notion of mild solution to (1.1). Let
Definition 5.1. Let p € (d,00). We denote V - f = 0 for a function f : E — R4, if

/(f, Vh)(x)dz =0, he C°(E),

where CF° is the class of C* real functions on E with compact support.
A function u : [0,7] x E — R? is called a weak solution of (1.1), if |Jul/pe0 < 00,V -u; =0
and (5.1) holds.

For any p € (d, ), by the L% boundedness of the Riesz transform and that

IVPl,5 ., <ct™®, t>0

—LP

for some constant ¢ > 0, we have

< 00.

K, = supt'’s |VZ
P Stligt ’ HV t”.fg—wp
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Let

Moreover, let
Lo(uo) == {7 : [0, 7] x B = R% v =10, V-7 =0, [[7]pe0 <}

Theorem 5.1. Let p € (d,00), ug € LP(E — R?Y) with V -ug =0, and 0 € (0,0,74). If

(5.2) ol <6(1— 7).

p,T,d

then (1.1) has a unique mild solution, and the solution is in I'g(ug). Consequently, (1.1) has a
unique solution for

(5.3) T =T (ug) ==

( p—d P
p—1
SprdT Hu0||Lp

and the solution is in T'g(ug) for 6 = %ij,d.

Proof. We will use the fixed point theorem for the map

d t
v u) = Py — Z/ 0Ky s(vivs)ds, te0,T].
i=1 70

(a) For any v € I'gp(up), we intend to prove that u? € I'y(ug). Indeed, by definition we have

d t
_ptd
ldllee < Tuollee + K, 3 / (t = 5)"5 il pds
i=1 Y0

d t
_ptd,
< uollr + 5y 3 [ 6= 55 Ipillas el
i=1 70

Noting that p > d > 2 implies S>0, [7:[? < |74|?, by Hélder’s inequality,

d d 1

) p—1 i P p—1
S il < d (Z /E |vs<x>|pdx) < &% il
=1 =1

Hence,

wK,d v T% 0?
171150 < lluollze + 5

luf |e < Jluol|ze + pi
- p,T,d

, v € Iy(up).

So, (5.2) yields [[u”||, 0 < 6. Moreover, by V -uy =0 and V- %Z;_s = 0, we have V - u; = 0.
Therefore, u; € Ty(ug).
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(b) We find a constant ¢ > 0 such that
- d t ptd ) ) )
= || < KpZ/ (t—5)""2 [|(3) = 7)vs + Folvs — 7o)l 1
i=1 70
t

_ptd N -
< [= s F e lusds, 7.5 € Tafu).
0
So, when A > 0 is large enough, wu is contractive on I'g(ug) under the complete metric

(1, 7)== sup e M|y — il 1
te[0,T]

Hence, u has a unique fixed point in I'y(ug). This is the unique mild solution in the class I'p(uo).
Finally, if (1.1) has another mild solution @; with @y = ug, by the same technique we prove
’Ith = Ug¢. ]

As explained after Theorem 1.2, for any ug with V - ug = 0 and |Jug||z» < oo, we have the
mild well-posedness of (1.1) up to the maximal time

Clug) = 3 T (o),

where T (ug) := Ty (uz, | (uy)) With
n—1 ~
Tn-1(ug) == ZT;‘(uO), n > 1.
i=0

By (5.3), the same argument in the proof of Theorem 1.3 implies the following result.

Theorem 5.2. Let ug € LP for some p € (d,00) and V -ug = 0. Then for any T € (0, C(up)),
(1.1) has a unique mild solution with ||ul/p. < 00. Moreover, when ((uy) < oo, for any

increasing continuous function ¢ : [0,00) — [1,00) with [~ %dr < 00, we have

tim sup (|| 7" ) (€ (o) — 1) = 0.

t—C(uo)
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