On the spectrum of Schrödinger operator with periodic surface potential

Ayham Chahrour

January 6, 2000

Abstract

We consider a discrete Schrödinger operator $H=-\Delta+V$ acting in $l^{2}\left(\mathbb{Z}^{d}\right)$, with periodic potential V supported by the subspace "surface" $\{0\} \times \mathbb{Z}^{d_{2}}$. We prove that the spectrum of H is purely absolutely continuous, and that surface waves (see [8] for definition) oscillate in the longitudinal directions to the "surface". We find also an explicit formula for the generalized spectral shift function introduced in [4].

1 Introduction

In this paper we will primarily discuss the discrete Schrödinger operator H with a surface potential V acting on the Hilbert space $l^{2}\left(\mathbb{Z}^{d}\right)$

$$
\begin{gather*}
H=H_{0}+V \tag{1.1}\\
V(X)=\delta(x) v(\xi) \tag{1.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathbb{Z}^{d}=\mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}}=\left\{X=(x, \xi) \mid x \in \mathbb{Z}^{d_{1}}, \xi \in \mathbb{Z}^{d_{2}}\right\}, \tag{1.3}
\end{equation*}
$$

In other words

$$
\begin{equation*}
H \psi(X)=\sum_{Y \in \mathbb{Z}^{d},|Y-X|=1} \psi(Y)+\delta(x) v(\xi) \psi(X) \tag{1.4}
\end{equation*}
$$

for all $\psi \in l^{2}\left(\mathbb{Z}^{d}\right)$, where $\delta(x)$ is Kronecker symbol.

It is well known that H_{0} is a bounded self-adjoint operator on $l^{2}\left(\mathbb{Z}^{d}\right)$, and

$$
\begin{aligned}
\sigma_{a c}\left(H_{0}\right) & =\sigma\left(H_{0}\right)=[-2 d, 2 d], \\
\sigma_{p p}\left(H_{0}\right) & =\sigma_{s c}\left(H_{0}\right)=\varnothing
\end{aligned}
$$

For every real-valued potential v, it is clear that the operator H is selfadjoint in $l^{2}\left(\mathbb{Z}^{d}\right)$. Using Weyl's criterion one can see that $\sigma\left(H_{0}\right)$ is contained in the spectrum of H. Moreover, in [8] the authors prove that for bounded potential $v, \sigma\left(H_{0}\right)$ is always contained in the absolutely continuous component of the spectrum of H. This result was generalized for an arbitrary unbounded potential v in $[5,12]$.

In fact, in this model we have two special parts of the spectrum $\sigma(H)$ of the operator H

- Bulk branches of the spectrum whose generalized eigenfunctions (polynomially bounded solutions of the equation $H \psi=\lambda \psi, \quad \lambda \in \sigma(H))$ are plane waves, i.e. they oscillate in all directions.
- Surface branches of the spectrum (or more simple "surface spectrum") whose generalized eigenfunction decay in the transversal directions x and either oscillate or decay in the longitudinal directions ξ. These solutions are called surface waves (see $[6,8,11]$ for results and references).

There is a large literature on the spectral properties of H and the geometry of surface branches of the spectrum of H (see $[2,8,11,9,10,14]$). For example in [2] the authors study the case where v belongs to a special class of unbounded quasiperiodic potentials. In that case they prove that away from $\sigma\left(H_{0}\right)$ the surface spectrum of H is pure point dense and the corresponding generalized spectral functions are exponentially localized. A typical example of this class is

$$
v(\xi)=\lambda \tan (\pi \alpha \cdot \xi+\theta)
$$

with $\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right) \in[0,1]^{d}$ and $\theta \in \mathbb{R}$. In that case H is the Maryland surface model. This model was also studied in [14] and [11]. In [14] the authors prove that if α has typical Diophantine properties, i.e. if there exist constants $C, k>0$ such that

$$
|\xi \cdot \alpha-n|>C|\xi|^{-k}, \quad \forall \xi \in \mathbb{Z}^{d_{2}}, \quad \forall n \in \mathbb{Z}
$$

then the surface spectrum of H is dense and pure point outside $\sigma\left(H_{0}\right)$ for any $\lambda \neq 0$ and $\theta \in \mathbb{R}$ and the corresponding surface waves are localized. In [11] the authors proved that if $\alpha_{1}, \cdots, \alpha_{d}$ are \mathbb{Q}-linearly independent, then the spectrum of H is purely absolutely continuous on $\sigma\left(H_{0}\right)$.

Our goal in this paper is to study the geometry of the spectrum of H in the case of a surface periodic potential, i.e. we assume that there exist $N_{1}, \cdots, N_{d_{2}} \in \mathbb{N}^{*}$ such that

$$
\begin{equation*}
v\left(\xi+N_{j} \mathbf{e}_{\mathbf{j}}\right)=v(\xi) \quad \forall j=1, \cdots, d_{2} \tag{1.5}
\end{equation*}
$$

where $\left\{\mathbf{e}_{\mathbf{j}}\right\}$ are the canonical basis of $\mathbb{R}^{d_{2}}$. We prove in the first section, that the spectrum of H is purely absolutely continuous, and that surface waves oscillate in the longitudinal directions ξ and are localized in the transversal directions x. A similar problem in the continuous case was studied in [7].

In the second section we find an explicit formula for the generalized spectral shift function which was introduced in [4] for a homogeneous surface potential (periodic, quasi-periodic, random ergodic).

Acknowledgments

The author is grateful to A. Boutet de Monvel and L. Pastur for useful discussions.

2 Study of the spectrum:

In this section we will show that the spectrum of H is purely absolutely continuous if $v(\xi)$ has property (1.5). Let $\Omega^{d_{2}}$ be the periodic cell i.e.

$$
\Omega^{d_{2}}=\left\{\xi=\left(\xi_{1}, \cdots, \xi_{d_{2}}\right) \in \mathbb{Z}^{d_{2}}, \quad 0 \leq \xi_{j} \leq N_{j}-1, \quad j=1, \cdots, d_{2}\right\} .
$$

Let $\mathbb{T}^{d_{2}}=[0,2 \pi]^{d_{2}}$ be the torus in $\mathbb{R}^{d_{2}}$ and let us consider following spaces

$$
\begin{gathered}
\mathcal{H}_{1}^{\prime}=l^{2}\left(\Omega^{d_{2}}\right), \quad \mathcal{H}_{1}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} \mathcal{H}_{1}^{\prime} \frac{d \theta}{(2 \pi)^{d_{2}}} . \\
\mathcal{H}_{2}^{\prime}=l^{2}\left(\mathbb{Z}^{d_{1}}\right) \times l^{2}\left(\Omega^{d_{2}}\right), \quad \mathcal{H}_{2}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} \mathcal{H}_{2}^{\prime} \frac{d \theta}{(2 \pi)^{d_{2}}} .
\end{gathered}
$$

And let U_{1} be the following operator

$$
\begin{aligned}
U_{1} & : \quad l^{2}\left(\mathbb{Z}^{d_{2}}\right) \longrightarrow \mathcal{H}_{1} \\
\left(U_{1} f\right)_{\theta}(\xi) & =\sum_{n \in \mathbb{Z}^{d_{2}}} e^{-i \theta \cdot n} f(\xi+n \mid N), \quad \theta \in \mathbb{T}^{d_{2}},
\end{aligned}
$$

where $n \mid N=\left(n_{1} N_{1}, \cdots, n_{d_{2}} N_{d_{2}}\right) \in \mathbb{Z}^{d_{2}}$. Let U_{2} be the following operator

$$
\begin{aligned}
& U_{2}: l^{2}\left(\mathbb{Z}^{d}\right) \longrightarrow \mathcal{H}_{2} \\
& U_{2}=1 \otimes U_{1}
\end{aligned}
$$

i.e.

$$
\left(U_{2} f\right)_{\theta}(x, \xi)=\sum_{n \in \mathbb{Z}^{d_{2}}} e^{-i \theta \cdot n} f(x, \xi+n \mid N) .
$$

Let us denote by h_{0} the Laplacian on $l^{2}\left(\mathbb{Z}^{d_{2}}\right)$. Then we have the following

Lemma 2.1

$$
U_{1} h_{0} U_{1}^{-1}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} h_{0}(\theta) \frac{d \theta}{(2 \pi)^{d_{2}}},
$$

where $h_{0}(\theta)$ is the Laplacian on \mathcal{H}_{1}^{\prime} with the Bloch-Floquet conditions:

$$
\begin{aligned}
\psi_{\theta}\left(\xi_{1}, \cdots, N_{j}, \cdots, \xi_{d_{2}}\right) & =e^{i \theta_{j}} \psi\left(\xi_{1}, \cdots, 0, \cdots, \xi_{d_{2}}\right) \\
\psi_{\theta}\left(\xi_{1}, \cdots, N_{j}-1, \cdots, \xi_{d_{2}}\right) & =e^{i \theta_{j}} \psi\left(\xi_{1}, \cdots,-1, \cdots, \xi_{d_{2}}\right) .
\end{aligned}
$$

Proof. The proof of this lemma is the same proof for the continuous Laplacian developed in [18].

It is clear that the spectrum of $h_{0}(\theta)$ is pure point, moreover

$$
\left(h_{0}(\theta) \phi_{n}^{\theta}\right)(\xi)=\alpha_{n}(\theta) \phi_{n}^{\theta}(\xi),
$$

where

$$
\begin{align*}
& \phi_{n}^{\theta}(\xi)=\prod_{j=1}^{d_{2}} \exp \left(i \frac{\theta_{j}}{N_{j}}+\frac{2 \pi i n_{j}}{N_{j}}\right) \xi_{j}, \tag{2.1}\\
& \alpha_{n}(\theta)=-2 \sum_{j=1}^{d_{2}} \cos \left(\frac{\theta_{j}}{N_{j}}+\frac{2 \pi n_{j}}{N_{j}}\right) . \tag{2.2}
\end{align*}
$$

Corollary 2.1 We have

$$
U_{2} H_{0} U_{2}^{-1}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} H_{0}(\theta) \frac{d \theta}{(2 \pi)^{d_{2}}},
$$

where $H_{0}(\theta)$ is the Laplacian on $l^{2}\left(\mathbb{Z}^{d_{1}}\right) \times l^{2}\left(\Omega^{d_{2}}\right)$ with Bloch-Floquet conditions for longitudinal directions ξ :

$$
\begin{aligned}
\psi_{\theta}\left(x, \xi_{1}, \cdots, N_{j}, \cdots, \xi_{d_{2}}\right) & =e^{i \theta_{j}} \psi\left(x, \xi_{1}, \cdots, 0, \cdots, \xi_{d_{2}}\right) \\
\psi_{\theta}\left(x, \xi_{1}, \cdots, N_{j}-1, \cdots, \xi_{d_{2}}\right) & =e^{i \theta_{j}} \psi\left(x, \xi_{1}, \cdots,-1, \cdots, \xi_{d_{2}}\right)
\end{aligned}
$$

for all $j=1, \cdots, d_{2}$.

It is clear that $H_{0}(\theta)=\left(-\Delta^{d_{1}}\right) \otimes 1+1 \otimes h_{0}(\theta)$ where $-\Delta_{d_{1}}$ is the discrete Laplacian on $l^{2}\left(\mathbb{Z}^{d_{1}}\right)$. Therefore the spectrum of $H_{0}(\theta)$ is purely absolutely continuous and

$$
\begin{equation*}
\sigma_{a c}\left(H_{0}(\theta)\right)=\left[-2 d_{1}+\min _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta), 2 d_{1}+\max _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta)\right] \subset[-2 d, 2 d] \tag{2.3}
\end{equation*}
$$

Lemma 2.2 The operator H defined in (1.1)-(1.4) is decomposable in direct integral.

Proof. Let A be a multiplication operator on \mathcal{H}_{2} by a measurable function f, and let F be an operator of $l^{2}\left(\mathbb{Z}^{d}\right)$ into itself defined by $F=U_{2}^{-1} A U_{2}$, then one has

$$
(F \varphi)(x, \xi+n \mid N)=\sum_{n^{\prime} \in \mathbb{Z}^{d_{2}}} \varphi\left(x, \xi+n^{\prime} \mid N\right) \widetilde{f}\left(n-n^{\prime}\right)
$$

where

$$
\tilde{f}(n)=\int_{\mathbb{T}^{d} 2} e^{-i \theta \cdot n} f(\theta) \frac{d \theta}{(2 \pi)^{d_{2}}}
$$

By a direct calculation one finds that the commutator $[H, F]=0$, this shows that the operator H is decomposable according to the Theorem XIII. 84 of [18].

Lemma 2.3 We have

$$
U_{2} H U_{2}^{-1}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} H(\theta) \frac{d \theta}{(2 \pi)^{d_{2}}}
$$

where $H(\theta)=H_{0}(\theta)+V_{\theta}(X)$, and $V_{\theta}(X)$ is the potential $\delta(x) v(\xi)$ on \mathcal{H}_{2}^{\prime}.

Proof. In view of Corollary 2.1 It suffices to verify that

$$
U_{2} V U_{2}=\int_{\mathbb{T}^{d_{2}}}^{\oplus} V_{\theta} \frac{d \theta}{(2 \pi)^{d_{2}}}
$$

This follows from

$$
\left(U_{2} V f\right)_{\theta}(X)=V_{\theta}(X)\left(U_{2} f\right)_{\theta}(X)
$$

which is obvious from a direct calculation.
Theorem 2.2 We have

$$
\begin{aligned}
\sigma_{a c}(H(\theta)) & =\sigma_{a c}\left(H_{0}(\theta)\right)=\left[-2 d_{1}+\min _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta), 2 d_{1}+\max _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta)\right], \\
\sigma_{s c}(H(\theta)) & =\varnothing
\end{aligned}
$$

and $H(\theta)$ has at most a finite number of eigenvalues situated outside of $\left[-2 d_{1}-\alpha(\theta), 2 d_{1}+\alpha(\theta)\right]$.

Proof. We have $H(\theta)=H_{0}(\theta)+V_{\theta}(X)$ where $V_{\theta}(X)$ is the multiplication operator by a finite-rank matrix whose rank

$$
r=\operatorname{rank} V_{\theta}(X)=\left|\Omega^{d_{2}}\right|
$$

is the volume of $\Omega^{d_{2}}$. Then by the Theorem XI. 10 of [18] we have

$$
\begin{aligned}
\sigma_{a c}(H(\theta)) & =\sigma_{a c}\left(H_{0}(\theta)\right)=\left[-2 d_{1}+\min _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta), 2 d_{1}+\max _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta)\right] \\
\sigma_{s c}(H(\theta)) & =\varnothing
\end{aligned}
$$

Moreover, $H(\theta)$ has at most r eigenvalues. Let us show that $\sigma_{p p}(H(\theta)) \cap$ $\sigma_{a c}(H(\theta))=\varnothing$. Fix $E \in \sigma_{p p}(H(\theta)) \cap \sigma_{a c}\left(H_{0}(\theta)\right)$. By the Green's formula for the pair $H(\theta)$ and $H_{0}(\theta)$ we obtain

$$
u_{E}(x, \xi)=\sum_{\eta \in \Omega^{d_{2}}} G_{E}\left(x, \xi-\eta, H_{0}(\theta)\right) v(\eta) u_{E}(0, \eta),
$$

where G_{E} is the Green function of $H_{0}(\theta)$ and u_{E} is the eigenfunction of $H(\theta)$ corresponding to E. We notice that $u_{E} \in l^{2}\left(\mathbb{Z}^{d_{1}}\right) \otimes l^{2}\left(\Omega^{d_{2}}\right)$ if and only if $G_{E}\left(x, \xi, H_{0}(\theta)\right)$ decay sufficiently fast in x which is possible only if $E \notin \sigma\left(H_{0}(\theta)\right)=\left[-2 d_{1}+\min _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta), 2 d_{1}+\max _{n \in \Omega^{d_{2}}} \alpha_{n}(\theta)\right]$

In fact a part of the eigenvalues of $H(\theta)$ can be plunged in the spectrum of H_{0}, i.e. in [$\left.-2 d, 2 d\right]$. A priori the Theorem XIII.85-(f) of [18] does
not assure us that the spectrum of H is purely absolutely continuous on $[-2 d, 2 d]$, therefore first of all we will study these eigenvalues and show that they generate an absolutely continuous spectrum for H.

Let $E \in \sigma_{p p}(H(\theta))$. For all $n \in \Omega^{d_{2}}$ we define

$$
\begin{equation*}
k_{E}^{\theta}(n)=\left(\int_{\mathbb{T}^{d_{1}}} \frac{d p}{\Phi_{d_{1}}(p)+\alpha_{n}(\theta)-E}\right)^{-1} \tag{2.4}
\end{equation*}
$$

where $\alpha_{n}(\theta)$ are the eigenvalues of $h_{0}(\theta)$ defined in (2.2), and

$$
\Phi_{d_{1}}(p)=-2 \sum_{j=0}^{d_{1}} \cos p_{j}
$$

$k_{E}^{\theta}(n)$ is well defined because according to Theorem 2.2 one has $E \notin \sigma\left(H_{0}(\theta)\right)$ this means that $\forall n \in \Omega^{d_{2}}, \Phi_{d_{1}}(p)+\alpha_{n}(\theta)-E \neq 0$. Let us now define the following operator

$$
\begin{align*}
K_{E, v}^{\theta} & : \mathcal{H}_{1}^{\prime} \longrightarrow \mathcal{H}_{1}^{\prime} \tag{2.5}\\
\left(K_{E, v}^{\theta} \psi\right)(n) & =k_{E}^{\theta}(n) \psi(n)+\sum_{n^{\prime} \in \Omega^{d_{2}}} \tilde{v}\left(n-n^{\prime}\right) \psi\left(n^{\prime}\right)
\end{align*}
$$

where

$$
\tilde{v}(n)=\sum_{\xi \in \Omega^{d_{2}}} \overline{\phi_{n}^{\theta}(\xi)} v(\xi)
$$

and $\phi_{n}^{\theta}(\xi)$ are the eigenfunctions of $h_{0}(\theta)$ defined in the equation (2.1). The spectrum of this operator is clearly pure point. Moreover we have

Lemma 2.4 We have

$$
0 \in \sigma_{p p}\left(K_{E, v}^{\theta}\right) \Leftrightarrow E \in \sigma_{p p}(H(\theta))
$$

Proof. Let ψ_{E}^{θ} be the eigenfunction of $K_{E, v}^{\theta}$ corresponding to the eigenvalue 0 . By a simple calculation and by using (2.4) and (2.5) we find that the function

$$
u_{E}^{\theta}(x, \xi)=\int_{\mathbb{T}^{d_{1}}} d p e^{i x . p} \sum_{n \in \Omega^{d_{2}}} \phi_{n}^{\theta}(\xi) \frac{k_{E}^{\theta}(n)}{\Phi_{d_{1}}(p)+\alpha_{n}(\theta)-E} \psi_{E}^{\theta}(n)
$$

is an eigenfunction of $H(\theta)$ corresponding to the eigenvalue E.
Let us suppose that $\theta=\theta(t)=a+t b$ where a and b are two fixed vectors in $\mathbb{R}^{d_{2}}$, and $t \in \mathbb{R}$.

Lemma 2.5 Let $E \in \sigma_{p p}(H(\theta))$ and let $A_{E}(t)=K_{E}^{\theta(t)}$. Then for any $t \in \mathbb{R}$ there exists a neighborhood of the real axis where the eigenvalues $\left\{\lambda_{E}^{n}(\cdot)\right\}$ are analytic not identically constant in t.

Proof. Let $K_{E, 0}^{\theta(t)}$ be the operator $K_{E, v=0}^{\theta(t)}$. Obviously, the eigenvalues of this operator are

$$
\begin{equation*}
k_{E}^{\theta(t)}(n)=\left(\int_{\mathbb{T}^{d_{1}}} \frac{d p}{\Phi_{d_{1}}(p)+\alpha_{n}(a+t b)-E}\right)^{-1} . \tag{2.6}
\end{equation*}
$$

To show that $\lambda_{E}^{n}(t)$ is analytic on a neighborhood of \mathbb{R} it is enough to show that they are bounded for a finite $t \in \mathbb{R}$. Let $\psi_{E}^{n}(t)$ be the normalized eigenfunctions of $A_{E}(t)$, i.e.

$$
\begin{aligned}
A_{E}(t) \psi_{E}^{n}(t) & =\lambda_{E}^{n}(t) \psi_{E}^{n}(t) \\
\left\|\psi_{E}^{n}(t)\right\| & =1
\end{aligned}
$$

Then we have

$$
\left(A_{E}(t) \psi_{E}^{n}(t), \psi_{E}^{n}(t)\right)=\lambda_{E}^{n}(t) .
$$

And (see [13])

$$
\begin{aligned}
\frac{d \lambda_{E}^{n}(t)}{d t} & =\left(\frac{d A_{E}(t)}{d t} \psi_{E}^{n}(t), \psi_{E}^{n}(t)\right) \\
& =\left(\frac{d K_{E, 0}^{\theta(t)}}{d t} \psi_{E}^{n}(t), \psi_{E}^{n}(t)\right) \\
& =\frac{d k_{E}^{\theta(t)}(n)}{d t}
\end{aligned}
$$

And this last quantity $\frac{d k_{E}^{\theta(t)}(n)}{d t}$ is explicitly calculable. By deriving the equation (2.6) in t one finds

$$
\frac{d k_{E}^{\theta(t)}(n)}{d t}=\frac{d \alpha_{n}(a+t b)}{d t} \int_{\mathbb{T}^{d_{1}}} \frac{d p}{\left(\Phi_{d_{1}}(p)+\alpha_{n}(a+t b)-E\right)^{2}}\left(k_{E}^{\theta(t)}(n)\right)^{-2} .
$$

This derivative is obviously bounded. Thus there exists $C>0$ such that

$$
\left|\frac{d \lambda_{E}^{n}(t)}{d t}\right|=\left|\frac{d k_{E}^{\theta(t)}(n)}{d t}\right| \leq C
$$

Then $\lambda_{E}^{n}(t)$ can not grow up to infinity for a finite $t \in \mathbb{R}$.
Thus, we can write $\lambda_{E}^{n}(\tau)$ where $\tau \in \mathbb{C}$ belongs to a certain neighborhood of $t \in \mathbb{R}$. We have to show that $\lambda_{E}^{n}(\tau)$ is not identically constant. Let us suppose that $\lambda_{E}^{n}(\tau)$ is constant

$$
\begin{equation*}
\lambda_{E}^{n}(\tau)=\lambda \tag{2.7}
\end{equation*}
$$

We have according to the relation (2.2)

$$
\alpha_{n}(a+\tau b)=-2 \sum_{j=1}^{d_{2}} \cos \left(\frac{a_{j}+\tau b_{j}}{N_{j}}+\frac{2 \pi n_{j}}{N_{j}}\right)
$$

Let us suppose that $\tau=\mu+i y \in \mathbb{C}$. So there exists C_{1}, m two positive constants such that

$$
\left|\alpha_{n}(a+\tau b)\right| \geq C_{1}\left(e^{m|y|}+1\right)
$$

Then if y_{0} is big enough, there is $C\left(y_{0}\right)>0$ such that

$$
\left|\int_{\mathbb{T}^{d_{1}}} \frac{d p}{\Phi_{d_{1}}(p)+\alpha_{n}(a+\tau b)-E}\right| \leq \int_{\mathbb{T}^{d_{1}}} \frac{d p}{\left|\Phi_{d_{1}}(p)+\alpha_{n}(a+\tau b)-E\right|} \leq \frac{1}{C\left(y_{0}\right)\left(e^{m|y|}+1\right)} .
$$

Thus

$$
\begin{equation*}
\left|k_{E}^{\theta(\tau)}(n)\right| \geq C_{2}\left(e^{m|y|}+1\right) \tag{2.8}
\end{equation*}
$$

And for any $\zeta \in \mathbb{C} \backslash \mathbb{R}$ there exist a positive constant C such that we have the bound

$$
\left\|\left(K_{E, 0}^{\theta(\tau)}-\zeta\right)^{-1}\right\| \leq \frac{C}{e^{m|y|}+1} .
$$

By taking y to infinity we obtain

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left\|\left(K_{E, 0}^{\theta(\tau)}-\zeta\right)^{-1}\right\|=0 \tag{2.9}
\end{equation*}
$$

Let \tilde{v} be the following operator

$$
\begin{aligned}
\tilde{v} & : \mathcal{H}_{1}^{\prime} \rightarrow \mathcal{H}_{1}^{\prime} \\
(\tilde{v} \psi)(n) & =\sum_{n^{\prime} \in \Omega^{d_{2}}} \tilde{v}\left(n-n^{\prime}\right) \psi\left(n^{\prime}\right) .
\end{aligned}
$$

This operator is a finite-rank matrix. Thus we have also

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left\|\tilde{v}\left(K_{E, 0}^{\theta(\tau)}-\zeta\right)^{-1}\right\|=0 \tag{2.10}
\end{equation*}
$$

By (2.9), (2.10), and the resolvent identity one finds

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left\|\left(K_{E, v}^{\theta(\tau)}-\zeta\right)^{-1}\right\|=0 \tag{2.11}
\end{equation*}
$$

Since $K_{E, v}^{\theta(\tau)}$ is a finite dimensional operator we have

$$
\left\|\left(K_{E, v}^{\theta(\tau)}-\zeta\right)^{-1}\right\| \geq \frac{1}{|\lambda-\zeta|}
$$

where λ is defined in (2.7). This relation contradicts (2.11). Therefore $\lambda_{E}^{n}(t)$ cannot be constant function.

Lemma 2.6 For any $t \in \mathbb{R}$ the eigenvalues $\lambda_{E}^{n}(t)$ are strictly monotonous in E.

Proof. With the same notations of the proof of Lemma 2.5 one has (e.g. [13])

$$
\begin{aligned}
\frac{d \lambda_{E}^{n}(t)}{d E} & =\left(\frac{d A_{E}(t)}{d E} \psi_{E}^{n}(t), \psi_{E}^{n}(t)\right) \\
& =\left(\frac{d K_{E, 0}^{\theta(t)}}{d E} \psi_{E}^{n}(t), \psi_{E}^{n}(t)\right) \\
& =\frac{d k_{E}^{\theta(t)}(n)}{d E}
\end{aligned}
$$

By the direct calculation of the derivative of $k_{E}^{\theta(t)}(n)$ in E from the relation (2.6) we obtain

$$
\frac{d k_{E}^{\theta(t)}(n)}{d E}=-\int_{\mathbb{T}^{d_{1}}} \frac{d p}{\left(\Phi_{d_{1}}(p)+\alpha_{n}(a+t b)-E\right)^{2}}\left(\int_{\mathbb{T}^{d_{1}}} \frac{d p}{\Phi_{d_{1}}(p)+\alpha_{n}(a+t b)-E}\right)^{-2}
$$

Thus

$$
\frac{d \lambda_{E}^{n}(t)}{d E}<0
$$

This yields the result.

Theorem 2.3 Fix $\theta(t)=a+t b$ where a, b are two vectors in $\mathbb{R}^{d_{2}}$, and let $B(t)=H(\theta(t))$. Then for any $t_{0} \in \mathbb{R}$ there exist a neighborhood of the real axis in t such that the eigenvalues $\left\{E_{n}(t)\right\}_{n}$ of $B(t)$ are analytic and not identically constant in this neighborhood.

Proof. By Lemma 2.4 one has

$$
E \in \sigma_{p p}(B(t)) \Longleftrightarrow 0 \in \sigma_{p p}\left(A_{E}(t)\right),
$$

where $A_{E}(t)=K_{E}^{\theta(t)}$. Let $\left\{\lambda_{E}^{n}(t)\right\}$ the set of the eigenvalues of $A(t)$. According to Lemmas 2.5 and $2.6 \lambda_{E}^{n}(t)$ is an analytic function not identically constant on a neighborhood of the real axis in t, and strictly monotonous in E. By the theorem of implicit functions there exists $E_{n}(t)$ an analytic function not identically constant in t such that $E=E_{n}(t)$.

Now we can follow the schema the demonstration of the Theorem XIII. 100 of [18]:

Theorem 2.4 The spectrum of H is purely absolutely continuous.
Proof. Let $b, K_{2}, \cdots, K_{d_{2}}$ be a basis of $\mathbb{R}^{d_{2}}$, thus $\mathbb{T}^{d_{2}}=\left\{\theta=s_{1} b+s_{2} K_{2}+\right.$ $\left.\cdots+s_{\boldsymbol{d}_{2}} K_{\boldsymbol{d}_{2}} \mid s_{1} \in M\left(s_{\perp}\right), s_{\perp}=\left(s_{2}, \ldots, s_{\boldsymbol{d}_{2}}\right) \in N\right\}$, then we have

$$
H=\int_{s_{\perp} \in N} \int_{s_{1} \in M\left(s_{\perp}\right)} H\left(s_{1} b+\cdots+s_{d_{2}} K_{d_{2}}\right) \frac{d s_{1} d s_{\perp}}{(2 \pi)^{d_{2}}}
$$

According to Theorem 2.2 and Theorem 2.3 the spectrum of $B\left(s_{1}\right)=H\left(s_{1} b+\right.$ $\cdots+s_{d_{2}} K_{d_{2}}$) is the union of a purely absolutely continuous spectrum and a set of analytic eigenvalues not identically constant in s_{1}. According to the two Theorems XIII. 86 and XIII. 85 -(f) of [18] the spectrum of

$$
\int_{s_{1} \in M\left(s_{\perp}\right)} H\left(s_{1} b+\cdots+s_{d_{2}} K_{d_{2}}\right) \frac{d s_{1}}{2 \pi}
$$

is purely absolutely continuous. By applying XIII.85-(f) of [18] once again to the direct integral on $s_{\perp} \in N$ one finds the result.

Remark. In fact the part of $\sigma(H)$ coming from the direct integral of the eigenvalues of $H(\theta)$ is the surface spectrum of H because the corresponding generalized eigenfunctions decay in transversal directions x. This follows from the fact that the direct integration of the eigenfunctions of $H(\theta)$ does not act on x. The other part of the spectrum of $H(\theta)$ which comes from the direct integration of the absolutely continuous spectrums of $H(\theta)$ is the bulk spectrum and is equal to $[-2 d, 2 d]$. The intersection of these two parts is not necessary empty because a part of $H(\theta)$'s eigenvalues can be plunged in $[-2 d, 2 d]$.

3 Generalized spectral shift function:

The spectral shift function ξ was introduced by I.Lifchitz [16] and M.Krein [15] for the trace class perturbations i.e. for a couple of operators (A, B) such that $\operatorname{Tr}\{B-A\}<\infty$. This function verifies the trace formula (see [3, 19] for more results and references), i.e. for any function f in certain class of real functions $\left(C^{\infty}(\mathbb{R})\right.$ with compact support for example), one has

$$
\begin{equation*}
\int_{R} f^{\prime}(\lambda) \xi(\lambda) d \lambda=\operatorname{Tr}\{f(B)-f(A)\} \tag{3.1}
\end{equation*}
$$

We showed in [4] that when one perturbs the discrete Schrödinger operator by a surface homogeneous (ergodic or periodic for example) potential a quantity $\bar{\xi}$ exists in the distribution's sense. This quantity is the analogue of the spectral shift function, and we called it the generalized spectral shift function. In the particular case of a periodic surface potential a formula similar to the trace formula (3.1) exists and has the form

$$
\begin{equation*}
\int f^{\prime}(\lambda) \bar{\xi}(\lambda) d \lambda=\frac{1}{\left|\Omega^{d_{2}}\right|} \operatorname{Tr} P_{\Omega}\left\{f(H)-f\left(H_{0}\right)\right\} \tag{3.2}
\end{equation*}
$$

where P_{Ω} is the orthogonal projection on the slab $\Omega=\mathbb{Z}^{d_{1}} \times \Omega^{d_{2}}$.
Let $H_{0}(\theta), H(\theta)$ be the two operators defined in the preceding section. In fact the perturbation $\left(H(\theta), H_{0}(\theta)\right)$ is of a finite-rank, and thus according to [3] the spectral shift function $\xi(\lambda, \theta)$ of this couple exists.

In [4] we showed, in particular, that for the simplest case $(v(\xi)=$ Const. the generalized spectral shift function $\bar{\xi}$ is a usual function (not distribution) and is given by the relation

$$
\begin{equation*}
\bar{\xi}(\lambda)=\int_{\mathbb{R}} \xi_{d_{1}}(\lambda-\mu) N_{d_{2}}(d \mu) \tag{3.3}
\end{equation*}
$$

where $\xi_{d_{1}}$ is the spectral shift function of the couple $\left(-\Delta_{d_{1}}+a \delta(x),-\Delta_{d_{1}}\right)$ and $N_{d_{2}}$ is the integrated density of states of $h_{0}=-\Delta_{d_{2}}$. We will prove the next Theorem which is a generalization of the relation (3.3) for a periodic potential. We can rewrite (3.3) as following

$$
\bar{\xi}(\lambda)=\int_{\mathbb{T}^{d_{2}}} \xi_{d_{1}}(\lambda-\Phi(\theta)) \frac{d \theta}{(2 \pi)^{d_{2}}}
$$

where $\Phi(\theta)=-2 \sum_{j=1}^{d_{2}} \cos \theta_{j}$.

Theorem 3.1 Let $\bar{\xi}(\lambda)$ be the generalized spectral shift function of $\left(H, H_{0}\right)$. Then

$$
\bar{\xi}(\lambda)=\frac{1}{\left|\Omega^{d_{2}}\right|} \int_{\mathbb{T}^{d_{2}}} \xi(\lambda, \theta) \frac{d \theta}{(2 \pi)^{d_{2}}}
$$

Proof. As we mentioned before the theorem the spectral shift function $\xi(\lambda, \theta)$ of the pair $\left(H(\theta), H_{0}(\theta)\right)$ exists and verifies the trace formula (3.1), thus $\forall f \in C^{\infty}(\mathbb{R})$ with compact support

$$
\int f^{\prime}(\lambda) \xi(\lambda, \theta) d \lambda=\operatorname{Tr}\left\{f\left(H(\theta)-f\left(H_{0}(\theta)\right)\right\}\right.
$$

In the other hand

$$
\begin{aligned}
\int f^{\prime}(\lambda) \bar{\xi}(\lambda) d \lambda & =\frac{1}{\left|\Omega^{d_{2}}\right|} \operatorname{Tr} P_{\Omega}\left\{f(H)-f\left(H_{0}\right)\right\} \\
& =\frac{1}{\left|\Omega^{d_{2}}\right|} \int_{\mathbb{T}^{d_{2}}} \frac{d \theta}{(2 \pi)^{d_{2}}} \operatorname{Tr}\left\{f\left(H(\theta)-f\left(H_{0}(\theta)\right)\right\}\right. \\
& =\frac{1}{\left|\Omega^{d_{2}}\right|} \int_{\mathbb{T}^{d_{2}}} \frac{d \theta}{(2 \pi)^{d_{2}}} \int f^{\prime}(\lambda) \xi(\lambda, \theta) d \lambda
\end{aligned}
$$

By applying Fubini's Theorem one finds that for any function $f \in C^{\infty}(\mathbb{R})$ with compact support

$$
\int f^{\prime}(\lambda)\left(\bar{\xi}(\lambda)-\frac{1}{\left|\Omega^{d_{2}}\right|} \int_{\mathbb{T}^{d}} \xi(\lambda, \theta) \frac{d \theta}{(2 \pi)^{d_{2}}}\right) d \lambda=0
$$

This relation is equivalent to the assertion of the theorem.
This theorem shows that studying the smoothness and asymptotic properties of $\xi(\lambda, \theta)$ allows us to study the smoothness and the asymptotic properties of $\bar{\xi}(\lambda)$. This will be discussed in a later work.

References

[1] W.O. Amrein, A.Boutet de Monvel, V.Georgescu, C_{0}-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress in Mathematics. Birkhuser Verlag, Basel, 1996.
[2] A.Boutet de Monvel, A.Surkova, Localisation des états de surface pour une classe d'opérateur de Schrödinger discrets à potentiels de surface quasi-périodiques, Helv. Phys. Acta., 71 (1998), 459-490.
[3] M.S.Birman, D.R.Yafaev, The Spectral Shift Function. The Work of M.G.Krein and Its Further Development, St. Peterburg Math. J., 4, 5 (1993).
[4] A.Chahrour, Sur la densité intégrée d'états surfacique et la fonction généralisée de déplacement spectral pour un potentiel surfacique ergodique, Helv. Phys. Acta., 72 (1999), 93-122.
[5] A.Chahrour, J.Sahbani, On the spectral and scattering theory of the Schrödinger operator with surface potential, To appear Rev. Math. Phys.
[6] E.Davies, B.Simon, Scattering Theory for Systems with Different Spatial Asymptotics on the Left and Right, Commun. Math. Phys., 63 (1978), 277-301.
[7] H. Englisch, M. Schder, P. Seba, The free Laplacien with attractive boundry conditions, Ann. Inst. H. Poincar Phys. Thor, 46 (1987), no 4 373-382.
[8] V.Jakšic, S.Molchanov, L.Pastur, On the propagation properties of surface waves. Wave propagation in complex media, (Minneapolis, MN, 1994), 143-154, IMA Vol. Math. Appl., 96, Springer, New York, 1998
[9] V.Jakšic, S.Molchanov, On the surface spectrum in dimension two, Helv. Phys. Acta., 71 (1999).
[10] V.Jakšic, S.Molchanov, Localization of the surface spectra, to appear in Comm. Math. Phys.
[11] V.Jakšic, S.Molchanov, On the spectrum of the surface Maryland model, Lett. Math. Phys., 45 (1998), no. 3, 189-193.
[12] V.Jakšic, Y.Last, Corrugated Surfaces and A.C. Spectrum, preprint.
[13] T.Kato, Perturbation Theory for Linear Operators, Springer Verlag, Heidelberg, 1966.
[14] B.Khoruzhenko, L.Pastur, The localization of surface states: an exactly solvable model, Physics Reports 288 (1997), 109-126.
[15] M.G.Krein, On Perturbation Determinant and Trace Formula for Unitary Selfadjoint Operators, Soviet. Mat. Dokl., 3 (1962).
[16] I.M.Lifshits, On a Problem in Perturbation Theory, Uspekhi Mat. Nauk, 7, 1, (47) (1952), 171-180.
[17] L.Pastur, A.Figotin, Spectra of Random and Almost Periodic Operators, Springer Verlag, Heidelberg 1992.
[18] M.Reed, B.Simon, Analysis of Operators, Academic Press, New York.
[19] D.R.Yafaev, Mathematical Scattering Theory, General Theory, American Mathematical Society (1992).

