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Abstract

We consider a discrete Schr�odinger operator H = ��+V acting in
l
2(Zd), with periodic potential V supported by the subspace "surface"
f0g � Z

d2. We prove that the spectrum of H is purely absolutely
continuous, and that surface waves (see [8] for de�nition) oscillate in
the longitudinal directions to the "surface". We �nd also an explicit
formula for the generalized spectral shift function introduced in [4].

1 Introduction

In this paper we will primarily discuss the discrete Schr�odinger operator H
with a surface potential V acting on the Hilbert space l2(Zd)

H = H0 + V; (1.1)

V (X) = Æ(x)v(�); (1.2)

where

Zd = Zd1 � Zd2 = fX = (x; �) j x 2 Zd1 ; � 2 Zd2g; (1.3)

In other words

H (X) =
X

Y 2Zd;jY�Xj=1

 (Y ) + Æ(x)v(�) (X); (1.4)

for all  2 l2(Zd), where Æ(x) is Kronecker symbol.
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It is well known that H0 is a bounded self-adjoint operator on l2(Zd),
and

�ac(H0) = �(H0) = [�2d; 2d];

�pp(H0) = �sc(H0) = ?:

For every real-valued potential v, it is clear that the operator H is self-
adjoint in l2(Zd). Using Weyl's criterion one can see that �(H0) is contained
in the spectrum of H. Moreover, in [8] the authors prove that for bounded
potential v, �(H0) is always contained in the absolutely continuous com-
ponent of the spectrum of H. This result was generalized for an arbitrary
unbounded potential v in [5, 12].

In fact, in this model we have two special parts of the spectrum �(H) of
the operator H

� Bulk branches of the spectrum whose generalized eigenfunctions (poly-
nomially bounded solutions of the equation H = � ; � 2 �(H))
are plane waves, i.e. they oscillate in all directions.

� Surface branches of the spectrum (or more simple \surface spectrum")
whose generalized eigenfunction decay in the transversal directions x
and either oscillate or decay in the longitudinal directions �. These
solutions are called surface waves (see [6, 8, 11] for results and refer-
ences).

There is a large literature on the spectral properties of H and the ge-
ometry of surface branches of the spectrum of H (see [2, 8, 11, 9, 10, 14]).
For example in [2] the authors study the case where v belongs to a special
class of unbounded quasiperiodic potentials. In that case they prove that
away from �(H0) the surface spectrum of H is pure point dense and the
corresponding generalized spectral functions are exponentially localized. A
typical example of this class is

v(�) = � tan(�� � � + �)

with � = (�1; � � � ; �d) 2 [0; 1]d and � 2 R. In that case H is the Maryland
surface model. This model was also studied in [14] and [11]. In [14] the
authors prove that if � has typical Diophantine properties, i.e. if there exist
constants C; k > 0 such that

j� � �� nj > Cj�j�k; 8� 2 Zd2; 8n 2 Z;
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then the surface spectrum of H is dense and pure point outside �(H0) for
any � 6= 0 and � 2 R and the corresponding surface waves are localized. In
[11] the authors proved that if �1; � � � ; �d are Q-linearly independent, then
the spectrum of H is purely absolutely continuous on �(H0).

Our goal in this paper is to study the geometry of the spectrum of H
in the case of a surface periodic potential, i.e. we assume that there exist
N1; � � � ; Nd2 2 N

� such that

v(� +Njej) = v(�) 8j = 1; � � � ; d2 (1.5)

where fejg are the canonical basis of R
d2 . We prove in the �rst section, that

the spectrum of H is purely absolutely continuous, and that surface waves
oscillate in the longitudinal directions � and are localized in the transversal
directions x. A similar problem in the continuous case was studied in [7].

In the second section we �nd an explicit formula for the generalized
spectral shift function which was introduced in [4] for a homogeneous sur-
face potential (periodic, quasi-periodic, random ergodic).
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2 Study of the spectrum:

In this section we will show that the spectrum of H is purely absolutely
continuous if v(�) has property (1.5). Let 
d2 be the periodic cell i.e.


d2 = f� = (�1; � � � ; �d2) 2 Z
d2; 0 � �j � Nj � 1; j = 1; � � � ; d2g:

Let Td2 = [0; 2�]d2 be the torus in Rd2 and let us consider following spaces

H0
1 = l2(
d2); H1 =

Z �

Td2

H0
1

d�

(2�)d2
:

H0
2 = l2(Zd1)� l2(
d2); H2 =

Z �

Td2

H0
2

d�

(2�)d2
:

And let U1 be the following operator

U1 : l2(Zd2) �! H1

(U1f)�(�) =
X
n2Zd2

e�i��nf(� + njN); � 2 Td2 ;
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where njN = (n1N1; � � � ; nd2Nd2) 2 Z
d2. Let U2 be the following operator

U2 : l2(Zd) �! H2

U2 = 1
 U1

i.e.

(U2f)�(x; �) =
X
n2Zd2

e�i��nf(x; � + njN):

Let us denote by h0 the Laplacian on l2(Zd2). Then we have the following

Lemma 2.1

U1h0U
�1
1 =

Z �

Td2

h0(�)
d�

(2�)d2
;

where h0(�) is the Laplacian on H0
1 with the Bloch-Floquet conditions:

 �(�1; � � � ; Nj ; � � � ; �d2) = ei�j (�1; � � � ; 0; � � � ; �d2);

 �(�1; � � � ; Nj � 1; � � � ; �d2) = ei�j (�1; � � � ;�1; � � � ; �d2):

Proof. The proof of this lemma is the same proof for the continuous Lapla-
cian developed in [18].

It is clear that the spectrum of h0(�) is pure point, moreover

(h0(�)�
�
n)(�) = �n(�)�

�
n(�);

where

��n(�) =

d2Y
j=1

exp(i
�j
Nj

+
2�inj
Nj

)�j; (2.1)

�n(�) = �2

d2X
j=1

cos(
�j
Nj

+
2�nj
Nj

): (2.2)

Corollary 2.1 We have

U2H0U
�1
2 =

Z �

Td2

H0(�)
d�

(2�)d2
;
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where H0(�) is the Laplacian on l2(Zd1)� l2(
d2) with Bloch-Floquet condi-

tions for longitudinal directions �:

 �(x; �1; � � � ; Nj ; � � � ; �d2) = ei�j (x; �1; � � � ; 0; � � � ; �d2);

 �(x; �1; � � � ; Nj � 1; � � � ; �d2) = ei�j (x; �1; � � � ;�1; � � � ; �d2);

for all j = 1; � � � ; d2.

It is clear that H0 (�) = (��d1)
1+1
h0 (�) where ��d1 is the discrete
Laplacian on l2(Zd1). Therefore the spectrum of H0 (�) is purely absolutely
continuous and

�ac(H0 (�)) = [�2d1 + min
n2
d2

�n(�); 2d1 + max
n2
d2

�n(�)] � [�2d; 2d]: (2.3)

Lemma 2.2 The operator H de�ned in (1.1)-(1.4) is decomposable in direct

integral.

Proof. Let A be a multiplication operator on H2 by a measurable function
f , and let F be an operator of l2(Zd) into itself de�ned by F = U�1

2 AU2,
then one has

(F')(x; � + njN) =
X

n02Zd2

'(x; � + n0jN) ef(n� n0);

where

~f(n) =

Z
Td2

e�i��nf(�)
d�

(2�)d2
:

By a direct calculation one �nds that the commutator [H;F ] = 0, this shows
that the operator H is decomposable according to the Theorem XIII.84 of
[18].

Lemma 2.3 We have

U2HU
�1
2 =

Z �

Td2

H(�)
d�

(2�)d2
;

where H(�) = H0(�) + V�(X), and V�(X) is the potential Æ(x)v(�) on H0
2.
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Proof. In view of Corollary 2.1 It suÆces to verify that

U2V U2 =

Z �

Td2

V�
d�

(2�)d2
:

This follows from

(U2V f)�(X) = V�(X)(U2f)�(X)

which is obvious from a direct calculation.

Theorem 2.2 We have

�ac(H(�)) = �ac(H0(�)) = [�2d1 + min
n2
d2

�n(�); 2d1 + max
n2
d2

�n(�)];

�sc(H(�)) = ?;

and H(�) has at most a �nite number of eigenvalues situated outside of

[�2d1 � �(�); 2d1 + �(�)]:

Proof. We have H(�) = H0 (�) + V�(X) where V�(X) is the multiplication
operator by a �nite-rank matrix whose rank

r = rankV�(X) = j
d2 j

is the volume of 
d2 . Then by the Theorem XI.10 of [18] we have

�ac(H(�)) = �ac(H0(�)) = [�2d1 + min
n2
d2

�n(�); 2d1 + max
n2
d2

�n(�)];

�sc(H(�)) = ?:

Moreover, H(�) has at most r eigenvalues. Let us show that �pp(H(�)) \
�ac(H(�)) = ?: Fix E 2 �pp(H(�)) \ �ac(H0(�)). By the Green's formula
for the pair H(�) and H0(�) we obtain

uE(x; �) =
X
�2
d2

GE(x; � � �;H0(�))v(�)uE(0; �);

where GE is the Green function of H0(�) and uE is the eigenfunction of
H(�) corresponding to E: We notice that uE 2 l2(Zd1) 
 l2(
d2) if and
only if GE(x; �;H0(�)) decay suÆciently fast in x which is possible only if
E =2 �(H0(�)) = [�2d1 + min

n2
d2

�n(�); 2d1 + max
n2
d2

�n(�)]

In fact a part of the eigenvalues of H(�) can be plunged in the spec-
trum of H0, i.e. in [�2d; 2d]: A priori the Theorem XIII.85-(f) of [18] does
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not assure us that the spectrum of H is purely absolutely continuous on
[�2d; 2d], therefore �rst of all we will study these eigenvalues and show that
they generate an absolutely continuous spectrum for H.

Let E 2 �pp(H(�)). For all n 2 
d2 we de�ne

k�E(n) = (

Z
Td1

dp

�d1(p) + �n(�)�E
)�1; (2.4)

where �n(�) are the eigenvalues of h0(�) de�ned in (2.2), and

�d1(p) = �2

d1X
j=0

cos pj :

k�E(n) is well de�ned because according to Theorem 2.2 one hasE 62 �(H0(�))
this means that 8n 2 
d2 ; �d1(p) + �n(�) � E 6= 0. Let us now de�ne the
following operator

K�
E;v : H

0

1 �! H
0

1 (2.5)

(K�
E;v )(n) = k�E(n) (n) +

X
n02
d2

~v(n� n0) (n0);

where

~v(n) =
X
�2
d2

��n(�)v(�):

and ��n(�) are the eigenfunctions of h0(�) de�ned in the equation (2.1). The
spectrum of this operator is clearly pure point. Moreover we have

Lemma 2.4 We have

0 2 �pp(K
�
E;v), E 2 �pp(H(�)):

Proof. Let  �E be the eigenfunction of K�
E;v corresponding to the eigenvalue

0. By a simple calculation and by using (2.4) and (2.5) we �nd that the
function

u�E(x; �) =

Z
Td1

dpeix:p
X

n2
d2

��n(�)
k�E(n)

�d1(p) + �n(�)�E
 �E(n)

is an eigenfunction of H(�) corresponding to the eigenvalue E:
Let us suppose that � = �(t) = a+ tb where a and b are two �xed vectors

in Rd2 , and t 2 R.
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Lemma 2.5 Let E 2 �pp(H(�)) and let AE(t) = K
�(t)
E . Then for any t 2 R

there exists a neighborhood of the real axis where the eigenvalues f�nE(�)g are
analytic not identically constant in t.

Proof. Let K
�(t)
E;0 be the operator K

�(t)
E;v=0. Obviously, the eigenvalues of this

operator are

k
�(t)
E (n) = (

Z
Td1

dp

�d1(p) + �n(a+ tb)�E
)�1: (2.6)

To show that �nE(t) is analytic on a neighborhood of R it is enough to show
that they are bounded for a �nite t 2 R. Let  nE(t) be the normalized
eigenfunctions of AE(t), i.e.

AE(t) 
n
E(t) = �nE(t) 

n
E(t);

k nE(t)k = 1:

Then we have

(AE(t) 
n
E(t);  

n
E(t)) = �nE(t):

And (see [13])

d�nE(t)

dt
= (

dAE(t)

dt
 nE(t);  

n
E(t))

= (
dK

�(t)
E;0

dt
 nE(t);  

n
E(t))

=
dk

�(t)
E (n)

dt
:

And this last quantity
dk

�(t)
E (n)

dt
is explicitly calculable. By deriving the

equation (2.6) in t one �nds

dk
�(t)
E (n)

dt
=
d�n(a+ tb)

dt

Z
Td1

dp

(�d1(p) + �n(a+ tb)�E)2
(k

�(t)
E (n))�2:

This derivative is obviously bounded. Thus there exists C > 0 such that

j
d�nE(t)

dt
j = j

dk
�(t)
E (n)

dt
j � C:
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Then �nE(t) can not grow up to in�nity for a �nite t 2 R.
Thus, we can write �nE(�) where � 2 C belongs to a certain neighborhood

of t 2 R. We have to show that �nE(�) is not identically constant. Let us
suppose that �nE(�) is constant

�nE(�) = �: (2.7)

We have according to the relation (2.2)

�n(a+ �b) = �2

d2X
j=1

cos(
aj + �bj
Nj

+
2�nj
Nj

)

Let us suppose that � = � + iy 2 C . So there exists C1;m two positive
constants such that

j�n(a+ �b)j � C1(e
mjyj + 1):

Then if y0 is big enough, there is C(y0) > 0 such that

j

Z
Td1

dp

�d1(p) + �n(a+ �b)�E
j �

Z
Td1

dp

j�d1(p) + �n(a+ �b)�Ej
�

1

C(y0)(emjyj + 1)
:

Thus

jk
�(�)
E (n)j � C2(e

mjyj + 1): (2.8)

And for any � 2 C nR there exist a positive constant C such that we have
the bound

k (K
�(�)
E;0 � �)�1 k�

C

emjyj + 1
:

By taking y to in�nity we obtain

lim
y!1

k (K
�(�)
E;0 � �)�1 k= 0: (2.9)

Let ~v be the following operator

~v : H0
1 !H0

1

(~v )(n) =
X

n02
d2

~v(n� n0) (n0):
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This operator is a �nite-rank matrix. Thus we have also

lim
y!1

k ~v(K
�(�)
E;0 � �)�1 k= 0: (2.10)

By (2.9), (2.10), and the resolvent identity one �nds

lim
y!1

k (K
�(�)
E;v � �)�1 k= 0: (2.11)

Since K
�(�)
E;v is a �nite dimensional operator we have

k (K
�(�)
E;v � �)�1 k�

1

j�� �j
;

where � is de�ned in (2.7). This relation contradicts (2.11). Therefore �nE(t)
cannot be constant function.

Lemma 2.6 For any t 2 R the eigenvalues �nE(t) are strictly monotonous

in E.

Proof. With the same notations of the proof of Lemma 2.5 one has (e.g.
[13])

d�nE(t)

dE
= (

dAE(t)

dE
 nE(t);  

n
E(t))

= (
dK

�(t)
E;0

dE
 nE(t);  

n
E(t))

=
dk

�(t)
E (n)

dE
:

By the direct calculation of the derivative of k
�(t)
E (n) in E from the relation

(2.6) we obtain

dk
�(t)
E (n)

dE
= �

Z
Td1

dp

(�d1(p) + �n(a+ tb)�E)2
(

Z
Td1

dp

�d1(p) + �n(a+ tb)�E
)�2:

Thus

d�nE(t)

dE
< 0:

This yields the result.
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Theorem 2.3 Fix �(t) = a + tb where a; b are two vectors in Rd2 , and let

B(t) = H(�(t)). Then for any t0 2 R there exist a neighborhood of the real

axis in t such that the eigenvalues fEn(t)gn of B(t) are analytic and not

identically constant in this neighborhood.

Proof. By Lemma 2.4 one has

E 2 �pp(B(t))() 0 2 �pp(AE(t));

where AE(t) = K
�(t)
E . Let f�nE(t)g the set of the eigenvalues of A(t). Ac-

cording to Lemmas 2.5 and 2.6 �nE(t) is an analytic function not identically
constant on a neighborhood of the real axis in t, and strictly monotonous
in E. By the theorem of implicit functions there exists En(t) an analytic
function not identically constant in t such that E = En(t).

Now we can follow the schema the demonstration of the Theorem XII-
I.100 of [18]:

Theorem 2.4 The spectrum of H is purely absolutely continuous.

Proof. Let b;K2; � � � ;Kd2 be a basis of R
d2 , thus Td2 = f� = s1b+ s2K2+

� � � + sd2Kd2 js1 2M(s?); s? = (s2; : : : ; sd2) 2 Ng, then we have

H =

Z
s?2N

Z
s12M(s?)

H(s1b+ � � �+ sd2Kd2)
ds1ds?
(2�)d2

;

According to Theorem 2.2 and Theorem 2.3 the spectrum of B(s1) = H(s1b+
� � �+ sd2Kd2) is the union of a purely absolutely continuous spectrum and a
set of analytic eigenvalues not identically constant in s1: According to the
two Theorems XIII.86 and XIII.85-(f) of [18] the spectrum ofZ

s12M(s?)
H(s1b+ � � � + sd2Kd2)

ds1
2�

is purely absolutely continuous. By applying XIII.85-(f) of [18] once again
to the direct integral on s? 2 N one �nds the result.

Remark. In fact the part of �(H) coming from the direct integral of the
eigenvalues of H(�) is the surface spectrum of H because the corresponding
generalized eigenfunctions decay in transversal directions x . This follows
from the fact that the direct integration of the eigenfunctions of H(�) does
not act on x. The other part of the spectrum of H(�) which comes from
the direct integration of the absolutely continuous spectrums of H(�) is the
bulk spectrum and is equal to [�2d; 2d]: The intersection of these two parts
is not necessary empty because a part of H(�)'s eigenvalues can be plunged
in [�2d; 2d]:
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3 Generalized spectral shift function:

The spectral shift function � was introduced by I.Lifchitz [16] and M.Krein
[15] for the trace class perturbations i.e. for a couple of operators (A;B)
such that TrfB � Ag < 1: This function veri�es the trace formula (see
[3, 19] for more results and references), i.e. for any function f in certain
class of real functions (C1(R) with compact support for example), one hasZ

R

f 0(�)�(�)d� = Trff(B)� f(A)g: (3.1)

We showed in [4] that when one perturbs the discrete Schr�odinger opera-
tor by a surface homogeneous (ergodic or periodic for example) potential a
quantity �� exists in the distribution's sense. This quantity is the analogue
of the spectral shift function, and we called it the generalized spectral shift
function. In the particular case of a periodic surface potential a formula
similar to the trace formula (3.1) exists and has the formZ

f 0(�)��(�)d� =
1

j
d2 j
TrP
ff(H)� f(H0)g; (3.2)

where P
 is the orthogonal projection on the slab 
 = Zd1 � 
d2 .
Let H0(�);H(�) be the two operators de�ned in the preceding section.

In fact the perturbation (H(�);H0(�)) is of a �nite-rank, and thus according
to [3] the spectral shift function �(�; �) of this couple exists.

In [4] we showed, in particular, that for the simplest case (v(�) = Const:
the generalized spectral shift function �� is a usual function (not distribution)
and is given by the relation

��(�) =

Z
R

�d1(�� �)Nd2(d�) (3.3)

where �d1 is the spectral shift function of the couple (��d1 + aÆ(x);��d1 )
and Nd2 is the integrated density of states of h0 = ��d2 : We will prove the
next Theorem which is a generalization of the relation (3.3) for a periodic
potential. We can rewrite (3.3) as following

��(�) =

Z
Td2

�d1(�� �(�))
d�

(2�)d2
;

where �(�) = �2

d2X
j=1

cos �j.
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Theorem 3.1 Let ��(�) be the generalized spectral shift function of (H;H0).
Then

��(�) =
1

j
d2 j

Z
Td2

�(�; �)
d�

(2�)d2
:

Proof. As we mentioned before the theorem the spectral shift function
�(�; �) of the pair (H(�);H0(�)) exists and veri�es the trace formula (3.1),
thus 8f 2 C1(R) with compact supportZ

f 0(�)�(�; �)d� = Trff(H(�)� f(H0(�))g:

In the other handZ
f 0(�)��(�)d� =

1

j
d2 j
TrP
ff(H)� f(H0)g

=
1

j
d2 j

Z
Td2

d�

(2�)d2
Trff(H(�)� f(H0(�))g

=
1

j
d2 j

Z
Td2

d�

(2�)d2

Z
f 0(�)�(�; �)d�:

By applying Fubini's Theorem one �nds that for any function f 2 C1(R)
with compact supportZ

f 0(�)(��(�)�
1

j
d2 j

Z
Td2

�(�; �)
d�

(2�)d2
)d� = 0:

This relation is equivalent to the assertion of the theorem.
This theorem shows that studying the smoothness and asymptotic prop-

erties of �(�; �) allows us to study the smoothness and the asymptotic prop-
erties of ��(�): This will be discussed in a later work.
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