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This note essentially reproduces the contents of a talk at Bielefeld University
on July 27th, 2004. Most of the material comes from [1], [2] and [5] ; I have tried
to uniformize notation, sign conventions, etc. , and I have slightly amended the
definition of p given in [1].

1.PRELIMINARIES

Let Dif f(S') denote the group of C*°, orientation—preserving diffeomorphisms
of the circle S*.Its Lie algebra dif f(S!) can be naturally identified with the set of
C> vector fields on S, i.e. :

diff(Sl) = {d’(e)di@kb :R — R ,C*, 27 — periodic} .

We shall often identify, without further warning, the function ¢ and the vector field

d
(b(@)@ . A topological basis (for the obvious Fréchet space topology) of dif f(S?)
is given by the (fx)r>0 and the (gx)r>1, where :

d
fk =def COS(k@) @

and

9k =def Sin(k@)% .
Let dif fc(S') =a4er diff(S') ®@r C denote the complexified Lie algebra of
dif f(S*) ; it is now clear that a topological basis of dif fc(S!) is given by the
(er)rez, where :
iko @

€k =def € a0 .
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2 PAUL LESCOT

One has the commutation relations :

’

lex,ep] =ik —k)ejp -
The Lie algebra dif f(S!) contains :
A =gef Vectc(er)rez

as a Lie subalgebra, dense for the natural Fréchet space topology.
Setting L = —ieg, one finds that :

[LkaLk’] = (kl - k)Lk-Hc’ )

whence
A =~ Derc(Cl[t, )

d
, corresponding, through this isomorphism, to ¢ —, which is equivalent to
L di h h this i hi k“dt hich i ival
setting t = e%).
The algebra Vir. j is defined by :
Virc7h =def diffc(Sl) ® Ck

as a vector space, with the following bracket :

V(f.g) € dif fc(S")

[Haf]:()a

and :

[f? g]Virc,h = [fa g] +wc7h(f7 g)’i »

where
/ C 1" d9

cenlfeg) =aes [ (@0 0) = 551 €)g(0)

The so—called Gelfand-Fuks cocycle is wg .
An easy computation yields :

Proposition 1.2.

3 _
V(m,n) € Z* wenl(em,en) = i[2hm + L

12 om.—n

It is easy to deduce from [4],chapter 7,exercises 7.1 and 7.13, that the w, are
exactly the continuous cocycles o on dif fc(S*) such that

Vf e diff(S') aleo, f) =0

We shall denote by Virffh the obvious “real”Lie subalgebra of Vir,y, i.e. :

Virf’”h =def def(Sl) @ Rk.
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(From now on, we shall assume ¢ > 0 and h > 0. Let

27
diffo(S") =aey {0 € dif f(SY)] i $(0)df =0} .

On dif fo(S1), one defines a complex structure in the usual way : for

—+oo

¢(0) = _(ar cos(kf) + by sin(k6))

k=1

(ak, by rapidly decreasing), we set :

“+oo
J(0) =acy > _(—axsin(k6) + by, cos(kf)) .
k=1
Lemma 1.3([2],p.630).
“+oo
VT € dif fo(SY) wenlf, ) = 5 D2k + 5 (K~ B)a} +) > 0.
k=1

T df .
Proof. Let us set, as usual, ¢ (f) = f02 T, )— then f(0) = 3,z cke™™ and

Jf(0) = Z(ickeike —ic_pe k)

k>1
whence (by Proposition 1.2):
_ . . 3 c ic 3
wen(f,Jf) = Z(ck(—zc_k)(z@h k + —k )+ Z c—(—ick)(i(2h — E)( k) — Ek )
E>1 k>1
c
=2 (cke_i)(2hk + E(k3 —k)).
k>1
Taking into account the obvious relations: Vk > 1, ar = cx + c—; and by =

i(ck — c—k), the result follows. O

2.KIRILLOV’S CONSTRUCTION

(Kirillov , [5] ; Airault and Malliavin , [2])
Let M denote the set of C*° functions f : D — C, injesctive, holomorphic on D,
with f(0) =0, f(0) =1, and Vz € D f'(z) # 0. Each f € M can be written as :

VzeD f(z 1+ch ,

whence an imbedding :
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M — CN’

fr—(e,ca,....)
(in fact, by De Branges’solution of Bieberbach’s conjecture, one has |c,| < n, thus
M is identified with an open subset of II,,>1Bc(0,n + 1); one therefore obtains a
structure of (contractible) manifold on M).

Let D = D(0,1) denote the unit disk. For f € M, I' = f(S') = f(dD) is a
Jordan curve, therefore one has a decomposition into connected components :

CU{oo}=TTuUTl"

with 0 € ' and co € I'". By a combination of Riemann’s representation Theorem
and Caratheodory’s Theorem, there exists an holomorphic mapping

¢f: (CU{o0}\ D) =T-=T"UT

such that ¢¢(co) = oo . Let us then define gy by :

gr: St — St
& s [T (65(E))
Then g € Dif f(S'), and gy is well-defined up to multiplication on the right by
an holomorphic automorphism of C\ D stabilizing oo, i.e. a rotation, whence a

mapping :

K:M— Diff(s')/s!

Theorem 2.1(Kirillov,[5],p.736). K is a bijection.

Therefore, by transport of structure, Dif f(S')/S! acquires a structure of con-
tractible complex manifold. Using J and w p, this manifold can be equipped with
a Kéahlerian structure(see [2]).

Definition 2.2(Kirillov action). Forv = (b(@)dio cdiff(SY) and f € M, let us
write w(e) = ¢(#), and define K,(f) by :

Ko(f)(2) =

Sl

2 FO) fO) - )t

Definition 2.3. Forn € Z, let

Ln —def _iKen .

For nonnegative n, it is very easy to compute L,, :
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Proposition 2.4.

(1) Forn>1,
o X
L,= (k+1) ;
den +§ + e OCntk
(2)
0
Ly = naS_
0 ZTLC p) N
n>1
Proof.

(1) In this case, the expression for K, becomes

/

FEE [, dt
Ke (1)) = =7 f(tﬂf()—f(z)?
 f(2)? f(t), !
= | T
_ f(z ) it Res tf @) 2 e auchy’s formula
= T 2R ) ey (b Gty formuly
_ @, 2f () o 2"
= o W
= iz"f(2)
400
_ it _H.Z(k+ l)ckzk+n+1
k=1
therefore
+oo
La(f)(2) = 2" 3 (I + Depst oL
k=1

whence the result.
(2) The computation is similar, taking into account the pole at 0, and yields

whence the result.
O

Lemma 2.5. One has the commutation relations :

Y(m,n) € Z* [Ly, Ly] = (M —n)Lypyn - (*)

Proof. [2],p. 655. O
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3. THE NERETIN POLYNOMIALS AND THE REPRESENTATION P
Let vi =def %(k3 — k), and P, =0 for k < 0.

Theorem 3.1(Kirillov—Neretin). There exists a unique sequence (Pp)p>0 of
polynomials in the (¢;)i>1 such that :
(1) Py depends only upon c1,...,ck;
(2) Po=h;
3)
Vk>1Vn>1Lg(P,) = (n+ k)P + ViOk,m ;
(4) Vn>1 P,(0) = 0.

Proof. Given Py, ..., P,(n > 0), the relation (3) (with n+1 in place of n) is trivially
satisfied for any polynomial P, 11 in c1,...,¢py1 and any k > n+1; for 1 <k < n+1,
8Pn+1

Ck
therefore they determine P,41 up to a constant ; (4) for n + 1 now determines a
unique P,4+1. U

the relations determine, by descending induction on k, the in a unique way,

The first few terms of the sequence are easily computed :

Py=h,

P1 = 2h61 5

c

Pg = (4h+ 5)02 — (h+ 2)0% .

If each ¢, is given the weight k, it is easily seen that Py is homogeneous of weight
k.

Let us remind the reader of the definition of the Schwarzian derivative of an
holomorphic function f :

" "

VMO RO
f() f(2)
The following result could have been used as definition of the polynomials Py :

Proposition 3.2([5],p.742,Theorem).

S(H(z)

022

P+ 800

2f (2)
f(z)

—+o0
VfeM ZPn(cl, vy Cp )2 = h(

n=0
Proposition 3.3.
Vk>0Vp >0 Loy(Py) — L_y(Pi) = (p— K) Py
in particular, the formula of Theorem 3.1(8) remains valid for k = 0.

Proof. 2], p.663. O

Let
Py, for k#0

Qk:def{ 0fork=0.
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Theorem 3.4. Let us set , for each k € Z :
pler) = —i(Lk + Q—.)
and

p(r)=1Id.

Then p defines a representation of the Lie algebra Vir. into the Lie algebra of
differential operators on M.

Proof. As, obviously, [p(er), p(k)] = 0 is enough to prove that
[p(em), plen)] = p([em; en]) -

Taking Proposition 1.2 into account, this is easily reduced to checking the relation

Ln(Qfm) - Lm(an) = (TL - m)Qfmfn - [2hm + 'Ym](sm,fn .

But , for m > 0 and n > 0, that relation is trivially satisfied ; for m = 0 and
n < 0, as well as for n =0 and m < 0, it follows from the relation

Vn > 1 Lo(P,) =nkby, ;
in the case m < 0 and n < 0, setting p = —m and k = —n, we have to prove that :
Vp>1Vk=>1 L_y(Pp) — Lp(Px) = (p — k) Ppsk

but both these facts follow from Proposition 3.3 .
There remains the case m < —1 and n > 1 (or the other way round) ; in this
case, we need to prove, setting kK = —m > 1, that :

VkE>1VYn>1Ly(Py)=n+k)Qr—n + (2hk + v£)0k.n
i.e.

=n+k)P_nifn#k

VkEIVnZILn(Pk){ =2hk 4+, ifn==Fk.

As Py = h, this follows from Theorem 3.1(3). O

4. UNITARIZING MEASURE(S)?

Definition 4.1. A Borel probability measure p on M is said to be unitarizing for
p if and only if

Vv € VCI’L}L p(v)* = —p(v)
on HL?(M).
"
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Lemma 4.2([1],Theorem 1,p.433). If u exists, then, setting Z, = Ly, — L_j (k >
0), one has :

VF € coo(M)/

Zu(Fydn =~ [ Fodu. (4.2.1)
M

M
where

— P ifk>1,
Br = :
0ifk=0.
Proof. From the definition follows that :
Yo € Vire, p(v)* = —p(0) .

By a density argument, one may assume that F' = @), with ¢ and 1) holomorphic;
then one has :

[ zuen= [ Lieian- | Toieb
M M

Li(o0)dp — /M L (@0)dy

(L) + oL (6))dpt — /M (Ls(@) + pL 1 (4))dp

I
S N I N

(L) + oL (6))dpt — / (Lw(@) + pL 1 (4))dp

M

Ly (@)thdp — /M Lk (¢)dp

(because ¢ is holomorphic and ¢ anti-holomorphic)

—i / (p(er) () — Qrp)ddp — / Blip(e—i)(¥) — Qub)dy
M M

— i(p(ex) (@), ¥) + /M (@ — Qr)Pdp + iPE) D))
— i(plex) (@), 1) + /M (@i — Qr)Pdp + i, p(ei) ()

/ ©(Qr — Q_r)Fdu
M

by the hypothesis on p .
Whence the result with :

— P, fork>1

ﬂk:Q_k_Qk:{Ofork:O.
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Theorem 4.3([1],Theorem 3 and Corollary 4, p.234).

(1) If u exists then the sequence 1, Py, Py, ... is a sequence of orthogonal polyno-
mials in L?(u) ; more precisely :

0if m+#k
(Pos Pe) g2y = & e+ 20k ifm =k >1

(2) If h = 0 then there is no unitarizing measure on M for p.

Proof. (1) Let us set, for each k > 0, and Hy, = Z% + B4 Zy, ; it follows from Lemma
4.2 applied to Zi(F') that, for each k > 0, one has :

VF € C®(M) Yk > 0/ Hy(F)dp =0 . (4.3.1)
M

But it follows from the definition of the Neretin polynomials (Theorem 3.1(3)) and
from the last remark in Proposition 3.3 that:

Vk>0Vn2>1

Hi(P,) = Li((n + k) Po—k + Y0k,n) + Br((n + k) Po_i, + Yi0k,n)
= (Tl + k)nPn—Qk + (n + k)’}/k(sk,n—k + (n + k)ﬂkpn—k + 6k7k5k,71 .

(4.3.2)
By (4.3.1) one has
Vk > 0Vn > 1/ Hy(P,)du=0. (4.3.3)
M
Applying (4.3.2) for £k =0 and n > 1, one finds that :
Vn > 1 Hy(P,) = n*P, ,
whence (4.3.3) yields that :
Vn>1 / P,du=0. (4.3.4)
M
From Lemma 4.2 applied to F' = 1 follows :
Yk >0 / Brdu =0 . (4.3.5)
M

Taking now k > 1, m >1and n =m+k , (4.3.2) and (4.3.3) together yield :

/ [(2k +m)(k +m)Pp—k + (m + 2K)Yi0m. & + (m + 2k) Bk P + BrYk0m,0)dp = 0 ;
M
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from the fact that

0 forn>1 (4.3.4)

/ P,dy={ hforn=0
M 0 for n < 0 (by definition)

and from (4.3.5), we get :

I =0ifm#k
/Mﬁk ™ “{ =y —2khifm=Fk#0.

Remembering that 3, = — P for k > 1, the result follows.
(2) Let us remind the reader that P; = 2he¢;. Clearly,

Zi(e1) = (L1 = L1)(e1) = La(e) = 1,

1:/ dp

M

:/ Zi(c1)dp
M

—/ c1f1dp (by Lemma 4.2)
M

:/ clpld,u
M

= 2h/ Cléldﬂ ,
M

whence :

which is impossible for h = 0. A more geometrical proof of this nonexistence result

had previously been given in [3], Theorem 2.2, p.625. O
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