UNITARIZING MEASURES FOR REPRESENTATIONS OF THE VIRASORO ALGEBRA, ACCORDING TO KIRILLOV AND MALLIAVIN : STATE OF THE PROBLEM

Paul Lescot
INSSET-Université de Picardie
48 Rue Raspail
02100 Saint-Quentin
paul.lescot@u-picardie.fr

11 August 2004

This note essentially reproduces the contents of a talk at Bielefeld University on July 27th, 2004. Most of the material comes from [1], [2] and [5] ; I have tried to uniformize notation, sign conventions, etc. , and I have slightly amended the definition of ρ given in [1].

1.PRELIMINARIES

Let \mathcal{D} iff $\left(S^{1}\right)$ denote the group of \mathcal{C}^{∞}, orientation-preserving diffeomorphisms of the circle S^{1}. Its Lie algebra $\operatorname{dif} f\left(S^{1}\right)$ can be naturally identified with the set of \mathcal{C}^{∞} vector fields on S^{1}, i.e. :

$$
\operatorname{diff}\left(S^{1}\right)=\left\{\left.\phi(\theta) \frac{d}{d \theta} \right\rvert\, \phi: \mathbf{R} \rightarrow \mathbf{R}, \mathcal{C}^{\infty}, 2 \pi-\text { periodic }\right\}
$$

We shall often identify, without further warning, the function ϕ and the vector field $\phi(\theta) \frac{d}{d \theta}$. A topological basis (for the obvious Fréchet space topology) of $\operatorname{diff}\left(S^{1}\right)$ is given by the $\left(f_{k}\right)_{k \geq 0}$ and the $\left(g_{k}\right)_{k \geq 1}$, where :

$$
f_{k}={ }_{d e f} \cos (k \theta) \frac{d}{d \theta}
$$

and

$$
g_{k}={ }_{d e f} \sin (k \theta) \frac{d}{d \theta} .
$$

Let $\operatorname{dif} f_{\mathbf{C}}\left(S^{1}\right)={ }_{\operatorname{def}} \operatorname{diff}\left(S^{1}\right) \otimes_{\mathbf{R}} \mathbf{C}$ denote the complexified Lie algebra of $\operatorname{diff}\left(S^{1}\right)$; it is now clear that a topological basis of $\operatorname{dif} f_{\mathbf{C}}\left(S^{1}\right)$ is given by the $\left(e_{k}\right)_{k \in \mathbf{Z}}$, where :

$$
e_{k}={ }_{d e f} e^{i k \theta} \frac{d}{d \theta} .
$$

One has the commutation relations :

$$
\left[e_{k}, e_{k^{\prime}}\right]=i\left(k^{\prime}-k\right) e_{k+k^{\prime}}
$$

The Lie algebra $\operatorname{diff}\left(S^{1}\right)$ contains :

$$
\mathcal{A}={ }_{\text {def }} V e c t_{\mathbf{C}}\left(e_{k}\right)_{k \in \mathbf{Z}}
$$

as a Lie subalgebra, dense for the natural Fréchet space topology.
Setting $L_{k}=-i e_{k}$, one finds that:

$$
\left[L_{k}, L_{k^{\prime}}\right]=\left(k^{\prime}-k\right) L_{k+k^{\prime}},
$$

whence

$$
\mathcal{A} \simeq \operatorname{Der}_{\mathbf{C}}\left(\mathbf{C}\left[t, t^{-1}\right]\right)
$$

(L_{k} corresponding, through this isomorphism, to $t^{k+1} \frac{d}{d t}$, which is equivalent to setting $t=e^{i \theta}$).

The algebra $\mathcal{V} i r_{c, h}$ is defined by :

$$
\mathcal{V}_{i r_{c, h}}={ }_{\text {def }} \operatorname{dif} f_{\mathbf{C}}\left(S^{1}\right) \oplus \mathbf{C} \kappa
$$

as a vector space, with the following bracket :

$$
\begin{gathered}
\forall(f, g) \in \operatorname{dif} f_{\mathbf{C}}\left(S^{1}\right)^{2} \\
{[\kappa, f]=0}
\end{gathered}
$$

and :

$$
[f, g]_{\mathcal{V}_{i r_{c, h}}}=[f, g]+\omega_{c, h}(f, g) \kappa
$$

where

$$
\omega_{c, h}(f, g)=\operatorname{def} \int_{0}^{2 \pi}\left(\left(2 h-\frac{c}{12}\right) f^{\prime}(\theta)-\frac{c}{12} f^{\prime \prime \prime}(\theta)\right) g(\theta) \frac{d \theta}{2 \pi} .
$$

The so-called Gelfand-Fuks cocycle is $\omega_{0,1}$.
An easy computation yields :

Proposition 1.2.

$$
\forall(m, n) \in \mathbf{Z}^{2} \omega_{c, h}\left(e_{m}, e_{n}\right)=i\left[2 h m+c \frac{m^{3}-m}{12}\right] \delta_{m,-n}
$$

It is easy to deduce from [4], chapter 7 ,exercises 7.1 and 7.13 , that the $\omega_{c, h}$ are exactly the continuous cocycles α on $\operatorname{dif} f_{\mathbf{C}}\left(S^{1}\right)$ such that

$$
\forall f \in \operatorname{diff}\left(S^{1}\right) \alpha\left(e_{0}, f\right)=0
$$

We shall denote by $\mathcal{V} i r_{c, h}^{\mathbf{R}}$ the obvious "real"Lie subalgebra of $\mathcal{V} i r_{c, h}$, i.e. :

$$
\mathcal{V} i r_{c, h}^{\mathbf{R}}={ }_{\text {def }} \operatorname{diff}\left(S^{1}\right) \oplus \mathbf{R} \kappa
$$

¿From now on, we shall assume $c>0$ and $h \geq 0$. Let

$$
\operatorname{dif} f_{0}\left(S^{1}\right)={ }_{\operatorname{def}}\left\{\phi \in \operatorname{diff}\left(S^{1}\right) \mid \int_{0}^{2 \pi} \phi(\theta) d \theta=0\right\} .
$$

On $\operatorname{dif} f_{0}\left(S^{1}\right)$, one defines a complex structure in the usual way : for

$$
\phi(\theta)=\sum_{k=1}^{+\infty}\left(a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right)
$$

(a_{k}, b_{k} rapidly decreasing), we set :

$$
J \phi(\theta)={ }_{d e f} \sum_{k=1}^{+\infty}\left(-a_{k} \sin (k \theta)+b_{k} \cos (k \theta)\right)
$$

Lemma 1.3([2],p.630).

$$
\forall f \in \operatorname{dif} f_{0}\left(S^{1}\right) \omega_{c, h}(f, J f)=\frac{1}{2} \sum_{k=1}^{+\infty}\left[2 h k+\frac{c}{12}\left(k^{3}-k\right)\right]\left(a_{k}^{2}+b_{k}^{2}\right) \geq 0
$$

Proof. Let us set, as usual, $c_{k}(f)=\int_{0}^{2 \pi} e^{-i k \theta} f(\theta) \frac{d \theta}{2 \pi}$; then $f(\theta)=\sum_{k \in \mathbf{Z}} c_{k} e^{i k \theta}$ and

$$
J f(\theta)=\sum_{k \geq 1}\left(i c_{k} e^{i k \theta}-i c_{-k} e^{-i k \theta}\right)
$$

whence (by Proposition 1.2):

$$
\begin{aligned}
\omega_{c, h}(f, J f) & =\sum_{k \geq 1}\left(c_{k}\left(-i c_{-k}\right)\left(i\left(2 h-\frac{c}{12}\right) k+\frac{i c}{12} k^{3}\right)+\sum_{k \geq 1}\left(c_{-k}\left(-i c_{k}\right)\left(i\left(2 h-\frac{c}{12}\right)(-k)-\frac{i c}{12} k^{3}\right)\right.\right. \\
& =2 \sum_{k \geq 1}\left(c_{k} c_{-k}\right)\left(2 h k+\frac{c}{12}\left(k^{3}-k\right)\right)
\end{aligned}
$$

Taking into account the obvious relations: $\forall k \geq 1, a_{k}=c_{k}+c_{-k}$ and $b_{k}=$ $i\left(c_{k}-c_{-k}\right)$, the result follows.

2.KIRILLOV's CONSTRUCTION

(Kirillov , [5] ; Airault and Malliavin , [2])
Let \mathcal{M} denote the set of \mathcal{C}^{∞} functions $f: \bar{D} \rightarrow \mathbf{C}$, injesctive, holomorphic on D, with $f(0)=0, f^{\prime}(0)=1$, and $\forall z \in \bar{D} f^{\prime}(z) \neq 0$. Each $f \in \mathcal{M}$ can be written as :

$$
\forall z \in D f(z)=z\left(1+\sum_{n=1}^{+\infty} c_{n} z^{n}\right)
$$

whence an imbedding :

$$
\begin{aligned}
& \mathcal{M} \hookrightarrow \mathbf{C}^{N^{*}} \\
& f \mapsto\left(c_{1}, c_{2}, \ldots .\right)
\end{aligned}
$$

(in fact, by De Branges'solution of Bieberbach's conjecture, one has $\left|c_{n}\right| \leq n$, thus \mathcal{M} is identified with an open subset of $\Pi_{n \geq 1} \mathcal{B}_{\mathbf{C}}(0, n+1)$; one therefore obtains a structure of (contractible) manifold on \mathcal{M}).

Let $D=\mathcal{D}(0,1)$ denote the unit disk. For $f \in \mathcal{M}, \Gamma=f\left(S^{1}\right)=f(\partial D)$ is a Jordan curve, therefore one has a decomposition into connected components :

$$
\mathbf{C} \cup\{\infty\}=\Gamma^{+} \cup \Gamma^{-}
$$

with $0 \in \Gamma^{+}$and $\infty \in \Gamma^{-}$. By a combination of Riemann's representation Theorem and Caratheodory's Theorem, there exists an holomorphic mapping

$$
\phi_{f}:(\mathbf{C} \cup\{\infty\} \backslash D) \rightarrow \overline{\Gamma^{-}}=\Gamma^{-} \cup \Gamma
$$

such that $\phi_{f}(\infty)=\infty$. Let us then define g_{f} by :

$$
\begin{aligned}
g_{f}: S^{1} & \rightarrow S^{1} \\
e^{i \theta} & \mapsto f^{-1}\left(\phi_{f}\left(e^{i \theta}\right)\right) .
\end{aligned}
$$

Then $g \in \operatorname{Diff}\left(S^{1}\right)$, and g_{f} is well-defined up to multiplication on the right by an holomorphic automorphism of $\mathbf{C} \backslash \bar{D}$ stabilizing ∞, i.e. a rotation, whence a mapping :

$$
\mathcal{K}: \mathcal{M} \rightarrow \operatorname{Diff}\left(S^{1}\right) / S^{1}
$$

Theorem 2.1(Kirillov,[5],p.736). \mathcal{K} is a bijection.
Therefore, by transport of structure, $\operatorname{Diff}\left(S^{1}\right) / S^{1}$ acquires a structure of contractible complex manifold. Using J and $\omega_{c, h}$, this manifold can be equipped with a Kählerian structure(see [2]).

Definition 2.2(Kirillov action). For $v=\phi(\theta) \frac{d}{d \theta} \in \operatorname{diff}\left(S^{1}\right)$ and $f \in \mathcal{M}$, let us write $w\left(e^{i \theta}\right)=\phi(\theta)$, and define $K_{v}(f)$ by :

$$
K_{v}(f)(z)=\frac{f(z)^{2}}{2 \pi} \int_{S^{1}}\left(\frac{t f^{\prime}(t)}{f(t)}\right)^{2} \frac{w(t)}{f(t)-f(z)} \frac{d t}{t}
$$

Definition 2.3. For $n \in \mathbf{Z}$, let

$$
L_{n}={ }_{\text {def }}-i K_{e_{n}}
$$

For nonnegative n, it is very easy to compute L_{n} :

Proposition 2.4.
(1) For $n \geq 1$,

$$
L_{n}=\frac{\partial}{\partial c_{n}}+\sum_{k=1}^{+\infty}(k+1) c_{k} \frac{\partial}{\partial c_{n+k}}
$$

$$
\begin{equation*}
L_{0}=\sum_{n \geq 1} n c_{n} \frac{\partial}{\partial c_{n}} \tag{2}
\end{equation*}
$$

Proof.
(1) In this case, the expression for K_{v} becomes

$$
\begin{aligned}
K_{e_{n}}(f)(z) & =\frac{f(z)^{2}}{2 \pi} \int_{S^{1}}\left(\frac{t f^{\prime}(t)}{f(t)}\right)^{2} \frac{t^{n}}{f(t)-f(z)} \frac{d t}{t} \\
& =\frac{f(z)^{2}}{2 \pi} \int_{S^{1}}\left(\frac{t f^{\prime}(t)}{f(t)}\right)^{2} \frac{t^{n-1}}{f(t)-f(z)} d t \\
& =\frac{f(z)^{2}}{2 \pi} 2 i \pi \operatorname{Res}_{z}\left[\left(\frac{t f^{\prime}(t)}{f(t)}\right)^{2} \frac{t^{n-1}}{f(t)-f(z)}\right](\text { by Cauchy's formula }) \\
& =\frac{f(z)^{2}}{2 \pi} 2 i \pi\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2} \frac{z^{n-1}}{f^{\prime}(z)} \\
& =i z^{n+1} f^{\prime}(z) \\
& =i z^{n+1}+i \sum_{k=1}^{+\infty}(k+1) c_{k} z^{k+n+1}
\end{aligned}
$$

therefore

$$
L_{n}(f)(z)=z^{n+1}+\sum_{k=1}^{+\infty}(k+1) c_{k} z^{k+n+1}
$$

whence the result.
(2) The computation is similar, taking into account the pole at 0 , and yields

$$
L_{0}(f)(z)=z f^{\prime}(z)-f(z)
$$

whence the result.

Lemma 2.5. One has the commutation relations:

$$
\begin{equation*}
\forall(m, n) \in \mathbf{Z}^{2}\left[L_{m}, L_{n}\right]=(m-n) L_{m+n} \tag{*}
\end{equation*}
$$

Proof. [2],p. 655.

3.The Neretin polynomials and the representation ρ

Let $\gamma_{k}={ }_{\text {def }} \frac{c}{12}\left(k^{3}-k\right)$, and $P_{k}=0$ for $k<0$.
Theorem 3.1(Kirillov-Neretin). There exists a unique sequence $\left(P_{n}\right)_{n \geq 0}$ of polynomials in the $\left(c_{i}\right)_{i \geq 1}$ such that :
(1) P_{k} depends only upon c_{1}, \ldots, c_{k};
(2) $P_{0}=h$;
(3)

$$
\forall k \geq 1 \forall n \geq 1 L_{k}\left(P_{n}\right)=(n+k) P_{n-k}+\gamma_{k} \delta_{k, n}
$$

(4) $\forall n \geq 1 P_{n}(0)=0$.

Proof. Given $P_{0}, \ldots, P_{n}(n \geq 0)$, the relation (3) (with $n+1$ in place of n) is trivially satisfied for any polynomial P_{n+1} in c_{1}, \ldots, c_{n+1} and any $k>n+1$; for $1 \leq k \leq n+1$, the relations determine, by descending induction on k, the $\frac{\partial P_{n+1}}{\partial c_{k}}$ in a unique way, therefore they determine P_{n+1} up to a constant ; (4) for $n+1$ now determines a unique P_{n+1}.

The first few terms of the sequence are easily computed :

$$
\begin{gathered}
P_{0}=h \\
P_{1}=2 h c_{1} \\
P_{2}=\left(4 h+\frac{c}{2}\right) c_{2}-\left(h+\frac{c}{2}\right) c_{1}^{2}
\end{gathered}
$$

If each c_{k} is given the weight k, it is easily seen that P_{k} is homogeneous of weight k.

Let us remind the reader of the definition of the Schwarzian derivative of an holomorphic function f :

$$
S(f)(z)=\operatorname{def} \frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-3\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

The following result could have been used as definition of the polynomials P_{k} :
Proposition 3.2 ([5],p.742,Theorem).

$$
\forall f \in \mathcal{M} \sum_{n=0}^{+\infty} P_{n}\left(c_{1}, \ldots, c_{n}\right) z^{n}=h\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}+\frac{c z^{2}}{12} S(f)(z)
$$

Proposition 3.3.

$$
\forall k \geq 0 \quad \forall p \geq 0 \quad L_{-k}\left(P_{p}\right)-L_{-p}\left(P_{k}\right)=(p-k) P_{p+k}
$$

in particular, the formula of Theorem 3.1(3) remains valid for $k=0$.
Proof. [2], p. 663.
Let

$$
Q_{k}={ }_{\text {def }}\left\{\begin{array}{c}
P_{k} \text { for } k \neq 0 \\
0 \text { for } k=0
\end{array}\right.
$$

Theorem 3.4. Let us set, for each $k \in \mathbf{Z}$:

$$
\rho\left(e_{k}\right)=-i\left(L_{k}+Q_{-k} .\right)
$$

and

$$
\rho(\kappa)=i I d
$$

Then ρ defines a representation of the Lie algebra $\mathcal{V}_{c, h}$ into the Lie algebra of differential operators on \mathcal{M}.

Proof. As, obviously, $\left[\rho\left(e_{k}\right), \rho(\kappa)\right]=0$ is enough to prove that

$$
\left[\rho\left(e_{m}\right), \rho\left(e_{n}\right)\right]=\rho\left(\left[e_{m}, e_{n}\right]\right)
$$

Taking Proposition 1.2 into account, this is easily reduced to checking the relation :

$$
L_{n}\left(Q_{-m}\right)-L_{m}\left(Q_{-n}\right)=(n-m) Q_{-m-n}-\left[2 h m+\gamma_{m}\right] \delta_{m,-n}
$$

But, for $m \geq 0$ and $n \geq 0$, that relation is trivially satisfied ; for $m=0$ and $n<0$, as well as for $n=0$ and $m<0$, it follows from the relation

$$
\forall n \geq 1 L_{0}\left(P_{n}\right)=n P_{n}
$$

in the case $m<0$ and $n<0$, setting $p=-m$ and $k=-n$, we have to prove that:

$$
\forall p \geq 1 \forall k \geq 1 L_{-k}\left(P_{p}\right)-L_{-p}\left(P_{k}\right)=(p-k) P_{p+k}
$$

but both these facts follow from Proposition 3.3 .
There remains the case $m \leq-1$ and $n \geq 1$ (or the other way round); in this case, we need to prove, setting $k=-m \geq 1$, that :

$$
\forall k \geq 1 \forall n \geq 1 L_{n}\left(P_{k}\right)=(n+k) Q_{k-n}+\left(2 h k+\gamma_{k}\right) \delta_{k, n}
$$

i.e.

$$
\forall k \geq 1 \forall n \geq 1 L_{n}\left(P_{k}\right)\left\{\begin{array}{l}
=(n+k) P_{k-n} \text { if } n \neq k \\
=2 h k+\gamma_{k} \text { if } n=k
\end{array}\right.
$$

As $P_{0}=h$, this follows from Theorem 3.1(3).

4.UNITARIZING MEASURE(S)?

Definition 4.1. A Borel probability measure μ on \mathcal{M} is said to be unitarizing for ρ if and only if

$$
\forall v \in \mathcal{V}_{c, h}^{\mathbf{R}} \rho(v)^{*}=-\rho(v)
$$

on $\mathcal{H} L_{\mu}^{2}(\mathcal{M})$.

Lemma 4.2([1],Theorem 1,p.433). If μ exists, then, setting $Z_{k}=L_{k}-\overline{L_{-k}}(k \geq$
$0)$, one has:

$$
\begin{equation*}
\forall F \in \mathcal{C}^{\infty}(\mathcal{M}) \int_{\mathcal{M}} Z_{k}(F) d \mu=-\int_{\mathcal{M}} F \beta_{k} d \mu \tag{4.2.1}
\end{equation*}
$$

where

$$
\beta_{k}=\left\{\begin{array}{l}
-\bar{P}_{k} \text { if } k \geq 1 \\
0 \text { if } k=0
\end{array}\right.
$$

Proof. From the definition follows that:

$$
\forall v \in \mathcal{V}_{i r} r_{c h} \rho(v)^{*}=-\rho(\bar{v})
$$

By a density argument, one may assume that $F=\varphi \bar{\psi}$, with φ and ψ holomorphic; then one has:

$$
\begin{aligned}
\int_{\mathcal{M}} Z_{k}(F) d \mu & =\int_{\mathcal{M}} L_{k}(\varphi \bar{\psi}) d \mu-\int_{\mathcal{M}} \overline{L_{-k}(\varphi \bar{\psi}) d \mu} \\
& =\int_{\mathcal{M}} L_{k}(\varphi \bar{\psi}) d \mu-\overline{\int_{\mathcal{M}} L_{-k}(\bar{\varphi} \psi) d \mu} \\
& =\int_{\mathcal{M}}\left(L_{k}(\varphi) \bar{\psi}+\varphi L_{k}(\bar{\psi})\right) d \mu-\overline{\int_{\mathcal{M}}\left(L_{-k}(\bar{\varphi}) \psi+\bar{\varphi} L_{-k}(\psi)\right) d \mu} \\
& =\int_{\mathcal{M}}\left(L_{k}(\varphi) \bar{\psi}+\varphi L_{k}(\bar{\psi})\right) d \mu-\overline{\int_{\mathcal{M}}\left(L_{-k}(\bar{\varphi}) \psi+\bar{\varphi} L_{-k}(\psi)\right) d \mu} \\
& =\int_{\mathcal{M}} L_{k}(\varphi) \bar{\psi} d \mu-\overline{\int_{\mathcal{M}} \bar{\varphi} L_{-k}(\psi) d \mu}
\end{aligned}
$$

(because φ is holomorphic and ψ anti-holomorphic)

$$
\begin{aligned}
& =i \int_{\mathcal{M}}\left(\rho\left(e_{k}\right)(\varphi)-Q_{-k} \varphi\right) \bar{\psi} d \mu-\overline{\int_{\mathcal{M}} \bar{\varphi}\left(i \rho\left(e_{-k}\right)(\psi)-Q_{k} \psi\right) d \mu} \\
& =i\left(\rho\left(e_{k}\right)(\varphi), \psi\right)+\int_{\mathcal{M}} \varphi\left(\overline{Q_{k}}-Q_{-k}\right) \bar{\psi} d \mu+i \overline{\left(\rho\left(\overline{e_{k}}\right)(\psi), \varphi\right)} \\
& =i\left(\rho\left(e_{k}\right)(\varphi), \psi\right)+\int_{\mathcal{M}} \varphi\left(\overline{Q_{k}}-Q_{-k}\right) \bar{\psi} d \mu+i\left(\varphi, \rho\left(\overline{e_{k}}\right)(\psi)\right) \\
& =\int_{\mathcal{M}} \varphi\left(\overline{Q_{k}}-Q_{-k}\right) F d \mu
\end{aligned}
$$

by the hypothesis on μ.
Whence the result with :

$$
\beta_{k}=Q_{-k}-\overline{Q_{k}}=\left\{\begin{array}{l}
-\overline{P_{k}} \text { for } k \geq 1 \\
0 \text { for } k=0
\end{array}\right.
$$

Theorem 4.3([1],Theorem 3 and Corollary 4, p.234).

(1) If μ exists then the sequence $1, P_{1}, P_{2}, \ldots$ is a sequence of orthogonal polynomials in $L^{2}(\mu)$; more precisely :

$$
\left(P_{m}, P_{k}\right)_{L^{2}(\mu)}=\left\{\begin{array}{l}
0 \text { if } m \neq k \\
\gamma_{k}+2 h k \text { if } m=k \geq 1 \\
h^{2} \text { if } m=k=0
\end{array}\right.
$$

(2) If $h=0$ then there is no unitarizing measure on \mathcal{M} for ρ.

Proof. (1) Let us set, for each $k \geq 0$, and $H_{k}=Z_{k}^{2}+\beta_{k} Z_{k}$; it follows from Lemma 4.2 applied to $Z_{k}(F)$ that, for each $k \geq 0$, one has :

$$
\begin{equation*}
\forall F \in \mathcal{C}^{\infty}(\mathcal{M}) \forall k \geq 0 \int_{\mathcal{M}} H_{k}(F) d \mu=0 \tag{4.3.1}
\end{equation*}
$$

But it follows from the definition of the Neretin polynomials (Theorem 3.1(3)) and from the last remark in Proposition 3.3 that:

$$
\begin{gather*}
\forall k \geq 0 \forall n \geq 1 \\
H_{k}\left(P_{n}\right)=L_{k}\left((n+k) P_{n-k}+\gamma_{k} \delta_{k, n}\right)+\beta_{k}\left((n+k) P_{n-k}+\gamma_{k} \delta_{k, n}\right) \\
=(n+k) n P_{n-2 k}+(n+k) \gamma_{k} \delta_{k, n-k}+(n+k) \beta_{k} P_{n-k}+\beta_{k} \gamma_{k} \delta_{k, n} . \tag{4.3.2}
\end{gather*}
$$

By (4.3.1) one has

$$
\begin{equation*}
\forall k \geq 0 \forall n \geq 1 \int_{\mathcal{M}} H_{k}\left(P_{n}\right) d \mu=0 \tag{4.3.3}
\end{equation*}
$$

Applying (4.3.2) for $k=0$ and $n \geq 1$, one finds that:

$$
\forall n \geq 1 H_{0}\left(P_{n}\right)=n^{2} P_{n}
$$

whence (4.3.3) yields that :

$$
\begin{equation*}
\forall n \geq 1 \quad \int_{\mathcal{M}} P_{n} d \mu=0 \tag{4.3.4}
\end{equation*}
$$

From Lemma 4.2 applied to $F=1$ follows :

$$
\begin{equation*}
\forall k \geq 0 \quad \int_{\mathcal{M}} \beta_{k} d \mu=0 \tag{4.3.5}
\end{equation*}
$$

Taking now $k \geq 1, m \geq 1$ and $n=m+k$, (4.3.2) and (4.3.3) together yield :

$$
\int_{\mathcal{M}}\left[(2 k+m)(k+m) P_{m-k}+(m+2 k) \gamma_{k} \delta_{m, k}+(m+2 k) \beta_{k} P_{m}+\beta_{k} \gamma_{k} \delta_{m, 0}\right] d \mu=0
$$

from the fact that

$$
\int_{\mathcal{M}} P_{n} d \mu=\left\{\begin{array}{l}
0 \text { for } n \geq 1(4.3 .4) \\
h \text { for } n=0 \\
0 \text { for } n<0 \text { (by definition) }
\end{array}\right.
$$

and from (4.3.5), we get :

$$
\int_{\mathcal{M}} \beta_{k} P_{m} d \mu\left\{\begin{array}{l}
=0 \text { if } m \neq k \\
=-\gamma_{k}-2 k h \text { if } m=k \neq 0 .
\end{array}\right.
$$

Remembering that $\beta_{k}=-\bar{P}_{k}$ for $k \geq 1$, the result follows.
(2) Let us remind the reader that $P_{1}=2 h c_{1}$. Clearly,

$$
Z_{1}\left(c_{1}\right)=\left(L_{1}-\overline{L_{-1}}\right)\left(c_{1}\right)=L_{1}\left(c_{1}\right)=1
$$

whence :

$$
\begin{aligned}
1 & =\int_{\mathcal{M}} d \mu \\
& =\int_{\mathcal{M}} Z_{1}\left(c_{1}\right) d \mu \\
& =-\int_{\mathcal{M}} c_{1} \beta_{1} d \mu(\text { by Lemma } 4.2) \\
& =\int_{\mathcal{M}} c_{1} \bar{P}_{1} d \mu \\
& =2 h \int_{\mathcal{M}} c_{1} \overline{c_{1}} d \mu
\end{aligned}
$$

which is impossible for $h=0$. A more geometrical proof of this nonexistence result had previously been given in [3], Theorem 2.2, p. 625 .

References

1. H.Airault, V.Bogachev, Realization of Virasoro unitarizing measures on the set of Jordan curves, C.R.Acad.Sci.Paris,Ser.I 336 (2003), 429-434.
2. H.Airault, P.Malliavin, Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl. 80(6) (2001), 627-667.
3. H.Airault, P.Malliavin and A.Thalmaier, Support of Virasoro unitarizing measures, C. R. Acad. Sci. Paris, Ser.I 335 (2002), 621-626.
4. V.G.Kac, Infinite dimensional Lie algebras.
5. A.A.Kirillov, Geometric approach to discrete series of unirreps for VIR., J. Math. Pures Appl. 77 (1998), 735-746.
© Paul Lescot, August 2004
