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This note essentially reproduces the contents of a talk at Bielefeld University
on July 27th, 2004. Most of the material comes from [1], [2] and [5] ; I have tried
to uniformize notation, sign conventions, etc. , and I have slightly amended the
definition of ρ given in [1].

1.Preliminaries

Let Diff(S1) denote the group of C∞, orientation–preserving diffeomorphisms
of the circle S1.Its Lie algebra diff(S1) can be naturally identified with the set of
C∞ vector fields on S1, i.e. :

diff(S1) = {φ(θ)
d

dθ
|φ : R → R , C∞, 2π − periodic} .

We shall often identify, without further warning, the function φ and the vector field

φ(θ)
d

dθ
. A topological basis (for the obvious Fréchet space topology) of diff(S1)

is given by the (fk)k≥0 and the (gk)k≥1, where :

fk =def cos(kθ)
d

dθ

and

gk =def sin(kθ)
d

dθ
.

Let diffC(S1) =def diff(S1) ⊗R C denote the complexified Lie algebra of
diff(S1) ; it is now clear that a topological basis of diffC(S1) is given by the
(ek)k∈Z, where :

ek =def e
ikθ d

dθ
.
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2 PAUL LESCOT

One has the commutation relations :

[ek, ek
′ ] = i(k

′

− k)ek+k
′ .

The Lie algebra diff(S1) contains :

A =def V ectC(ek)k∈Z

as a Lie subalgebra, dense for the natural Fréchet space topology.
Setting Lk = −iek, one finds that :

[Lk, Lk
′ ] = (k

′

− k)Lk+k
′ ,

whence
A ' DerC(C[t, t−1])

(Lk corresponding, through this isomorphism, to tk+1 d

dt
, which is equivalent to

setting t = eiθ).
The algebra Virc,h is defined by :

Virc,h =def diffC(S1) ⊕Cκ

as a vector space, with the following bracket :

∀(f, g) ∈ diffC(S1)2

[κ, f ] = 0,

and :

[f, g]Virc,h
= [f, g] + ωc,h(f, g)κ ,

where

ωc,h(f, g) =def

∫ 2π

0

((2h−
c

12
)f

′

(θ) −
c

12
f

′′′

(θ))g(θ)
dθ

2π
.

The so–called Gelfand–Fuks cocycle is ω0,1.
An easy computation yields :

Proposition 1.2.

∀(m,n) ∈ Z2 ωc,h(em, en) = i[2hm+ c
m3 −m

12
]δm,−n .

It is easy to deduce from [4],chapter 7,exercises 7.1 and 7.13, that the ωc,h are
exactly the continuous cocycles α on diffC(S1) such that

∀f ∈ diff(S1) α(e0, f) = 0 .

We shall denote by VirRc,h the obvious “real”Lie subalgebra of Virc,h, i.e. :

VirRc,h =def diff(S1) ⊕Rκ.
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¿From now on, we shall assume c > 0 and h ≥ 0. Let

diff0(S
1) =def {φ ∈ diff(S1)|

∫ 2π

0

φ(θ)dθ = 0} .

On diff0(S
1), one defines a complex structure in the usual way : for

φ(θ) =

+∞
∑

k=1

(ak cos(kθ) + bk sin(kθ))

(ak, bk rapidly decreasing), we set :

Jφ(θ) =def

+∞
∑

k=1

(−ak sin(kθ) + bk cos(kθ)) .

Lemma 1.3([2],p.630).

∀f ∈ diff0(S
1) ωc,h(f, Jf) =

1

2

+∞
∑

k=1

[2hk +
c

12
(k3 − k)](a2

k + b2k) ≥ 0 .

Proof. Let us set, as usual, ck(f) =
∫ 2π

0
e−ikθf(θ)

dθ

2π
; then f(θ) =

∑

k∈Z
cke

ikθ and

Jf(θ) =
∑

k≥1

(icke
ikθ − ic−ke

−ikθ)

whence (by Proposition 1.2):

ωc,h(f, Jf) =
∑

k≥1

(ck(−ic−k)(i(2h−
c

12
)k +

ic

12
k3) +

∑

k≥1

(c−k(−ick)(i(2h−
c

12
)(−k) −

ic

12
k3)

= 2
∑

k≥1

(ckc−k)(2hk +
c

12
(k3 − k)) .

Taking into account the obvious relations: ∀k ≥ 1, ak = ck + c−k and bk =
i(ck − c−k), the result follows. �

2.Kirillov’s construction

(Kirillov , [5] ; Airault and Malliavin , [2])
Let M denote the set of C∞ functions f : D̄ → C, injesctive, holomorphic on D,

with f(0) = 0, f
′

(0) = 1, and ∀z ∈ D̄ f
′

(z) 6= 0. Each f ∈ M can be written as :

∀z ∈ D f(z) = z(1 +

+∞
∑

n=1

cnz
n) ,

whence an imbedding :
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M ↪→ CN∗

f 7→ (c1, c2, ....)

(in fact, by De Branges’solution of Bieberbach’s conjecture, one has |cn| ≤ n, thus
M is identified with an open subset of Πn≥1BC(0, n + 1); one therefore obtains a
structure of (contractible) manifold on M).

Let D = D(0, 1) denote the unit disk. For f ∈ M, Γ = f(S1) = f(∂D) is a
Jordan curve, therefore one has a decomposition into connected components :

C ∪ {∞} = Γ+ ∪ Γ−

with 0 ∈ Γ+ and ∞ ∈ Γ−. By a combination of Riemann’s representation Theorem
and Caratheodory’s Theorem, there exists an holomorphic mapping

φf : (C ∪ {∞} \D) → Γ− = Γ− ∪ Γ

such that φf (∞) = ∞ . Let us then define gf by :

gf : S1 → S1

eiθ 7→ f−1(φf (eiθ)) .

Then g ∈ Diff(S1), and gf is well–defined up to multiplication on the right by
an holomorphic automorphism of C \ D̄ stabilizing ∞, i.e. a rotation, whence a
mapping :

K : M → Diff(S1)/S1

.

Theorem 2.1(Kirillov,[5],p.736). K is a bijection.

Therefore, by transport of structure, Diff(S1)/S1 acquires a structure of con-
tractible complex manifold. Using J and ωc,h, this manifold can be equipped with
a Kählerian structure(see [2]).

Definition 2.2(Kirillov action). For v = φ(θ)
d

dθ
∈ diff(S1) and f ∈ M, let us

write w(eiθ) = φ(θ), and define Kv(f) by :

Kv(f)(z) =
f(z)2

2π

∫

S1

(
tf

′

(t)

f(t)
)2

w(t)

f(t) − f(z)

dt

t
.

Definition 2.3. For n ∈ Z, let

Ln =def −iKen
.

For nonnegative n, it is very easy to compute Ln :
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Proposition 2.4.

(1) For n ≥ 1,

Ln =
∂

∂cn
+

+∞
∑

k=1

(k + 1)ck
∂

∂cn+k

;

(2)

L0 =
∑

n≥1

ncn
∂

∂cn
.

Proof.

(1) In this case, the expression for Kv becomes

Ken
(f)(z) =

f(z)2

2π

∫

S1

(
tf

′

(t)

f(t)
)2

tn

f(t) − f(z)

dt

t

=
f(z)2

2π

∫

S1

(
tf

′

(t)

f(t)
)2

tn−1

f(t) − f(z)
dt

=
f(z)2

2π
2iπResz[(

tf
′

(t)

f(t)
)2

tn−1

f(t) − f(z)
](by Cauchy’s formula)

=
f(z)2

2π
2iπ(

zf
′

(z)

f(z)
)2
zn−1

f ′(z)

= izn+1f
′

(z)

= izn+1 + i

+∞
∑

k=1

(k + 1)ckz
k+n+1

therefore

Ln(f)(z) = zn+1 +

+∞
∑

k=1

(k + 1)ckz
k+n+1 ,

whence the result.
(2) The computation is similar, taking into account the pole at 0, and yields

L0(f)(z) = zf
′

(z) − f(z) ,

whence the result.

�

Lemma 2.5. One has the commutation relations :

∀(m,n) ∈ Z2 [Lm, Ln] = (m− n)Lm+n . (*)

Proof. [2],p. 655. �
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3.The Neretin polynomials and the representation ρ

Let γk =def

c

12
(k3 − k), and Pk = 0 for k < 0.

Theorem 3.1(Kirillov–Neretin). There exists a unique sequence (Pn)n≥0 of
polynomials in the (ci)i≥1 such that :

(1) Pk depends only upon c1,...,ck ;
(2) P0 = h;
(3)

∀k ≥ 1 ∀n ≥ 1 Lk(Pn) = (n+ k)Pn−k + γkδk,n ;

(4) ∀n ≥ 1 Pn(0) = 0.

Proof. Given P0, ..., Pn(n ≥ 0), the relation (3) (with n+1 in place of n) is trivially
satisfied for any polynomial Pn+1 in c1, ..., cn+1 and any k > n+1 ; for 1 ≤ k ≤ n+1,

the relations determine, by descending induction on k, the
∂Pn+1

∂ck
in a unique way,

therefore they determine Pn+1 up to a constant ; (4) for n + 1 now determines a
unique Pn+1. �

The first few terms of the sequence are easily computed :

P0 = h ,

P1 = 2hc1 ,

P2 = (4h+
c

2
)c2 − (h+

c

2
)c21 .

If each ck is given the weight k, it is easily seen that Pk is homogeneous of weight
k.

Let us remind the reader of the definition of the Schwarzian derivative of an
holomorphic function f :

S(f)(z) =def

f
′′′

(z)

f ′(z)
− 3(

f
′′

(z)

f ′(z)
)2 .

The following result could have been used as definition of the polynomials Pk :

Proposition 3.2([5],p.742,Theorem).

∀f ∈ M

+∞
∑

n=0

Pn(c1, ..., cn)zn = h(
zf

′

(z)

f(z)
)2 +

cz2

12
S(f)(z) .

Proposition 3.3.

∀k ≥ 0 ∀p ≥ 0 L−k(Pp) − L−p(Pk) = (p− k)Pp+k ;

in particular, the formula of Theorem 3.1(3) remains valid for k = 0.

Proof. [2], p.663. �

Let

Qk =def

{

Pk for k 6= 0

0 for k = 0 .
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Theorem 3.4. Let us set , for each k ∈ Z :

ρ(ek) = −i(Lk +Q−k.)

and

ρ(κ) = i Id .

Then ρ defines a representation of the Lie algebra Virc,h into the Lie algebra of
differential operators on M.

Proof. As, obviously, [ρ(ek), ρ(κ)] = 0 is enough to prove that

[ρ(em), ρ(en)] = ρ([em, en]) .

Taking Proposition 1.2 into account, this is easily reduced to checking the relation
:

Ln(Q−m) − Lm(Q−n) = (n−m)Q−m−n − [2hm+ γm]δm,−n .

But , for m ≥ 0 and n ≥ 0, that relation is trivially satisfied ; for m = 0 and
n < 0, as well as for n = 0 and m < 0 , it follows from the relation

∀n ≥ 1 L0(Pn) = nPn ;

in the case m < 0 and n < 0, setting p = −m and k = −n, we have to prove that :

∀p ≥ 1 ∀k ≥ 1 L−k(Pp) − L−p(Pk) = (p− k)Pp+k ,

but both these facts follow from Proposition 3.3 .
There remains the case m ≤ −1 and n ≥ 1 (or the other way round) ; in this

case, we need to prove, setting k = −m ≥ 1, that :

∀k ≥ 1 ∀n ≥ 1 Ln(Pk) = (n+ k)Qk−n + (2hk + γk)δk,n

i.e.

∀k ≥ 1 ∀n ≥ 1 Ln(Pk)

{

= (n+ k)Pk−n if n 6= k

= 2hk + γk if n = k .

As P0 = h, this follows from Theorem 3.1(3). �

4.Unitarizing measure(s)?

Definition 4.1. A Borel probability measure µ on M is said to be unitarizing for
ρ if and only if

∀v ∈ VR

c,h ρ(v)
∗ = −ρ(v)

on HL2
µ(M).
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Lemma 4.2([1],Theorem 1,p.433). If µ exists, then, setting Zk = Lk−L−k(k ≥
0), one has :

∀F ∈ C∞(M)

∫

M

Zk(F )dµ = −

∫

M

Fβkdµ , (4.2.1)

where

βk =

{

− P̄k if k ≥ 1 ,

0 if k = 0 .

Proof. From the definition follows that :

∀v ∈ Virc,h ρ(v)
∗ = −ρ(v̄) .

By a density argument, one may assume that F = ϕψ̄, with ϕ and ψ holomorphic;
then one has :

∫

M

Zk(F )dµ =

∫

M

Lk(ϕψ̄)dµ−

∫

M

L−k(ϕψ̄)dµ

=

∫

M

Lk(ϕψ̄)dµ−

∫

M

L−k(ϕ̄ψ)dµ

=

∫

M

(Lk(ϕ)ψ̄ + ϕLk(ψ̄))dµ−

∫

M

(L−k(ϕ̄)ψ + ϕ̄L−k(ψ))dµ

=

∫

M

(Lk(ϕ)ψ̄ + ϕLk(ψ̄))dµ−

∫

M

(L−k(ϕ̄)ψ + ϕ̄L−k(ψ))dµ

=

∫

M

Lk(ϕ)ψ̄dµ−

∫

M

ϕ̄L−k(ψ)dµ

(because ϕ is holomorphic and ψ anti–holomorphic)

= i

∫

M

(ρ(ek)(ϕ) −Q−kϕ)ψ̄dµ−

∫

M

ϕ̄(iρ(e−k)(ψ) −Qkψ)dµ

= i(ρ(ek)(ϕ), ψ) +

∫

M

ϕ(Q̄k −Q−k)ψ̄dµ+ i(ρ(ek)(ψ), ϕ)

= i(ρ(ek)(ϕ), ψ) +

∫

M

ϕ(Q̄k −Q−k)ψ̄dµ+ i(ϕ, ρ(ēk)(ψ))

=

∫

M

ϕ(Q̄k −Q−k)Fdµ

by the hypothesis on µ .

Whence the result with :

βk = Q−k −Qk =

{

− Pk for k ≥ 1

0 for k = 0 .

�
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Theorem 4.3([1],Theorem 3 and Corollary 4, p.234).

(1) If µ exists then the sequence 1, P1, P2, ... is a sequence of orthogonal polyno-
mials in L2(µ) ; more precisely :

(Pm, Pk)L2(µ) =











0 if m 6= k

γk + 2hk if m = k ≥ 1

h2 if m = k = 0

(2) If h = 0 then there is no unitarizing measure on M for ρ.

Proof. (1) Let us set, for each k ≥ 0, and Hk = Z2
k +βkZk ; it follows from Lemma

4.2 applied to Zk(F ) that, for each k ≥ 0, one has :

∀F ∈ C∞(M) ∀k ≥ 0

∫

M

Hk(F )dµ = 0 . (4.3.1)

But it follows from the definition of the Neretin polynomials (Theorem 3.1(3)) and
from the last remark in Proposition 3.3 that:

∀k ≥ 0 ∀n ≥ 1

Hk(Pn) = Lk((n+ k)Pn−k + γkδk,n) + βk((n+ k)Pn−k + γkδk,n)

= (n+ k)nPn−2k + (n+ k)γkδk,n−k + (n+ k)βkPn−k + βkγkδk,n .
(4.3.2)

By (4.3.1) one has

∀k ≥ 0 ∀n ≥ 1

∫

M

Hk(Pn)dµ = 0 . (4.3.3)

Applying (4.3.2) for k = 0 and n ≥ 1, one finds that :

∀n ≥ 1 H0(Pn) = n2Pn ,

whence (4.3.3) yields that :

∀n ≥ 1

∫

M

Pndµ = 0 . (4.3.4)

From Lemma 4.2 applied to F = 1 follows :

∀k ≥ 0

∫

M

βkdµ = 0 . (4.3.5)

Taking now k ≥ 1, m ≥ 1 and n = m+ k , (4.3.2) and (4.3.3) together yield :

∫

M

[(2k +m)(k +m)Pm−k + (m+ 2k)γkδm,k + (m+ 2k)βkPm + βkγkδm,0]dµ = 0 ;
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from the fact that

∫

M

Pndµ =











0 for n ≥ 1 (4.3.4)

h for n = 0

0 for n < 0 (by definition)

and from (4.3.5), we get :

∫

M

βkPmdµ

{

= 0 if m 6= k

= −γk − 2kh if m = k 6= 0 .

Remembering that βk = −P̄k for k ≥ 1, the result follows.
(2) Let us remind the reader that P1 = 2hc1. Clearly,

Z1(c1) = (L1 − L−1)(c1) = L1(c1) = 1 ,

whence :

1 =

∫

M

dµ

=

∫

M

Z1(c1)dµ

= −

∫

M

c1β1dµ (by Lemma 4.2)

=

∫

M

c1P̄1dµ

= 2h

∫

M

c1c̄1dµ ,

which is impossible for h = 0. A more geometrical proof of this nonexistence result
had previously been given in [3], Theorem 2.2, p.625. �
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