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Chapter 1

Introduction

1.1 Aims of the diploma thesis

This diploma thesis has got two aims.
These are to confirm the theory introduced by Manthey and Zausinger in [MaZa]
for functions defined on Θ = Rd

+ with d ∈ N(more detailed than in [MaZa]) and
to apply the results received in chapter 2 to the case described by Heath,Jarrow
and Morton in [HeJaMo](cf.chapter 7,proposition 4,p.93 there)(cf.chapter 3).

So chapter 2 is concerned about the theory proposed by Manthey and Zausinger
in [MaZa].
After repeating some properties of Hilbert spaces from [DPZa92] in section
2.1,the procedure is the same as in Manthey‘s and Zausinger‘s paper,i.e. one
defines spaces L2

ρ(Θ) with ρ > d for d ∈ N and spaces L2ν
ρ (Θ) with ν ∈ N

analogously to [MaZa](cf. the list of notations in section 1.2),s.t. L2
ρ(Θ) is a

separable Hilbert space.Then the results from chapter 2 and sections 3.1–3.3 in
[MaZa](cf. pp.40–69 there) are shown in the given situation.
First it is shown that the stochastic convolution

t∫
0

U(t, s)Σ(s,X(s)) dW (s)

is welldefined for a Q-Wienerprocess W on L2(Θ) with an operator Q as de-
scribed in chapter 2,a mapping

Σ:[ 0, T ]× L2
ρ(Θ) → L2(Q

1
2L2(Θ), L2

ρ(Θ))

defined by

(Σ(t, ϕ)ψ)(x) := σ(t, ϕ(x))ψ(x),x ∈ Θ

for σ:[ 0, T ] × R → R with (L1),(L2) and an almost strong evolution opera-
tor U(cf. section 1.3) under certain conditions to X.Theorem 2.2.4 shows the
existence of a continuous version of the stochastic convolution under certain
restrictions to U,which will be described in chapter 2.
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Da Prato‘s and Zabczyk‘s theory then leads to the existence of a pathwise unique
solution in the sense of [MaZa](cf. section 2.2.,definition 2.2.3 in the following)
for an ω-dependent,progressively measurable drift F,s.t. both the drift and the
volatility are Lipschitzian.There is even,under additional assumptions on U with
initial condition ξ ∈ L2κ

ρ (Θ),a pathwise unique solution,which is P-almost surely
in L2κ

ρ (Θ) ⊂ L2
ρ(Θ) for certain κ ∈ N.

Furthermore there is an estimate for the expectation of X depending on the
expectation of ξ in L2

ρ(Θ) resp. L2κ
ρ (Θ),which Manthey and Zausinger do not

show in their paper(cf.theorem 2.2.7).
The comparison theorem 3.3.1(ii) for ω-dependent drifts from [MaZa](cf. sec-
tion 3.3,p.61 there) holds true in L2

ρ(Θ) as well(cf.theorem 2.2.11).

Having these preparations section 2.3 shows the existence of a solution in case
of a non-Lipschitzian function f defining the drift ω-wisely by

F (t, ω, ϕ)(x) := f(t, ω, ϕ(x)),t ∈ [ 0, T ],ϕ ∈ L2
ρ(Θ),x ∈ Θ

if f fulfills properties (PG) with exponent ν ∈ N and (LG)(cf.section 1.3) and if
the initial condition ξ is appropriate.
Furthermore there is again an estimate for the expectation of the solution de-
pending on the expectation of the initial condition.(cf.theorem 2.3.2).
At the end of chapter 2 existence results in spaces Lp

ρ(Θ),which are considered in
[AsMa](cf. section 2,theorem 1,p.241 there),are shown with f having the above
mentioned properties instead of those mentioned in [AsMa].

Summarizing the results of chapter 2 one has

1. existence of a solution to the SDE

X(t) :=
t∫
0

U(t, s)F (s, ω,X(s)) ds+
t∫
0

U(t, s)Σ(s,X(s)) dW (s),t ∈ [ 0, T ]

with f defining F as above being non-Lipschitzian and,in contrast to sec-
tion 3.4 from [MaZa],ω-dependent.

2. existence of a solution to the above mentioned SDE in weighted Lp-spaces
with p defined analogously to [AsMa].

3. estimates for the solutions,that Manthey and Zausinger do not make in
their paper.

The second aim and content of chapter 3 is the application of the result re-
ceived in chapter 2 to the model described by Heath,Jarrow and Morton in
[HeJaMo](cf.chapter 7,proposition 4,p.93 there).
In order to reach this aim there is first of all an introduction into the theory of
markets with bonds and one riskless asset based on [HaPl](cf.chapter 3,pp.232-
242 there) in section 3.1 and a repetition of the terms and conditions introduced
in [HeJaMo] in section 3.2.
In particular the following holds for f̄(t, T ),which is the rate one can receive
from t ∈ [ 0, T ] up to T ∈ [ 0, τ ] with τ > 0:
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f̄(t, T )− f̄(0, T ) =
t∫
0

α(s, T, ω) ds

+
k∑

n=1

t∫
0

σn(s, T, ω) dwn(s)

for all T ∈ [ 0, τ ],t ∈ [ 0, T ] with f̄(0, ·),α,σn,n = 1, 2, . . . , k as in condition
(C1)(cf. section 3.2).
Under certain conditions absence of arbitrage is equivalent to

α(t, T ) = −
k∑

n=1
σn(t, T )

(
λn(t)−

T∫
t

σn(t, s) ds

)
for λn:[ 0, T ]× Ω → R given by

λn(t) := γn(t;S1, S2, . . . , Sk),0 ≤ S1 < S2 < . . . < Sk ≤ τ arbitrary

with γn as in condition (C4)(cf.section 3.2).
In [HeJaMo](cf. chapter 7,p.93 there) there is a result telling that given
λn:[ 0, τ ]× Ω → R and bounded,nonnegative σn: ST ×R → R,
n = 1, 2, . . . , k(with T and k as above,ST as in section 1.2),all Lipschitzian on
R,there is a uniformly measurable family (f̄(t, T ))t∈[ 0,T ] of processes with

f̄(t, T )− f̄(0, T ) =
t∫
0

−
k∑

n=1
σn(s, T, f̄(s, T ))

(
λn(s)−

T∫
s

σn(s, y, f̄(s, y)) dy

)
ds

+
k∑

n=1

t∫
0

σn(s, T, f̄(s, T )) dwn(s)

where wn are real-valued Brownian motions on [ 0, T ].

Using the time-homogeneity assumption

σn(t, s1, ·) = σn(t, s2, ·)

for all t ∈ [ 0, τ ],s1, s2 ∈ [ t, τ ],n = 1, 2, . . . , k,one gets with the shift-semigroup
(S(t))t≥0 on R given by

[S(t)h](x) := h(x+ t) (1.1)

for all t ≥ 0,x ∈ R and all functions h defined on R and with

rt := f̄(t, t+ ·) (1.2)

the so-called Heath-Jarrow-Morton equation

rt = S(t)r0 +
t∫
0

S(t− s)F (s, ω, rs) ds+
t∫
0

S(t− v)Σ(s, rs) dW (s)

for all t ≥ 0,where f belonging to F is defined by
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f(·, ·, x) := (S(σ(·)))(x) + λσ(·, x)

:= σ(·, x)
x∫
0

σ(·, z) dz + λσ(·, x) (1.3)

for all x ∈ R+.

In order to apply the results of chapter 2 one has to show that the shift-
semigroup

[S(t)ϕ](x) := ϕ(x+ t),ϕ ∈ L2
ρ(Θ),x ∈ Θ,t ≥ 0

leads to an almost strong evolution operator in the sense of [MaZa],which has
got the properties needed in chapter 2.

Section 3.3 shows the applicability of the theory in the nuclear case,since there
it is shown that the evolution operator defined by U(t,s):=S(t-s) fulfills the con-
ditions needed in chapter 2.
Unfortunately it seems to be impossible to apply the results from chapter 2
in the cylindrical case,s.t. from section 3.3 onwards the results are always re-
stricted to the nuclear case.

The application of chapter 2 in the nuclear case with d = 1 shows existence of
a solution to the Heath-Jarrow-Morton equation.One can give up the nonnega-
tivity assumption on σ from proposition 4 in [HeJaMo] and still get a solution
of the Heath-Jarrow-Morton equation.In order to show this one even does not
need the full strength of the theory,so it is possible to extend the framework
and allow to have a function λ defined on [ 0, T ] × Ω ×R, comparably to the
situation in definition 4 in [Te](cf.section 2.2,p.4 there).
λ being progressively measurable with property (PG) with ν = 1 is enough to
have the existence of a solution to the Heath-Jarrow-Morton equation,whereas
in case of an exponent ν > 1 nonnegativity of σ and a property similar to (LG)
for f are needed to have the existence of a solution.

In section 3.5 the differences to the results from [Te] and [AsMa] are described,and
it is shown that in case of functions

λ:R+ × Ω×R → R
σ:R+ ×R → R

s.t. the conditions from section 3.4 hold with a constant,which is indepen-
dent of t and ω,and of a modified semigroup S̄ given by

S̄(t) := e−tS(t) , t ≥ 0

there exists a solution r of

rt = S̄(t)r0 +
t∫
0

S̄(t− s)F (s, ω, rs) ds+
t∫
0

S̄(t− s)Σ(s, rs) dW (s) , t ≥ 0

in the sense that in 2.2.3 condition (ii) holds for arbitrary T > 0 and t ∈ [ 0, T ] is
replaced by t ≥ 0 in 2.2.3(i) and (iv).The estimates shown before still hold,when
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fixing an arbitrary T > 0.
Furthermore section 3.5 describes in how far there are restrictions to the rate
caused by the definition of spaces in [MaZa] and [AsMa] resp. in [Fi] and [Te]
and in how far these restrictions make sense due to the economic interpretation.

Summarizing one can say,that the theory developed in [MaZa] allows for the
following improvements of proposition 4 from [HeJaMo]:

1. It is allowed to give up the nonnegativity-assumption on σ as in the orig-
inal Heath-Jarrow-Morton model(cf. condition (C1) in section 3.1)

2. One has existence even with λ being of the form

λ:[ 0, T ]× Ω×R → R
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1.2 List of notations

The following overview over the notation used in the following chapters is given
to finish the introduction:

Let Θ be a subspace of Rd for d ∈ N.

C1
c (Θ) := {ϕ : (Θ,B(Θ)) → (R,B(Θ)) | ϕ is continuously differentiable with compact support}

L2(Θ) :=
{
ϕ : (Θ,B(Θ)) → (R,B(R)) |

∫
Θ

ϕ2(x) dx <∞
}

L2
ρ(Θ) :=

{
f : (Θ,B(Θ)) → (R,B(R)) |

∫
Θ

f2(x)µρ(dx) <∞
}

with N 3 ρ > d,µρ(x) := (1 + |x|2)−
ρ
2 ,| · | euclidian norm in Rd

L(B,K) := {T : B → K | T is bounded and linear} ,
where B and K are Banach spaces.

L(K) := L(K,K)

L2(B,K) := {T : B → K | T is a Hilbert-Schmidt operator} ,
where B and K are Hilbert spaces.

L2(K) := L2(K,K)

Lp
ρ(Θ) :=

{
ϕ : (Θ,B(Θ)) → (R,B(R)) |

∫
Θ

|ϕ(x)|p µρ(dx) <∞
}

for p ∈ N with norm || · ||ρ,p given by

||ϕ||ρ,p :=
(∫

Θ

|ϕ(x)|pµρ(dx)
) 1

p

Lp([ 0, T ]× Ω;B) :=

{
f : [ 0, T ]× Ω → B | E

T∫
0

||f(t)||pB dt <∞

}
for a probability space (Ω,F ,P) with expectation E under P,a Banach space B
and fixed T > 0 with norm given by

||f ||Lp :=

(
E

T∫
0

||f(t)||pB dt

) 1
p

,f ∈ Lp([ 0, T ]× Ω;B)

ST := {(s, t) | 0 ≤ s ≤ t ≤ T} , T > 0

Let C([ 0, T ];Lp([ 0, T ]× Ω;B)) denote the following set
{ϕ : ([ 0, T ]× Ω,PT ) → (B,B(B)) | ϕ ∈ Lp([ 0, T ]× Ω;B)is time-continuous}
with p ∈ N,where PT is the σ-algebra of predictable sets on [ 0, T ] with T > 0
and B is a Banach space.Let the norm on this space be given by

||X||C([ 0,T ];B)(p,q) :=

(
sup

t∈[ 0,T ]

E||X(t)||pB

) q
p

,X ∈ C([ 0, T ];Lp([ 0, T ]× Ω;B);

for p, q ∈ N,write || · ||C([ 0,T ];B)(p) := || · ||C([ 0,T ];B)(p,p),p ∈ N
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1.3 Notations from [MaZa]

Let B be a Banach space and T > 0 fixed:
A family U=U(t, s)(s,t)∈ST

of operators from B onto itself is called an almost
strong evolution operator,if

(i) U(t,t)=I , t ∈ [ 0, T ]

(ii) U(t,r)U(r,s)=U(t,s) , 0 ≤ s ≤ r ≤ t ≤ T

(iii) U(·,s) is strongly continuous on [ s, T ], U(t,·) is strongly continuous on
[ 0, t ] and

sup
(s,t)∈ST

||U(t, s)|| ≤ c(T ) <∞

holds true with the usual operator norm || · || .

(iv) there exists a closed linear operator A(t) on B for almost all t ∈ [ 0, T ],s.t.
U(t,s):D(A(s)) → D(A(t)) holds for all t > s and

t∫
s

A(r)U(r, s)ϕdr = (U(t, s)− I)ϕ

holds for ϕ ∈ Dt,s(A) := {ϕ ∈ B | U(r, s)ϕ ∈ D(A(r)), s ≤ r ≤ t}.

Analogously to the theory of one-parameter semigroups (A(t))t∈[ 0,T ] is called
the generator of U.If (iv) even holds for all t ∈ [ 0, T ],U is called a strong
evolution operator.

Let Λ:[ 0, T ] × R → R with a fixed T > 0.Take over the following notations
from Manthey‘s and Zausinger‘s paper(confer pp.42,44–46,54+69 there):

(L1) There is an L(T ) > 0,s.t.

|Λ(t, x)− Λ(t, y)| ≤ L(T )|x− y|

holds true for all (t,x,y)∈ [ 0, T ]×R×R.

(L2) There is an L(T ) > 0,s.t.

|Λ(t, 0)| ≤ L(T )
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holds true for all t∈ [ 0, T ].

(PG) There exists a constant cΛ(T ) > 0,s.t.

|Λ(t, x)| ≤ cΛ(T )(1 + |x|ν),x ∈ R

holds true for all t ∈ [ 0, T ].

(LG) There exists a nonnegative constant cΛ(T ),s.t.

Λ(t, x) ≥ −cΛ(T )(1− x),x ≤ 0
Λ(t, x) ≤ cΛ(T )(1 + x),x ≥ 0

holds true for all t∈ [ 0, T ].
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Chapter 2

Stochastic evolution
equations in weighted
Lp-spaces

For this chapter fix an arbitrary T > 0.

2.1 Some results on Hilbert spaces

During this section let Y,H be separable Hilbert spaces and let Q be an operator
in L(Y ) defined by

Qyn := anyn

for an orthonormal basis (yn)n∈N of Y and a sequence of nonnegative num-
bers an.
Define a Hilbert space Y := Q

1
2Y by

Q
1
2 yn :=

√
anyn

with the inner product given by

< ϕ,ψ >Y :=
∑

n∈N
an 6=0

a−1
n < ϕ, yn >Y < ψ, yn >Y

where < ·, · >Y denotes the inner product in Y.
Let (Ω,F ,P) be a probability space with a filtration (Ft)t∈[ 0,T ] and let (wn)n∈N

be an independent family of real-valued Brownian motions.
Furthermore let W be the corresponding Q-Wienerprocess,i.e. W is given by

W (t) :=
∑

n∈N

√
anwn(t)yn , t ∈ [ 0, T ]

First of all consider a result from [DPZa92] in order to construct stochastic
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integrals.

Definition 2.1.1:(cf.[DPZa92],section 4.2;pp.90,91;equations (4.6),(4.10))

A L2(Y,H)-valued process (Φ(t))t∈[ 0,T ] is called an elementary process,if
given a partition

0 = t0 < t1 < t2 < . . . < tk = T

of [ 0, T ],L(Y,H)-valued random variables there exist

Φ0 , Φ1 , · , Φk−1

with finitely many values,s.t. each Φm is measurable w.r.t. the σ-algebra Ftm

and

Φ(t) :=
k−1∑
m=0

Φm1( tm,tm+1 ](t)

is fulfilled.
Given such a process the stochastic integral is defined by

t∫
0

Φ(s) dW (s) =
k−1∑
m=0

Φm(W (tm+1 ∧ t)−W (tm ∧ t))

and the so-called Ito-isometry

E
∣∣∣∣∣∣∣∣ t∫

0

Φ(s) dW (s)
∣∣∣∣∣∣∣∣2 = E

t∫
0

||Φ(s)||2L2(Y,H) ds

where || · ||L2(Y,H) denotes the Hilbert-Schmidt norm,holds for all elementary
L2(Y,H)-valued processes (Φ(t))t∈[ 0,T ] and all t ∈ [ 0, T ].

Lemma 2.1.2:(cf. [DPZa92],section 4.2,proposition 4.7(ii),p.93)

If Φ is a L2(Y,H)-valued,predictable process with

E
T∫
0

||Φ(s)||2L2(Y,H) ds <∞

there exists a sequence of elementary processes (Φn)n∈N,s.t.

lim
n→∞

E
T∫
0

||Φ(s)− Φn(s)||2L2(Y,H) ds = 0

holds true.Then one defines the stochastic integral belonging to Φ as the H-
limit of the stochastic integrals belonging to Φn constructed by 2.1.1.
Obviously Ito‘s isometry holds true for this stochastic integral as well.

In their paper Manthey and Zausinger consider a special kind of two-parameter
semigroup,which they call almost strong evolution operator(For a definition of
this term consider section 1.3).Note,that in his paper [Se],which Manthey and
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Zausinger refer to later,Seidler uses the term evolution system,which differs from
the term strong evolution operator used in the sense of Manthey and Zausinger.
According to [Se](confer section 0,condition (E),pp.68,69 there) this term is
defined on separable Hilbert spaces H differing from the definition in section
1.3(with B:=H) in (iii) and (iv).These items are replaced by

(iii)‘ U(·, ·)ϕ:ST → H
is continuous for each ϕ ∈ H

(iv)‘ d
dtU(t, s)ϕ = A(t)U(t, s)ϕ

d
dsU(t, s)ϕ = −U(t, s)A(t)ϕ

for all ϕ ∈ Dt,s(A)

Thus given a Hilbert space H each evolution system in the sense of [Se] is a
strong evolution operator in the sense of [MaZa],which leads to the question
whether it suffices to assume properties (iii) and (iv) from the definition given
here,in order to be able to apply the theory derived in [Se],i.e. one has to check
whether one of the conditions (iii)‘,(iv)‘ is needed for one of the results in ques-
tion from [Se].
First of all one makes use of the following factorization formula cited in [Se]:

Lemma 2.1.3:

Let ψ be a predictable L2(Y,H)-valued process and let q > 2 with

(Ψ) E
T∫
0

||ψ(s)||qL2(Y,H) ds <∞

Having the properties from section 1.3 and

U(·, ·)φ:ST → L2(Y,H),ϕ ∈ H

for U,where φ denotes the multiplication operator Y → H belonging to
ϕ ∈ H,the following holds for all t ∈ [ 0, T ],0 < α < 1

2 :

t∫
0

U(t, s)ψ(s) dW (s) = sin πα
π (RαZα,U )(t)

where W is a Q-Wienerprocess and R,Z are given by

Zα,U (t) :=
t∫
0

(t− s)−αU(t, s)ψ(s) dW (s)

and

Rαf(t) :=
t∫
0

(t− s)α−1U(t, s)f(s) ds

for each process f ∈ Lq([ 0, T ]× Ω;H) and each t ∈ [ 0, T ].

Proof:
In [Se] Seidler only gives a hint,how this lemma can be shown.He suggests to
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apply the stochastic Fubini theorem to a function h defined by

h(r, s) := (t− s)α−1(s− r)−α1[ 0,s ](r)U(t, r)ψ(r)

One has h(·, s) ∈ Fs for each predictable process ψ and arbitrary s ∈ [ 0, t ],since
ψ(r) ∈ Fr ⊂ Fs,r ≤ s and h(r, s) = 0L2(Y,H) ∈ F0 ⊂ Fs hold for r > s due to
the predictability of ψ.
Show that the following property is fulfilled:

t∫
0

(
T∫
0

E||h(s, x)||2L2(Y,H) ds

) 1
2

dx <∞

So:

t∫
0

(
T∫
0

E||h(s, x)||2L2(Y,H) ds

) 1
2

dx

=
t∫
0

(
T∫
0

E|| (t− x)α−1(x− s)−α1[ 0,x ](s)U(t, s)ψ(s)||2L2(Y,H) ds

) 1
2

dx

=
t∫
0

(
x∫
0

E|| (t− x)α−1(x− s)−αU(t, s)ψ(s)||2L2(Y,H) ds

) 1
2

dx

=
t∫
0

(t− x)α−1

(
x∫
0

(x− s)−2αE|| U(t, s)ψ(s) ||2L2(Y,H) ds

) 1
2

dx

≤ c(T )

(
T∫
0

tα−1 dt

)(
T∫
0

s−2α ds

) 1
2
(

T∫
0

E||ψ(s)||qL2(Y,H) ds

) 1
q

<∞

where property (iii) from the definition of almost strong evolution operators
(cf. section 1.3) and Young‘s inequality for convolutions as well as 2α < 1
and (Ψ) were used in the last step.Thus the stochastic Fubini theorem from
[DPZa92](cf. section 4.6,theorem 4.18,p.109(with µ = Lebesgue measure) there)
is applicable and leads with the help of

π
sin πα =

t∫
s

(t− x)α−1(x− s)−α dx

for α ∈ [ 0, 1 )(confer f.e. [DPZa92],section 5.3,proof of theorem 5.9,p.128) to
the following:
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t∫
0

U(t, s)ψ(s) dW (s) = sin πα
π

t∫
0

[
t∫
s

(t− x)α−1(x− s)−α dx

]
U(t, s)ψ(s) dW (s)

= sin πα
π

t∫
0

[
t∫
s

(t− x)α−1(x− s)−αU(t, s)ψ(s) dx
]
dW (s)

= sin πα
π

t∫
0

[
t∫
0

(t− x)α−1(x− s)−α1[ 0,x ](s)U(t, s)ψ(s) dx
]
dW (s)

= sin πα
π

t∫
0

[
t∫
0

(t− x)α−1(x− s)−α1[ 0,x ](s)U(t, s)ψ(s) dW (s)
]
dx

= sin πα
π

t∫
0

[
x∫
0

(t− x)α−1(x− s)−αU(t, x)U(x, s)ψ(s) dW (s)
]
dx

= sin πα
π

t∫
0

(t− x)α−1U(t, x)
(

x∫
0

(x− s)−αU(x, s)ψ(s) dW (s)
)
dx

= sin πα
π

t∫
0

(t− x)α−1U(t, x)Y (x) dx

= sin πα
π (RαY )(t)

In this chain of equations the stochastic Fubini theorem was used in the fourth
step,whereas the semigroup property (ii) from the definition of almost strong
evolution operators(cf. section 1.3) was used in the fifth step.Thus the claim
holds true for almost strong evolution operators as they were used in [MaZa].
q.e.d.

Remark 2.1.4:

The factorization formula for strongly continuous one-parameter semigroups
can f.e. be found in [DPZa96](cf.chapter 5,section 2,theorem 5.2.5 there).

Additionally to the factorization formula the following results concerning es-
timates of stochastic integrals in Hilbert spaces are also needed:

Theorem 2.1.5:(cf. [DPZa92],chapter 7,lemma 7.2,p.182)

Let Q be as above with the additional assumption∑
n∈N

an <∞

(the so-called nuclear case) and let W be a Q-Wienerprocess on Y.

Given an arbitrary r ≥ 1 and an arbitrary L2(Y,H)-valued,predictable process
(Φ(t))t∈[ 0,T ],one has

E

(
sup

s∈[ 0,t ]

∣∣∣∣∣∣∣∣ s∫
0

Φ(ε) dW (ε)
∣∣∣∣∣∣∣∣2r
)
≤ cr sup

s∈[ 0,t ]

E

(∣∣∣∣∣∣∣∣ s∫
0

Φ(ε) dW (ε)
∣∣∣∣∣∣∣∣2r
)

≤ CrE
(

t∫
0

||Φ(ε)||2L2(Y,H) dε

)r

t ∈ [ 0, T ]

with cr :=
(

2r
2r−1

)2r

,Cr := (r(2r− 1))r
(

2r
2r−1

)2r2

,where || · || denotes the norm
belonging to H.
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Proof:
Confer [DPZa92],chapter 7,section 1,p.183.

Theorem 2.1.6:(cf. [DPZa92],chapter 7,lemma 7.7,p.194)

Let Q be as above with an = 1 for all n ∈ N(the so-called cylindrical case)
and let W be a Q-Wienerprocess on Y(i.e. one has Y = Y ).

For each r ≥ 1 and each arbitrary L2(Y,H)-valued,predictable process (Φ(t))t∈[ 0,T ]

the following holds:

sup
s∈[ 0,t ]

E
∣∣∣∣∣∣∣∣ s∫

0

Φ(ε) dW (ε)
∣∣∣∣∣∣∣∣2r

≤ (r(2r−1))r

(
t∫
0

(E||Φ(ε)||2r
L2(Y,H))

1
r dε

)r

, t ∈ [ 0, t ]

Proof:
Confer [DPZa92],chapter 7,section 1,pp.194,195.

In order to finish the section a short repetition concerning integrability of ran-
dom variables:

Definition 2.1.7:(cf. [DPZa92],section 1.1,p.19)

Let B be a separable Banach space.A B-valued random variable X on a proba-
bility space (Ω,F ,P) is called Bochner-integrable,if∫

Ω

||X(ω)||P (dω) <∞

holds true.Then the Bochner-integral is defined by

E||X|| :=
∫
Ω

||X(ω)||P (dω)

Lemma 2.1.8:

Let B be a separable Banach space,let (X(t))t∈[ 0,T ] be a B-valued process with

E
T∫
0

||X(s)|| ds <∞

Then

t∫
0

X(s) ds

is Bochner-integrable for all t ∈ [ 0, T ].

Proof:
According to 2.1.7 the following is to show for arbitrary t ∈ [ 0, T ]:

∫
Ω

∣∣∣∣∣∣∣∣ t∫
0

X(s) ds
∣∣∣∣∣∣∣∣ P (dω) <∞

15



With the help of the assumption one gets

∫
Ω

∣∣∣∣∣∣∣∣ t∫
0

X(s, ω) ds
∣∣∣∣∣∣∣∣ P (dω) ≤

∫
Ω

T∫
0

||X(s, ω)|| dsP (dω)

= E
T∫
0

||X(s)|| ds

< ∞
s.t. the Bochner-integral exists.
q.e.d.
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2.2 Preparing results on L2
ρ(R

d
+)

Let d ∈ N be arbitrary but fixed,let Θ := Rd
+ and Y := L2(Θ), H := L2

ρ(Θ)
with a fixed ρ > d.
Then the measure µρ defined as in section 1.2(cf. the definition of L2

ρ(Θ) there)
is finite on Θ.In the following leave out Θ,when dealing with spaces of functions
defined on Θ,i.e. write L2 instead of L2(Θ) resp. L2

ρ instead of L2
ρ(Θ) and so on.

Remark 2.2.1:

Note that the separability of L2
ρ(R

d) mentioned by Manthey and Zausinger
implies the separability of L2

ρ,since one can embed this space into L2
ρ(R

d) by

ϕ(x) := 0;ϕ ∈ L2
ρ,x ∈ Rd \Θ

For the rest of this chapter let U be an almost strong evolution operator in
the sense of section 1.3 on L2

ρ.

In this section the results of chapter 2 and sections 3.1–3.3 from [MaZa](cf.pp.40–
56 there) are shown in the situation of Θ = Rd

+.Especially the existence of the
stochastic integral both in L2

ρ and L2κ
ρ with κ ∈ N and fixed natural numbers

ρ > d is ensured.

First of all let U be an almost strong evolution operator on L2
ρ with gener-

ator (A(t))t∈[ 0,T ].First assume the following properties,which correspond to
(A0),(A1) from [MaZa](cf. [MaZa],chapter 2,p.42):

(CD) For each t ∈ [ 0, T ] A(t):D(A(t)) → L2
ρ is linear and closed with

D(A(t)) ⊂ L2
ρ.Furthermore

D(A) :=
⋂

0≤t≤T

D(A(t))

is dense in L2
ρ.

(PP) The almost strong evolution operator U on L2
ρ is positivity preserving in

the sense,that

ϕ ≥ 0 ⇒ U(t, s)ϕ ≥ 0,(s, t) ∈ ST , ϕ ∈ L2
ρ

holds true.

(i) The nuclear case

Let (an)n∈N be a sequence of nonnegative real numbers with∑
n∈N

an <∞
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and let (en)n∈N be an orthonormal basis of L2 with en ∈ L∞ and

sup
n∈N

||en||∞ <∞

Such an orthonormal basis exists according to [MaZa](cf. chapter 2,p.40 there)
due to [OsPe].
In complete analogy to section 2.1 one gets a Hilbert space Y := Q

1
2 (L2) and

defines the multiplication operator φ belonging to ϕ ∈ L2
ρ in L2 by

φ(ψ)(x) := ϕ(x)ψ(x),ψ ∈ L2,x ∈ Θ

While regarding the nuclear case denote L2(Y, L2
ρ) by L2. Thus the multi-

plication operator fulfills

||φ||L2 =
∑

n∈N

||φ(Q
1
2 (en))||2ρ,2

≤ sup
n∈N

||en||2∞ TrQ ||ϕ||2ρ,2

where TrQ :=
∑

n∈N an denotes the trace of Q.
Since Y is a Hilbert space

T∫
0

E||ϕ(s)||2ρ,2 ds <∞

implies

E
T∫
0

||φ(s)||2L2
ds ≤ sup

n∈N
||en||2∞ TrQ

T∫
0

E||ϕ(s)||2ρ,2 ds

< ∞
for a L2

ρ-valued,predictable process ϕ,as a consequence of which the stochas-
tic integral

t∫
0

φ(s) dW (s)

exists for all t ∈ [ 0, T ] due to 2.1.2,2.1.3.Having σ with properties (L1),(L2)
define an operator

Σ:[ 0, T ]× L2
ρ → L2

by

(Σ(t, ϕ)ψ)(x) := σ(t, ϕ(x))ψ(x) , ψ ∈ Y , ϕ ∈ L2
ρ , x ∈ Θ (2.1)

and define for t ∈ [ 0, T ]

U(t, ·)Σ:[ 0, t ]× L2
ρ → L2

by setting

18



((U(t, ·)Σ)(s, ϕ)ψ)(x) := (U(t, s)(Σ(s, ϕ)ψ))(x),ψ ∈ L2,x ∈ Θ

Then one has for all L2
ρ-valued,predictable processes X with

T∫
0

E||X(s)||2ρ,2 ds <∞

and for all t ∈ [ 0, T ]:

E
t∫
0

||U(t, s)Σ(s,X(s))||2L2
ds ≤ sup

n∈N
||en||2∞TrQ

t∫
0

E||U(t, s)σ(s,X(s))||2ρ,2 ds

≤ c(T, c(T ), cσ(T ))

(
1 +

T∫
0

E||X(s)||2ρ,2 ds

)
< ∞

as a consequence of which

t∫
0

U(t, s)Σ(s,X(s)) dW (s)

is welldefined and the Ito-isometry implies

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

= E
t∫
0

||U(t, s)Σ(s,X(s))||2L2
ds

(ii) The cylindrical case

Let an = 1 for all n ∈ N and Qen := anen for all n ∈ N,where (en)n∈N is
an orthonormal basis as in case (i).In this case denote L2(L2, L2

ρ) by L2.
With (2.1) and (L1),(L2) for σ

Σ(t, ϕ)ψ ∈M := {h ∈ L1
ρ | h = φ(ψ) , ϕ ∈ L2

ρ , ψ ∈ L2}

holds for arbitrary ϕ ∈ L2
ρ,ψ ∈ L2.

Define U(t, ·)Σ for t ∈ [ 0, T ] as in the nuclear case and make the follow-
ing assumption only for the cylindrical case.This assumption is just (A2) from
[MaZa](cf. chapter 2,p.45 there):

(CC) For (s, t) ∈ ST there exists an extension of U(t,s) to M(again denoted by
U(t,s)). Furthermore there exists a γ ∈ [ 0, 1 ),s.t. U(t, s)φ ∈ L2 and

||U(t, s)φ||2L2
≤ c(T )(t− s)−γ ||ϕ||2ρ,2

hold for arbitrary ϕ ∈ L2
ρ.

Defining U(t, ·)Σ for t ∈ [ 0, T ] as in the nuclear case,(CC) and (L1),(L2) lead
to
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||(U(t, s)Σ)(s, ϕ)||2L2
≤ c(T )(t− s)−γ ||σ(s, ϕ)||2ρ,2

≤ c(c(T ), cσ(T ))(t− s)−γ(1 + ||ϕ||2ρ,2) (2.2)

for ϕ ∈ L2
ρ,(s, t) ∈ ST .Thus with γ ∈ [ 0, 1 ) one has the following inequa-

tion for t ∈ [ 0, T ] and predictable processes X in L2
ρ with

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||X(s)||2ρ,2 ds <∞

E
t∫
0

||U(t, s)Σ(s,X(s))||2L2
ds ≤ c(c(T ), cσ(T ))

t∫
0

s−γ ds

+c(c(T ), cσ(T ))
t∫
0

(t− s)−γE||X(s)||2ρ,2 ds

< ∞
So as in the nuclear case the stochastic integral

t∫
0

U(t, s)Σ(s,X(s)) dW (s)

is welldefined for all t ∈ [ 0, T ].Ito‘s isometry and (2.2) even imply:

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

=
t∫
0

E||(U(t, s)Σ)(s,X(s))||2L2
ds

≤ c(c(T ), cσ(T ))
t∫
0

(t− s)−γ(1 + E||X(s)||2ρ,2) ds (2.3)

Define F by

F (t, ω, ϕ)(x) := f(t, ω, ϕ(x)) (2.4)

for all ϕ ∈ D(F ),x ∈ Θ,(t, ω) ∈ [ 0, T ] × Ω with D(F ) := L2ν
ρ for a function

f fulfilling (PG) with exponent ν.Thus it is necessary to have the existence of
the stochastic integral in spaces L2κ

ρ with κ ∈ N.

In the following the results hold,if the contrary is not explicitly mentioned,both
in the nuclear and in the cylindrical case.
(So again L2 denotes L2(Q

1
2L2, L2

ρ).)

There are further assumptions needed on U,which correspond to (A3),(A4) and
(A5) from [MaZa](cf. chapter 2,p.46 resp. pp.54,55 there):

(E1) For each κ ∈ N there exists a constant c(κ, T ) > 0,s.t.

(U(t, s)|ψ|)κ ≤ c(κ, T )U(t, s)|ψ|κ

holds in L2
ρ for each ψ ∈ L2κ

ρ and each (s, t) ∈ ST .

(E2) For each κ ∈ N there exists a constant c(κ, T ) > 0,s.t.
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E
∫
Θ

(
t∫
0

∑
n∈N

(U(t, s)φ(s)Q
1
2 en)2

)κ

dµρ

≤ c(κ, c(T ))
t∫
0

(t− s)−γE||ϕ(s)||2κ
ρ,2κ ds

holds for each L2κ
ρ -valued predictable process ϕ = (ϕ(t))t∈[ 0,T ] consid-

ered as a process of multiplication operators.

(BA) There exists a sequence (AN (t))t∈[ 0,T ] of operators with the following
properties
(i) AN (t) ∈ L(L2

ρ),t ∈ [ 0, T ],and

sup
t∈[ 0,T ]

||AN (t)|| ≤ c(N),N ∈ N

(ii) For each N ∈ N the family (AN (t))t∈[ 0,T ] generates an almost strong
evolution operator UN ,which is positivity preserving and fulfills

sup
(s,t)∈ST

||(UN (t, s)− U(t, s))ϕ||2ρ,2 → 0

for N →∞ and ϕ ∈ L2
ρ.

(E1),(E2) for U lead to the following lemma,which is an extension of remark
2.3.(ii) from [MaZa](cf. chapter 2,p.48 there):

Lemma 2.2.2:

Let κ ∈ N,let ϕ = (ϕ(t))t∈[ 0,T ] be a L2κ
ρ -valued,predictable process with the

property

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||ϕ(s)||2κ
ρ,2κ ds <∞

Then one has

t∫
0

U(t, s)φ(s) dW (s) ∈ L2κ
ρ

P-almost surely for t ∈ [ 0, T ],where φ(s) denotes the multiplication operator
belonging to ϕ(s).
Furthermore there exists a positive constant c(κ,c(T)) depending on κ and U
with

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣2κ

ρ,2κ

≤ c(κ, c(T ))
t∫
0

(t− s)−γE||ϕ(s)||2κ
ρ,2κ ds <∞ (2.5)

and there exists a positive constant c(κ,γ,q,T,c(T)) for all

q > 2κ
1−γ

s.t.
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E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2κ

≤ c(κ, γ, q, T, c(T ))
t∫
0

E||ϕ(s)||qρ,2κ ds (2.6)

holds.

Proof:
Fix an arbitrary t ∈ [ 0, T ].Define a predictable process χ by χ(s) := U(t, s)φ(s).Then

χQ
1
2 en:Ω× [ 0, t ] → L2

ρ

is predictable for each n ∈ N as well.Approximating χ by elementary processes
(χm)m∈N as in section 2.1(cf. theorem 2.1.2 there),one gets

χmQ
1
2 en:Ω× [ 0, t ] → L2

ρ

with only finitely many values in L2
ρ.Thus for all n,m∈ N there exists a repre-

sentative ψ(n)
m :Ω× [ 0, t ]×Θ → R with limiting process

ψ(n):Ω× [ 0, t ]×Θ → R

s.t. the following equations hold with the help of the definition of χ:

E
t∫
0

∫
Θ

∑
n∈N

[(U(t, s)φ(s)Q
1
2 en)(x)− ψ(n)(s, x)]2 µρ(dx) ds = 0 (2.7)

E
∫
Θ

[(
t∫
0

U(t, s)φ(s) dW (s)
)

(x)−
( ∑

n∈N

t∫
0

ψ(n)(s, x) dwn(s)
)]2

µρ(dx) = 0 (2.8)

First of all application of the Burkholder-Gundy equation,(2.7) and (E2) implies

∫
Θ

E
( ∑

n∈N

t∫
0

ψ(n)(s, x) dwn(s)
)2κ

µρ(dx)

≤ c(κ)E
∫
Θ

(
t∫
0

∑
n∈N

(
ψ(n)(s, x)

)2
ds

)κ

µρ(dx)

= c(κ)E
∫̄
Θ

(
t∫
0

∑
n∈N

(U(t, s)φ(s)Q
1
2 en)2(x) ds

)κ

µρ(dx)

≤ c(κ, c(T ))
t∫
0

(t− s)−γE||ϕ(s)||2κ
ρ,2κ ds <∞

Using (2.8) implies

t∫
0

U(t, s)φ(s) dW (s) =
∑

n∈N

t∫
0

ψ(n)(s, ·) dwn(s)

P ⊗ µρ-almost surely for arbitrary t ∈ [ 0, T ]. The last two equations together
imply (2.5).
In case of q > 2κ

1−γ

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2κ

= E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣ t∫
0

U(t, s)φ(s) dW (s)
∣∣∣∣κ
∣∣∣∣∣
∣∣∣∣∣
2r

ρ,2
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with r := q
2κ >

1
1−γ ≥ 1 for arbitrary t ∈ [ 0, T ].

Consider the case κ = 1 first.2.1.5 resp. 2.1.6 immediately lead to

E

(
sup

s∈[ 0,t ]

∣∣∣∣∣∣∣∣ s∫
0

U(t, ε)φ(ε) dW (ε)
∣∣∣∣∣∣∣∣2r

ρ,2

)
≤ c(q)E

(
t∫
0

||U(t, ε)φ(ε)||2L2
dε

)r

≤ c(q, c(T ))E
(

t∫
0

(t− ε)−γ ||ϕ(ε)||2ρ,2 dε

)r

≤ c(q, c(T ))E

[T∫
0

ε−
γq

q−2 dε

] q−2
q [

t∫
0

||ϕ(ε)||qρ,2 dε

] 2
q

r

= c(γ, q, T, c(T ))
t∫
0

E||ϕ(ε)||qρ,2 dε

for all t ∈ [ 0, T ],i.e. (2.6) in this case.
Coming to the case of κ > 1 show that |U(t, s)φ(s)|κ is a Hilbert-Schmidt op-
erator for all (s, t) ∈ ST .
(E1) and (E2) lead to∑

n∈N

E
∫
Θ

(|U(t, s)φ(s)|κQ 1
2 en)2(x)µρ(dx) ≤ c(κ, T )E

∑
n∈N

∫
Θ

(U(t, s)|φ(s)|κQ 1
2 en)2(x)µρ(dx)

≤ c(κ, T, c(T ))(t− s)−γE|| |ϕ(s)|κ||2ρ,2

= c(κ, T, c(T ))(t− s)−γE||ϕ(s)||2κ
ρ,2κ <∞ (2.9)

which is just the Hilbert-Schmidt property.
In the case q > 2κ

1−γ one has

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2κ

= E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣ t∫
0

U(t, s)φ(s) dW (s)
∣∣∣∣κ
∣∣∣∣∣
∣∣∣∣∣
2r

ρ,2

with r := q
2κ >

1
1−γ ≥ 1 for arbitrary t ∈ [ 0, T ].

Fix t and consider a sequence (τN )N∈N of partitions of [ 0, t ] with

|τN | := sup
ti∈τN

(ti+1 − ti) → 0 for N →∞

Then:

E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣ t∫
0

U(t, s)φ(s) dW (s)
∣∣∣∣κ
∣∣∣∣∣
∣∣∣∣∣
2

ρ,2

= E
∫
Θ

(∣∣∣∣ lim
N→∞

∑
ti∈τN

(U(t, ti)φ(ti))(W (ti+1 ∧ t)−W (ti ∧ t))
∣∣∣∣κ)2

dµρ

=
∫
Θ

E
(∣∣∣∣ lim

N→∞

∑
ti∈τN

∑
n∈N

(U(t, ti)φ(ti))(Q
1
2 en)(wn(ti+1 ∧ t)− wn(ti ∧ t))

∣∣∣∣κ (x)
)2

µρ(dx)

=
∫
Θ

E
(

lim
N→∞

∑
ti∈τN

∑
n∈N

(U(t, ti)φ(ti))(Q
1
2 en)(wn(ti+1 ∧ t)− wn(ti ∧ t))

)2κ

(x)µρ(dx)
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= c(κ)
∫
Θ

E
(∣∣∣∣ lim

N→∞

∑
ti∈τN

∑
n∈N

(|U(t, ti)φ(ti)|(Q
1
2 en))2((ti+1 ∧ t)− (ti ∧ t))

∣∣∣∣κ) (x)µρ(dx)

= c(κ)E
∫
Θ

∑
n∈N

(
t∫
0

((U(t, s)φ(s))Q
1
2 en)2 ds

)κ

(x)µρ(dx)

≤ c(κ)E
∫
Θ

( ∑
n∈N

t∫
0

(|U(t, s)φ(s)|κQ 1
2 en

)2

ds(x)µρ(dx)

= c(κ)E
t∫
0

|| |U(t, s)φ(s)|κ ||2L2
ds

where in the fourth step the fact that

E(|Xt −Xs|a) ≤ Ca(t− s)
a
2

holds true for each Brownian motion (Xt)t≥0,all 0 ≤ s < t and all even natural
numbers a by lemma 40.2 from [Ba] was used.
2.1.5 resp. 2.1.6 imply for each t ∈ [ 0, T ]

E

(
sup

s∈[ 0,t ]

∣∣∣∣∣∣∣∣ ∣∣∣∣ s∫
0

U(t, ε)φ(ε) dW (ε)
∣∣∣∣κ ∣∣∣∣∣∣∣∣2r

ρ,2

)
≤ c(κ, q)E

(
t∫
0

|| |U(t, ε)φ(ε)|κ||2L2
dε

)r

≤ c(κ, q, T, c(T ))E
(

t∫
0

(t− ε)−γ ||ϕ(ε)||2κ
ρ,2κ dε

)r

≤ c(κ, q, T, c(T ))E

[ t∫
0

ε−
γq

q−2κ dε

] q−2κ
q
[

t∫
0

||ϕ(ε)||qρ,2κ dε

] 2κ
q

r

≤ c(κ, q, T, c(T ))

[
T∫
0

ε−
γq

q−2κ ds

] (q−2κ)r
2κ t∫

0

E||ϕ(ε)||qρ,2κ dε

= c(κ, γ, q, T, c(T ))
t∫
0

E||ϕ(ε)||qρ,2κ dε

with r as above,using (2.9) in the second,Hoelder‘s inequality in the third and
the fact that

q > 2κ
1−γ ⇒

γq
q−2κ < 1

holds in the last step.So one especially has for each t ∈ [ 0, T ]:

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2κ

≤ c(κ, γ, q, T, c(T ))
t∫
0

E||ϕ(s)||qρ,2κ ds

q.e.d.

Define the term solution in the same way as Manthey and Zausinger did:

Definition 2.2.3(cf. [MaZa],chapter 2,definition 2.7,p.55)

Let Σ and F be defined from σ and f as in (2.1) resp. (2.4).Let f be s.t.(PG) is
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fulfilled with an exponent ν ∈ N.

A L2
ρ-valued,predictable process X is called a solution of Eq(ξ,F,Σ) for

ξ ∈ L2
ρ, F:[ 0;T ]× Ω× L2ν

ρ → L2
ρ and Σ : [ 0;T ]× L2

ρ → L2

if it has the following properties:

(i) X(t) ∈ L2ν
ρ P-almost surely for each t ∈ [ 0, T ]

(ii) sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||X(s)||2ρ,2 ds <∞

where γ = 0 in the nuclear case and γ as in (CC) in the cylindrical case.

(iii) X is pathwise continuous.

(iv) X solves the equation

X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s)) ds+
t∫
0

U(t, s)Σ(s,X(s)) dW (s)

P-almost surely for each t ∈ [ 0, T ].

Following Manthey and Zausinger one first shows:

Theorem 2.2.4

Suppose (CD),(PP) and in the cylindrical case additionally (CC) hold.
Given a predictable process ϕ : [ 0, T ]× Ω → L2

ρ,suppose there exists a q with

q > 2
1−γ

and

E
T∫
0

||ϕ(s)||qρ,2 ds <∞

s.t. γ=0 in the nuclear case and γ as in (CC) in the cylindrical case.
Then there exists a continuous modification of

t∫
0

U(t, s)φ(s) dW (s)

in L2
ρ.

Proof:
Let α ∈ ( 1

q ,
1−γ

2 ) with γ as in (CC) in the cylindrical case and γ = 0 in the nu-
clear case,so especially α < 1

2 ,as a consequence of which 2.1.3 is applicable.Thus:
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t∫
0

U(t, s)φ(s) dW (s) = sin πα
π (RαZα,U )(t)

with Zα,U (t) :=
∫ t

0
(t−s)−αU(t, s)φ(s) dW (s) andRαf(t) :=

∫ t

0
(t−s)α−1U(t, s)f(s) ds.

Claim 1:Zα,U ∈ Lq([ 0, T ]× Ω;L2
ρ)

Proof: One needs to show:

E
T∫
0

||Zα,U (t)||qρ,2 dt <∞

Changing expectation and integration and applying 2.1.5 resp. 2.1.6 with r := q
2

and

Φ(s) := (t− s)−αU(t, s)φ(s) , s ∈ [ 0, t ]

for fixed t ∈ [ 0, T ],which is Hilbert-Schmidt-valued by (CC),leads to

T∫
0

E
∣∣∣∣∣∣∣∣ t∫

0

(t− s)−αU(t, s)φ(s) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

dt

≤
T∫
0

c(q)E
(

t∫
0

||(t− s)−αU(t, s)φ(s)||2L2
ds

) q
2

dt

= c(q)
T∫
0

E
(

t∫
0

(t− s)−2α||U(t, s)φ(s)||2L2
ds

) q
2

dt

≤ c(q, c(T ))E
T∫
0

(
t∫
0

(t− s)−(2α+γ)||ϕ(s)||2ρ,2 ds

) q
2

dt

≤ T c(q, c(T ))

(
T∫
0

s−(2α+γ) ds

) q
2

E
T∫
0

||ϕ(s)||qρ,2 ds

=: c(α, γ, q, T, c(T ))E
T∫
0

||ϕ(s)||qρ,2 ds <∞

where Young‘s inequation for convolutions and Jensen‘s inequality were used
in the second last step and the fact that

α ∈
(

1
q ,

1−γ
2

)
⇒ 2α+ γ < 1

holds,which ensures the existence of the integral in brackets,was used in the
last step.
Thus claim 1 is proven.

Claim 2: Rα ∈ L(Lq([ 0, T ]×Ω;L2
ρ), C([ 0, T ];L2([ 0, T ]×Ω;L2

ρ))) (cf. section
1.2 with B := L2

ρ)
Proof: In a first step show continuity in time under the assumption,that
(RαY (t))t∈[ 0,T ] ⊂ L2

ρ was already proven for processes Y as in the assump-
tion.
Note that the following holds for arbitrary t ∈ [ 0, T ],ε > 0 and fixed ω ∈ Ω:
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RαY (t+ ε, ω)−RαY (t, ω)

=
t+ε∫
0

(t+ ε− s)α−1U(t+ ε, s)Y (s, ω) ds−
t∫
0

(t− s)α−1U(t, s)Y (s, ω) ds

=
t+ε∫
t

(t+ ε− s)α−1U(t+ ε, s)Y (s, ω) ds

+
t∫
0

[(t+ ε− s)α−1U(t+ ε, s)− (t− s)α−1U(t, s)]Y (s, ω) ds

Obviously the first term tends to 0 in L2
ρ as ε tends to 0.By the definition of

almost strong evolution operators U(·, s) is strongly continuous on [ s,∞ ),which
implies continuity of U(·, s) on [ s,∞ ),s.t. the second term tends to 0 in L2

ρ as
ε tends to 0 as well,as a consequence of which,continuity of Rα is shown,since
t ∈ [ 0, T ] was chosen arbitrarily.

Now consider an arbitrary process Y from Lq([ 0, T ]× Ω;L2
ρ) and show

RαY (t) ∈ L2
ρ for arbitrary t ∈ [ 0, T ].

Young‘s inequality for convolutions and 1− α < 1 imply:

E
∣∣∣∣∣∣∣∣ t∫

0

(t− s)α−1U(t, s)Y (s) ds
∣∣∣∣∣∣∣∣2

ρ,2

≤ c2(T )E
∣∣∣∣∣∣∣∣ t∫

0

(t− s)−(1−α)Y (s) ds
∣∣∣∣∣∣∣∣2

ρ,2

≤ c2(T )
(

t∫
0

s−(1−α) ds

)2

E
t∫
0

||Y (s)||2ρ,2 ds

≤ c2(T )

(
T∫
0

s−(1−α) ds

)2

E
T∫
0

||Y (s)||2ρ,2 ds

< ∞
Thus one has at least RαY (t) ∈ L2

ρ P-almost surely.So there exists a version of
RαY (t) in L2

ρ. As the estimate holds true for arbitrary t ∈ [ 0, T ],

sup
t∈[ 0,T ]

E||RαY (t)||2ρ,2 ≤ c(α, T, c(T ))

(
E

T∫
0

||Y (s)||qρ,2 ds

) 2
q

<∞

follows and one has,as continuity was already shown
RαY ∈ C([ 0, T ];L2([ 0, T ]× Ω;L2

ρ)).By the last estimate one gets

||RαY ||2C([ 0,T ];L2
ρ)(2) ≤ c(α, T, c(T ))||Y ||2Lq

for all Y ∈ Lq([ 0, T ] × Ω;L2
ρ).So Rα is a bounded,linear operator,which fin-

ishes the proof of claim 2.
Claims 1 and 2 imply the existence of a version of

t∫
0

U(t, s)φ(s) dW (s)

which is continuous in time.
q.e.d.

Then one can transfer theorem 3.2.1 from [MaZa] into the given situation with
the help of the following two results:

27



Lemma 2.2.5:

Let (gn)n∈N be a sequence of measurable functions gn : R+ → R+ with

gn(t) ≤ q + b
t∫
0

(t− s)−δgn−1(s) ds

for n ∈ N,δ ∈ [ 0, 1 ),b > 0,q ≥ 0,t ∈ [ 0, T ].Then

gn(t) ≤ q
n−1∑
k=0

qk t
k(1−δ) + qn t

n(1−δ) sup
r∈[ 0,T ]

g0(r)

holds with q0 = 1,q1 = b
1−δ ,qk = ck(b,δ)

Γ(k(1−δ)+1) for k > 1,where Γ(·) is the gamma-
function given by

Γ(t) :=
∞∫
0

xt−1e−x dx , t > 0

Furthermore one has the following property

∞∑
k=0

qk T
k(1−δ) <∞

Proof:
Cf. [MaSt],Appendix,Lemma A1,pp.158,159

Remark 2.2.6:

Having gn = g for all n ∈ N with a bounded g,2.2.5 implies

g(t) ≤ q lim
n→∞

(
n−1∑
k=0

qk T
k(1−δ)

)
+
(

lim
n→∞

qn T
n(1−δ)

)
sup

r∈[ 0,T ]

g(r)

= q
∞∑

k=0

qkT
k(1−δ) =: q c(T, b, δ)

Now one can prove a version of 3.2.1 from [MaZa] :

Theorem 2.2.7

Suppose f(·,ω,·),ω ∈ Ω,and σ fulfill (L1),(L2) with constants cf (T ),cσ(T ),with
a constant cf (T ) independent of ω. Suppose furthermore that f is progressively
measurable and U fulfills (CD),(PP) and (CC).
Let γ=0 in the nuclear case and let γ be as in (CC) in the cylindrical case.Then:

(i) For q > 2
1−γ with

E||ξ||qρ,2 <∞

there exist a pathwise unique solution X of Eq(ξ,F,Σ) and a constant
c(q, T, γ, c(T ), cf (T ), cσ(T )) > 0 depending on q,T,U,f and σ,s.t.
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sup
t∈[ 0,T ]

E||X(t)||qρ,2 ≤ c(q, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

(ii): Suppose one additionally has (E1),(E2).
Then there exist,given κ > 1

1−γ with

E||ξ||2κ
ρ,2κ <∞

a pathwise unique solution X of Eq(ξ,F,Σ) and a constant
c(κ, T, γ, c(T ), cf (T ), cσ(T )) > 0 depending on κ,T,U,f and σ with

sup
t∈[ 0,T ]

E||X(t)||2κ
ρ,2κ ≤ c(κ, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2κ

ρ,2κ)

Remark 2.2.8:

In [MaZa] the authors only show the finiteness of the sup-terms.As estimates of
the above type are shown f.e. in [AsMa] they are proven here as well.

Before it is possible to prove 2.2.7 another lemma is needed:

Lemma 2.2.9:

As in Manthey‘s and Zausinger‘s paper (cf. [MaZa],chapter 3,section 3,theo-
rem 3.3.1,p.56 there) it is assumed that f is progressively measurable.
Let f be as in 2.2.7.Then(

t∫
0

U(t, s)F (s, ·, Y (s)) ds
)

t∈[ 0,T ]

is continuous and adapted,i.e especially predictable,for each predictable,continuous
process Y = (Y (t))t∈[ 0,T ] with

sup
t∈[ 0,T ]

E||Y (t)||2ρ,2 <∞

Proof of 2.2.9:
First of all note that the Bochner-integral

t∫
0

U(t, s)F (s, ·, Y (s)) ds

is welldefined according to 2.1.8,as the ω-independence of cf (T ) implies:

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, ·, Y (s)) ds
∣∣∣∣∣∣∣∣

ρ,2

≤ c(T )E
∣∣∣∣∣∣∣∣ t∫

0

F (s, ·, Y (s)) ds
∣∣∣∣∣∣∣∣

ρ,2

≤ c(c(T ), cf (T ))
t∫
0

(1 + E||Y (s)||ρ,2) ds

≤ c(T, c(T ), cf (T ))

(
1 + sup

r∈[ 0,T ]

E||Y (r)||ρ,2

)
< ∞
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where (ii) from 1.3 and (L1),(L2) were used for f in the second step.

Let t ∈ [ 0, T ] be arbitrary.For all s ∈ [ 0, t ],ω ∈ Ω

t∫
0

U(t, r)F (r, ω, Y (r, ω)) dr −
s∫
0

U(s, r)F (r, ω, Y (r, ω)) dr

=
t∫
s

U(t, r)F (r, ω, Y (r, ω)) dr +
s∫
0

[U(t, r)− U(s, r)]F (r, ω, Y (r, ω)) dr

holds.As already mentioned in the proof of 2.2.4 U(·, r) is continuous,s.t. the
second term in the upper equation tends to 0 in L2

ρ for s→ t,since the continuity
of f in R resulting from (L1) and the time-continuity of Y imply

lim
s→t

U(s, r)F (r, ω, Y (r, ω)) = U(t, r)F (r, ω, Y (r, ω))

in L2
ρ for fixed r ∈ [ 0, s ].

As the first term obviously tends to 0 for s→ t and t ∈ [ 0, T ] and ω ∈ Ω were
chosen arbitrarily,the proof of continuity is finished.

As Y is predictable by assumption it is in particular adapted,so Y(t) is Ft-
measurable for each t ∈ [ 0, T ].As (Ft)t∈[ 0,T ] is a filtration,Y(s) is
Ft-measurable for all s ∈ [ 0, t ] and fixed t ∈ [ 0, T ].
Progressive measurability of f then implies Ft-measurability of U(t, ·)F (·, ·, Y (·))
on [ 0, t ].Thus

t∫
0

U(t, s)F (s, ·, Y (s)) ds

is Ft-measurable for the fixed t.As this t was chosen arbitrarily,the process
is adapted as well,which finishes the proof.
q.e.d.

Proof of 2.2.7:
(i): First of all consider C([ 0, T ];L2([ 0, T ]×Ω;L2

ρ)) with norm ||·||C([ 0,T ];L2
ρ)(2),as

it was done in the proof of claim 2 in 2.2.4.This forms a Banach space.
Since f defining F by (2.4) is progressively measurable,(

t∫
0

U(t, s)F (s, ·, Z(s)) ds
)

t∈[ 0,T ]

is predictable for processes Z from C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)) by 2.2.9.

As it was suggested in the proof of 3.2.1 in [MaZa],follow [DPZa92].
Define a mapping K1 for processes Z from C([ 0, T ];L2([ 0, T ]× Ω;L2

ρ)) by

K1(Z)(t) :=
t∫
0

U(t, s)F (s, ·, Z(s)) ds

(iii) from section 1.3 and (L1),(L2) for f imply
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||K1(Z)||2C([ 0,T ];L2
ρ)(2) = sup

t∈[ 0,T ]

E||K1(Z)(t)||2ρ,2

= sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, ·, Z(s)) ds
∣∣∣∣∣∣∣∣2

ρ,2

≤ c(c(T ), cf (T ))E
T∫
0

(1 + ||Z(s)||2ρ,2) ds

≤ T c(c(T ), cf (T ))

(
1 + sup

t∈[ 0,T ]

E||Z(t)||2ρ,2

)
= T c(c(T ), cf (T ))

(
1 + ||Z||2C([ 0,T ];L2

ρ)(2)

)
So K1 is a mapping from C([ 0, T ];L2([ 0, T ]× Ω;L2

ρ)) onto itself.
Define a mapping K2 for processes Z as above by

K2(Z)(t) :=
t∫
0

U(t, s)Σ(s, Z(s)) dW (s)

2.1.5 resp. 2.1.6 (case r := 1),(CC) and (L1),(L2) for σ lead to

||K2(Z)||2C([ 0,T ];L2
ρ)(2)

sup
t∈[ 0,T ]

E
t∫
0

||U(t, s)Σ(s, Z(s))||2L2
ds

≤ Cmax( 1
1−γ c(c(T ), cσ(T ))T 1−γ , 1)

(
1 + sup

t∈[ 0,T ]

t∫
0

E||Z(s)||2ρ,2 ds

)

≤ c(γ, T, c(T ), cσ(T ))

(
1 +

T∫
0

E||Z(s)||2ρ,2 ds

)

≤ Tc(γ, T, c(T ), cσ(T ))

(
1 + sup

t∈[ 0,T ]

E||Z(t)||2ρ,2

)
= Tc(γ, T, c(T ), cσ(T ))

(
1 + ||Z||2C([ 0,T ];L2

ρ)(2)

)
where the fact that γ ∈ [0, 1) implies

t∫
0

s−γ ds <∞

for all t ∈ [ 0, T ] was used in the second step.
Thus K2 also maps each process Z from C([ 0, T ];L2([ 0, T ] × Ω;L2

ρ)) onto
C([ 0, T ];L2([ 0, T ] × Ω;L2

ρ)),if Z has got property 2.2.3(ii),which one needs in
order to do the second step.

Let X and Y be processes in C([ 0, T ];L2([ 0, T ]×Ω;L2
ρ)) with property 2.2.3(ii).

K(Z)(t) := U(t, 0)ξ +K1(Z)(t) +K2(Z)(t) , Z ∈ C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ))

leads to
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||K(X)−K(Y )||2
C([ 0,T̄ ];L2

ρ)(2)
≤ 2

(
||K1(X)−K1(Y )||2

C([ 0,T̄ ];L2
ρ)(2)

+||K2(X)−K2(Y )||2
C([ 0,T̄ ];L2

ρ)(2)

)
=: 2(I1 + I2)

for T̄ ∈ [ 0, T ] with the following estimates,which hold analogously to the cases
||K1(Z)|| and ||K2(Z)||:

I1 ≤ c(c(T ), cf (T )) sup
t∈[ 0,T̄ ]

E
t∫
0

||X(s)− Y (s)||2ρ,2 ds

≤ T̄ c(c(T ), cf (T )) sup
t∈[ 0,T̄ ]

E||X(t)− Y (t)||2ρ,2

= T̄ c(c(T ), cf (T ))||X − Y ||2
C([ 0,T̄ ];L2

ρ)(2)

I2 ≤ c(c(T ), cσ(T ))

(
sup

t∈[ 0,T̄ ]

t∫
0

(t− s)−γE||X(s)− Y (s)||2ρ,2 ds

)

≤

(
T̄∫
0

s−γ ds

)
c(c(T ), cσ(T )) sup

t∈[ 0,T̄ ]

E||X(t)− Y (t)||2ρ,2

= 1
1−γ T̄

1−γ c(c(T ), cσ(T ))||X − Y ||2
C([ 0,T̄ ];L2

ρ)(2)

Thus given T̄ > 0,s.t.

T̄ c(c(T ), cf (T )) + 1
1−γ T̄

1−γc(c(T ), cσ(T )) < 1

holds,K has a unique fixpoint X̄,which is a solution to the wanted equation
on [ 0, T̄ ] by construction and fulfills 2.2.3(ii).Setting ξ := X̄(T̄ ) leads to a so-
lution on [ T̄ , 2T̄ ] and by finite iteration of this procedure one gets a solution
on [ 0, T ],which is unique in C([ 0, T ];L2([ 0, T ] × Ω;L2

ρ)) up to modifications
and has property 2.2.3(ii).Consider modifications,which are pathwise continu-
ous,that is,which fulfill 2.2.3(iii).
Let X,Y be two such modifications.2.1.5 resp. 2.1.6 with r := q

2 ,(2.6)(with
κ = 1 and Φ(s) := U(t, s)[Σ(s,X(s))− Σ(s, Y (s))],s ∈ [ 0, t ]) and (L1) lead to:

E||X(t)− Y (t)||qρ,2 ≤ c(q)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (s, ·, X(s))− F (s, ·, Y (s))] ds
∣∣∣∣∣∣∣∣q

ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[Σ(s,X(s))− Σ(s, Y (s))] dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

)
≤ c(q, T, γ, c(T ), cf (T ), cσ(T ))

t∫
0

E||X(s)− Y (s)||qρ,2 ds

Due to the continuity of X and Y Gronwall‘s lemma is applicable and shows

||X(t)− Y (t)||ρ,2 = 0 P-a.s.,t ∈ [ 0, T ]

i.e. for each t ∈ [ 0, T ] there exists a P-zeroset Nt with

||X(t, ω)− Y (t, ω)||ρ,2 = 0

for all ω ∈ NC
t .

Thus one has
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||X(t, ω)− Y (t, ω)||ρ,2 = 0

for all t ∈ Q and all

ω ∈

( ⋃
t∈[ 0,T ]∩Q

Nt

)C

=: NQ

Since the Nt are P-zerosets,NQ has P-measure 1,i.e. X(t) = Y (t) for all
t ∈ [ 0, T ] ∩Q P-almost surely.Since Q is dense in R this implies

||X(t)− Y (t)||ρ,2 = 0

for all t ∈ [ 0, T ] P-almost surely due to the continuity of X and Y.
Assume there is an ω,s.t. there exists a t̄ ∈ [ 0, T ],s.t.

||X(t̄, ω)− Y (t̄, ω)||ρ,2 6= 0

holds true.But then pathwise continuity of X and Y implies

||X(·, ω)− Y (·, ω)||ρ,2 6= 0

first on an open subset of [ 0, T ] containing t̄ and than inductively on [ 0, T ],which
is a contradiction to

X(0, ω) = ξ(ω) = Y (0, ω)

Thus one has not only a pathwise continuous solution but even a pathwise
unique solution.
Due to its construction the solution fulfills at least 2.2.3(ii)–(iv).As (L1),(L2)
obviously imply (PG) with exponent ν = 1 for f,property 2.2.3(i) is trivially
fulfilled.
Thus one has existence of a solution in the sense of 2.2.3.
The wanted estimate follows with the help of Gronwall‘s lemma from the fol-
lowing estimate:

E||X(t)||qρ,2 ≤ c(q)

(
E||U(t, 0)ξ||qρ,2 + E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F (s, ·, X(s)) ds
∣∣∣∣∣∣∣∣q

ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

)
≤ c(q, c(T ))E||ξ||qρ,2

+c(q, T, γ, c(T ), cf (T ), cσ(T ))
(

1 +
t∫
0

E||X(s)||qρ,2 ds

)
≤ c(q, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

+c(q, T, γ, c(T ), cf (T ), cσ(T ))
t∫
0

E||X(s)||qρ,2 ds

for all t ∈ [ 0, T ],where the procedure in the second step was analogous to
that in the estimate of E||X(t)− Y (t)||qρ,2.
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(ii): Proceed as in [MaZa],i.e. make use of Picard‘s iteration given by

X0(t) := U(t, 0)ξ,t ∈ [ 0, T ]

Xn(t) := X0(t) +
t∫
0

U(t, s)F (s, ·, Xn−1(s)) ds

+
t∫
0

U(t, s)Σ(s,Xn−1(s)) dW (s),t ∈ [ 0, T ],n ∈ N

Then the following holds for all t ∈ [ 0, T ]:

E||Xn+1(t)−Xn(t)||2κ
ρ,2κ

≤ c(κ)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (s, ·, Xn(s))− F (s, ·, Xn−1(s))] ds
∣∣∣∣∣∣∣∣2κ

ρ,2κ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[Σ(s,Xn(s))− Σ(s,Xn−1(s))] dW (s)
∣∣∣∣∣∣∣∣2κ

ρ,2κ

)
≤ c(κ, c(T ), cf (T ), cσ(T ))

(
t∫
0

E||Xn(s)−Xn−1(s)||2κ
ρ,2κ ds

+
t∫
0

(t− s)−γE||Xn(s)−Xn−1(s)||2κ
ρ,2κ ds

)
≤ c(κ, γ, T, c(T ), cf (T ), cσ(T ))

t∫
0

(t− s)−γE||Xn(s)−Xn−1(s)||2κ
ρ,2κ ds

where (L1),(E1),(E2) and (2.5) were used in the second step,whereas in the
third step the fact,that (t−s)γ can be estimated by T γ for (s, t) ∈ ST ,was used.
2.2.5(set gn := E||Xn+1 −Xn||2κ

ρ,2κ) implies

sup
t∈[ 0,T ]

E||Xn+1(t)−Xn(t)||2κ
ρ,2κ ≤ qnT

n(1−γ) sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2κ
ρ,2κ

for all n ∈ N with q0=1,q1 = c(κ,γ,T,cf (T ),cσ(T ))
1−γ and

qk = c(κ,γ,T,cf (T ),cσ(T ))k

Γ(k(1−γ)+1) for k > 1.One has:

sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2κ
ρ,2κ ≤ c(κ)

(
sup

t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, U(s, 0)ξ) ds
∣∣∣∣∣∣∣∣2κ

ρ,2κ

+ sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s, U(s, 0)ξ) dW (s)
∣∣∣∣∣∣∣∣2κ

ρ,2κ

)

=: c(κ)

(
sup

t∈[ 0,T ]

IF (t) + sup
t∈[ 0,T ]

IΣ(t)

)
Concerning IF

IF (t) ≤ c(κ, T, c(T ), cf (T ))(1 + E||ξ||2κ
ρ,2κ) , t ∈ [ 0, T ]

(2.5) and (L1),(L2) for σ lead to

IΣ(t) ≤ c(κ, c(T ))
t∫
0

(t− s)−γE||σ(s, U(s, 0)ξ)||2κ
ρ,2κ ds

≤ c(κ, γ, T, c(T ), cσ(T ))(1 + E||ξ||2κ
ρ,2κ)

34



Putting the estimates together one gets for all n ∈ N:

sup
t∈[ 0,T ]

E||Xn+1(t)−Xn(t)||2κ
ρ,2κ ≤ qnT

n(1−γ)c(κ, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2κ
ρ,2κ)

< ∞
Consider C([ 0, T ];L2([ 0, T ] × Ω;B)) from section 1.2 with B := L2κ

ρ .Due to
the above estimate and

qnT
n(1−γ) → 0 , n→∞

following from 2.2.5,(Xn)n∈N is a Cauchy-sequence in the Banach space
C([ 0, T ];L2([ 0, T ]×Ω;L2κ

ρ )) with norm || · ||C([ 0,T ];L2κ
ρ )(2κ),s.t. there is a limit

process X,which is predictable and continuous by the definition of the Banach
space and lies in L2

ρ due to the fact that L2κ
ρ ⊂ L2

ρ holds.
Thus at least property 2.2.3(i) is fulfilled.
Hoelder‘s inequality immediately implies

t∫
0

(t− s)−γE||X(s)||2ρ,2 ds ≤
(

t∫
0

s−
γκ

κ−1 ds

)κ−1
κ
(

t∫
0

E||X(s)||2κ
ρ,2κ ds

) 1
κ

Then X fulfills 2.2.3(ii) with the help of the definition of
C([ 0, T ];L2([ 0, T ]× Ω;B)) and the fact that κ > 1

1−γ holds true,since

κ > 1
1−γ ⇐⇒ γκ

κ−1 < 1

implies the existence of the left integral in the above estimate.
2.2.3(iv) holds due to the construction via Picard‘s iteration.
The existence of a pathwise unique,continuous solution follows analogously to
(i) .
Thus X is a solution of Eq(ξ,F,Σ) in the sense of 2.2.3.
Concerning the estimate note that with (2.5) the following holds true for
t ∈ [ 0, T ]:

E||X(t)||2κ
ρ,2κ ≤ c(κ)

(
E||U(t, 0)ξ||2κ

ρ,2κ + E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, ·, X(s)) ds
∣∣∣∣∣∣∣∣2κ

ρ,2κ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2κ

ρ,2κ

)
≤ c(κ)

(
c(κ, T )E||ξ||2κ

ρ,2κ + c(κ, T, c(T ), cf (T ))
(

1 +
t∫
0

E||X(s)||2κ
ρ,2κ ds

)
+c(κ, T, c(T ), cσ(T ))

(
1 +

t∫
0

(t− s)−γE||X(s)||2κ
ρ,2κ ds

))
≤ c(κ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2κ

ρ,2κ)

+c(κ, γ, T, c(T ), cf (T ), cσ(T ))
(

1 +
t∫
0

(t− s)−γE||X(s)||2κ
ρ,2κ ds

)
Then 2.2.5,2.2.6(gn := E||X||2κ

ρ,2κ for all n ∈ N) imply the wanted estimate.
q.e.d.
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By 2.2.7 one immediately gets the following extension of 3.2.2 from [MaZa]:

Corollary 2.2.10:

(i): Under the assumptions of part(i) of 2.2.7 there exists a pathwise unique
solution V to Eq(0,0,Σ),s.t. given arbitrary q with q > 2

1−γ there exists a posi-
tive constant c(q,T,γ,c(T),cσ(T )) depending on q,T,U and σ with

sup
t∈[ 0,T ]

E||V (t)||qρ,2 ≤ c(q, T, γ, c(T ), cσ(T ))

(ii): Under the assumptions of part(ii) of 2.2.7 there exists a pathwise unique
solution V to Eq(0,0,Σ),s.t. given arbitrary κ with κ > 1

1−γ there exists a posi-
tive constant c(κ,T,γ,c(T),cσ(T )) depending on κ,T,U and σ with

sup
t∈[ 0,T ]

E||V (t)||2κ
ρ,2κ ≤ c(κ, T, γ, c(T ), cσ(T ))

The next step will be to show the comparison theorem 3.3.1(ii) from [MaZa]
in case Θ = Rd

+.

Theorem 2.2.11:

Let f (i); i=1,2;σ be as in theorem 2.2.7(i).
Suppose,there exists q > 2

1−γ ,s.t.

E||ξ(i)||qρ,2 <∞

and (CD),(PP),(CC) and (BA) hold for U.

Then the conditions

f (1)(t, ω, u) ≤ f (2)(t, ω, u); (t, ω, u) ∈ [0, T ]× Ω×R

and

ξ(1) ≤ ξ(2)

P-almost surely imply

X(1)(t) ≤ X(2)(t)

P-almost surely for all t ∈ [ 0, T ].

For a proof define in analogy to [MaZa] a mapping QM :L2 → L2 and a QM -
Wienerprocess WM for fixed M ∈ N by

QM (ψ) :=
M∑

n=1
an < ψ, en >0 en
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WM (t) :=
M∑

n=1

√
anwn(t)en

where < ·, · >0 denotes the inner product in L2.Thus for M → ∞ one has
QM tending to Q and WM tending to W in L2.Given N ∈ N;i=1,2; denote by
X

(i)
N,M the solution of the equation

X
(i)
N,M (t) = UN (t, 0)ξ(i) +

t∫
0

UN (t, s)F (i)(s, ·, X(i)
N,M (s)) ds

+
t∫
0

UN (t, s)Σ(s,X(i)
N,M (s)) dWM (s)

with t ∈ [ 0, T ] and UN from (BA).The existence and uniqueness of this so-
lution will be shown in 2.2.13.

Two lemma are needed in order to show 2.2.11.The first one is a version of
lemma 3.3.2 from [MaZa]:

Lemma 2.2.12:

Defining Y (i) := X
(i)
N,M ;i=1,2; for fixed N,M∈ N

Y (1)(t) ≤ Y (2)(t)

holds P-almost surely for all t ∈ [0, T ].

Proof of 2.2.12:
Follow the proof of 3.3.2 from [MaZa].
Given a fixed j ∈ N and k=1,2,...,j define tk := kT

j and processes Z(i)
k,j ,V

(i)
k,j by

Z
(i)
0,j(t) := ξ(i) +

t∫
0

Σ(s, Z(i)
0,j(s)) dWM (s)

V
(i)
0,j (t) := Z

(i)
0,j(t1) +

t∫
0

(AN (s)V (i)
0,j (s) + F (i)(s, ·, V (i)

0,j (s))) ds

for t ∈ [ 0, t1 ] and

Z
(i)
k,j(t) := V

(i)
k−1,j(tk) +

t∫
tk

Σ(s, Z(i)
k,j(s)) dWM (s)

V
(i)
k,j (t) := Z

(i)
k,j(tk+1) +

t∫
tk

(AN (s)V (i)
k,j (s) + F (i)(s, ·, V (i)

k,j (s))) ds

for t ∈ [ tk, tk+1 ];k=1,2,...,j-1.Manthey and Zausinger claim,that these processes
own pathwise continuous modifications.
Given solutions Z(i)

0,j ,Z̄
(i)
0,j consider

γd(X) := ξ(i) +
·∫

0

Σ(s,X(s)) dWM (s)

in C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)).One has:
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sup
t∈[ 0,T ]

E||γd(Z
(i)
0,j)(t)− γd(Z̄

(i)
0,j)(t)||2ρ,2

= sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

(Σ(s, Z(i)
0,j(s))− Σ(s, Z̄(i)

0,j(s))) dWM (s)
∣∣∣∣∣∣∣∣2

ρ,2

≤ Tc(M) sup
t∈[ 0,T ]

E||Σ(t, Z(i)
0,j(t))− Σ(t, Z̄(i)

0,j(t))||2L2

≤ Tc(M)c2σ(T ) sup
t∈[ 0,T ]

E||Z(i)
0,j(t)− Z̄

(i)
0,j(t)||2ρ,2

and thus in || · ||C([ 0,T ];L2
ρ)(2)-norm:

||γd(Z
(i)
0,j)− γd(Z̄

(i)
0,j)||C([ 0,T̄ ];L2

ρ)(2) ≤
√
Tc(M)cσ(T )||Z(i)

0,j − Z̄
(i)
0,j ||C([ 0,T ];L2

ρ)(2)

Thus there exists a unique pathwise continuous version of the solution anal-
ogously to the proof of 2.2.7(i).
So there is a pathwise unique,continuous,L2

ρ-valued solution Z(i)
0,j .

Let V (i)
0,j ,V̄ (i)

0,j be two solutions.Defining

γA,v(X)(ω) := Z
(i)
0,j(t1)(ω) +

·∫
0

AN (s)X(s, ω) + F (i)(s, ω,X(s, ω)) ds

for arbitrary ω ∈ Ω,one gets:

sup
t∈[ 0,T ]

E||γA,v(V (i)
0,j )(t)− γA,v(V̄ (i)

0,j )(t)||2ρ,2

= sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

AN (s)[V (i)
0,j (s)− V̄

(i)
0,j (s)] + F (i)(s, ·, V (i)

0,j (s))− F (i)(s, ·, V̄ (i)
0,j (s)) ds

∣∣∣∣∣∣∣∣2
ρ,2

≤ 2

(
sup

t∈[ 0,T ]

||AN (t)||2 + c2
f(i)(T )

)
T sup

t∈[ 0,T ]

E||V (i)
0,j (t)− V̄

(i)
0,j (t)||2ρ,2

≤ 2(c2(N) + c2
f(i)(T ))T sup

t∈[ 0,T ]

E||V (i)
0,j (t)− V̄

(i)
0,j (t)||2ρ,2

s.t. the following holds true in C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)):

||γA,v(V (i)
0,j )− γA,v(V̄ (i)

0,j )||C([ 0,T ];L2
ρ)(2) ≤

√
2(c2(N) + c2

f(i)(T ))T ||V (i)
0,j − V̄

(i)
0,j ||C([ 0,T ];L2

ρ)(2)

As above pathwise uniqueness and continuity of V (i)
0,n follows.

By the structure of the Z(i)
k,n and V (i)

k,n it is obvious,that pathwise continuity for

k-1 implies first pathwise continuity of Z(i)
k,n on [ tk, tk+1 ] and then pathwise

continuity of V (i)
k,n on [ tk, tk+1 ] by the same procedure as above.

Considering these pathwise continuous modifications and defining mappings
Z

(i)
j , V

(i)
j :Ω× [ 0, T ] → L2

ρ by

Z
(i)
j (t) := Z

(i)
k,j(t) ; t ∈ [ tk, tk+1 ) ; k = 0, 1, 2, ..., j − 1

V
(i)
j (0) := ξ(i)

V
(i)
j (t) := V

(i)
k,j (t) ; t ∈ (tk, tk+1] ; k = 0, 1, ..., j − 1

Z
(i)
j (T ) := V

(i)
j (T )
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leads to the following equations:

Z
(i)
j (t) = ξ(i) +

tk∫
0

(AN (s)V (i)
j (s) + F (i)(s, ·, V (i)

j (s))) ds

+
t∫
0

Σ(s, Z(i)
j (s)) dWM (s)

for t ∈ [ tk, tk+1 );k = 0, 1, ..., j − 1 and

V
(i)
j (t) = ξ(i) +

t∫
0

(AN (s)V (i)
j (s) + F (i)(s, ·, V (i)

j (s))) ds

+
tk+1∫
0

Σ(s, Z(i)
j (s)) dWM (s)

for t ∈ ( tk, tk+1 ];k = 0, 1, ..., j − 1;i = 1, 2.
Thus by [KaSh](cf. chapter 5,proposition 2.1.8 there) the following holds true
for t ∈ [ 0, t1 ):

Z
(1)
j (t, x) = ξ(1)(x) +

(
t∫
0

Σ(s, Z(1)
j (s)) dWM (s)

)
(x)

= ξ(1)(x) +
M∑

n=1

t∫
0

σ(s, Z(1)
j (s, x))(Q

1
2 en)(x) dwn(s)

≤ ξ(2)(x) +
M∑

n=1

t∫
0

σ(s, Z(2)
j (s, x))(Q

1
2 en)(x) dwn(s)

= Z
(2)
j (t, x)

for Lebesgue-almost all x ∈ Θ.Thus

Z
(1)
j (t) ≤ Z

(2)
j (t) in L2

ρ

P-almost surely on [ 0, t1 ) and thus

Z
(2)
j (t1) ≥ Z

(1)
j (t1) P-a.s. (2.10)

with t1 = T
j for all j ∈ N.

Given s ∈ [ 0, T ],define an operator B(s):L2
ρ → L2

ρ ω-wisely by

B(s)ϕ :=
F (2)(s,·,V (2)

j
(s))−F (2)(s,·,V (1)

j
(s))

V
(2)

j
(s)−V

(1)
j

(s)
ϕ

in case V (2)
j (s, ω) 6= V

(1)
j (s, ω) and

B(s)ϕ := C(T )ϕ

else,where C(T) denotes the common Lipschitz-constant of f (1) and f (2),i.e.

C(T ) := max(cf(1)(T ), cf(2)(T ))

Setting ĀN (s) := AN (s) +B(s),s ∈ [ 0, T ],one obviously gets
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V
(2)
j (t)− V

(1)
j (t) = Z

(2)
0,j (t1)− Z

(1)
0,j (t1) +

t∫
0

ĀN (s)[V (2)
j (s)− V

(1)
j (s)] ds

+
t∫
0

[F (2)(s, ·, V (1)
j (s))− F (1)(s, ·, V (1)

j (s))] ds

for t ∈ [ 0, t1 ].Since AN ∈ L(L2
ρ) holds by (BA) the definition of B immedi-

ately leads to

UN (t, s)(B(s) + C(T ) ∗ I):L2
ρ → L2

ρ , (s, t) ∈ ST
t∫
0

||AN (t)UN (t, s)(B(s) + C(T ) ∗ I)ϕ||ρ,2 ds ≤ c(T,C(T ))||AN (t)|| ||ϕ||ρ,2

Thus D(AN ) := L2
ρ(cf. (BA)) for all N ∈ N implies,by theorem 9.11 from

[CuPr],the existence of an almost strong evolution operator in the sense of sec-
tion 1.3 with generator (AN (t) +B(t) + C(T ) ∗ I)t∈[ 0,T ] for all N ∈ N.
Let N ∈ N be fixed.
According to section 1.3 UN is positivity preserving.Since ||B(t)|| ≤ C(T ) obvi-
ously holds for all t both QN given by

QN (t, s) :=
∞∑

a=0
Q

(a)
N (t, s) , (s, t) ∈ ST

with Q(0)
N (t, s) = UN (t, s)

Q
(a)
N (t, s)ϕ :=

t∫
s

UN (t, r)(B(r) + C(T ) ∗ I)Q(a−1)
N (r, s)ϕdr

for ϕ ∈ L2
ρ,a = 1, 2, . . .(cf. [CuPr],pp.252–262) and ŪN given by

ŪN (t, s) := QN (t, s)e−C(T )(t−s) , (s, t) ∈ ST

have got this property.Then for all ϕ ∈ L2
ρ

ŪN (t, s)ϕ = QN (t, s)e−C(T )(t−s)ϕ

= QN (t, s)
(
e−C(T )(s−s) +

t∫
s

−C(T )e−C(T )(r−s) dr

)
ϕ

= QN (t, s)ϕ+
t∫
s

QN (t, r)(−C(T )e−C(T )(r−s) ∗ I)QN (r, s)ϕdr

where the semigroup property of QN was used in the second step.
Thus by [CuPr](cf. theorem 9.2 there)

(AN +B + C(T ) ∗ I)− C(T ) ∗ I = AN +B = ĀN

generates the operator ŪN .So

V
(2)
j (t)− V

(1)
j (t) = ŪN (t, 0)(Z(2)

0,j (t1)− Z
(1)
0,j (t1))

+
t∫
0

ŪN (t, s)[F (2)(s, ·, V (1)
j (s))− F (1)(s, ·, V (1)

j (s))] ds

≥ 0

holds true for all t ∈ [ 0, t1 ] by (2.10) and f (1) ≤ f (2).
Then Z(i)

j (t1) = V
(i)
j (t1);i=1,2;implies
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Z
(1)
j (t1) ≤ Z

(2)
j (t1) in L2

ρ P-a.s.

s.t. the wanted inequations are shown on [ 0, t1 ].By the same arguments as
before one gets

V
(1)
j (t) ≤ V

(2)
j (t) in L2

ρ P-a.s.

Z
(1)
j (t) ≤ Z

(2)
j (t) in L2

ρ P-a.s.

for t ∈ [ t1, t2 ],and so on,s.t. finally

V
(1)
j (t) ≤ V

(2)
j (t) in L2

ρ P-a.s.

Z
(1)
j (t) ≤ Z

(2)
j (t) in L2

ρ P-a.s.

is shown for all t ∈ [ 0, T ].
Considering V (i)

j for arbitrary j ∈ N leads

sup
t∈[ 0,T ]

E||V (i)
j (t)||2ρ,2 ≤ c

(
E||ξ(i)||2ρ,2 +

j−1∑
k=0

sup
t∈[ tk,tk+1 ]

E||V (i)
k,j (t)||2ρ,2

)
≤ cV (j)

and an analogue estimation holds for Zj with a positive constant cZ(j).
By 2.2.7 the above definition of Y (i) implies

sup
t∈[ 0,T ]

E||Y (i)(t)||2ρ,2 ≤ c(ξ(i))

for a positive constant depending on ξ(i).
So

sup
t∈[ 0,T ]

E[ ||V (i)
j (t)− Y (i)(t)||2ρ,2 + ||Z(i)

j (t)− Y (i)(t)||2ρ,2 ] ≤ cV,Z(j, ξ(i)) <∞

By (L1) for f and (L1),(L2) for σ one gets

E||V (i)
j (t)− Y (i)(t)||2ρ,2

= E

∣∣∣∣∣
∣∣∣∣∣ t∫
0

(AN (s)V (i)
j (s) + F (i)(s, ·, V (i)

j (s))) ds+
tk+1∫
0

Σ(s, Z(i)
j (s)) dWM (s)

−
(

t∫
0

UN (t, s)F (i)(s, ·, Y (i)(s)) ds−
t∫
0

UN (t, s)Σ(s, Y (i)(s)) dWM (s)
)∣∣∣∣∣∣∣∣2

ρ,2

≤ c(C(T ), c(N))

(
M∑

n=1

[
tk+1∫
0

E||(Σ(s, Z(i)
j (s))− Σ(s, Y (i)(s)))en||2ρ,2 ds

+
tk+1∫
t

E||Σ(s, Y (i)(s))en||2ρ,2 ds

]
+

t∫
0

E||V (i)
j (s)− Y (i)(s)||2ρ,2 ds

)

≤ c(T,M, c(N), C(T ), cσ(T ))

[
tk+1∫
0

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds

+(tk+1 − tk)

(
1 + sup

r∈[ 0,T ]

E||Y (i)(r)||2ρ,2

)
+

t∫
0

E||V (i)
j (s)− Y (i)(s)||2ρ,2 ds

]
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=: c(T,M, c(N), C(T ), cσ(T ))
[
βj(tk+1) +

t∫
0

E||V (i)
j (s)− Y (i)(s)||2ρ,2 ds

]
for t ∈ ( tk, tk+1 ],k ∈ {0, 1, . . . , j − 1}. Consider βj :

βj(tk+1) :=
tk+1∫
0

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds+ (tk+1 − tk)

(
1 + sup

r∈[ 0,T ]

E||Y (i)(r)||2ρ,2

)
≤ T sup

r∈[ 0,T ]

E[ ||V (i)
j (r)− Y (i)(r)||2ρ,2 + ||Z(i)

j (r)− Y (i)(r)||2ρ,2 ]

+ 1
j

(
1 + sup

r∈[ 0,T ]

E||Y (i)(r)||2ρ,2

)
≤ T cV,Z(j, ξ) + 1

j (1 + c(ξ(i)))
< ∞

Due to the continuity of V (i)
j and Y (i) Gronwall‘s lemma is applicable and

leads to

E||V (i)
j (t)− Y (i)(t)||2ρ,2 ≤ c(T,M, c(N), C(T ), cσ(T ))βj(tk+1)ec(...)t

=: c̄(T,M, c(N), C(T ), cσ(T ))βj(tk+1)

Given t ∈ [ tk, tk+1 ),k ∈ {0, 1, . . . , j − 1} one has

E||Z(i)
j (t)− Y (i)(t)||2ρ,2 ≤ C

(
E||V (i)

j (tk)− Y (i)(tk)||2ρ,2

+E

∣∣∣∣∣
∣∣∣∣∣ t∫
tk

(Σ(s, Y (i)(s))− Σ(s, Z(i)
j (s))) dWM (s)

∣∣∣∣∣
∣∣∣∣∣
2

ρ,2

+E

[
t∫

tk

||AN (s)||2 ||Y (i)(s)||2ρ,2 + ||F (i)(s, ·, Y (i)(s))||2ρ,2 ds

])
=: C(I1(j) + I2(j) + I3)

First consider I1(j):

I1(j)

≤ c̄(T,M, c(N), C(T ), cσ(T ))

[
tk∫
0

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds+ 1

j

(
1 + sup

r∈[ 0,T ]

E||Y (i)(r)||2ρ,2

)]
≤ c̄(T,M, c(N), C(T ), cσ(T ))

[
tk∫
0

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds+ 1

j (1 + c(ξ(i)))
]

Considering I3,t ∈ [ tk, tk+1 ) implies t− tk ≤ 1
j ,s.t.

0 ≤ I3 ≤ 1
j c(T,N,C(T ))

(
1 + sup

r∈[ 0,T ]

E||Y (i)(r)||2ρ,2

)
≤ 1

j c(T,N,C(T ))(1 + c(ξ(i)))

holds true using (BA)(ii) and (L1),(L2) for f (i).Considering I2(j) condition (L1)
for σ leads to

0 ≤ I2(j) ≤ c(M, cσ(T ))
t∫

tk

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds

Thus
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E||Z(i)
j (t)− Y (i)(t)||2ρ,2 ≤ 1

j (1 + c̄(T,M, c(N), C(T ), cσ(T ))(1 + c(ξ(i)))

+c(T,M, c(N), C(T ), cσ(T ))
t∫
0

E||Z(i)
j (s)− Y (i)(s)||2ρ,2 ds

s.t. Gronwall‘s lemma implies

E||Z(i)
j (t)− Y (i)(t)||2ρ,2 ≤ 1

j (1 + C̄)(1 + c(ξ(i)))eC̄t <∞

where C̄ denotes the maximum of the two constants from the equations be-
fore.This term obviously tends to 0 in case of j tending to ∞,i.e.

lim
j→∞

E||Z(i)
j (t)− Y (i)(t)||2ρ,2 = 0

holds true for t ∈ [ tk, tk+1 ),k ∈ {0, 1, . . . , j − 1}.Thus by the construction of
the tk this holds true for all t ∈ [ 0, T ].

What has been shown so far is:

Z
(1)
j (t) ≤ Z

(2)
j (t) ,V (1)

j (t) ≤ V
(2)
j (t)

holds true P-almost surely for all t ∈ [ 0, T ] and one has

lim
j→∞

sup
t∈[ 0,T ]

E||Z(i)
j (t)− Y (i)(t)||2ρ,2 = 0

The second property leads to the existence of a subsequence (Z(i)
j(l)(t))l∈N,which

converges to Y (i)(t) P-almost surely in L2
ρ.With the help of the first property

this leads to

Y (1)(t) ≤ Y (2)(t) P-a.s., t ∈ [ 0, T ]

q.e.d.

The second lemma is a version of the claim,Manthey and Zausinger make in
the second step of their proof.

Lemma 2.2.13:

Under the assumptions of 2.2.11 one has

lim
N→∞

E||X(i)
N,M (t)−X

(i)
M (t)||2ρ,2 = 0

and

lim
M→∞

E||X(i)
M (t)−X(i)(t)||2ρ,2 = 0

where X(i)
M solves

dX
(i)
M (t) = ( A(t)X(i)

M (t) + F (i)(t, ω,X(i)
M (t)) ) dt+ Σ(t,X(i)

M (t))dWM (t)
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X
(i)
M (0) = ξ(i).

in the sense of 2.2.3.

Proof:
For all N,M∈ N;i = 1, 2;t ∈ [ 0, T ];ω ∈ Ω

X
(i)
N,M (t, ω) = UN (t, 0)ξ(ω) + γN

A,v(X(i)
N,M (ω))(t) + γN,M

d (X(i)
N,M (ω))(t)

holds with the γ-terms given by

γN
A,v(X(ω)) :=

·∫
0

UN (·, s)F (i)(s, ω,X(s, ω)) ds

γN,M
d (X(ω)) :=

·∫
0

UN (·, s)Σ(s,X(s, ω)) dWM (s)

for a solution.Then one has for any two solutions X(i)
N,M ,X(i)

N,M,1 and arbitrary
t ∈ [ 0, T̄ ] with T̄ ∈ [ 0, T ]:

• E
∣∣∣∣∣∣∣∣ t∫

0

UN (t, s)[F (i)(s, ·, X(i)
N,M (s))− F (i)(s, ·, X(i)

N,M,1(s))] ds
∣∣∣∣∣∣∣∣2

ρ,2

≤ c(c(N), cf (T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
N,M,1(s)||2ρ,2 ds

≤ T̄ c(c(N), cf (T )) sup
r∈[ 0,T̄ ]

E||X(i)
N,M (r)−X

(i)
N,M,1(r)||2ρ,2

and thus in C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ))

||γN
A,v(X(i)

N,M )− γN
A,v(X(i)

N,M,1)||C([ 0,T̄ ];L2
ρ)(2)

≤
√
T̄ c(c(N), cf (T ))||X(i)

N,M −X
(i)
N,M,1||C([ 0,T̄ ];L2

ρ)(2)

• E
∣∣∣∣∣∣∣∣ t∫

0

UN (t, s)[Σ(s,X(i)
N,M (s))− Σ(s,X(i)

N,M,1(s))] dWM (s)
∣∣∣∣∣∣∣∣2

ρ,2

≤ c(M)
t∫
0

E||UN (t, s)[Σ(s,X(i)
N,M (s))− Σ(s,XN,M,1(s))] ||2L2

ds

≤ c(M, c(N), cσ(T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
N,M,1(s)||2ρ,2 ds

≤ T̄ c(M, c(N), cσ(T )) sup
r∈[ 0,T̄ ]

E||X(i)
N,M (r)−X

(i)
N,M,1(r)||2ρ,2

and thus in C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)):

||γN,M
d (X(i)

N,M )− γN,M,1
d (X(i)

N,M,1)||C([ 0,T̄ ];L2
ρ)(2)

≤
√
T̄ c(M, c(N), cσ(T ))||X(i)

N,M −X
(i)
N,M,1||C([ 0,T̄ ];L2

ρ)(2)

Completely analogous to the proof of 2.2.7(i) the above estimates ensure the
existence of a pathwise unique and continuous solution X(i)

N,M .In the same way
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one gets the existence of pathwise unique,continuous solutions X(i)
M and X(i).

Fix N,M∈ N:
Taking the difference between solutions XN,M and XM ,one gets for
fixed t ∈ [ 0, T ]:

X
(i)
N,M (t)−X

(i)
M (t) = aN (ξ) + bN (F ) + aN (F ) + bN (Σ) + aN (Σ)

with the terms defined by

aN (ξ) = [UN (t, 0)− U(t, 0)]ξ(i)

bN (F ) =
t∫
0

UN (t, s)[F (i)(s, ·, X(i)
N,M (s))− F (i)(s, ·, XM (s))] ds

aN (F ) =
t∫
0

[UN (t, s)− U(t, s)]F (i)(s, ·, X(i)
M (s)) ds

bN (Σ) =
t∫
0

UN (t, s)[Σ(s,X(i)
N,M (s))− Σ(s,X(i)

M (s))] dWM (s)

aN (Σ) =
t∫
0

[UN (t, s)− U(t, s)]Σ(s,X(i)
M (s)) dWM (s)

Use the following consideration for an estimate of the aN -terms:
By (BA)(ii)

lim
N→∞

sup
(s,t)∈ST

||[UN (t, s)− U(t, s)]ϕ||2ρ,2 = 0

holds true for all ϕ ∈ L2
ρ.Let r ∈ [ 0, T ] be arbitrary.As f and σ fulfill (L1),(L2)

by assumption,X(i)
M (r) ∈ L2

ρ for i=1,2 and M ∈ N hold true

F (r, ·, X(i)
M (r)) ∈ L2

ρ , σ(r,X(i)
M (r)) ∈ L2

ρ

follows obviously with F defined by (2.4) and σ defined analogously to (2.4)(with-
out ω-dependence).Thus

lim
N→∞

sup
(s,t)∈ST

E||[UN (t, s)− U(t, s)]F (r, ·, X(i)
M (r))||2ρ,2 = 0

and

lim
N→∞

sup
(s,t)∈ST

E||[UN (t, s)− U(t, s)]σ(r,X(i)
M (r))||2ρ,2 = 0

As r ∈ [ 0, T ] was arbitrary one has in particular

lim
N→∞

sup
(s,t)∈ST

E||[UN (t, s)− U(t, s)]F (s, ·, X(i)
M (s))||2ρ,2 = 0

and

lim
N→∞

sup
(s,t)∈ST

E||[UN (t, s)− U(t, s)]σ(s,X(i)
M (s))||2ρ,2 = 0

Consider the following estimates for the aN -terms:
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E||aN (ξ)||2ρ,2 ≤ sup
(s,t)∈ST

||[UN (t, s)− U(t, s)]ξ||2ρ,2

E||aN (F )||2ρ,2 ≤ T sup
(s,t)∈ST

||[UN (t, s)− U(t, s)]F (i)(s, ·, X(i)
M (s))||2ρ,2

E||aN (Σ)||2ρ,2,+ = E
∣∣∣∣∣∣∣∣ t∫

0

[UN (t, s)− U(t, s)]Σ(s,X(i)
M (s)) dWM (s)

∣∣∣∣∣∣∣∣2
ρ,2

= E
∣∣∣∣∣∣∣∣ t∫

0

[UN (t, s)− U(t, s)]Σ(s,X(i)
M (s)) d

(
M∑

n=1

√
anwn(s)en

)∣∣∣∣∣∣∣∣2
ρ,2

=
M∑

n=1
an E

∫
Θ

(
t∫
0

[UN (t, s)− U(t, s)]Σ(s,X(i)
M (s))en ds

)2

(x)µρ(dx)

≤
M∑

n=1
an sup

n∈N
||en||2∞ T sup

(s,t)∈ST

E||[UN (t, s)− U(t, s)]σ(s,X(i)
M (s))||2ρ,2

By (BA)(ii) resp. the above considerations these terms tend to 0 as N tends to
∞.

Furthermore the properties of f and σ lead to

E||bN (F )||2ρ,2 ≤ c(c(N), cf (T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2ρ,2 ds

E||bN (Σ)||2ρ,2 ≤ c(M, c(N), cσ(T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2ρ,2 ds

s.t.

E||X(i)
N,M (t)−X

(i)
M (t)||2ρ,2 ≤ C

(
(E||aN (ξ)||2ρ,2 + E||aN (F )||2ρ,2 + E||aN (Σ)||2ρ,2)

+c(M, c(N), cf (T ), cσ(T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2ρ,2 ds

)
holds true.As X(i)

N,M and X
(i)
M are time-continuous, Gronwall‘s lemma is ap-

plicable,s.t. the first part of the claim follows by the fact that the aN -terms
tend to 0 for N →∞.

Consider X(i)
M with an arbitrary M∈ N:

X
(i)
M (t)−X(i)(t) =

t∫
0

U(t, s)[F (i)(s, ω,X(i)
M (s))− F (i)(s, ω,X(i)(s))] ds

+
t∫
0

U(t, s)[Σ(s,X(i)
M (s))− Σ(s,X(i)(s))] dWM (s)

−
∞∑

n=M+1

t∫
0

√
an[U(t, s)Σ(s,X(i)(s))](en) dwn(s)

for all t ∈ [ 0, T ],ω ∈ Ω,s.t. analogously to the bN -terms above the follow-
ing holds:
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E||X(i)
M (t)−X(i)(t)||2ρ,2 ≤ c(M, c(T ), cf(i)(T ), cσ(T ))

t∫
0

(t− s)−γE||X(i)
M (s)−X(i)(s)||2ρ,2 ds

+E
∣∣∣∣∣∣∣∣ ∞∑

n=M+1

t∫
0

√
an[U(t, s)Σ(s,X(i)(s))](en) dwn(s)

∣∣∣∣∣∣∣∣2
ρ,2

≤ c(M, c(T ), cf (T ), cσ(T ))
t∫
0

(t− s)−γE||X(i)
M (s)−X(i)(s)||ρ,2 ds

+
∞∑

n=M+1

an

t∫
0

E|| [U(t, s)Σ(s,X(i)(s))](en)||2ρ,2 ds

Since the numbers an are nonnegative and fulfill

∞∑
n=1

an <∞

in the nuclear case,one gets

∞∑
n=M+1

an

t∫
0

E|| [U(t, s)Σ(s,X(i)(s))](en)||2ρ,2 ds

≤ T c(c(T ), cσ(T ))
(

sup
n∈N

||en||∞
)2( ∞∑

n=1
an

)(
1 + sup

t∈[ 0,T ]

E||X(i)(t)||2ρ,2

)
<∞

This sum obviously tends to 0 as M tends to ∞,s.t. the nuclear case is
finished.
For the cylindrical case(i.e. an = 1 for all n) apply (2.3) for ϕ ∈ L2

ρ,
(s, t) ∈ ST .Thus the summand belonging to the stochastic rest is again finite
and converges to 0 for M →∞.
Having this property both in the nuclear and in the cylindrical case,applying
2.2.5/2.2.6 (with gn := E||X(i)

M −X(i)||2ρ,2) finishes the proof.
q.e.d.

Proof of 2.2.11:
First by 2.2.12

X
(1)
N,M (t) ≤ X

(2)
N,M (t),t ∈ [ 0, T ]

P-almost surely in L2
ρ.Then 2.2.13 implies the claim by first taking N → ∞

and then taking M →∞.
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2.3 The case with a non-Lipschitzian f

The aim of this section is to show the main result of this chapter,which is a
result like 3.4.1 from [MaZa],in case Θ = Rd

+ with an ω-dependent f.In order to
do so,there is still one lemma necessary.

Lemma 2.3.1

Consider an arbitrary,real-valued,progressively measurable function f defined on

[ 0, T ]× Ω×R

and define

fN (t, ω, x) := f(t, ω, x) ∨ −N
fN,M (t, ω, x) := inf

u∈R
fN (t, ω, u) +M |u− x|

for all t ∈ [ 0, T ],ω ∈ Ω,x ∈ R,N,M∈ N.
Then fN and fN,M are progressively measurable as well.

Proof:
Consider fN first.
Fix x ∈ R.What has to be shown is

1[ 0,t ]fN (·, ·, x)−1(A) ∈ B([ 0, t ])×Ft

for all Borel-sets A on R.
Let b ∈ R and t ∈ [ 0, T ] be arbitrary. For all N ∈ N with b ≥ −N one gets

{(s, ω) ∈ [ 0, t ]× Ω | fN (s, ω, x) < b} = {(s, ω) | f(s, ω, x) ∨ −N < b}
= {(s, ω) | f(s, ω, x) < b}
∈ B([ 0, t ])×Ft

due to the progressive measurability of f.But for b < −N :

{(s, ω) ∈ [ 0, t ]× Ω | fN (s, ω, x) < b} = {(s, ω) | f(s, ω, x) ∨ −N < b}
= ∅
∈ B([ 0, t ])×Ft

Thus progressive measurability for each fN (·, ·, x) with x ∈ R,N ∈ N is shown,which
finishes the consideration of fN .

Finally consider fN,M with N,M ∈ N. As above one gets for arbitrary
u,x ∈ R

{(s, ω) ∈ [ 0, t ]× Ω | fN (s, ω, u) +M |u− x| < b} = {(s, ω) | fN (s, ω, u) < b−M |u− x|}
∈ B([ 0, t ])×Ft

for fixed M∈ N due to the progressive measurability of fN .
Thus fN (·, ·, u) +M |u− x| is progressively measurable for fixed u,x∈ R,M∈ N,
which implies the progressive measurability of
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f̂N,M (·, ·, x) := inf
u∈Q

(fN (·, ·, u) +M |u− x|)

for fixed x∈ R,M∈ N as countable infimum of progressively measurable map-
pings.
Let u∈ R \Q.
As Q is dense in R,there exists a sequence (un)n∈N of rational numbers con-
verging to u for n→∞.
The continuity of f obviously implies the continuity of fN and

fN +M | · −x|

for fixed x ∈ R.Thus by un → u

fN (·, ·, un) +M |un − x| → fN (·, ·, u) +M |u− x|

As such a sequence exists for every u∈ R,one has for arbitrary x∈ R:

fN,M (·, ·, x) = inf
u∈R

fN (·, ·, u) +M |u− x|
= inf

u∈Q
fN (·, ·, u) +M |u− x|

= f̂N,M (·, ·, x)
Thus one gets progressive measurability of fN,M (·, ·, x) for each x∈ R,which
finishes the proof.
q.e.d.

Now one can finally show the wanted result:

Theorem 2.3.2:

Let (CD),(PP),(CC) and (BA) be fulfilled,let f:[ 0, T ]× Ω×R → R defining F
be progressively measurable and continuous on R with properties (PG) with ex-
ponent ν ∈ N and (LG) with ω-independent constant and let σ:[ 0, T ]×R → R
defining Σ fulfill (L1),(L2). Let γ be as in (CC) in the cylindrical case and let
it be 0 in the nuclear case.

(i):In case ν = 1,given a natural number q > 2
1−γ with

E||ξ||qρ,2 <∞

there exists a solution X to Eq(ξ,F,Σ),s.t.

sup
t∈[ 0,T ]

E||X(t)||qρ,2 ≤ c(q, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

holds with a positive constant c(. . .) depending on U,f,σ,q,T.

(ii): If in addition (E1) and (E2) hold and there is a natural number ν > 1
1−γ

with

E||ξ||2ν
ρ,2ν <∞
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there exists a solution X to Eq(ξ,F,Σ),s.t.

sup
t∈[ 0,T ]

E||X(t)||2ν
ρ,2ν ≤ c(ν, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

holds for a positive constant c(. . .) only depending on U,f,σ,ν and T.

Proof:
Following the proof of Manthey and Zausinger show (ii) first,and then show
(i),which was not shown in [MaZa].

Proof of (ii):
Step 1: Define mappings ḡ,h̄:R → R by

ḡ(v) := min

(
inf

0≤u≤v
(t,ω)∈[ 0,T ]×Ω

f(t, ω, u)1[0,∞)(v), 0

)
− cf (T )(1− v)1(−∞,0)(v) (2.11)

h̄(v) := max

 sup
v≤u≤0

(t,ω)∈[ 0,T ]×Ω

f(t, ω, u)1(−∞,0)(v), 0

+ cf (T )(1 + v)1(0,∞)(v) (2.12)

Since f fulfills (LG),ḡ and h̄ fulfill the conditions

(2.13) ḡ ≤ 0,ḡ(v) ≤ f(t, ω, v),(t, ω, v) ∈ [ 0, T ]× Ω×R

(2.14) h̄ ≥ 0,h̄(v) ≥ f(t, ω, v),(t, ω, v) ∈ [ 0, T ]× Ω×R

Then define mappings fN,M for N,M ∈ N as in 2.3.1.Then:

−N ≤ fN,M (t, ω, 0) ≤ fN (t, ω, 0) ≤ cf (T )

i.e. fN and fN,M fulfill (L2) with ω-independent constant
c(N) := max{N, cf (T )}.

Claim: For arbitrary N,M∈ N

|fN,M (t, ω, x)− fN,M (t, ω, y)| ≤M |x− y|;t ∈ [ 0, T ],ω ∈ Ω,x,y∈ R

holds true,s.t. the fN,M also fulfill (L1).

Proof: Fix arbitrary t ∈ [ 0, T ], ω ∈ Ω and x,y∈ R and define

zx := arg inf
z∈R

(fN (t, ω, z) +M |x− z|),zy := arg inf
z∈R

(fN (t, ω, z) +M |y − z|)

First consider the case zx = zy =: z̄.Then the definition of fN,M implies

fN,M (t, ω, x)− fN,M (t, ω, y) = M(|x− z̄| − |y − z̄|)
≤ M(|x− z̄ − (y − z̄)|) = M |x− y|

and analogously
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−(fN,M (t, ω, x)− fN,M (t, ω, y)) = fN,M (t, ω, y)− fN,M (t, ω, x) ≤M |x− y|

which proves the claim.

So let zx 6= zy in what follows.
Assuming fN,M (t, ω, x)− fN,M (t, ω, y) < 0 the claim follows from

fN,M (t, ω, x)− (fN (t, ω, zx) +M |y − zx|) < fN,M (t, ω, x)− fN,M (t, ω, y)

and the above case.Otherwise the claim follows from the following chain of
inequations:

M |x− y| ≥ M(|x− zy| − |y − zy|)
= fN (t, ω, zy) +M |x− zy| − (fN (t, ω, zy) +M |y − zy|)
≥ fN,M (t, ω, x)− fN,M (t, ω, y)
> 0

Step 2: Defining FN,M by (2.4),theorems 2.3.1, 2.2.7 and 2.2.11 imply the
existence of pathwise unique solutions XN,M of Eq(ξ, FN,M ,Σ) with

XN,M ≤ XN,M+1 (2.15)

Denoting solutions of Eq(ξ+,F0,M ,Σ),Eq.(ξ−, F−N,M ,Σ) resp. Eq.(0,0,Σ) by X̄0,M ,XN,M

resp. V,one gets the following relations:

XN,M (t) ≤ XN,M (t) ≤ X̄0,M (t) (2.16)
XN,M (t) ≤ V (t) ≤ X̄0,M (t) (2.17)

P-almost surely for each t ∈ [ 0, T ] and arbitrary N,M ∈ N.Theorem 2.2.7(ii)
implies

sup
t∈[ 0,T ]

E||X̄0,M (t)||2ν
ρ,2ν ≤ c(ν,M, T )(1 + E||ξ+||2ν

ρ,2ν)

for each M ∈ N.Furthermore:

E||X̄0,M (t)||2ν
ρ,2ν ≤ c(ν)

(
E||U(t, 0)ξ+||2ν

ρ,2ν + E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F0,M (s, ·, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣2ν

ρ,2ν

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s, X̄0,M (s)) dW (s)
∣∣∣∣∣∣∣∣2ν

ρ,2ν

)
=: Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t)

First (E1) leads to

Ī(1)(t) = c(ν)E||U(t, 0)ξ+||2ν
ρ,2ν ≤ c(ν, T )E||ξ+||2ν

ρ,2ν

≤ c(ν, T )E||ξ||2ν
ρ,2ν

By (PP) (E1) additionally implies
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Ī
(2)
M (t) ≤ c(ν, T )E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)|F0,M (s, ·, X̄0,M (s))|ν ds
∣∣∣∣∣∣∣∣2

ρ,2

and thus

Ī
(2)
M (t) ≤ c(ν, T, c(T ))E

t∫
0

||h̄(X̄0,M (s))||2ν
ρ,2ν ds

≤ c(ν, T, c(T ), cf (T ))E
t∫
0

∫̄
Θ

[
(1 + X̄2ν

0,M (s, y))1{X̄0,M (s,y)>0}(s, y)

+(1 + V 2ν2
(s, y))1{X̄0,M (s,y)<0}(s, y)

]
µρ(dy) ds

≤ c(ν, T, c(T ), cf (T ))

(
1 +

t∫
0

E||X̄0,M (s)||2ν
ρ,2ν ds+

T∫
0

E||V (s)||2ν2

ρ,2ν2 ds

)
≤ c(ν, T, c(T ), cf (T ), cσ(T ))

(
1 +

t∫
0

E||X̄0,M (s)||2ν
ρ,2ν ds

)
≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))

(
1 +

t∫
0

(t− s)−γE||X̄0,M (s)||2ν
ρ,2ν ds

)
where (2.14) was used in the first,(2.12) and (2.17) were used in the second,2.2.10(ii)
was used in the fourth and the fact,that (t − s)γ can be estimated by T γ ,was
used in the fifth step.
Considering the process ϕ̄(t) := σ(t, X̄0,M (t)) , t ∈ [ 0, T ], in L2ν

ρ , (E2);(L1),(L2)
for σ and γ ∈ [ 0, 1 ) imply

Ī
(3)
M (t) ≤ c(ν, T )

t∫
0

(t− s)−γE||σ(s, X̄0,M (s))||2ν
ρ,2ν ds

≤ c(ν, γ, T, cσ(T ))
(

1 +
t∫
0

(t− s)−γE||X̄0,M (s)||2ν
ρ,2ν ds

)
Thus one has for arbitrary t ∈ [ 0, T ]:

E||X̄0,M (t)||2ν
ρ,2ν ≤ c(ν, T )E||ξ||2ν

ρ,2ν

+c(ν, γ, T, c(T ), cf (T ), cσ(T ))
(

1 +
t∫
0

(t− s)−γE||X̄0,M (s)||2ν
ρ,2ν ds

)
≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

+c(ν, γ, T, c(T ), cf (T ), cσ(T ))
t∫
0

(t− s)−γ E||X̄0,M (s)||2ν
ρ,2ν ds

Setting g := E||X̄0,M ||2ν
ρ,2ν one gets

g(t) ≤ C(1 + E||ξ||2ν
ρ,2ν) + C

t∫
0

(t− s)−γg(s) ds

for γ ∈ [ 0, 1 ),C:=c(ν,γ,T,c(T),cf (T ),cσ(T )),i.e. the conditions of 2.2.5 are ful-
filled with gn := g for all n ∈ N.Since g is bounded for all M ∈ N,2.2.6 leads to

E||X̄0,M (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

for arbitrary M ∈ N,s.t. due to the M-independence of the constant

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)
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It was essential for the M-independence of the constant,that (2.14) is applicable
for all M ∈ N.
An analogous estimate holds true for XN,M (with a constant possibly dependent
on N) and thus by (2.16) also for XN,M .

Step 3: As Manthey and Zausinger did,show the convergence of (XN,M )M∈N

in L2
ρ to a process XN solving Eq.(ξ, FN ,Σ).

Manthey and Zausinger define

ZN,M (t) := XN,M (t)−XN,1(t);N,M ∈ N;t ∈ [ 0, T ]

(2.15) implies

0 ≤ ZN,M (t) ≤ ZN,M+1(t)

and

sup
t∈[ 0,T ]

M∈N

E||ZN,M (t)||2ν
ρ,2ν ≤ c(ν)

 sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||2ν
ρ,2ν + sup

t∈[ 0,T ]

E||XN,1(t)||2ν
ρ,2ν


< ∞

Claim 1:By the definition

ZN (t) := sup
M∈N

ZN,M (t),N ∈ N,t ∈ [ 0, T ]

from [MaZa] one gets,for each N ∈ N,a pathwise continuous process ZN ,which
is unique up to a zeroset in Ω×Θ.
Proof: Consider continuity first:
XN,M is pathwise continuous for all N,M ∈ N by 2.2.7,as a consequence of
which ZN,M (ω) is continuous for arbitrary ω ∈ Ω as the difference of XN,M (ω)
and XN,1(ω) and ZN (ω) is continuous as the supremum of the continuous
ZN,M (ω).As ω was chosen arbitrarily,pathwise continuity is shown.
By 2.2.7 XN,M (t) is pathwise unique for all N,M∈ N and arbitrary
t ∈ [ 0, T ],s.t. ZN,M (t) is pathwise unique as well for all N,M∈ N and arbitrary
t ∈ [ 0, T ].Thus

ZN (t, ω) := sup
M∈N

ZN,M (t, ω)

is unique in L2
ρ except for ω ∈ Ω,s.t.

||ZN,M̃ (t, ω)||ρ,2 = ||ZN,M̄ (t, ω)||ρ,2 = sup
M∈N

||ZN,M (t, ω)||ρ,2

with natural numbers M̃ 6= M̄ and fixed N,t holds true.But then,according
to the definition of the norm,the definition of µρ from section 1.2 implies

ZN,M̃ (t, ω, x) = ZN,M̄ (t, ω, x) for µρ-a.a. x ∈ Θ

s.t. ZN (t) is unique P ⊗ µρ-almost everywhere for all N,t,which finishes the
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proof.

Due to the construction of the process one gets:

sup
t∈[ 0,T ]

E||ZN (t)||2ν
ρ,2ν <∞

Claim 2: By setting

XN (t) := ZN (t) +XN,1(t),N∈ N,t ∈ [ 0, T ]

one gets a pathwise continuous stochastic process XN ,s.t.
XN (t, ω) ∈ L2ν

ρ holds true for every fixed N ∈ N and every ω ∈ Ω.
Proof:From the pathwise continuity of ZN shown in claim 1 and the pathwise
continuity of XN,1 one gets pathwise continuity of XN .
Furthermore one already knows

sup
t∈[ 0,T ]

E||ZN (t)||2ν
ρ,2ν <∞

sup
t∈[ 0,T ]

E||XN,1(t)||2ν
ρ,2ν <∞

for each fixed N∈ N,which implies

sup
t∈[ 0,T ]

E||ZN (t) +XN,1(t)||2ν
ρ,2 <∞

Thus there exists a processXN ∈ {ϕ : [ 0, T ]× Ω → L2ν
ρ | sup

t
E||ϕ(t)||2ν

ρ,2ν <∞},s.t.

XN (t) = ZN (t) +XN,1(t),t ∈ [ 0, T ]

P-almost surely in L2ν
ρ ,i.e. for fixed N there exists a modification XN ,s.t.

XN (t, ω) ∈ L2ν
ρ holds true for all t ∈ [ 0, T ],ω ∈ Ω,which was the claim.

Fix an arbitrary t ∈ [ 0, T ].By (2.15) one gets XN,M (t) ↑ XN (t) P-almost
surely.Since

sup
M∈N

E||XN,M (t)||2ν
ρ,2ν <∞

dominated convergence implies

lim
M→∞

E||XN,M (t)−XN (t)||2ν
ρ,2ν = 0

As t ∈ [ 0, T ] was arbitrarily chosen,one gets

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2ν
ρ,2ν dt ≤ T sup

t∈[ 0,T ]

lim
M→∞

E||XN,M (t)−XN (t)||2ν
ρ,2ν

= 0 (2.18)

Furthermore one has the following estimate for all t ∈ [ 0, T ]:
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E||XN (t)||2ν
ρ,2ν = E

∣∣∣∣∣∣∣∣ sup
M

(XN,M (t)−XN,1(t)) +XN,1(t)
∣∣∣∣∣∣∣∣2ν

ρ,2ν

≤ c(ν)

[
E
∣∣∣∣∣∣∣∣ sup

M
XN,M (t)

∣∣∣∣∣∣∣∣2ν

ρ,2ν

+ 2E||XN,1||2ν
ρ,2ν

]
≤ 3c(ν) sup

M∈N
E||XN,M (t)||2ν

ρ,2ν

and thus

sup
t∈[ 0,T ]

E||XN (t)||2ν
ρ,2ν ≤ 3c(ν) sup

t∈[ 0,T ]
M∈N

E||XN,M (t)||2ν
ρ,2ν

≤ c(N, ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν
ρ,2ν)

In the same manner one gets processes XN ,X̄ in L2ν
ρ ,s.t.

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2ν
ρ,2ν ds = 0

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||2ν
ρ,2ν ds = 0

and

XN (t) ≤ XN (t) ≤ X̄(t)
XN (t) ≤ V (t) ≤ X̄(t)

P-almost surely for all t ∈ [ 0, T ].

Step 4: (2.18) is just convergence in probability of (XN,M )M∈N to XN ,as
a consequence of which there must be a subsequence of (XN,M )M∈N,which con-
verges to XN P-almost surely.As in the fourth step of the proof of 3.4.1(ii)
in [MaZa] let w.l.o.g. (XN,M )M∈N itself be this sequence.

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s, ·, XN (s)) ds−
t∫
0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2,+

≤ 3(I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t))

where the terms are given by:

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2ρ,2,+ ≤ c(ν, ρ)(E||Xn(t)−XN,M (t)||2ν

ρ,2ν)
1
ν

I
(2)
N,M (t) := c2(T )E

∣∣∣∣∣∣∣∣ t∫
0

FN (s, ·, XN (s))− FN,M (s, ·, XN,M (s)) ds
∣∣∣∣∣∣∣∣2

ρ,2

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[Σ(s,XN (s))− Σ(s,XN,M (s))] dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

s.t. at least the first term tends to 0 for M →∞ by (2.18).Consider the second
term:
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I
(2)
N,M (t) ≤ c(c(T ))

(
E

T∫
0

||FN (s, ·, XN (s))− FN (s, ·, XN,M (s))||2ρ,2 ds

+E
T∫
0

||FN (s, ·, XN,M (s))− FN,M (s, ·, XN,M (s))||2ρ,2 ds

)
=: c(c(T ))(I(21)

N,M (T ) + I
(22)
N,M (T ))

By (PG):

I
(21)
N,M (T ) = E

T∫
0

∫
Θ

(fN (s, ·, XN (s, x))− fN (s, ·, XN,M (s, x)))2µρ(dx) ds

≤ E
T∫
0

∫
Θ

(c(N, cf (T ))(1 + |XN (s, x)|ν + |XN,M (s, x)|ν))2 µρ(dx) ds

≤ c(N,T, c(T ), ν, cf (T ))

(
1 +

T∫
0

(E||XN (s)||2ν
ρ,2ν + E||XN,M (s)||2ν

ρ,2ν) ds

)
s.t.

XN,1(t) ≤ XN,M (t) ≤ XN (t),P-f.s,t ∈ [ 0, T ]
implies

I
(21)
N,M (T ) ≤ c(N,T, ν, c(T ), cf (T ), cσ(T ))

(
1 + 2

T∫
0

E||XN (s)||2ν
ρ,2ν ds

)
So (I(21)

N,M )M∈N is a bounded sequence in L2ν
ρ .Then (2.18) and the continuity

of FN ensure

lim
M→∞

I
(21)
N,M (T ) = 0

Fix L ≤ M ;L,M∈ N;and get in analogy to the consideration of I(21)
N,M with

fN,M ↑ fN

lim
M→∞

I
(22)
N,M ≤ lim

M→∞

T∫
0

E||FN (s, ω,XN,M (s))− FN,L(s, ω,XN,M (s))||2ρ,2 ds

=
T∫
0

E||FN (s, ω,XN (s))− FN,L(s, ω,XN (s))||2ρ,2 ds

which tends to 0 for L→∞ since fN,L ↑ fN .Thus

lim
M→∞

I
(2)
N,M (T ) = 0

Finally one gets by (E2),(L1),Hoelder‘s inequality and

ν > 1
1−γ ⇒

γν
ν−1 < 1 (2.19)

the following estimate for the third term:
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I
(3)
N,M (T ) ≤ c2(T )

t∫
0

(t− s)−γE||σ(s,XN (s))− σ(s,XN,M (s))||2ρ,2 ds

≤ c(c(T ), cσ(T ))
t∫
0

(t− s)−γE||XN (s)−XN,M (s)||2ρ,2 ds

≤ c(c(T ), cσ(T ))

(
T∫
0

s
−γν
ν−1 ds

) ν−1
ν
(

T∫
0

E||XN (s)−XN,M (s)||2ν
ρ,2ν ds

) 1
ν

≤ c(γ, T, c(T ), cσ(T ))

(
T∫
0

E||XN (t)−XN,M (t)||2ν
ρ,2ν ds

) 1
ν

which tends to 0 for M → ∞ by (2.18).Thus (iv) from 2.2.3 holds true for
XN .Consider the other properties from 2.2.3:
Since XN is predictable by its construction and fulfills XN ∈ L2ν

ρ according to
claim 2 from step 3,property 2.2.3(i) is fulfilled.By (2.18),(2.19) and property
2.2.3(ii) for XN,M one gets

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)||2ρ,2 ds ≤ 2

[
sup

t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)−XN,M (s)||2ρ,2 ds

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN,M (s)||2ρ,2 ds

]

≤ 2

(T∫
0

s−
γν

ν−1 ds

) ν−1
ν
(

T∫
0

E||XN (s)−XN,M (s)||2ν
ρ,2ν ds

) 1
ν

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN,M (s)||2ρ,2 ds

]
< ∞

for all t ∈ [ 0, T ] and arbitrary N,M∈ N.
Thus XN has property 2.2.3(ii) as well.
By claim 2 from step 3 XN is pathwise continuous,which is just 2.2.3(iii),s.t.
all properties from 2.2.3 are fulfilled,which means that XN is a solution of
Eq.(ξ,FN ,Σ) for all N ∈ N.

Step 5:

Due to the definition of XN for N ∈ N and step 2 one already knows that

sup
t∈[ 0,T ]

E||XN (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ), N)(1 + E||ξ||2ν

ρ,2ν)

holds.Show the N-independence of the constant.First of all

E||XN (t)||2ν
ρ,2ν ≤ c(ν)

(
I(1)(t) + I

(2)
N (t) + I

(3)
N (t)

)
for all t ∈ [ 0, T ] with

I(1)(t) := E||U(t, 0)ξ−||2ν
ρ,2ν

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N (s, ·, Xn(s)) ds
∣∣∣∣∣∣∣∣2ν

ρ,2ν
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I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣2ν

ρ,2ν

Then

I(1)(t) = E|| |U(t, 0)ξ− |ν ||2ρ,2

≤ c(ν, T )E||U(t, 0)|ξ−|ν ||2ρ,2

= c(ν, T, c(T ))E||ξ||2ν
ρ,2ν

by (E1),

I
(2)
N (t) ≤ c(ν, c(T ))

t∫
0

||F−N (s, ·, XN (s))||2ν
ρ,2ν ds

≤ c(ν, c(T ))
t∫
0

E||ḡ(XN (s))||2ν
ρ,2ν ds

≤ c(ν, T, c(T ), cf (T ))
(

1 +
t∫
0

E||XN (s)||2ν
ρ,2ν ds

)
≤ c(ν, γ, T, c(T ), cf (T ))

(
1 +

t∫
0

(t− s)−γE||XN (s)||2ν
ρ,2ν ds

)
by (2.13) and by (CC),(L1),(L2)

I
(3)
N (t) ≤ c(ν, T, c(T ), cσ(T ))

(
1 +

t∫
0

(t− s)−γE||XN (s)||2ν
ρ,2ν ds

)
Together the three estimates lead to

E||XN (t)||2ν
ρ,2ν ≤ c(ν, T )E||ξ||2ν

ρ,2ν

+c(ν, γ, T, c(T ), cf (T ), cσ(T ))
(

1 +
t∫
0

(t− s)−γE||XN (s)||2ν
ρ,2ν ds

)
≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

+c(ν, γ, T, c(T ), cf (T ), cσ(T ))
t∫
0

(t− s)−γE||XN (s)||2ν
ρ,2ν

for all t ∈ [ 0, T ].Then 2.2.5 and 2.2.6 with gn := E||XN ||2ν
ρ,2ν for all n ∈ N show

E||XN (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

for all N ∈ N,s.t.

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν)

holds true.The fact that (2.13) holds true for all N ∈ N was essential for the
N-independence of the constant. Then

sup
t∈[ 0,T ]

E||X̄(t)||2ν
ρ,2ν ≤ c(ν)

 sup
t∈[ 0,T ]

M∈N

E||X̄(t)− X̄0,M (t)||2ν
ρ,2ν + sup

t∈[ 0,T ]
M∈N

E||X̄0,M (t)||2ν
ρ,2ν


E||X̄0,M (t)||2ν

ρ,2ν,+ ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν
ρ,2ν)

and
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XN (t) ≤ XN (t) ≤ X̄(t) in L2ν
ρ

lead to

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2ν
ρ,2ν ≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν

ρ,2ν) (2.20)

for all t ∈ [ 0, T ].

By fN ↓ f 2.2.11 implies

XN+1(t) ≤ XN (t) P-a.s.,t∈ [ 0, T ] , N ∈ N (2.21)

Show that X given by

X(t) := inf
N∈N

XN (t) , t ∈ [ 0, T ]

is a solution in the sense of 2.2.3.
First fix t ∈ [ 0, T ].Define

YN (t) := X1(t)−XN (t) , N ∈ N

By (2.21) this is a sequence of random variables,that are positive almost surely
with

YN (t) ≤ YN+1(t) P-a.s.

and

sup
t∈[ 0,T ]

E||YN (t)||2ν
ρ,2ν = sup

t∈[ 0,T ]

E||X1(t)−XN (t)||2ν
ρ,2ν

≤ c(ν)

(
sup

t∈[ 0,T ]

E||X1(t)||2ν
ρ,2ν + sup

t∈[ 0,T ]

E||XN (t)||2ν
ρ,2ν

)
which is finite by (2.20).Analogously to the procedure in the case of the XN,M

one gets

lim
N→∞

T∫
0

E||YN (t)− Y (t)||2ν
ρ,2ν dt = 0

for Y given by

Y (t) := sup
N∈N

YN (t) , t ∈ [ 0, T ]

By the definitions of X and Y

Y (t) = sup
N∈N

YN (t) = sup
N∈N

(X1(t)−XN (t))

= X1(t)− inf
N∈N

XN (t)

= X1(t)−X(t)
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holds true for all t ∈ [ 0, T ],s.t.

E||XN (t)−X(t)||2ν
ρ,2ν = E||X1(t)− YN (t)−X1(t) + Y (t)||2ν

ρ,2ν

= E||YN (t)− Y (t)||2ν
ρ,2ν

for all t ∈ [ 0, T ] implies

lim
N→∞

T∫
0

E||XN (t)−X(t)||2ν
ρ,2ν dt = 0 (2.22)

With the estimate

E
∣∣∣∣∣∣∣∣X(t)− U(t, 0)ξ −

t∫
0

U(t, s)F (s, ·, X(s)) ds−
t∫
0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

≤ 3

(
E||X(t)−XN (t)||2ρ,2 + c2(T )E

∣∣∣∣∣∣∣∣ t∫
0

F (s, ·, X(s))− FN (s, ·, XN (s)) ds
∣∣∣∣∣∣∣∣2

ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[Σ(s,X(s))− Σ(s,XN (s))] dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

)
=: 3(I(1)

N (t) + I
(2)
N (t) + I

(3)
N (t))

one gets analogously to the procedure in step 4:

I
(1)
N (t) ≤ c(ν, ρ)

(
E||X(t)−XN (t)||2ν

ρ,2ν

) 1
ν

I
(2)
N (t) ≤ c(ρ, T )

(
E

T∫
0

||F (s, ·, X(s))− F (s, ·, XN (s))||2ρ,2 ds

+E
T∫
0

||F (s, ·, XN (s))− FN (s, ·, XN (s))||2ρ,2

)

I
(3)
N (t) ≤ c(T, c(T ), cσ(T ))

(
T∫
0

s
−γν
ν−1 ds

) ν−1
ν
(

T∫
0

E||X(s)−XN (s)||2ν
ρ,2ν ds

) 1
ν

By the definition of fN for any x ∈ Θ fN (·, ·, x) differs from f(·, ·, x) if and
only if one has f(·, ·, x) < −N . But then

f2(·, ·, x) > f2
N (·, ·, x)

s.t. F (·, ·, ϕ) ≥ FN (·, ·, ϕ) holds true in L2
ρ for all ϕ ∈ L2ν

ρ ,which means FN ↑ F
in L2

ρ.
Thus analogously to the procedure in step 4 (2.20) implies

lim
N∈N

I
(j)
N (T ) = 0

for j = 1, 2, 3,since f is continuous in R as well.
Thus X solves the equation from 2.2.3 (iv) P-a.s. for t ∈ [ 0, T ].
Due to the fact that X(t) ≤ XN (t) holds true P-a.s. for all t ∈ [ 0, T ],
N ∈ N,one gets

E||X(t)||2ν
ρ,2ν ≤ inf

N∈N
E||XN (t)||2ν

ρ,2ν
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But one also has

D := inf
N∈N

E||XN (t)||2ν
ρ,2ν ≤ E||XN̄ (t)||2ν

ρ,2ν

for all N̄ ∈ N,s.t. (2.18) implies

D ≤ E
∣∣∣∣∣∣∣∣ inf

N∈N
XN (t)

∣∣∣∣∣∣∣∣2ν

ρ,2ν

= E||X(t)||2ν
ρ,2ν

Thus for all t ∈ [ 0, T ]:

sup
t∈[ 0,T ]

E||X(t)||2ν
ρ,2ν = sup

t∈[ 0,T ]

inf
N∈N

E||XN (t)||2ν
ρ,2ν ≤ sup

t∈[ 0,T ]
N∈N

E||XN (t)||2ν
ρ,2ν

≤ c(ν, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||2ν
ρ,2ν)

Thus the wanted estimate holds true and

sup
t∈[ 0,T ]

E||X(t)||2ν
ρ,2ν <∞

leads to X(t) ∈ L2ν
ρ P-almost surely for all t ∈ [ 0, T ],s.t. 2.2.3(i) is ful-

filled.Completely analogous to the XN -case one gets

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||X(s)||2ρ,2 ds ≤ 2

(T∫
0

s−
γν

ν−1 ds

) ν−1
ν
(

T∫
0

E||X(s)−XN (s)||2ν
ρ,2ν ds

) 1
ν

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)||2ρ,2 ds

]
for arbitrary N ∈ N.As all XN have property 2.2.3(ii),the last integral is fi-
nite,s.t. by (2.22) property 2.2.3(ii) is also fulfilled for X .
Due to XN being a solution of Eq.(ξ,FN ,Σ) each path of a process XN is con-
tinuous.But then each path of X is continuous as the infimum of a family of
continuous processes.So X owns property 2.2.3(iii) as well,which finishes the
proof.

Proof of (i):
Consider functions f−N,M ,fN,M and f0,M as in the proof of (ii).Then given
q > 2

1−γ and ξ with

E||ξ||qρ,2 <∞

theorem 2.2.7(i) ensures the existence of pathwise unique continuous solutions
XN,M ,X̄0,M ,XN,M and V (case ξ = F = 0) with properties (2.16) and (2.17).Con-
sider again X̄0,M .For arbitrary t ∈ [ 0, T ] one has
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E||X̄0,M (t)||qρ,2 ≤ c(q)

(
E||U(t, 0)ξ||qρ,2 +

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F0,M (s, ·, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣q

ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s, X̄0,M (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

)
=: Ĩ(1)(t) + Ĩ

(2)
M (t) + Ĩ

(3)
M (t)

with the following estimates for the Ĩ-terms:

Ĩ(1)(t) ≤ c(q, c(T ))E||ξ||qρ,2

Ĩ
(2)
M (t) = E

[∫
Θ

(
t∫
0

U(t, s)F0,M (s, ·, X̄0,M (s)) ds
)2

(x)µρ(dx)

] q
2

≤ c(c(T ))E
t∫
0

||h̄(X̄0,M (s))||qρ,2 ds

≤ c(c(T ), cf (T ))E
t∫
0

[∫
Θ

[
(1 + X̄2

0,M (s, y))1{X̄0,M (s,y)>0}(s, y)

+
(
1 + V 2(s, y)

)
1{X̄0,M (s,y)<0}(s, y)

]
µρ(dy)

] q
2
ds

≤ c(q, T, c(T ), cf (T ))

(
1 +

t∫
0

E||X̄0,M (s)||qρ,2 ds+
T∫
0

E||V (s)||qρ,2 ds

)
≤ c(q, T, c(T ), cf (T ), cσ(T ))

(
1 +

t∫
0

E||X̄0,M (s)||qρ,2 ds

)
where (2.14) was used in the second and 2.2.10(i) was used in the last step
and

Ĩ
(3)
M (t) ≤ c(q, T, γ, c(T ))

t∫
0

E||σ(s, X̄0,M (s))||qρ,2 ds

≤ c(q, T, γ, c(T ), cσ(T ))
(

1 +
t∫
0

E||X̄0,M (s)||qρ,2 ds

)
where (2.6) with κ = 1 was used for the process ϕ̄(t) := σ(t, X̄0,M (t)) in the
first and (L1),(L2) for σ were used in the second step.

Putting the estimates together

E||X̄0,M (t)||qρ,2 ≤ c(q, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

+c(q, T, γ, c(T ), cf (T ), cσ(T ))
t∫
0

E||X̄0,M (s)||qρ,2 ds

holds true,s.t. Gronwall‘s lemma leads to

sup
t∈[ 0,T ]

E||X̄0,M (t)||qρ,2 ≤ c(q, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

and one gets by the M-independence of the constant

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||qρ,2 < c(q, T, γ, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

As in the proof of (ii) the analogue of the last estimate holds true for XN,M
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with a constant possibly depending on N and thus by (2.16) for XN,M as well.
Defining ZN,M as in part (ii) one has

0 ≤ ZN,M (t) ≤ ZN,M+1(t) P-a.s,t ∈ [ 0, T ]

and

sup
t∈[ 0,T ]

M∈N

E||ZN,M (t)||qρ,2 ≤ c(q)

 sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||qρ,2 + sup
t∈[ 0,T ]

E||XN,1(t)||qρ,2


< ∞

Completely analogous to the proof of claim 1 in step 3 of (ii) ZN defined by

ZN (t) := sup
M∈N

ZN,M (t),N ∈ N,t ∈ [ 0, T ]

is a pathwise continuous process,which is unique up to a P-zeroset on Ω × Θ
and fulfills

sup
t∈[ 0,T ]

E||ZN (t)||qρ,2 <∞

Then XN defined by

XN (t) := ZN (t) +XN,1(t),N ∈ N,t ∈ [ 0, T ]

is pathwise continuous as well.
Analogously to the proof of (ii) dominated convergence implies

lim
M→∞

E||XN,M (t)−XN (t)||qρ,2 = 0

for all t ∈ [ 0, T ] and thus

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||qρ,2 dt = 0 (2.23)

In the same manner one gets processes X̄ and XN with

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||qρ,2 dt = 0

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||qρ,2 dt = 0

By the same method as in the proof of (ii) one gets

E||XN (t)||qρ,2 ≤ c(N, q, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

and again there exists a subsequence of (XN,M )M∈N,which converges to XN

P-almost surely.Again let w.l.o.g. the sequence itself be this subsequence.Then

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s, ·, XN (s)) ds−
t∫
0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2
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≤ 3(I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t))

with I-terms given by:

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2ρ,2

I
(2)
N,M (t) := c2(T )

t∫
0

E||FN (s, ·, XN (s))− FN,M (s, ·, XN,M (s))||2ρ,2 ds

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[Σ(s,XN (s))− Σ(s,XN,M (s))] dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

By the estimate

I
(1)
N,M (t) = E||XN (t)−XN,M (t)||

2q
q

ρ,2

≤ (E||XN (t)−XN,M (t)||qρ,2)
2
q

for all q > 2
1−γ ≥ 2,I(1)

N,M (t) converges to 0 forM →∞ given arbitrary t ∈ [ 0, T ].

Dividing I(2)
N,M into terms I(2i)

N,M (T );i=1,2; as in the first part of the proof leads to

I
(21)
N,M (T ) := E

T∫
0

||FN (s, ·, XN (s))− FN (s, ·, XN,M (s))||2ρ,2 ds

I22
N,M (T ) := E

T∫
0

||FN (s, ·, XN,M (s))− FN,M (s, ·, XN,M (s))||2ρ,2 ds

Condition (PG) with exponent ν = 1 implies

|fN (s, ω,XN (s, ω, y))− fN (s, ω,XN,M (s, ω, y))|
≤ c(N, cf (T ))(1 + |XN (s, ω, y)|+ |XN,M (s, ω, y)|)

Analogously to the first part of the proof (I(21)
N,M )M∈N is a bounded sequence in

L2
ρ with

I
(21)
N,M (T ) ≤

(
E

T∫
0

||FN (s, ·, XN (s))− FN (s, ·, XN,M (s))||qρ,2 ds

) 2
q

which converges to 0 for M →∞ due to the continuity of FN .
Analogously to the procedure in the proof of part (ii)

lim
M→∞

I
(22)
N,M (T ) = 0

holds true,s.t. I(2)
N,M converges to 0 for M →∞ for all t ∈ [ 0, T ].

By Ito‘s isometry,(CC),(L1) and Hoelder‘s inequality

I
(3)
N,M (t) ≤ c(T )

t∫
0

(t− s)−γE||σ(s,XN (s))− σ(s,XN,M (s))||2ρ,2 ds

≤ c(c(T ), cσ(T ))
t∫
0

(t− s)−γE||XN (s)−XN,M (s)||2ρ,2 ds

≤ c(c(T ), cσ(T ))

(
T∫
0

s−
γq

q−2 ds

) q−2
q
(

T∫
0

E||XN (s)−XN,M (s)||qρ,2 ds

) 2
q
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which converges to 0 for M →∞ by (2.23),since

q > 2
1−γ ⇒

qγ
q−2 < 1 (2.24)

ensures the existence of the first integral on the righthand side.

Then the sum of the I(i)
N,M converges to 0 for M → ∞,s.t. XN fulfills prop-

erty 2.2.3(iv).
By its construction XN is predictable.For all N ∈ N

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)||2ρ,2 ds ≤ 2

[
sup

t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)−XN,M (s)||2ρ,2 ds

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN,M (s)||2ρ,2 ds

≤ 2

(T∫
0

s−
γq

q−2 ds

) q−2
q
(

T∫
0

E||XN (s)−XN,M (s)||qρ,2 ds

) 2
q

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN,M (s)||2ρ,2 ds

holds true with arbitrary M ∈ N.The righthand side is finite,since XN,M as
a solution of Eq(ξ,FN,M ,Σ) has property 2.2.3(ii) and the first term tends to 0
for M → ∞ as in the estimate of I(3)

N,M ,s.t. 2.2.3(ii) is fulfilled for XN .ν = 1
implies that 2.2.3(i) is trivially fulfilled and the pathwise continuity follows anal-
ogously to the proof of part (ii).
Thus for arbitrary N ∈ N XN is a solution of Eq.(ξ,FN ,Σ).
Defining processesXN ,X̄ analogously toXN ,these processes solve Eq.(ξ−,F−N ,Σ)
resp. Eq.(ξ+,F+,Σ) with estimates

XN (t) ≤ XN (t) ≤ X̄(t)
XN (t) ≤ V (t) ≤ X̄(t)

P-almost surely for all t ∈ [ 0, T ].
Consider arbitrary N ∈ N:

E||XN (t)||qρ,2 ≤ c(q)(I(1)(t) + I
(2)
N (t) + I

(3)
N (t))

with

I(1)(t) = E||U(t, 0)ξ−||qρ,2

I
(2)
N (t) = E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N (s, ·, XN (s)) ds
∣∣∣∣∣∣∣∣q

ρ,2

I
(3)
N (t) = E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

For an estimate of I(3)
N consider (2.6) (with κ = 1 and ϕ := Σ(·, XN )). This

leads to

65



E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,2

≤ c(q, γ, T, c(T ), cσ(T ))
t∫
0

E||XN (s)||qρ,2 ds

for all t ∈ [ 0, T ].
So the IN -terms have the following properties:

1. sup
t∈[ 0,T ]

I(1)(t) ≤ c(q, c(T ))E||ξ−||qρ,2 ≤ c(q, c(T ))E||ξ||qρ,2

2.

I
(2)
N (t) ≤ c(q, c(T ))

t∫
0

E||F−N (s, ·, XN (s))||qρ,2 ds

≤ c(q, c(T ))
t∫
0

E||g(Xn(s))||qρ,2 ds

≤ c(q, T, c(T ), cf (T ))
(

1 +
t∫
0

E||XN (s)||qρ,2 ds

)

3. I(3)
N (t) ≤ c(q, T, c(T ), cf (T ))

(
1 +

t∫
0

E||XN (s)||qρ,2 ds

)
Then applying Gronwall‘s lemma leads to

E||XN (t)||qρ,2 ≤ c(q, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

i.e. XN is bounded in Lq([ 0, T ]× Ω;L2
ρ) by an N-independent constant.

Defining YN ,Y and X as in part (ii) implies

YN (t) ≤ YN+1(t) P-a.s.

and

sup
t∈[ 0,T ]

E||YN (t)||qρ,2 = sup
t∈[ 0,T ]

E||X1(t)−XN (t)||qρ,2

≤ c(q)

(
sup

t∈[ 0,T ]

E||X1(t)||qρ,2 + sup
t∈[ 0,T ]

E||XN (t)||qρ,2

)
< ∞

Analogously to the procedure in case XN,M one gets

lim
N→∞

T∫
0

E||YN (t)− Y (t)||qρ,2 dt = 0

By the obvious chain of equations

E||XN (t)−X(t)||qρ,2 = E||X1(t)− YN (t)−X1(t) + Y (t)||qρ,2

= E||YN (t)− Y (t)||qρ,2

for all t ∈ [ 0, T ] one has

lim
N→∞

T∫
0

E||XN (t)−X(t)||qρ,2 dt = 0 (2.25)
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Analogously to part (ii) one estimates in the following way:

E
∣∣∣∣∣∣∣∣X(t)− U(t, 0)ξ −

t∫
0

U(t, s)F (s, ·, X(s)) ds−
t∫
0

U(t, s)Σ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

≤ 3

(
E||X(t)−XN (t)||2ρ,2 + c2(T )E

∣∣∣∣∣∣∣∣ t∫
0

F (s, ·, X(s))− FN (s, ·, XN (s)) ds
∣∣∣∣∣∣∣∣2

ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[Σ(s,X(s))− Σ(s,XN (s))] dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

)
=: 3(Ĩ(1)

N (t) + Ĩ
(2)
N (t) + Ĩ

(3)
N (t))

Consider the Ĩ-terms:

Ĩ
(1)
N (t) ≤ (E||X(t)−XN (t)||qρ,2)

2
q

Ĩ
(2)
N (t) ≤ 2

(
E

T∫
0

||F (s, ·, X(s))− F (s, ·, XN (s))||2ρ,2 ds

+E
T∫
0

||F (s, ·, XN (s))− FN (s, ·, XN (s))||2ρ,2 ds

)

Ĩ
(3)
N (t) ≤ c(c(T ), cσ(T ))

(
T∫
0

s
−γq
q−2 ds

) q−2
q
(

T∫
0

E||X(s)−XN (s)||qρ,2 ds

) 2
q

With the help of (2.24) and (2.25) one gets property 2.2.3(iv) for X with the
same arguments as in (ii).
As ν = 1 2.2.3(i) is trivially fulfilled.Concerning 2.2.3(ii) estimate in the follow-
ing manner:

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||X(s)||2ρ,2 ds ≤ 2

(T∫
0

s−
γq

q−2 ds

) q−2
q
(

T∫
0

E||X(s)−XN (s)||qρ,2 ds

) 2
q

+ sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||XN (s)||2ρ,2 ds

]
This estimate holds true for arbitrary N ∈ N.As XN fulfills 2.2.3(ii) for arbi-
trary N ∈ N (2.25) then implies the finiteness of the righthand side,s.t. 2.2.3(ii)
is fulfilled for X.As in part (ii) pathwise continuity of X follows from that of XN

for arbitrary N ∈ N.
So X is a solution to Eq.(ξ,F,Σ) in the sense of 2.2.3.
Analogously to the proof of (ii) one gets the following chain of inequations for X:

sup
t∈[ 0,T ]

E||X(t)||qρ,2 = sup
t∈[ 0,T ]

inf
N∈N

E||XN (t)||qρ,2 ≤ sup
t∈[ 0,T ]

N∈N

E||XN (t)||qρ,2

≤ c(q, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,2)

Thus one also has the wanted estimate,which finishes the proof.
q.e.d.

As it was already mentioned in the introduction the aim of chapter 3 is to show
an existence result for the so-called Heath-Jarrow-Morton model with the help of
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the theory developed here.In this model,which will be described at the beginning
of chapter 3,U will be defined by the shift-semigroup.In [AsMa] the authors claim
an existence (and uniqueness) result(confer [AsMa],section 2,theorem 1,p.241)
in spaces Lp̄

ρ(R
d) with a semigroup,which is not the shift-semigroup,but builds

an almost strong evolution operator with properties (CD),(PP),(CC),(E1) and
(E2) by setting

U(t, s) = S(t− s),(s,t)∈ R2
+

and a function f fulfilling conditions different from those here.In [AsMa] p̄ was
defined by

p̄ := max(2, ν)

In order to be able to emphasize differences between the Heath-Jarrow-Morton
model and the model from [AsMa] show that the existence result from [AsMa]
can be transferred to the given situation.

Theorem 2.3.3:

Let σ,f and U be as in 2.3.2.Set

p := max(2, ν)

if max(2, ν) is an even number and

p := max(2, ν) + 1
else.
Let h ∈ Lp

ρ be a deterministic initial value.
Then there is a pathwise continuous solution of

X(t) = U(t, 0)h+
t∫
0

U(t, s)F (s, ·, X(s)) ds+
t∫
0

U(t, s)Σ(s,X(s)) dW (s)

X(0) = h

in Lp
ρ and for each q with q > p

1−γ there is a positive constant c(p,q,γ,T,c(T),cf (T ),cσ(T )),s.t.

sup
t∈[ 0,T ]

E||X(t)||qρ,p ≤ c(p, q, γ, T, c(T ), cf (T ), cσ(T ))(1 + ||h||qρ,p)

holds true with c(p,q,γ,T,c(T),cf (T ),cσ(T )) depending on p,q,U,f,σ and T.

Proof:
Show a number of claims in case ν > 1.
Note,that in case ν = 1 one has p = 2,s.t. theorem 2.3.2(i) immediately leads
to the wanted result.
So let ν > 1.

Claim 1:
If Y is a predictable Lp

ρ-valued process with
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sup
t∈[ 0,T ]

E||Y (t)||pρ,p <∞

the Bochner-integral

t∫
0

U(t, s)F (s, ·, Y (s)) ds

exists in Lp
ρ for all t ∈ [ 0, T ] and the corresponding process is continuous and

adapted.
Proof: Proceed as in the proof of 2.2.9,i.e. consider for arbitrary t ∈ [ 0, T ] the
following estimate:

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, ·, Y (s)) ds
∣∣∣∣∣∣∣∣

ρ,p

= E

(∣∣∣∣∣∣∣∣ t∫
0

|U(t, s)F (s, ·, Y (s))|
p
2 ds

∣∣∣∣∣∣∣∣
ρ,2

) 2
p


≤ c(p, c(T ))E

(∣∣∣∣∣∣∣∣ t∫
0

|F (s, ·, Y (s))|
p
2 ds

∣∣∣∣∣∣∣∣
ρ,2

) 2
p


≤ c(p, c(T ), cf (T ))E

(
t∫
0

(1 + || |Y (s)|
p
2 ||ρ,2) ds

) 2
p

≤ c(p, T, c(T ), cf (T ))E

(
1 + sup

r∈[ 0,T ]

||Y (r)||
p
2
ρ,p

) 2
p

= c(p, T, c(T ), cf (T ))E

1 +

(
sup

r∈[ 0,T ]

||Y (r)||pρ,p

) 1
2


2
p

≤ c(p, T, c(T ), cf (T ))

1 +

(
sup

r∈[ 0,T ]

E||Y (r)||pρ,p

) 1
2


2
p

< ∞
For this estimate (E1),(ii) from section 1.3,(L1),(L2) for f and the fact that
one has 2

p < 1 by the definition of p,which implies the applicability of the re-
verse of Jensen‘s inequality were needed.
Thus the Bochner-integral

t∫
0

U(t, s)F (s, ·, Y (s)) ds ∈ Lp
ρ

exists for processes Y as in the claim.Completely analogous to the proof of
2.2.9 one has continuity and adaptedness.
Having a predictable,Lp

ρ-valued process Y with

sup
t∈[ 0,T ]

E||Y (t)||pρ,p <∞

and thus

sup
t∈[ 0,T ]

t∫
0

(t− s)−γE||Y (s)||pρ,p ds ≤

(
T∫
0

s−γ ds

)
sup

t∈[ 0,T ]

E||Y (t)||pρ,p <∞

2.2.2 applied in case κ := p
2 leads to
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t∫
0

U(t, s)Σ(s, Y (s)) dW (s) ∈ Lp
ρ

P-almost surely for all t∈ [ 0, T ] and for all q > p
1−γ there exists a positive

constant c(p,q,γ,T,cσ(T )) s.t.

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s, Y (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,p

≤ c(p, q, γ, T, cσ(T ))
t∫
0

E||Y (s)||qρ,p ds <∞

Thus by claim 1

U(t, 0)h+
t∫
0

U(t, s)F (s, ·, Y (s)) ds+
t∫
0

U(t, s)Σ(s, Y (s)) dW (s) ∈ Lp
ρ

P-almost surely for all t ∈ [ 0, T ] and each predictable,L2
ρ-valued process Y

with

Y (t) ∈ Lp
ρ P-a.s. f.a. t ∈ [ 0, T ], sup

t∈[ 0,T ]

t∫
0

E||Y (s)||pρ,p ds <∞

and each deterministic h ∈ Lp
ρ.

But the wanted process X should additionally fulfill

X(t) = U(t, 0)h+
t∫
0

U(t, s)F (s, ·, X(s)) ds+
t∫
0

U(t, s)Σ(s,X(s)) dW (s)

for all t ∈ [ 0, T ] pathwisely,and it should be continuous.
In order to prove existence follow the proof of 2.3.2(ii).

Claim 2:
Suppose f fulfills (L1) and (L2),whereas σ,U and γ have the same properties as
above.
Then there exists a pathwise unique continuous solution X of the wanted equa-
tion and for all q > p

1−γ there exists a positive constant c(p,q,γ,T,c(T),cf (T ),cσ(T )),s.t.

sup
t∈[ 0,T ]

E||X(t)||qρ,p ≤ c(p, q, γ, T, c(T ), cf (T ), cσ(T ))(1 + ||h||qρ,p)

holds true.
Proof: Define analogously to the proof of 2.2.7(ii) a sequence (Xn)n∈N in
C([ 0, T ];L2([ 0, T ] × Ω;Lp

ρ)) (B := Lp
ρ in section 1.3).By the above considera-

tions

E||Xn+1(t)−Xn(t)||qρ,p ≤ c(γ, p, q, T, cσ(T ), cf (T ))
t∫
0

E||Xn(s)−Xn−1(s)||qρ,p ds

s.t. with the same steps as in the proof of 2.2.7(ii) (Xn)n∈N is a Cauchy-
sequence in C([ 0, T ];L2([ 0, T ] × Ω;Lp

ρ)) with norm || · ||C([ 0,T ];Lp
ρ)(q) and its

limit process has the wanted properties.

Claim 3:
Let f fulfill conditions (PG) (with an exponent ν > 1),
(LG) and (D).Then there exists a solution X with the properties claimed in the
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theorem.
Proof: Follow the proof of 2.3.2(ii).
As in step 1 there define mappings ḡ,h̄ and,for N,M∈ N , fN,M and processes
XN,M∈N,XN,M and X̄0,M (,which exist by claim 2).

Since ||ϕ||qρ,p = || |ϕ|
p
2 ||

2q
p

ρ,2 for arbitrary ϕ ∈ Lp
ρ (E2) implies the following:

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F0,M (s, ·, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣q

ρ,p

≤ c(p, q, T )E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)|F0,M (s, ·, X̄0,M (s))|
p
2 ds

∣∣∣∣∣∣∣∣
2q
p

ρ,2

≤ c(p, q, T, c(T ))E
t∫
0

||h̄(X̄0,M )||qρ,p ds

i.e. one gets

E||X̄0,M (t)||qρ,p ≤ c(p, q, γ, T, cf (T ), cσ(T ), h)
(

1 +
t∫
0

E||X̄0,M (s)||qρ,p ds

)
analogously to steps 1 and 2 in Manthey‘s and Zausinger‘s proof,since

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s, X̄0,M (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,p

≤ c(p, q, γ, c(T ))
t∫
0

E||σ(s, X̄0,M (s))||qρ,p ds (2.25)

holds true for arbitrary M ∈ N.But by claim 2

sup
t∈[ 0,T ]

E||X̄0,M (t)||qρ,p ≤ c(p, q, γ, T, c(T ), cf (T ), cσ(T ))(1 + ||h||qρ,p)

for all M ∈ N,s.t. the M-independence of the constant implies

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||qρ,p ≤ c(p, q, γ, T.c(T ), cf (T ), cσ(T ))(1 + ||h||qρ,p)

Analogous estimates hold true for XN,M and XN,M with fixed N ∈ N.
Obviously step 3 from 2.3.2(ii) still works.
Step 4 differs from the considerations in the proof of 2.3.2(ii) in terms I(1)

N,M and

I
(3)
N,M .

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2ρ,2

≤ c(p, ρ)E||XN (t)−XN,M (t)||2ρ,p

≤ c(p, q, ρ)(E||XN (t)−XN,M (t)||qρ,p)
2
q

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[Σ(s,XN (s))− Σ(s,XN,M )] dW (s)
∣∣∣∣∣∣∣∣2

ρ,2

≤ c(c(T ), cσ(T ))
t∫
0

E||XN (s)−XN,M (s)||2ρ,2 ds

≤ c(p, q, ρ, c(T ), cσ(T ))

(
T∫
0

E||XN (s)−XN,M (s)||qρ,p ds

) 2
q

By these estimates the two terms converge to 0 for M → ∞ in this case as
well and the results from step 4 in the proof of 2.3.2.(ii) still hold.
Analogously to (2.25) one gets
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E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Σ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣q

ρ,p

≤ c(p, q, γ, c(T ))
t∫
0

E||σ(s,XN (s))||qρ,p ds

≤ c(p, q, γ, T, c(T ), cσ(T ))
(

1 +
t∫
0

E||XN (s)||qρ,p ds

)
and thus analogously to the beginning of the proof

sup
t∈[ 0,T ]

N∈N

E||XN (s)||qρ,p ≤ c(p, q, γ, T, c(T ), cf (T ), cσ(T ))(1 + ||h||qρ,p)

i.e. the estimates are N-independent as they already were in the other proofs.
Define

X(t) := inf
N∈N

XN (t),t ∈ [ 0, T ]

as in step 5 in the proof of 2.3.2(ii).
Analogously to that proof one can show that this defines a solution.
Pathwise uniqueness follows as in the proof of 2.3.3.
q.e.d.

Remark 2.3.4:

(i) As it was already mentioned Assing and Manthey chose

p̄ := max(2, ν)

in their paper.The way p is chosen in 2.3.3 ensures

p
2 ∈ N

which is necessary,since (E2) and 2.2.2 only hold for natural numbers κ and
thus would not be applicable in situations with odd numbers ν ≥ 3.

(ii) In [AsMa] the existence result was denoted for a deterministic initial con-
dition h,whereas the existence claim in [MaZa] was denoted for random initial
conditions.
As already mentioned in the proof of 2.3.3,the case ν = 1 is already given by
2.3.2(i),s.t. in case ν = 1 2.3.3 also holds true for random initial conditions ξ
with

E||ξ||qρ,2 <∞

for fixed q > 2
1−γ .The proof of 2.3.3 shows that one can keep the claim for

random initial conditions with fixed q > p
1−γ ,if one additionally assumes

E||ξ||qρ,p <∞

This leads to the following corollary:
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Corollary 2.3.5:

Let σ,f and U as in 2.3.2,define p as in theorem 2.3.3 .
Let q > p

1−γ be fixed and let ξ be a random initial condition,s.t.

E||ξ||qρ,p <∞

holds true.

Then there exists a solution of

X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s, ·, X(s)) ds+
t∫
0

U(t, s)Σ(s,X(s)) dW (s)

X(0) = ξ

in L2
ρ with X(t) ∈ Lp

ρ P-almost surely for all t ∈ [ 0, T ] and a positive con-
stant c(p,q,γ,T,c(T),cf (T ),cσ(T )) depending on p,q,U,f,σ and T,s.t.

sup
t∈[ 0,T ]

E||X(t)||qρ,p ≤ c(p, q, γ, T, c(T ), cf (T ), cσ(T ))(1 + E||ξ||qρ,p)

holds true.
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Chapter 3

The application to the
Heath-Jarrow-Morton
model

3.1 A market model by Harrison and Pliska

In their paper [HaPl] Harrison and Pliska develop a stochastic model of a so-
called frictionless market,i.e. of a market with short selling and without trans-
action costs.
Consider the model with continuous trading-time,which is described in chapter
3(cf. pp.232–242 there) of [HaPl].

Let (Ω,F ,P) be a probability space,(Ft)t∈[ 0,τ̄ ],τ̄ > 0 arbitrary but fixed,the
augmented right-continuous,complete filtration.Let

P̄ = P̄ (t, ·) ; 0 ≤ t ≤ τ̄

with P̄ = (B, P̄ (·, S1), . . . , P̄ (·, Sk)) for k ∈ N arbitrary with adapted,right-
continuous P̄ (·, Sn);n = 0, 1, . . . , k with left limits denote the k+ 1-dimensional
price process belonging to bonds S0–Sk,where S0 is locally riskless,i.e. there
exists a process (rt)t∈[ 0,τ̄ ] with

B(t) = exp
(

t∫
0

rs ds

)
,0 ≤ t ≤ τ̄

rt is interpreted as the riskless interest rate at time t.
The condition of adaptedness implies,that at any time each agent knows the
current and former prices of the bonds.One defines the so-called intrinsic dis-
count process for P̄ by

βt := 1
B(t)

and the discounted price process by

Z(t, Sn) := βtP̄ (t, Sn);t ∈ [ 0, τ̄ ],n = 1, 2, . . . , k
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Suppose that the set P of probability-measures under which the family
(Z(t, Sn);t ∈ [ 0, τ̄ ])n=1,2,...,k is a (Ft)t∈[ 0,τ̄ ]-martingale is not empty.

Definition 3.1.1:

A trading strategy is a k+1-dimensional process φ=(φt)t∈[ 0,τ̄ ] with com-
ponents φn;n = 0, 1, . . . , k;which are locally bounded and predictable.
Here φn

t denotes the number of shares the agent holds at time t.
φt is called the portfolio of the agent at time t.
There exist a value-process V(φ) and a gain-process G(φ) associated to the trad-
ing strategy given by

V (t, φ) :=
k∑

n=0
φn

t P̄ (t, Sn),0 ≤ t ≤ τ̄

G(t, φ) :=
k∑

n=0

t∫
0

φn
s dP̄ (s, Sn),0 ≤ t ≤ τ̄

A strategy φ is called self-financing,if
V (t, φ) = V (0, φ) +G(t, φ),0 ≤ t ≤ τ̄

holds.The corresponding discounted value- resp. gain-processes are defined by

V ∗(t, φ) := φ0
t +

k∑
n=1

φn
t Z(t, Sn),0 ≤ t ≤ τ̄

G∗(t, φ) :=
k∑

n=1

t∫
0

φn
s dZ(s, Sn),0 ≤ t ≤ τ̄

Remark 3.1.2:

A trading strategy φ is self-financing if and only if

V ∗(t, φ) = V ∗(0, φ) +G∗(t, φ),t ∈ [ 0, τ̄ ]

holds true.

Definition 3.1.3:

(i) A trading strategy φ is called admissible,if V ∗(φ) = (V ∗(t, φ))t∈[ 0,τ̄ ] is
a martingale with respect to P and fulfills both V ∗(φ) ≥ 0 and

V ∗(t, φ) = V ∗(0, φ) +G∗(t, φ),t ∈ [ 0, τ̄ ]

(ii) A contingent claim is a random variable X:Ω → R.It is called available,if
there exists an admissible trading strategy φ with V ∗(τ̄ , φ) = βτ̄X.
Then one says φ generates X and one denotes π := V ∗(0, φ) as the price
associated with X.
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(iii) A market is called complete,if each contingent claim with

Eβτ̄X <∞

is available.

Theorem 3.1.4: (cf. [HaPl],chapter 3,section 3.4,theorem 3.35,p.241)

Denote by MP the set of all martingales w.r.t the probability measure P and
by M(Z) ⊂MP the set of all martingales M w.r.t. P with

Mt = M0 +
k∑

n=1

t∫
0

Hn
s dZ(s, Sn)

for predictable processes Hn;n = 1, 2, . . . , k; with

E|Hn
t∧τm

| <∞,0 ≤ t ≤ τ̄

for all n = 1, 2, . . . , k with stopping times (τm)m∈N,s.t.

lim
m→∞

P (τm = τ) = 1

Then the model is complete if and only if MP = M(Z) holds true.

Corollary 3.1.5: (cf. [HaPl],chapter 3,section 3.4,corollary 3.36,p.241)

If P only consists of a single probability measure,the model is complete.
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3.2 The framework of the Heath-Jarrow-Morton
paper

As already mentioned in the introduction,this section‘s aim is to repeat the es-
sential conditions and results from [HeJaMo].
First of all [ 0, τ ] with τ > 0 denotes the trading interval of the economy.Furthermore
let (Ω,F ,P) be a probability space and (Ft)t∈[ 0,τ ] the augmented,right-continuous
and complete filtration generated by k ≥ 1 independent,real-valued Brownian
motions w1,w2,...,wk on [ 0, τ ] with wn(0) = 0 for all n = 1, 2, . . . , k.
To each T ∈ [ 0, τ ] there is a bond with payoff-time T,i.e. an option,which gives
the owner a known payoff at time T,and a riskless asset,i.e. an asset,which en-
sures at any time t a certain interest rate for a bond starting in t with payoff
an infinitesimal unit later.
Denote by P̄ (t, T ) the price of a bond with payoff-time T in t.
For arbitrary T ∈ [ 0, τ ] and t ∈ [ 0, T ] Heath, Jarrow and Morton assume the
following:

1. P̄ (T, T ) = 1

2. P̄ (t, T ) > 0

3. d
dT log P̄ (t, T ) exists

Condition 1 means,the payoff of a bond must always be 1 unit of money(=UM),
condition 2 means that there is no trivial arbitrage opportunity,i.e. there is no
chance to get the payoff of a bond without having payed a positive number of
UM before.By condition 3 the following definition is possible:

f̄(t, T ) := − d
dT log P̄ (t, T ),T ∈ [ 0, τ ],t ∈ [ 0, T ]

As the payoff for a bond is always 1 UM at the payoff-time by condition 1,the
writer,i.e. the one who offers the bond,must choose the price in t of a bond
with payoff-time T in such a way,that he can surely(,i.e. almost surely under
the preceding probability measure P) make exactly one UM out of P̄ (t, T ) UM
between t and T.Then P̄ (t, T ) > 1 would mean,that it is P-almost surely im-
possible to get a positive rate by investing of money in bonds,s.t. it would make
sense to keep the money instead of investing it into a bond with payoff-time T.
Suppose for T and T+h with small h > 0 there is a safe interest rate r,f.e. via a
savings book.Then the following must hold true,since the payoff is equal at any
time by condition 1:

P̄ (t, T )e−rh = P̄ (t, T + h) ⇐⇒ r = −
(

log P̄ (t,T+h)−log P̄ (t,T )
h

)
Thus the rate of a riskless asset with start in T and payoff an infinitesimal
unit later viewed from time t is
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lim
h→0

− log P̄ (t,T+h)−log P̄ (t,T )
h = − d

dT log P̄ (t, T )

= f̄(t, T )

So f̄(t, T ) is the interest rate one can contract for in time t for a riskless as-
set starting in T with payoff an infinitesimal unit later.In order to ensure this
rate,the writer of such a riskless asset must be able to reach this interest rate
between t and T for sure.
Besides the trivial arbitrage possibility,which is excluded by the condition 2 for
P̄ (t, T ),it should in general be impossible to have an arbitrage possibility,i.e. in
the sense of section 3.1 one has to exclude the existence of an admissible trading
strategy φ with

V (0, φ) = 0 and EV (τ̄ , φ) ≥ 0

for τ̄ ∈ [ 0, τ ].Therefore introduce analogously to section 3.1 the following nota-
tions.
By Z(t,T) denote the discounted price in t of a bonds with payoff-time T given by

Z(t, T ) := P̄ (t,T )
B(t)

where

B(t) := exp

(
t∫
0

f̄(y, y) dy
)

is the number of UM one gets in T by investing 1 UM in t,s.t. one buys a
bond with payoff an infinitesimal unit later at any time in [ t, T ].

In [HeJaMo] the authors assume the following property:

(C1)
f̄(t, T )− f̄(0, T ) =

t∫
0

α(s, T, ω) ds

+
k∑

n=1

t∫
0

σn(s, T, ω) dwn(s)

for all T ∈ [ 0, τ ],t ∈ [ 0, T ]

where (f̄(0, T ))T∈[ 0,τ ] is deterministic with

f̄(0, ·):([ 0, τ ],B([ 0, τ ])) → (R,B(R))

α:ST × Ω → R is a uniformly measurable mapping B(ST )×F → B(R) with

T∫
0

|α(t, T, ω)| dt <∞ P-a.s.

and σn:ST×Ω → R is a uniformly measurable mapping B(ST )×F → B(R) with

T∫
0

σ2
n(t, T, ω) dt <∞ P-a.s.;n = 1, 2, . . . , k
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The different processes σn;n = 1, 2, . . . , k;underline the sensitivity of the process
against changes of any of the Brownian motions wn;n = 1, 2, . . . , k.
In order to assure,that B(t) defined as above is P-almost surely positive and
finite,Heath,Jarrow and Morton assume

(C2)
τ∫
0

|f̄(0, t)| dt <∞,
τ∫
0

(
t∫
0

|α(s, t, ω)| ds
)
dt <∞ P-a.s.

Furthermore they show(cf. [HeJaMo] appendix,proof of equation (8),pp.99,100),that
(C2) and assumption (C3) consisting of the following three conditions

(a)
t∫
0

(
t∫
s

σn(s, y, ω) dy
)2

ds <∞ P-a.s.;t ∈ [ 0, τ ];n = 1, 2, . . . , k

(b)
t∫
0

(
T∫
t

σn(s, y, ω) dy

)2

ds <∞ P-a.s.;t ∈ [ 0, t ];T ∈ [ 0, τ ];n = 1, 2, . . . , k

(c) t→
T∫
t

(
t∫
0

σn(s, y, ω) dwn(s)
)
dy is continuous P-a.s. for T ∈ [ 0, τ ];

n = 1, 2, . . . , k

imply the following property of the bond-price process:

ln P̄ (t, T ) = ln P̄ (0, T ) +
t∫
0

[f̄(s, s) + b(s, T )] dv

− 1
2

k∑
n=1

t∫
0

a2
n(s, T ) ds+

k∑
n=1

t∫
0

an(s, T ) dwn(s) (3.1)

P-almost surely with t and T as above,ω ∈ Ω and

an(t, T, ω) := −
T∫
t

σn(t, s, ω) ds

b(t, T, ω) := −
T∫
t

α(t, s, ω) ds+ 1
2

k∑
n=1

a2
n(t, T, ω)

for all n = 1, 2, . . . , k,s.t.

dP̄ (t, T ) = [f̄(t, t) + b(t, T )]P̄ (t, T ) dt

+
k∑

n=1
an(t, T )P̄ (t, T ) dwn(t)

follows P-almost surely with the help of Ito‘s formula.Applying Ito‘s lemma
one gets

lnZ(t, T ) = lnZ(0, T ) +
t∫
0

(
b(s, T )− 1

2

k∑
n=1

a2
n(s, T )

)
ds

+
n∑

k=1

t∫
0

an(s, T ) dwn(s) (3.2)

for t,T as above.Then Heath,Jarrow and Morton describe under which assump-
tions there is a probability measure,s.t. the relative prices of the bonds are
martingales w.r.t. (Ft).
To proceed one needs the following assumptions:
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(C4) For arbitrary S1, S2, . . . , Sk ∈ [ 0, τ ] with 0 < S1 < S2 < . . . < Sk ≤ τ
there exist solutions

γn(·, ·;S1, S2, . . . , Sk):Ω× [ 0, S1 ] → R;n = 1, 2, . . . , k

of

b(t, Sj) =
k∑

n=1
an(t, Sj)(−γn(t;S1, S2, . . . , Sk)) (3.3)

P × ds-almost everywhere for j = 1, 2, . . . , k,s.t.:

S1∫
0

γ2
n(v;S1, S2; . . . , Sk) dv <∞ P-a.s.;n = 1, 2, . . . , k

E

(
exp

(
k∑

n=1

S1∫
0

γn(s;S1, S2, . . . , Sk) dwn(s)− 1
2

k∑
n=1

S1∫
0

γ2
n(s;S1, S2, . . . , Sk) ds

))
= 1

E

(
exp

(
k∑

n=1

S1∫
0

[an(s, y) + γn(s;S1, S2, . . . , Sk)] dwn(s)

− 1
2

k∑
n=1

S1∫
0

[an(s, y) + γn(s;S1, S2, . . . , Sk)]2 ds

))
= 1

y ∈ {S1, S2, . . . , Sk}

(C5) For arbitrary S1, S2, . . . , Sk ∈ [ 0, τ ] with 0 < S1 < S2 < . . . < Sk ≤ τ let

a1(t, S1) a2(t, S1) · · · ak(t, S1)
a1(t, S2) a2(t, S2) · · · ak(t, S2)
· · · · · · · · · · · ·

a1(t, Sk) a2(t, Sk) · · · ak(t, Sk)

be nonsingular P × ds-almost surely.

One interprets γn as the market price of risk associated with the factor wn for
any n.
To understand this write (3.3) for a bond with payoff in T,i.e.

b(t, T ) =
k∑

n=1
an(t, T )(−γn(t;S1, S2, . . . , Sk))

Remember the definitions from the preceding page:

an(t, T, ω) := −
T∫
t

σn(t, s, ω) ds;n = 1, 2, . . . , k
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b(t, T, ω) := −
T∫
t

α(t, s, ω) ds+ 1
2

k∑
n=1

a2
n(t, T, ω)

Thus an(t, T ) describes the covariance between the rate of the bond with payoff-
time T and the n-th random factor wn,whereas b(t,T) describes the expected
rate above the riskless rate for the bond with payoff-time T.

With S1, S2, . . . , Sk ∈ [ 0, τ ], 0 < S1 < S2 < . . . < Sk ≤ τ ,s.t. (C1)–
(C3) are fulfilled, (C4) is fulfilled if and only if there is a probability measure
P(S1, S2, . . . , Sk) equivalent to P,s.t. Z(t,Sn);n = 1, 2, . . . , k; is a (Ft)t∈[ 0,S1 ]-
martingale under P(S1, S2, . . . , Sk)(cf. [HeJaMo],chapter 4,proposition 1,p.84).
The proof works via a Girsanov-argument and one receives the probability mea-
sure by

dP (S1,S2,...,Sk)
dP = exp

(
k∑

n=1

S1∫
0

γn(s;S1, S2, . . . , Sk) dwn(s)

− 1
2

k∑
n=1

S1∫
0

γ2
n(s;S1, S2, . . . , Sk) ds

)
By

w̃S1,S2,...,Sk
n (t) := wn(t)−

t∫
0

γn(s;S1, S2, . . . , Sk) ds;t ∈ [ 0, S1 ];n = 1, 2, . . . , k (3.4)

one gets real-valued independent Brownian motions on ((Ω,F ,P(S1, S2, . . . , Sk)),(Ft)t∈[ 0,S1 ]).

Having (C1)–(C4) and thus the existence of a probability measure P(S1, S2, . . . , Sk),(C5)
is fulfilled if and only if P(S1, S2, . . . , Sk) is unique(cf. [HeJaMo],chapter 4,propo-
sition 2,p.85).
So (C1)–(C5) for 0 < S1 < S2 < . . . < Sk ≤ τ implies the existence of a
unique,but Sn-depending probability measure under which Z(t, Sn),t ∈ [ 0, S1],is
a (Ft)t∈[ 0,S1 ]-martingale for any n = 1, 2, . . . , k.
Furthermore one has the following result(cf. [HeJaMo],chapter 4,proposition
3,p.86)

Theorem 3.2.1:

Given {α(·, T ) ; T ∈ [ 0, τ ]},{σn(·, T ) ; T ∈ [ 0, τ ]} for n = 1, 2, . . . , k with
(C1)–(C5).Then the following are equivalent:

(i) There is a unique probability measure,denoted by P again,s.t. Z(t,T) is
a martingale under P for all T ∈ [ 0, τ ] and t ∈ [ 0, S1 ] with arbitrary
S1 ∈ [ 0, τ ].

(ii) γn(t;S1, S2, . . . , Sk) = γn(t;T1, T2, . . . , Tk) for n = 1, 2, . . . , k for all se-
quences (Sn) and (Tn) as in (C4),(C5).

(iii) For all T ∈ [ 0, τ ],t ∈ [ 0, T ]
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α(t, T ) = −
k∑

n=1
σn(t, T )

(
λn(t)−

T∫
t

σn(t, s) ds

)
holds true with λn(t) := γn(t;S1, S2, . . . , Sk) for n = 1, 2, . . . , k and for
arbitrary S1, S2, . . . , Sk,t ∈ [ 0, S1 ).

(ii) is called the standard finance condition for arbitrage free pricing,since this
condition is necessary to have absence of arbitrage.
(iii) is called the forward drift restriction,since the restriction to an α of that
type is sufficient to have (i).

Thus in case that (C1)–(C5) are fulfilled and the relative prices (Z(t, T ))t∈[ 0,T ]

are martingales under P for T ∈ [ 0, τ ],the following equation holds:

f̄(t, T )− f̄(0, T ) =
t∫
0

−
k∑

n=1
σn(s, T )

(
λn(s)−

T∫
s

σn(s, y) dy

)
ds

+
k∑

n=1

t∫
0

σn(s, T ) dwn(s)

Having this result Heath,Jarrow and Morton describe how to price a contin-
gent claim having these assumptions.
As it was already mentioned,having assumptions (C1)–(C5) for fixed

0 < S1 < S2 < . . . < Sk ≤ τ

there is exactly one probability measure P(S1, S2, . . . , Sk),s.t. all Z(t,Sn);
n = 1, 2, . . . , k; are martingales.
By corollary 3.1.5 the uniqueness of P(S1, S2, . . . , Sk) as measure under which
the Z(t,Sn);n = 1, 2, . . . , k; are martingales implies the completeness of the mar-
ket considered here.
The discounted payoff induced by the admissible,self-financing trading strategy
φ is given by:

V ∗(t, φ) := φ0
t +

k∑
n=1

φn
t Z(t, Sn),0 ≤ t ≤ τ̄

By τ̄ := S1 one gets

φ0
S1

+
k∑

n=1
φSn

S1
Z(S1, Sn)

as the discounted payoff of a contingent claim in S1 and thus

φ0
S1
B(S1) +

k∑
n=1

φSn

S1
P̄ (S1, Sn)

as the actual payoff,where φ0
S1

denotes the number of riskless assets and φSn

S1

denotes the number of bonds with payoff in Sn held by the agent at time S1.
In [HaPl] Harrison and Pliska show the absence of arbitrage given completeness
of the market at least in case of a discrete trading time,i.e. in case t = 0, 1, . . . , τ̄
instead of t ∈ [ 0, τ̄ ] in section 3.1.So there is no admissible,self-financing strat-
egy φ with

82



V (0, φ) = 0,EQV (τ̄ , φ) ≥ 0

for at least one Q∈ P.Since the market considered here is complete,one has

E
(

X
B(S1)

|Ft

)
B(t) = P̄ (t, S1;X)

where E denotes the expectation under the probability measure P,under which
all Z(t,T) are martingales,and P̄ (t, S1;X) denotes the value of the contingent
claim X with payoff in S1 in t ∈ [ 0, S1 ].Thus one has

P̄ (t, S1;X) = E
(
φ0

S1
+

φ
S1
S1

B(S1)
+

k∑
n=2

φSn

S1
Z(S1, Sn)|Ft

)
B(t)

So,in order to be able to price the contingent claim,it must be possible to de-
termine B and Z.With the help of (C1),(3.4) and the forward drift restriction
resp. (3.2) and (3.4)

f̄(t, t) = f̄(0, t) +
k∑

n=1

t∫
0

σn(s, t)
t∫
s

σn(s, y) dy ds

+
k∑

n=1

t∫
0

σn(s, t)dw̃n(s)

Z(t, u) = Z(0, u) exp
(
− 1

2

k∑
n=1

t∫
0

an(s, u) ds

+
k∑

n=1

t∫
0

an(s, u) dw̃S1,S2,...,Sk
n (s)

)
hold true P-almost surely for t ∈ [ 0, S1 ],u ∈ {S1, S2, . . . , Sk}.Because of

E
(

P̄ (S1,u)
B(S1)

)
<∞,u ∈ [S1, τ ]

and the completeness of the market all the other bonds can be replicated by
an admissible,self-financing strategy,applying only the bonds with payoff-times
Sn;n = 1, 2, . . . , k;and the riskless asset.

In the following have a closer look at the stochastic differential equation consid-
ered in chapter 7 of [HeJaMo].

As it was already mentioned in section 1.1,one finds the following result in
[HeJaMo]:

Given trading time [ 0, τ ] with τ > 0,k ∈ N and T ∈ [ 0, τ ],s.t.property (i)
from 3.2.1 holds.
For n=1,2,...,k let

• λn:[ 0, τ ]× Ω → R be predictable and bounded

• σn: ST ×R → R be bounded,nonnegative and Lipschitzian on R

Then there is a uniformly measurable family (f̄(t, T ))t∈[ 0,T ] of processes with
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f̄(t, T )− f̄(0, T ) =
t∫
0

−
k∑

n=1
σn(s, T, f̄(s, T ))

(
λn(s)−

T∫
s

σn(s, y, f̄(s, y)) dy

)
ds

+
k∑

n=1

t∫
0

σn(s, T, f̄(s, T )) dwn(s)

for all T ∈ [ 0, τ ].
Thus one has for all x ∈ R with t+x≤ τ :

f̄(t, t+ x)− f̄(0, t+ x) =
t∫
0

−
k∑

n=1
σn(s, t+ x, f̄(s, t+ x))

(
λn(s)−

t+x∫
s

σn(s, y, f̄(s, y)) dy
)
ds

+
k∑

n=1

t∫
0

σn(s, t+ x, f̄(s, t+ x)) dwn(s)

In order to have at least the situation described in [MaZa] one needs the follow-
ing time-homogeneity assumption on σ:

σn(t, s1, ·) = σn(t, s2, ·)

for all t ∈ [ 0, τ ],s1, s2 ∈ [ t, τ ],n = 1, 2, . . . , k. Then the equation becomes:

f̄(t, t+ x)− f̄(0, t+ x) =
t∫
0

−
k∑

n=1
σn(s, f̄(s, t+ x))

(
λn(s)−

t+x∫
s

σn(s, f̄(s, y)) dy
)
ds

+
k∑

n=1

t∫
0

σn(s, f̄(s, t+ x)) dwn(s)

So (1.1) and (1.2) imply the following equation:

rt(x) = (S(t)r0)(x) +
t∫
0

−
k∑

n=1
σn(s, (S(t− s)rs)(x))

(
λn(s)−

t−s+x∫
0

σn(s, rs(y)) dy
)
ds

+
k∑

n=1

t∫
0

σn(s, (S(t− s)rs)(x)) dwn(s)

Analogously to (2.4)(without ω-dependence) one gets for the shift-semigroup
(S(t))t≥0

[S(t)F (s, ϕ)] = f(s, [S(t)ϕ])

and the equation for r becomes

rt(x) = (S(t)r0)(x)

+
t∫
0

k∑
n=1

(
(S(t− s)σn(s, rs))(x)

(
S(t− s)

·∫
0

σ(s, rs(y)) dy
)

(x)
)
ds

−
t∫
0

k∑
n=1

(S(t− s)σn(s, rs))(x)λn(s) ds

+
t∫
0

k∑
n=1

[S(t− s)σn(s, rs)](x) dwn(s)

Remember,that t ∈ [ 0, τ ] and t+x≤ τ must hold true,s.t. this is,given a fixed
t,only the case for x ∈ [ 0, τ − t ].Choose τ very big,in order to claim that r is
defined on R+.
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Now fix k = 1.Then one has for all t ∈ [ 0, T ] with T > 0 and all x ∈ R+

rt(x) = (S(t)r0)(x)

+
t∫
0

(
(S(t− s)σ(s, rs))(x)

(
S(t− s)

·∫
0

σ(s, rs(y)) dy
)

(x)
)
ds

−
t∫
0

(S(t− s)σ(s, rs))(x)λ(s) ds

+
t∫
0

(S(t− s)σ(s, rs))(x) dw(s)

for an arbitrary real-valued Brownian motion w with w(0) = 0.
On the Hilbert space L2

ρ(R+) the equation becomes

rt = S(t)r0 +
t∫
0

S(t− s)(S(σ(s, rs))− λ(s)σ(s, rs)) ds+
t∫
0

S(t− s)Σ(s, rs) dW (s)

with S defined by(cf. (1.3))

(S(e))(x) := e(x)
x∫
0

e(z) dz

for all functions e defined on R+,Σ defined from σ by (2.1),and σ defined anal-
ogously to (2.4) (without ω-dependence)

Thus given the assumptions

σ : [0, T ]×R → R
λ : [0, T ]× Ω → R

one gets a function f:[ 0, T ] × Ω × R → R defined by (1.3).Then defining F
by (2.4) gives the so-called Heath-Jarrow-Morton equation

rt = S(t)r0 +
t∫
0

S(t− s)F (s, ω, rs) ds+
t∫
0

S(t− s)Σ(s, rs) dW (s)
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3.3 The shift-semigroup

Consider the shift-semigroup as an evolution operator in the framework of chap-
ter 2 with dimension d = 1,s.t. ρ is a fixed number with ρ > 1.The aim of this
section is to show that the shift-semigroup fulfills the conditions imposed on U
in chapter 2 with U defined on L2

ρ(R+) resp. L2ν
ρ (R+) by

U(t, s) := S(t− s) (3.5)

for all (s, t) ∈ ST .For the rest of the chapter write L2 instead of L2(R+),L2
ρ

instead of L2
ρ(R+),and so on.

As it was already mentioned by Manthey nd Zausinger in their paper(cf.[MaZa],section
2,example 2.6,p.55) each positivity preserving,strong continuous semigroup de-
fines an almost strong evolution operator in the sense of section 1.3 by (3.5).
First of all show the strong continuity of the shift-semigroup on L2

ρ.

A shift-semigroup (Tt)t≥0 defined on a Banach space B is called strongly con-
tinuous,if

lim
t→0

Ttϕ = ϕ,ϕ ∈ B

holds true.

First consider functions ϕ ∈ C1
c .As such functions are continuous and differ

from 0 only on compact sets,each ϕ ∈ C1
c is uniformly continuous on this com-

pact set,i.e. for each ε > 0 there exists a t(ε) > 0,s.t.

|ϕ(x+ t)− ϕ(x)| < εc
− 1

2
ρ

for all t ≤ t(ε),x ∈ Cp(ϕ),where Cp(ϕ) denotes the compact set associated
with ϕ and cρ is given by

cρ :=
∫

R+

(1 + x2)−
ρ
2 dx (3.6)

which is finite since ρ > 1.
As ϕ equals 0 outside the above compact set and is continuous on this compact
set

||ϕ||∞ := sup
x∈R+

|ϕ(x)|

exists and for all t ∈ [ 0, T ]∫
R+

(ϕ(x+ t)− ϕ(x))2 µρ(dx) =
∫

R+

(ϕ(x+ t)− ϕ(x))2(1 + x2)−
ρ
2 dx ≤ 4 cρ ||ϕ||2∞

holds true,i.e. [(S(t) − Id)ϕ] ∈ L2
ρ for all t ∈ [ 0, T ] and all ϕ ∈ C1

c .In par-
ticular one has the following for all t ≤ t(ε):
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||S(t)ϕ− ϕ||ρ,2 =

( ∫
R+

(ϕ(x+ t)− ϕ(x))2 µρ(dx)

) 1
2

(3.7)

≤ ε c
− 1

2
ρ

( ∫
R+

(1 + x2)−
ρ
2 dx

) 1
2

= ε

Thus one has strong continuity on C1
c in the || · ||ρ,2-norm.

In order to continue the following lemma is needed.

Lemma 3.3.1:

L2 is a dense subset of L2
ρ for each ρ ∈ N.

Proof:
Let ϕ ∈ L2

ρ and define

ϕn(x) := min(ϕ(x), n(1 + x2)−
ρ
4 )

for all x ∈ R+ and all n ∈ N.Then by (3.6) ρ > 1 implies∫
R+

ϕ2
n(x) dx ≤ n2cρ <∞

for all n ∈ N.By the definition of ϕn one obviously has ϕn(x) → ϕ(x) as
n → ∞ for all x ∈ R+. So (ϕn)n∈N is a sequence in L2,s.t. ϕn → ϕ in L2

ρ for
n → ∞ holds true,which finishes the proof,since ϕ was chosen arbitrarily from
L2

ρ.
q.e.d.

It is known (f.e. from [Fi],section 5.1,proof of 5.1.1,p.77),that C1
c is a dense

subset from L2.By 3.2.1 this implies that C1
c is also dense in L2

ρ,i.e. for each
ϕ ∈ L2

ρ there exists a sequence (ϕn)n∈N ⊂ C1
c with

ϕn → ϕ in L2
ρ for n→∞

Such a sequence leads to

||S(t)ϕ− ϕ||ρ,2 ≤ ||S(t)(ϕ− ϕn)||ρ,2 + ||S(t)ϕn − ϕn||ρ,2 (3.8)
+||ϕn − ϕ||ρ,2

for all t ∈ [ 0, T ].In order to get the wanted estimate for S(t)ϕ − ϕ,one needs
another lemma:

Lemma 3.3.2:

There is a constant c(ρ, T ) > 0,s.t. the following holds true for all t ∈ [ 0, T ]
and all ϕ ∈ L2

ρ:

||S(t)ϕ||ρ,2 ≤ c(ρ, T )||ϕ||ρ,2 (3.9)
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Proof:
Let ϕ resp. t be arbitrary from L2

ρ resp. [ 0, T ].Then:

∫
R+

ϕ2(x+ t)(1 + x2)−
ρ
2 dx =

t∫
0

ϕ2(x+ t)(1 + (x+ t)2)−
ρ
2

(
1+x2

1+(x+t)2

)− ρ
2
dx

+
∞∫
t

ϕ2(x+ t)
(

1 + (x+ t)2
(

x
x+t

)2
)− ρ

2

dx

The second term is the simpler one.The estimate

( x
x+t )

−ρ ≤ 2ρ , x ≥ t

and the fact,that x
x+t is at most 1 for all x,t in this framework,lead to:

∞∫
t

ϕ2(x+ t)
(

1 + (x+ t)2
(

x
x+t

)2
)− ρ

2

dx ≤
∞∫
t

ϕ2(x+ t)
(

x
x+t

)−ρ

(1 + (x+ t)2)−
ρ
2 dx

≤ 2ρ
∫

R+

ϕ2(x)(1 + x2)−
ρ
2 dx

Now the difficult first term.By the estimates

(x+ t)2 ≤ 4T 2 , 0 ≤ x ≤ t ≤ T (3.10)

(1 + x2)−
ρ
2 ≤ 1 , 0 ≤ x ≤ t

one gets

t∫
0

ϕ2(x+ t)(1 + (x+ t)2)−
ρ
2

(
1+x2

1+(x+t)2

)− ρ
2
dx

≤ (1 + 4T 2)
ρ
2

t∫
0

ϕ2(x+ t)(1 + (x+ t)2)−
ρ
2 (1 + x2)−

ρ
2 dx

≤ (1 + 4T 2)
ρ
2
∫

R+

ϕ2(x)(1 + x2)−
ρ
2 dx

These estimates imply:

||S(t)ϕ||ρ,2 =

( ∫
R+

ϕ2(x+ t)µρ(dx)

) 1
2

=

( ∫
R+

ϕ2(x+ t)(1 + x2)−
ρ
2 dx

) 1
2

≤ c(ρ, T )||ϕ||ρ,2

where the constant is given by

c(ρ, T ) :=
√

2ρ + (1 + 4T 2)
ρ
2

q.e.d.

By 3.3.2(cf. (3.9)) one can simplyfy (3.8) to
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||S(t)ϕ− ϕ||ρ,2 ≤ (c(ρ, T ) + 1)||ϕ− ϕn||ρ,2 + ||S(t)ϕn − ϕn||ρ,2

With the help of the preceding consideration of C1
c for each n ∈ N and each

ε > 0 there is t(ε, n) > 0 with

||S(t)ϕn − ϕn||ρ,2 ≤ ε
2

for all t ≤ t(ε, n)(cf.(3.7)).
As ϕn is an approximating sequence of ϕ in L2

ρ,i.e. for each ε > 0 there is
N(ε) ∈ N with

||ϕ− ϕn||ρ,2 ≤ ε
2(c(ρ,T )+1)

for all n ≥ N(ε),with fixed ε > 0 one has for arbitrary n ≥ N(ε)

||S(t)ϕ− ϕ||ρ,2 ≤ ε

for all t ≤ t(ε, n),s.t. the following result is shown:

Theorem 3.3.3:

The shift-semigroup (S(t))t∈[ 0,T ] is strongly continuous on L2
ρ.

Remark 3.3.4:

Note,that S(t):L2
ρ → L2

ρ holds true for arbitrary t ≥ 0,as one can replace T by t
for fixed t ≥ 0 in (3.9).But as already seen above there is no constant C > 0 with

||S(t)ϕ||ρ,2 ≤ C||ϕ||ρ,2

for all t ≥ 0,ϕ ∈ L2
ρ,note the T-dependence of the constant in 3.3.2 .

Thus it is important to fix T > 0,in order to be able to apply 2.3.2.Thus by
(3.5) (S(t))t∈[ 0,T ] generates an almost strong evolution operator U.
So one has to prove that U has the properties (BC),(PP),(CC),(E1),(E2) and
(BA).

(i) The nuclear case
First consider the nuclear case,since there

• property (CC) is not needed.

• (E1) implies (E2) analogously to [MaZa](cf. chapter 2,remark 2.3(ii),p.47
there),since the shift-semigroup is positivity preserving.

It will be shown that U defined by (3.5) has the necessary properties in order
to apply Manthey‘s and Zausinger‘s theory in this case.

Theorem 3.3.5:
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Consider the shift-semigroup (S(t))t∈[ 0,T ] and define an almost strong evolution
operator U by (3.5).
Then U has properties (CD),(PP),(E1),(E2) and (BA).

Proof:
Denote by A the generator of the shift-semigroup on L2

ρ.
By the definition of the generator:

(i):
D(A) := {ϕ ∈ L2

ρ | lim
t→0

1
t (([S(t)ϕ])(x)− ϕ(x)) ∈ R, x ∈ R+}

= {ϕ ∈ L2
ρ | ϕ is differentiable}

(ii): [Aϕ](x) = ϕ′(x),x ∈ R+,ϕ ∈ D(A)

Thus A is a linear operator.
Since C1

c is a dense subset in L2
ρ

C1
c ⊂ D(A) ⊂ L2

ρ

implies the density of D(A) in L2
ρ.

Consider ϕ ∈ C1
c ⊂ D(A).As ϕ has compact support,ϕ′ has compact support as

well.Due to its continuity on this compact set ϕ′ has a maximum on this set,s.t.
with cρ <∞ for cρ as in (3.6) Aϕ ∈ L2

ρ holds true.
By the density of C1

c in D(A) there is to each ϕ ∈ D(A) a sequence
(ϕn)n∈N ⊂ C1

c ,converging to ϕ in L2
ρ-norm,i.e.

lim
n→∞

ϕn(x) → ϕ(x),µρ-f.a. x ∈ R+

Concerning the derivatives of ϕ and ϕn one gets

|ϕ′(x)− ϕ′n(x)| =
∣∣∣∣ limh→0

ϕ(x+h)−ϕ(x)
h − lim

h→0

ϕn(x+h)−ϕn(x)
h

∣∣∣∣
=

∣∣∣∣ limh→0

ϕ(x+h)−ϕ(x)−(ϕn(x+h)−ϕn(x))
h

∣∣∣∣
≤ lim

h→0

|ϕ(x+h)−ϕn(x+h)|+|ϕ(x)−ϕn(x)|
|h|

which implies

lim
n→∞

|ϕ′(x)− ϕ′n(x)| = 0

for µρ-almost all x ∈ R+ as the terms in the nominator tend to 0 µρ-almost
everywhere for n→∞,s.t. one gets the existence of

∫
R+

ϕ′2(x)µρ(dx) ≤ 2

( ∫
R+

(ϕ′(x)− ϕ′n(x))2 µρ(dx)

+
∫

R+

ϕ′n
2(x)µρ(dx)

)
since the righthand side is smaller than 2(ε2cρ + ||Aϕn||2ρ,2) < ∞ for n big

90



enough.
So Aϕ ∈ L2

ρ also holds true for ϕ ∈ D(A).

Let (ϕn)n∈N ⊂ D(A) be a converging sequence with limit ϕ ∈ D(A).
Of course convergence in || · ||ρ,2-norm is meant,i.e.

lim
n→∞

∫
R+

(ϕn(x)− ϕ(x))2 µρ(dx) = 0

which implies ϕn → ϕ µρ-almost everywhere on R+.In analogy to the above
consideration one gets ϕ′n → ϕ′ µρ-almost everywhere.
This obviously implies

Aϕn = ϕ′n → ϕ′ = Aϕ

in L2
ρ,i.e. A is closed.So:

A:D(A) → L2
ρ is closed,linear operator with D(A) being a dense subset of L2

ρ.
This is just property (CD).

As already mentioned the shift-semigroup is positivity preserving,s.t. U de-
fined by (3.5) is positivity preserving as well.
Thus one gets a family (A(t))t∈[ 0,T ] defined by A(t) := A for all t,which gener-
ates an almost strong evolution operator,which is positivity preserving.
This is just property (PP).

Furthermore one has for arbitrary ϕ ∈ L2
ρ and κ ∈ N:

(U(t, s)|ϕ|)κ = (|ϕ(·+ t− s)|)κ = |ϕ(·+ t− s)|κ = U(t, s)|ϕ|κ

for all (s, t) ∈ ST ,i.e. (E1) holds true with constant

c(κ, T ) = 1,κ ∈ N

As already mentioned above this immediately implies (E2).

As Manthey and Zausinger mention in their paper(cf.[MaZa],example 2.6,p.55) a
positivity preserving,strong continuous,one-parameter semigroup fulfills (BA),which
finishes the proof.

(ii) The cylindrical case

In Manthey‘s and Zausinger‘s theory the cylindrical case differs from the nuclear
one in two aspects:

1. Property (CC) is needed.

2. (E1) does not imply (E2),i.e.(E2) must be shown separately.
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Remember that (CC) was the following property:

There exists an extension of U(t,s) on M for (s, t) ∈ ST ,s.t.

U(t, s)φ ∈ L2(L2, L2
ρ) =: L2

holds true for all ϕ ∈ L2
ρ,(where φ denotes the multiplication operator asso-

ciated with ϕ,)and there is a γ ∈ [ 0, 1 ) with

||U(t, s)φ||2L2
≤ c(T )(t− s)−γ ||ϕ||2ρ,2 (3.11)

First consider the part of (CC) concerning the extension.
For each function h of the form h = ϕψ the definition of the shift-semigroup
and (3.5) lead to:

[U(t, s)h](x) = ϕ(x+ t− s)ψ(x+ t− s)

Then one can show U(t, s)h ∈M with the help of Hoelder‘s inequality:∫
R+

|[U(t, s)h](x)|µρ(dx) =
∫

R+

|ϕ(x+ t− s)||ψ(x+ t− s)|µρ(dx)

≤

( ∫
R+

ϕ2(x+ t− s)µρ(dx)

) 1
2
( ∫

R+

ψ2(x+ t− s) dx

) 1
2

≤ c(ρ, T )||ϕ||ρ,2||ψ||2 <∞
Thus one has an extension of U(t,s) on M .

But considering the orthonormal sequence (en)n∈N in L2 from chapter 2 one
gets for ϕ ∈ L2

ρ:∑
n∈N

||U(t, s)φ(en)||2ρ,2 =
∑

n∈N

∫
R+

ϕ2(x+ t− s)e2n(x+ t− s)(1 + x2)−
ρ
2 dx

≤ c(ρ, T )
∑

n∈N

∫
R+

ϕ2(x)e2n(x)(1 + x2)−
ρ
2 dx

For an estimate of type (3.11) one needs a term of the type

c(. . .)(t− s)−γ
∑

n∈N

< ϕ, hn >
2
ρ,2

where hn := en(1 + x2)
ρ
4 is an orthonormal-basis of L2

ρ and γ ∈ [ 0, 1 ).With
ϕ2e2n(1 + ·2)−

ρ
2 ≥ 0 Jensen‘s inequality implies

< ϕ, hn >
2
ρ,2=

( ∫
R+

ϕ(x)hn(x)(1 + x2)−
ρ
2 dx

)2

≤
∫

R+

ϕ2(x)h2
n(x)(1 + x2)−ρ dx

=
∫

R+

ϕ2(x)e2n(x)(1 + x2)−
ρ
2 dx

s.t. it seems impossible to get the wanted estimate.
So one has (at least by this method) no
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• convergence of the sum

• appropriate estimate of the sum.
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3.4 Existence of solutions to the HJM equation

As Heath,Jarrow and Morton consider an SDE with the operator generating
the shift-semigroup,one has to restrict oneself to the nuclear case,since,as seen
above,not all the properties needed in the proof of 2.3.2 hold true in the cylin-
drical case.

(i) The Heath-Jarrow-Morton case
In the following it will be shown,that there is a solution to the Heath-Jarrow-
Morton equation

rt = S(t)h+
t∫
0

S(t− s)F (s, ·, rs) ds+
t∫
0

S(t− s)Σ(s, rs) dW (s) (3.12)

in L2
ρ with given σ and λ and f defined by (1.3) under appropriate assump-

tions.

Remark 3.4.1:

Let λ:[ 0, T ] × Ω → R be predictable and σ:[ 0, T ] × R → R and f defined
as in (1.3).
Note that in order to apply the results from chapter 2 one needs a progressively
measurable function f,i.e. one needs

1[ 0,t ]×Ωf(·, ·, x) ∈ B([ 0, t ])×Ft

for all t ∈ [ 0, T ],x ∈ R.To have this it is enough to assume

(3.13) 1[ 0,t ]σ(·, x) ∈ B([ 0, t ]) , t ∈ [ 0, T ] , x ∈ R

Proof:
Given (t, ω) ∈ [ 0, T ]× Ω define

σ(t, ω, x) := σ(t, x)

for all fixed x ∈ R.As (Ft)t∈[ 0,T ] is a family of σ-algebras,(3.13) implies the
following:

1[ 0,t ]×Ωσ(·, ·, x) ∈ B([ 0, t ])×Ft

for all t ∈ [ 0, T ],x ∈ R.Then one also has

1[ 0,t ]×Ω

x∫
0

σ(·, ·, z) dz ∈ B([ 0, t ])×Ft

and
1[ 0,t ]×Ω σ(·, ·, x)

x∫
0

σ(·, ·, z) dz ∈ B([ 0, t ])×Ft

for all t ∈ [ 0, T ] and all x ∈ R.As a predictable process λ is progressively
measurable as well,as a consequence of which
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1[ 0,t ]×Ωλσ(·, ·, x) ∈ B([ 0, t ])×Ft

holds true.With the help of the definition of f one gets

1[ 0,t ]×Ωf(·, ·, x) ∈ B([ 0, t ])×Ft

for all t ∈ [ 0, T ] and all x ∈ R.
q.e.d.

Consider the situation given by the existence claim from [HeJaMo] (cf. sec-
tion 7,proposition 4,p.93),i.e. σ is a real-valued function on [ 0, T ] × R,which
is Lipschitzian in R,nonnegative and bounded and (λ(t))t∈[ 0,T ] is a real-valued
process,which is predictable and bounded.
(Note that the authors in [HeJaMo] write γ instead of λ.)

Denote the exact assumptions on σ and λ: Let

σ:( [ 0, T ] × R , B([ 0, T ]) × B(R) ) → (R,B(R) ) be nonnegative,s.t. there
exists a positive constant cσ(T ) with

(σ1) |σ(t, x)− σ(t, y)| ≤ cσ(T )|x− y|
(σ2) σ(t, x) ≤ cσ(T )

for all t ∈ [ 0, T ];x,y∈ R.

Let λ:([ 0, T ] × Ω,PT )→ (R,B(R)) be such that there exists a positive con-
stant Mλ(T ) with

(λ) |λ(t, ω)| ≤Mλ(T )

for all t ∈ [ 0, T ],ω ∈ Ω.

By remark 3.4.1 these assumptions imply the progressive measurability of f
defined as above and the following lemma:

Lemma 3.4.2:

(i) σ fulfills (L1) and (L2).
(ii) For arbitrary ω ∈ Ω f(·, ω, ·) fulfills (PG) with exponent ν = 1 and (LG)
with an ω-independent constant.

Proof:
First (i).(L1) holds true obviously(cf.(σ1) above) and (L2) is the special case
x = 0 of (σ2).
Concerning (ii) the assumptions lead to the following estimates for f:
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|f(t, ω, x)| =
∣∣∣∣σ(t, x)

x∫
0

σ(t, z) dz − λ(t, ω)σ(t, x)
∣∣∣∣

≤ |σ(t, x)|
∣∣∣∣ x∫
0

σ(t, z) dz
∣∣∣∣+ |λ(t, ω)σ(t, x)|

≤ c2σ(T )|x|+Mλ(T )cσ(T )
≤ cf (T )(1 + |x|)

with cf (T ) := (max(cσ(T ),Mλ(T )))2 ≥ cσ(T ) max(cσ(T ),Mλ(T )) for all
(t, ω) ∈ [ 0, T ]× Ω and all x ∈ R.
For this cf (T ),all x ≥ 0 and arbitrary (t, ω) ∈ [ 0, T ]× Ω one has

f(t, ω, x) = σ(t, x)
x∫
0

σ(t, z) dz − λ(t, ω)σ(t, x)

≤ c2σ(T )x+ |λ(t, ω)|σ(t, x)
≤ c2σ(T )x+Mλ(T )cσ(T )
≤ cf (T )(1 + x)

where the nonnegativity of σ was used in the second and x ≥ 0 was used in
the last step.But for x ≤ 0 one gets:

f(t, ω, x) = −σ(t, x)
0∫
x

σ(t, z) dz − λ(t, ω)σ(t, x)

≥ −
(∣∣∣∣σ(t, x)

0∫
x

σ(t, z) dz
∣∣∣∣+ |λ(t, ω)||σ(t, x)|

)
≥ −c2σ(T )(−x)−Mλ(T )cσ(T )
≥ −cf (T )(1− x)

for arbitrary (t, ω) ∈ [ 0, T ]× Ω,where x ≤ 0 was used in the last step.
q.e.d.

Remark 3.4.3:

It seems to be impossible to have (L1),(L2) for f,since one has in case of
(t, ω) ∈ [ 0, T ]× Ω and x,y∈ R,s.t. w.l.o.g. x > y,

|f(t, ω, x)− f(t, ω, y)| =
∣∣∣∣σ(t, x)

x∫
0

σ(t, z) dz − σ(t, y)
y∫
0

σ(t, z) dz

+λ(t, ω)(σ(t, y)− σ(t, x))|

≤
∣∣∣∣(σ(t, x)− σ(t, y))

y∫
0

σ(t, z) dz
∣∣∣∣+
∣∣∣∣∣σ(t, x)

x∫
y

σ(t, z) dz

∣∣∣∣∣
+|λ(t, ω)(σ(t, y)− σ(t, x))|

where it seems impossible to estimate the first term by a term of the form
C|x− y| with a positive,y-independent constant C.

Defining Σ by (2.1) in the nuclear case and F from f by (2.4),theorems 2.3.2(i)
and 3.3.5 imply:

Theorem 3.4.4:

Given σ with the above formulated assumptions and (3.13) and λ with the
above formulated assumptions, there exists a solution r of the Heath-Jarrow-
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Morton equation

rt = S(t)h+
t∫
0

S(t− s)F (s, ·, rs) ds+
t∫
0

S(t− s)Σ(s, rs) dW (s)

in the sense of 2.2.3 on [ 0, T ] for all finite T > 0 and all deterministic h ∈ L2
ρ,s.t.

for all q > 2 there exists a positive constant c(q,T,c(ρ, T ),cσ(T ),Mλ(T )) depend-
ing on q,T,U,σ and λ with

sup
t∈[ 0,T ]

E||rt||qρ,2 ≤ c(q, T, c(ρ, T ), cσ(T ),Mλ(T ))(1 + ||h||qρ,2)

Remark 3.4.5:

If one puts the question,whether all properties of σ assumed in 3.4.4 are neces-
sary to apply 2.3.2,one immediately notices,that one cannot give up the Lipschitz-
assumption,as this is just (L1).As S(σ(t, ·));t ∈ [ 0, T ]; is a part of the function
f(t,·);t ∈ [ 0, T ];it is necessary to assume boundedness of σ in order to have
property (LG) for f.
But it is not necessary to have the nonnegativity-assumption from [HeJaMo].It
suffices to assume,that σ is Lipschitzian in R and bounded,since then the fol-
lowing holds true for all (t, ω) ∈ [ 0, T ]× Ω:

f(t, ω, x) ≤
∣∣∣∣σ(t, x)

x∫
0

σ(t, z) dz
∣∣∣∣+ |λ(t, ω)σ(t, x)|

≤ c2σ(T )|x|+Mλ(T )cσ(T )
≤ (max(cσ(T ),Mλ(T )))2(1 + x)

for x ≥ 0 and analogously for x ≤ 0

f(t, ω, x) ≥ −
(∣∣∣∣σ(t, x)

x∫
0

σ(t, z) dz
∣∣∣∣+ |λ(t, ω)σ(t, x)|

)
≥ −(c2σ(T )|x|+Mλcσ(T ))
≥ −(max(cσ(T ),Mλ(T )))2(1− x)

Thus even without assuming nonnegativity of σ f fulfills (PG) with exponent
ν = 1 and (LG) with an ω-independent constant,as a consequence of which one
gets the existence of the solution.
So for σ,λ with the assumptions from proposition 4 from [HeJaMo] there exists
a solution of the equation

rt(x) = r0(t+ x) +
t∫
0

f(s, ·, rs(x+ t− s)) ds

+
(

t∫
0

S(t− s)Σ(s, rs) dW (s)
)

(x) (3.14)

for x ∈ R+ and the solution r has the property

(3.15)
∫

R+

r2t (x)(1 + x2)−
ρ
2 dx <∞ , t ∈ [ 0, T ]

This also holds true without the nonnegativity-assumption for σ from [HeJaMo].

Note,that in the model regarded by Heath,Jarrow and Morton there was no
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nonnegativity-assumption on σ (cf.[HeJaMo],section.2,condition C1(iii),p.80),s.t.
the result is a real improvement of proposition 4 from [HeJaMo] at least in case
k = 1.

In this simple case only theorem 2.3.2(i) was applied.So it may be possible
to get an existence result in a model extending the one from [HeJaMo] by the-
orem 2.3.2(ii) resp. theorem 2.3.3/corollary 2.3.5.

(ii) Extension of the model from [HeJaMo]

Consider from now on functions λ of the form

λ:[ 0, T ]× Ω×R → R

Thus one gets for f:

f(t, ω, x) := σ(t, x)
x∫
0

σ(t, z) dz − λ(t, ω, x)σ(t, x)

Then:

Theorem 3.4.6:

(i)Let σ:[ 0, T ] × R → R be Lipschitzian in R and bounded with property
(3.13),for all ω ∈ Ω let λ(·, ω, ·) be continuous in R,predictable and let it fulfill
(PG) with exponent ν = 1 for a constant independent of ω.
Having a deterministic h ∈ L2

ρ,there is a solution of the Heath-Jarrow-Morton
equation in L2

ρ in the sense of 2.2.3 and for all q > 2

sup
t∈[ 0,T ]

E||rt||qρ,2 ≤ c(q, T, c(ρ, T ), cσ(T ), cλ(T ))(1 + ||h||qρ,2)

holds true with a positive constant c(q,T,c(ρ, T ),cσ,cλ) dependent on q,T,U,σ
and λ.

(ii) Let σ be nonnegative,bounded and Lipschitzian in R with property (3.13),let
λ be continuous in R,predictable and let it fulfill (PG) with exponent ν > 1
and (LGΛ) given by the inequations

−λ(t, ω, x) ≤ cλ(T )(1 + x) , x ≥ 0
λ(t, ω, x) ≤ cλ(T )(1− x) , x ≤ 0

for all (t, ω) ∈ [ 0, T ]× Ω and a constant cλ(T ) > 0.
Having a deterministic initial condition h ∈ Lp

ρ with p as in 2.3.5,there is a
solution of the Heath-Jarrow-Morton equation in L2

ρ in the sense of 2.2.3.The
paths of the solution are almost surely in Lp

ρ and have the property

sup
t∈[ 0,T ]

E||rt||qρ,p ≤ c(p, q, T, c(ρ, T ), cσ(T ), cλ(T ))(1 + ||h||qρ,p)

for all q > p with a constant c(p, q, T, c(ρ, T ), cσ(T ), cλ(T )) > 0 dependent
on p,q,T,U,σ and λ.
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Proof:
(i): The proof of lemma 3.4.2 shows,that the assumption,that λ fulfills (PG)
with exponent ν = 1 is sufficient to have (PG) with exponent ν = 1 and (LG)
for f.Then the claim follows again by 2.3.2(i).

(ii): Show that f fulfills (PG) with exponent ν > 1 and (LG) under the given
assumptions.Then 2.3.3 leads to the claim.

So let (t, ω) ∈ [ 0, T ]× Ω be arbitrary.Then one has for arbitrary x ∈ R:

|f(t, ω, x)| =
∣∣∣∣σ(t, x)

x∫
0

σ(t, z) dz − λ(t, ω, x)σ(t, x)
∣∣∣∣

≤ |S(σ(t, ·))(x)|+ |λ(t, ω, x)||σ(t, x)|
≤ c2σ(T )|x|+ cσ(T )cλ(T )(1 + |x|ν)
≤ cf (T )(1 + |x|ν)

with cf (T ) := c2σ(T ) + 2cσ(T )cλ(T ),which is obvious,if one considers the term

c2σ(T )|x|+ cσ(T )cλ(T )(1 + |x|ν)

first for x with |x| < 1 and then for x with |x| > 1.
So it remains to show,that (LG) also holds true for f.Fix an arbitrary pair
(t, ω) ∈ [ 0, T ]× Ω.
First consider x ≥ 0:

f(t, ω, x) = σ(t, x)
x∫
0

σ(t, z) dz + (−λ(t, ω, x))σ(t, x)

≤ c2σ(T )x+ σ(t, x)(−λ(t, ω, x))
≤ c2σ(T )x+ σ(t, x)(cλ(T )(1 + x))
≤ (c2σ(T ) + cσ(T )cλ(T ))(1 + x)

where (LGΛ) was used in the third step. For x ≤ 0 (LGΛ) leads to:

f(t, ω, x) = −σ(t, x)
(

0∫
x

σ(t, z) dz + λ(t, ω, x)
)

≥ −σ(t, x)
(∣∣∣∣ x∫

0

σ(t, z) dz
∣∣∣∣+ λ(t, ω, x)

)
≥ −σ(t, x)(cσ(T )|x|+ λ(t, ω, x))
≥ −c2σ(T )|x|+ σ(t, x)(−λ(t, ω, x))
≥ −c2σ(T )(−x) + σ(t, x)(−cλ(T )(1− x))
≥ −(c2σ(T ) + cσ(T )cλ(T ))(1− x)

So property (LG(Λ)) for λ ensures property (LG) for f,which finishes the proof.
q.e.d.

Remark 3.4.7:

Note,that in contrast to 3.4.4 and 3.4.6(i) one needs nonnegativity of σ in
3.4.6(ii),since without this assumption one could only estimate
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f(t, ω, x) ≤ |σ(t, x)|
(∣∣∣∣ x∫

0

σ(t, z) dz
∣∣∣∣+ |λ(t, ω, x)|

)
, x ≥ 0

f(t, ω, x) ≥ −|σ(t, x)|
(∣∣∣∣ x∫

0

σ(t, z) dz
∣∣∣∣+ |λ(t, ω, x)|

)
, x ≤ 0

s.t.,as λ fulfills (PG) with exponent ν > 1,there seems to be no chance to
have the estimates from (LG) for x with |x| > 1.

So one can conclude:
Extending λ to a mapping λ:[ 0, T ]× Ω×R → R,one gets

• a solution of (3.14) with property (3.15) in case of λ fulfilling (PG) with
exponent without the need to assume nonnegativity of σ.

• a solution of (3.14) with

(3.16)
∫

R+

|rt(x)|p µρ(dx) <∞ P-f.s,t ∈ [ 0, T ]

for p as in 2.3.5. in case of λ fulfilling (PG) with an exponent ν > 1
and (LGΛ) and σ being nonnegative.

So in this model one does not lose the existence result from [HeJaMo] and in
case ν = 1 one even does not lose the improvement,that one can give up the
nonnegativity-assumption on σ.

Remark 3.4.8:

The extension does not only allow the application of part (ii) from 2.3.2,it
also makes it possible to compare this model to the one in [Te],since there the
market price of risk is defined not only on [ 0, T ]× Ω as well.

How can this extension of λ be interpreted?
Since λ represents the so-called market price of risk,the extension means that
the market price depends both on the time at which the consideration starts
and on how far the times,up to which the rate shall be determined,are away
from this time.

So one now has existence of a solution to the Heath-Jarrow-Morton equa-
tion (3.12) in different situations(see the assumptions in 3.4.4.,3.4.6(i) resp.
3.4.6(ii)).
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3.5 Comparison to other models

(i) Tehranchi‘s model

In his paper Tehranchi defines the term Heath-Jarrow-Morton model on spaces

Hw :=

{
f : R+ → R | f ist absolut stetig

∫
R+

f ′2(x)w(x) dx <∞

}
H0

w :=
{
f ∈ Hw | f(∞) := lim

x→∞
f(x) = 0

}
with a growing weight-function w:R+ → [ 1,∞ ) in the following way
(cf.[Te],section 2.2,definition 4,p.4 there):

A Heath-Jarrow-Morton model is a pair (λ,σ) with

λ:(R+ × Ω×Hw,P ⊗ B(Hw)) → (G,B(G))
Σ:(R+ × Ω×Hw,P ⊗ B(Hw)) → (L2(G,H0

w),B(L2(G,H0
w)))

s.t. there is a non-empty set of initial conditions h ∈ Hw,for which there ex-
ists a unique,continuous,Hw-valued solution (ft)t≥0 of the Heath-Jarrow-Morton
equation

ft = S(t)h+
t∫
0

S(t− s)a(s, ω, fs) ds+
t∫
0

S(t− s)Σ(s, ω, fs) dW (s)

with

a(s, ω, f) := FHJM (Σ(t, ω, f))− Σ(t, ω, f)λ(t, ω, f)

where FHJM is a mapping from L2(G,H0
w) to Hw defined by

FHJM (A)(x) :=< A∗δx , A
∗Ix >G , A ∈ L(G,H0

w)

with δx(f) := f(x),Ix(f) :=
∫ x

0
f(z) dz for f ∈ Hw,x ∈ R+.

In this case P denoted the σ-algebra of predictable sets on R+ × Ω,G was a
Hilbert space and W a cylindrical Brownian motion on G.

The weighted spaces are also used in [Fi] in order to define a Heath-Jarrow-
Morton model.Fillipovic describes,why it makes sense to consider this kind of
spaces:
Given a fixed time it is unrealistic to expect the rate from this time onward up
to a time far away to differ essentially from the rate up to a time,which is only
an infinitesimal unit further away,i.e. for fixed t ≥ 0 and large x ∈ R one expects

rt(x) ≈ rt(x+ ε)

for small enough ε > 0.This is ensured by the fact that,since w ≥ 1 is a growing
function,a large difference between rt(x) and rt(x+ ε) and thus a large r′t(x) is
punished by w ≥ 1 and the larger x the larger is this punishment.
In Fillipovic‘s and Tehranchi‘s Heath-Jarrow-Morton model the processes are
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such that it is possible to integrate the weighted terms r′t(x)w(x) over R+.

In his paper Tehranchi uses corollary 5.1.2 from [Fi] in order to have a local
Lipschitz property for FHJM (cf.[Te],section 2.1,proposition 3,p.5) for appropri-
ate weighting functions w.
Taking G = L2 the model Tehranchi uses differs from the one considered here
in two aspects.The first one is,that here only the nuclear case is considered,since
the shift-semigroup does not fulfill (CC) and (E2) in the cylindrical case.The
second one is that S defined as in [Fi] does not allow for an estimate like in
5.1.2 in [Fi],as a consequence of which one does not get the existence of a
unique,continuous solution by assuming σλ to be Lipschitzian,which is the
case in the basic situation in [HeJaMo](cf. chapter 7,proposition 4,p.93 there).
Furthermore in [Te] one has existence of (ft)t≥0 instead of (rt)t∈[ 0,T ] for fixed
T > 0,since by the definition of the norm in [Te](cf. section 2.1,definition 1,p.3
there) the following holds true for arbitrary t ≥ 0,h ∈ Hw:

||S(t)f ||Hw
= f(∞+ t) +

∞∫
0

f ′2(x+ t)w(x) dx

≤
∞∫
0

f ′2(x+ t)w(x+ t) dx

≤ f(∞) +
∞∫
0

f ′2(x)w(x) dx = ||f ||Hw

where f ∈ H0
w was used in the second and the third and the fact,that w is

a growing function,was used in the second step.Thus one gets for the operator
norm || · ||L,w:

||S(t)||L,w ≤ 1 , t ≥ 0

whereas due to (3.9) one has for the operator norm || · || in L2
ρ,+

||S(t)|| ≤ c(ρ, T ) , t ∈ [ 0, T ]

for the operator norm || · || in L2
ρ with the constant having the property

c(ρ, T ) →∞ for T →∞

To understand the importance of this difference consider once again the proof
of 2.3.2.
In that proof one first considered solutions to Eq(ξ,FN,M ,Σ) in the sense of 2.2.3
with fN,M , N,M∈ N corresponding to FN,M given by

fN (t, ω, u) := f(t, ω, u) ∨ (−N)
fN,M (t, ω, u) := inf

v∈R
(fN (t, ω, v) +M |u− v|)

for (t, ω, u) ∈ [ 0, T ]× Ω×R.
The fN,M fulfill (L1),(L2),s.t. given σ fulfilling (L1),(L2) as well there exist
pathwise unique solutions to Eq(ξ,FN,M ,Σ) for initial conditions ξ with

E||ξ||qρ,2 <∞
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for a q > 2
1−γ resp.

E||ξ||2κ
ρ,2κ <∞

for a κ > 1
1−γ by theorem 2.2.7.

Looking in the proof of 2.2.7 it strikes,that in the proof of part (i) the solution
is found by finding a contraction in C([ 0, T̄ ];L2([ 0, T ]× Ω;L2

ρ)) for T̄ > 0,s.t.

T̄ (c(c(T ), cf (T )) + c(c(T ), cσ(T ))) < 1

holds true.Thus there is exactly one process X on [ 0, T̄ ] being a fixed point
of K given by

K(Y )(t) := U(t, 0)ξ +
t∫
0

U(t, s)F (s, ·, Y (s)) ds+
t∫
0

U(t, s)Σ(s, Y (s)) dW (s)

After that by setting ξ := X(T̄ ) one gets a fixpoint
X ∈ C([ 0, T ];L2([ 0, T ] × Ω;L2

ρ)) by induction,which is the wanted solution
according to the definition of K.

In order to get a solution X = (X(t))t≥0 by this contraction argument it would
be necessary to have

sup
(s,t)∈S

||U(t, s)|| ≤ C <∞

with S := {(s, t) | 0 ≤ s ≤ t; s, t ∈ R+} for a positive constant C.
Since this does not hold true in the shift-semigroup case,it is only possible to
prove the existence of processes (rt)t∈[ 0,T ] for fixed T > 0 with the help of the
theory from [MaZa].

But one can solve the problem by considering a modification of the shift-
semigroup.
Define

[S̄(t)ϕ](x) := e−tϕ(x+ t) ; t ≥ 0 , x ∈ R+ , ϕ ∈ L2
ρ

Then:

Lemma 3.5.1:

(i) There exists a positive constant c(ρ),s.t. the following holds true for all
t ≥ 0 and all ϕ ∈ L2

ρ:

||S̄(t)ϕ||ρ,2 ≤ c(ρ)||ϕ||ρ,2 (3.18)

(ii) (S̄(t))t≥0 is a strongly continuous semigroup.

Proof:
Let ϕ ∈ L2

ρ be arbitrary.
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(i): Let t ≥ 0 be arbitrary.Then one gets analogously to the proof of 3.3.2:

∫
R+

e−2tϕ2(x+ t)(1 + x2)−
ρ
2 dx = e−2t

t∫
0

ϕ2(x+ t)(1 + (x+ t)2)−
ρ
2

(
1+x2

1+(x+t)2

)− ρ
2
dx

+e−2t
∞∫
t

ϕ2(x+ t)
(

1 + (x+ t)2
(

x
x+t

)2
)− ρ

2

dx

In analogy to the proof of 3.3.2 one gets the following estimates:

e−2t
∞∫
t

ϕ2(x+ t)
(

1 + (x+ t)2
(

x
x+t

)2
)− ρ

2

dx ≤ 2ρe−2t
∫

R+

ϕ2(x)(1 + x2)−
ρ
2 dx

≤ 2ρ
∫

R+

ϕ2(x)(1 + x2)−
ρ
2 dx

e−2t
t∫
0

ϕ2(x+ t)(1 + (x+ t)2)−
ρ
2

(
1+x2

1+(x+t)2

)− ρ
2
dx

≤ e−2t(1 + 4t2)
ρ
2
∫

R+

ϕ2(x)(1 + x2)−
ρ
2 dx

where remark 3.3.4 was applied for the second estimate.
In order to get an estimate independent of t,search for a constant,by which
g(t) := e−2t(1+4t2) is bounded.Since g is nonnegative 0 is a lower bound for g.
So look for maximizers of g.The first derivative is of the following form:

g′(t) = e−2t(−2− 8t2 + 8t) = −8e−2t
(
t2 − t+ 1

4

)
= −8e−2t

(
t− 1

2

)2 ≤ 0

for all t ≥ 0,so g is monotonically decreasing in t,i.e. one gets for all t ≥ 0

g(t) ≤ g(0) = 1

s.t.∫
R+

e−2tϕ2(x+ t)(1 + (x+ t)2)−
ρ
2 dx ≤ (2ρ + 1)

∫
R+

ϕ2(x)(1 + x2)−
ρ
2 dx

= (2ρ + 1)||ϕ||2ρ,2

follows by the estimates above.Thus for all t ≥ 0

||S̄(t)ϕ||ρ,2 =

( ∫
R+

e−2tϕ2(x+ t)µρ(dx)

) 1
2

=

( ∫
R+

e−2tϕ2(x+ t)(1 + x2)−
ρ
2 dx

) 1
2

≤ c(ρ)||ϕ||ρ,2

with a positive constant c(ρ) given by

c(ρ) :=
√

2ρ + 1

(ii): Let s,t∈ R+ be arbitrary.One has for all x ∈ R+:

[S̄(t+ s)ϕ] = e−(t+s)ϕ(x+ t+ s) = [S̄(t)(e−sϕ(·+ s))](x) = [S̄(t)(S̄(s)ϕ)](x)
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Thus the semigroup property is proven.
It remains to show strong continuity,i.e.

lim
t→0

S̄(t)ϕ = ϕ

must hold true.
This property is obviously fulfilled for ϕ ∈ C1

c with

lim
t→0

e−t = 1 , lim
t→0

ϕ(x+ t) = ϕ(x)

As already mentioned in section 3.3 C1
c is a dense subset of L2

ρ,s.t. there exists
a sequence (ϕn)n∈N ⊂ C1

c with

ϕn → ϕ in L2
ρ for n→∞

for the given ϕ ∈ L2
ρ.Analogously to the procedure there one gets by part (i)

||S̄(t)ϕ− ϕ||ρ,2 ≤ (c(ρ) + 1)||ϕ− ϕn||ρ,2 + ||S̄(t)ϕn − ϕn||ρ,2

for all t ≥ 0 and finally for fixed ε > 0

||S̄(t)ϕ− ϕ||ρ,2,+ ≤ ε

for all t ≤ t̄ with t̄ > 0 depending on ε,which proves strong continuity.
q.e.d.

Define an almost strong evolution operator Ū from S̄ by (3.5).Then:

Theorem 3.5.2

Ū has properties (CD),(PP),(E1),(E2) and (BA).

Proof:
Denote the generator of S̄ by Ā.By the definition of the generator one gets

D(Ā) := {ϕ ∈ L2
ρ | lim

t→0

1
t ([S̄(t)ϕ](x)− ϕ(x)) ∈ R, x ∈ R+}

In this case the following holds true for arbitrary x ∈ R+:

lim
t→0

1
t (e

−tϕ(x+ t)− ϕ(x)) = lim
t→0

1
t (e

−tϕ(x+ t)− e−0ϕ(x))

= lim
t→0

1
t (e

−t(ϕ(x+ t)− ϕ(x)) + (e−t − e−0)ϕ(x))

= ϕ′(x)− ϕ(x)

Thus Ā = A− I and D(Ā) = D(A) with A from section 3.3.
So Ā is a linear operator and analogously to the proof of 3.3.5 D(Ā) is a dense
subset of L2

ρ.
Have a closer look at the proof of 3.3.5.In that proof one first considered func-
tions from C1

c .Both these functions and their derivatives reach a maximum,s.t.
by cρ <∞ Āϕ ∈ L2

ρ holds true in case ϕ ∈ C1
c ⊂ D(Ā).By the above mentioned
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density of C1
c in D(Ā) for any ϕ ∈ D(Ā) there is a sequence (ϕn)n∈N ⊂ C1

c , s.t.
||ϕn − ϕ||ρ,2 → 0 for n→∞.
Analogously to the proof of 3.3.5 one shows

lim
n→∞

ϕn(x) → ϕ(x),µρ-a.a x ∈ R+

lim
n→∞

|ϕ′(x)− ϕ′n(x)| = 0,µρ-a.a. x ∈ R+

This implies the finiteness of

∫
R+

[ϕ′ − ϕ]2(x)µρ(dx) ≤ 4

( ∫
R+

(ϕ′(x)− ϕ′n(x))µρ(dx)

+
∫

R+

ϕ′n
2(x)µρ(dx)

+
∫

R+

(ϕ(x)− ϕn(x))2 µρ(dx)

+
∫

R+

ϕ2
n(x)µρ(dx)

)
analogously to the proof of 3.3.5,s.t. Āϕ ∈ L2

ρ for ϕ ∈ D(Ā).
By the above limit properties Ā is a closed operator analogously to the situation
in 3.3.5.Thus one has the following conclusion:
Ā:D(Ā) → L2

ρ is a linear,closed operator,with D(Ā) being a dense subset of L2
ρ.

This is exactly property (CD).

Since S̄ differs from the shift-semigroup only by the positive factor e−·,again
analogously to 3.3.5 Ū is a positivity preserving almost strong evolution oper-
ator generated by Ā(t) := Ā for t ∈ [ 0, T ] with T > 0 arbitrary,which is just
property (PP).

For arbitrary ϕ ∈ L2
ρ and κ ∈ N one has

(Ū(t, s)|ϕ|)κ = e−κ(t−s)|ϕ(·+ t− s)|κ ≤ e−(t−s)|ϕ(·+ t+ s)|κ = Ū(t, s)|ϕ|κ

for all s ≤ t from R+,i.e. (E1) holds true with c(κ) = 1 for all κ ∈ N.
As already mentioned at the beginning of section 3.3. (E1) implies (E2).
By example 2.6 from [MaZa](cf. p.55 there) S̄ has property (BA) as well,since
it is a (strongly continuous) one-parameter semigroup.This finishes the proof.

Note,that as in the case of the shift-semigroup property (CC) cannot be shown,s.t.
one has to restrict to the nuclear case in this section as well.

Let σ and λ be analogously to the situation in theorem 3.4.4,i.e. one has:

σ:(R+ × R , B(R+) × B(R) ) → (R,B(R) ) is nonnegative,and there is a
positive constant cσ with

(σ̃1) |σ(t, x)− σ(t, y)| ≤ cσ|x− y|
(σ̃2) σ(t, x) ≤ cσ
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for all t ∈ R+;x,y∈ R.

Given λ:(R+ × Ω,P) → (R,B(R)) there is a positive constant Mλ(T ) with

(λ̃) |λ(t, ω)| ≤Mλ(T )

for all t ∈ R+,ω ∈ Ω.

Remark 3.5.3:

Let σ be such,that for all t ≥ 0

1[ 0,t ]σ(·, x) ∈ B([ 0, t ]) , t ∈ R+ , x ∈ R

holds true.Then f:R+ × Ω×R → R given by

f(t, ω, x) := σ(t, x)
x∫
0

σ(t, z) dz + λ(t, ω)σ(t, x) , (t, ω, x) ∈ R+ × Ω×R

is progressively measurable.

Proof:
The proof works in the same manner as the one of 3.4.1.

As in section 3.4(cf. 3.4.2) σ fulfills (L1),(L2),whereas f fulfills (PG) with ex-
ponent 1 and (LG),where one can replace t ∈ [ 0, T ] by t ∈ R+ and cσ(T ) resp.
cf (T ) by cσ resp. cf .

Theorem 3.5.4:

Given σ,λ with (σ̃i);i=1,2;(λ̃) and σ having the additional property from 3.5.3,there
exists a solution r of the modified Heath-Jarrow-Morton equation

rt = S̄(t)h+
t∫
0

S̄(t− s)F (s, ·, rs) ds+
t∫
0

S̄(t− s)Σ(s, rs) dW (s)

for t ≥ 0 and all deterministic h ∈ L2
ρ,s.t. there is a positive constant c(q,T,c(ρ),cσ(T ),Mλ(T ))

for all q > 2 and all T > 0,which is depending on q,T,Ū ,σ and λ with

sup
t∈[ 0,T ]

E||rt||qρ,2 ≤ c(q, T, c(ρ), cσ(T ),Mλ(T ))(1 + ||h||qρ,2)

Proof:
As in the proof of 2.3.2 define for N,M∈ N mappings
fN ,fN,M :R+ × Ω×R → R by

fN (t, ω, x) := f(t, ω, x) ∨ (−N) ; t ≥ 0 , ω ∈ Ω , x ∈ R+

and

fN,M (t, ω, x) := inf
u∈R

(fN (t, ω, u) +M |x− u|) ; t ≥ 0 , ω ∈ Ω , x ∈ R+
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Again the fN,M fulfill (L1),(L2).
Analogously to the proof of 2.2.9 one has continuity and predictability of

t∫
0

S̄(t− s)FN,M (s, ·, Z(s)) ds

for all t ≥ 0,if Z is a L2
ρ-valued predictable process with

sup
r≥0

E||Z(r)||2ρ,2 <∞

since

E
∣∣∣∣∣∣∣∣ t∫

0

S̄(t− s)FN,M (s, ·, Z(s)) ds
∣∣∣∣∣∣∣∣

ρ,2

≤ c(ρ)E
∣∣∣∣∣∣∣∣ t∫

0

FN,M (s, ·, Z(s)) ds
∣∣∣∣∣∣∣∣

ρ,2

≤ c(c(ρ), cf (N,M))
t∫
0

(1 + E||Z(s)||ρ,2) ds

≤ c(c(ρ), cf (N,M)) t
(

1 + sup
r≥0

E||Z(r)||ρ,2

)
< ∞

holds true,as a consequence of which the Bochner-integral is welldefined.Considering
K1 from the proof of 2.2.7 for processes Z ∈ C([ 0, T ];L2([ 0, T ] × Ω;L2

ρ)) one
gets for arbitrary T > 0:

||K1(Z)||2C([ 0,T ];L2
ρ)(2) = sup

t∈[ 0,T ]

E||K1(Z)(t)||2ρ,2

= sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

S̄(t− s)FN,M (s, ·, Z(s)) ds
∣∣∣∣∣∣∣∣2

ρ,2

≤ c2(ρ)E
T∫
0

||FN,M (s, ·, Z(s))||2ρ,2 ds

≤ c2(ρ)E
T∫
0

cf (N,M)2(1 + ||Z(s)||2ρ,2) ds

≤ T c(c(ρ), cf (N,M))

(
1 + sup

t∈[ 0,T ]

E||Z(t)||2ρ,2

)
= T c(c(ρ), cf (N,M))(1 + ||Z||2C([ 0,T ];L2

ρ)(2))

So K1 is a mapping from C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)) onto itself.

K2 from the proof of 2.2.7(i) maps processes Z
from C([ 0, T ];L2([ 0, T ]×Ω;L2

ρ)) to C([ 0, T ];L2([ 0, T ]×Ω;L2
ρ)),if these have

property 2.2.3(ii),as one has analogously to the proof there:

||K2(Z)||2C([ 0,T ];L2
ρ)(2) ≤ E

t∫
0

||U(t, s)Σ(s, Z(s))||2L2
ds

≤ T c(c(ρ), cσ)
(

1 +
t∫
0

E||Z(s)||2ρ,2 ds

)
≤ T (1 + T ) c(c(ρ), cσ)

(
1 + sup

t∈[ 0,T ]

E||Z(t)||2ρ,2

)
= T (1 + T )c(c(ρ), cσ)(1 + ||Z||2C([ 0,T ];L2

ρ)(2))

Given processes X,Y with 2.2.3(ii) one gets:
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||K(X)−K(Y )||2C([ 0,T ];L2
ρ)(2) ≤ 2

(
||K1(X)−K1(Y )||2C([ 0,T ];L2

ρ)(2)

+||K2(X)−K2(Y )||2C([ 0,T ];L2
ρ)(2)

)
=: 2(I1 + I2)

with estimates

I1 ≤ c2(ρ) sup
t∈[ 0,T ]

E
t∫
0

||FN,M (s, ·, X(s))− FN,M (s, ·, Y (s))||2ρ,2 ds

≤ c2(ρ) c2f (N,M) sup
t∈[ 0,T ]

E
t∫
0

||X(s)− Y (s)||2ρ,2 ds

≤ Tc(c(ρ), cf (N,M)) sup
t∈[ 0,T ]

E||X(t)− Y (t)||2ρ,2

= T c(c(ρ), cf (N,M))||X − Y ||2C([ 0,T ];L2
ρ)(2)

I2 ≤ c(c(ρ), cσ)
(

t∫
0

E||X(s)− Y (s)||2ρ,2 ds

)
≤ T c(c(ρ), cσ)

(
sup

t∈[ 0,T ]

E||X(t)− Y (t)||2ρ,2

)
= T c(c(ρ), cσ)||X − Y ||2C([ 0,T ];L2

ρ)(2)

Thus one has the existence of a unique fixpoint X of K with

K(Z)(t) = S̄(t)ξ +K1(Z)(t) +K2(Z)(t)

in C([ 0, T ];L2([ 0, T ]× Ω;L2
ρ)) for stochastic ξ in L2

ρ with a fixed T > 0,s.t.

T < 1
c(c(ρ),cf (N,M))+c(c(ρ),cσ)

holds true.Analogously one gets a unique fixpoint on [ 0, T ] by setting
ξ := X(T ),s.t. one has a fixpoint on [ 0, 2T ].Due to the T-independence of the
constants c(...) in the estimates one can repeat this procedure infinitely many
times and thus get a fixpoint on R+,which is unique up to modifications and
fulfills 2.2.3(ii)(with γ = 0 (nuclear case)) for all T > 0.As it was shown in
the proof of 2.2.7(i) there is even a pathwise unique,continuous fixpoint,which
corresponds to a solution of the wanted equation.Analogously to the proof of
2.2.7(i) (i) and (iv) from 2.2.3 hold true with T = ∞.Denote this solution by
rN,M .

For fixed T > 0 and ξ with

E||ξ||qρ,2 <∞

one gets by the above estimates:

109



E||rN,M
t ||qρ,2 ≤ c(q)

(
E||S̄(t)ξ||qρ,2 + E

∣∣∣∣∣∣∣∣ t∫
0

S̄(t− s)F (s, ·, rN,M
s ) ds

∣∣∣∣∣∣∣∣q
ρ,2

+E
∣∣∣∣∣∣∣∣ t∫

0

S̄(t− s)Σ(s, rN,M
s ) dW (s)

∣∣∣∣∣∣∣∣q
ρ,2

)
≤ c(q, c(ρ))E||ξ||qρ,2

+c(q, T, C, cf , cσ)
(

1 +
t∫
0

E||rN ;M
s ||qρ,2 ds

)
≤ c(q, T, c(ρ), cf (N,M), cσ)(1 + E||ξ||qρ,2)

+c(q, T, c(ρ), cf (N,M), cσ)
t∫
0

E||rN,M
s ||qρ,2 ds

for all t ∈ [ 0, T ],s.t. Gronwall‘s lemma implies the wanted estimate for rN,M .
In the same manner one gets existence of rN,M and r̄0,M defined analogously
to the proof of 2.3.2.
In order to have a comparison between these processes,one needs a comparison
theorem like 2.2.11.
Consider the procedure from section 2.2.
The estimates in the proof of 2.2.12 show,that the corresponding estimates in
the new situation are such,that the considered processes are defined on R+,s.t.
completely analogous to the proof of 2.2.12 one first gets a version on [ 0, T ],then
on [ 0, 2T ] and inductively on R+.Due to the T-independence of the constants
belonging to Ū ,f and σ the proof of 2.2.13 also works in the new situation,s.t.
one has a comparison result like 2.2.11 with t ≥ 0 instead of t ∈ [ 0, T ].

Defining r̄0,M ;M ∈ N;analogously to the proof of 2.3.2 (L1),(L2) for σ and
fN,M with time-independent constants cσ and cf (N,M) for all N,M∈ N im-
plies for t ∈ [ 0, T ] with T > 0 arbitrary

E||r̄0,M
t ||qρ,2 ≤ Ĩ(1)(t) + Ĩ

((2)
M (t) + Ĩ

(3)
M (t)

where the terms are defined as follows:

Ĩ(1)(t) := c(q)E||S̄(t)ξ||qρ,2 ≤ c(q, c(ρ))E||ξ||qρ,2

Ĩ
(2)
M (t) := c(q)E

∣∣∣∣∣∣∣∣ t∫
0

S̄(t− s)F0,M (s, ·, r̄0,M
s ) ds

∣∣∣∣∣∣∣∣q
ρ,2

≤ c(q, c(ρ))E
t∫
0

||h̄(r̄0,M
s )||qρ,2 ds

≤ c(q, c(ρ), cf )E
t∫
0

[ ∫
R+

[
(1 + (r̄0,M

s (y))2)1r̄0,M
s (y)>0(s, y)

+(1 + V 2(s, y))1r̄0,M
s (y)<0(s, y)

]
µρ(dy)

] q
2
ds

≤ c(q, T, c(ρ), cf , cσ)
(

1 +
t∫
0

E||r̄0,M
s ||qρ,2 ds

)
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Ĩ
(3)
M (t) := c(q)E

∣∣∣∣∣∣∣∣ t∫
0

S̄(t− s)Σ(s, r̄0,M
s ) dW (s)

∣∣∣∣∣∣∣∣q
ρ,2

≤ c(q, c(ρ))
t∫
0

E||σ(s, r̄0,M
s )||qρ,2 ds

≤ c(q, T, c(ρ), cσ)
(

1 +
t∫
0

E||r̄0,M
s ||qρ,2 ds

)
The procedure in the estimates is the same as in the proof of 2.3.2(i) except for
the fact that there is no γ-dependence of the constant belonging to Ĩ

(3)
M ,since

γ = 0 in the nuclear case.
Thus for arbitrary T > 0 and t ∈ [ 0, T ]

E||r̄0,M
t ||qρ,2 ≤ c(q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

+c(q, T, c(ρ), cf , cσ)
t∫
0

E||r̄0,M
s ||qρ,2 ds

s.t. Gronwall‘s lemma implies

sup
t∈[ 0,T ]

E||r̄0,M
t ||qρ,2 ≤ c(q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

for arbitrary T > 0 and by the M-independence of the constant

sup
t∈[ 0,T ]

M∈N

E||r̄0,M
t ||qρ,2 ≤ c(q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

holds true as well.Defining rN,M ,N,M∈ N,analogously to the proof of 2.3.2 one
gets

sup
t∈[ 0,T ]

M∈N

E||rN,M
t ||qρ,2 ≤ c(N, q, t, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

and by the comparison theorem one gets an estimate of that kind for rN,M

and arbitrary T > 0.

As in the proof of 2.3.2(i) there are processes rN ,r̄ and rN with

rN
t ≤ rN

t ≤ r̄t P-a.s.,t ∈ [ 0, T ]

rN
t ≤ V (t) ≤ r̄(t) P-a.s.,t ∈ [ 0, T ]

for all N ∈ N with the following properties:

lim
M→∞

T∫
0

E||rN ;M
t − rN

t ||
q
ρ,2 dt = 0

lim
M→∞

T∫
0

E||r̄0,M
t − r̄t||qρ,2 dt = 0

lim
M→∞

T∫
0

E||rN,M
t − rN

t ||
q
ρ,2 dt = 0

for arbitrary T > 0.For such T > 0 one has analogously to the proof of 2.3.2
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E||rN
t ||

q
ρ,2 ≤ c(N, q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2),t ∈ [ 0, T ]

Furthermore rN solves Eq.(h,FN ,Σ) in the sense of 2.2.3 for this and thus for
all T > 0 and (rN

t )t≥0 exists for all N ∈ N,since except T all constants are
time-independent.
As in the proof of 2.3.2(i) one gets

E||rN
t ||

q
ρ,2 ≤ c(q)(I(1)(t) + I

(2)
N (t) + I

(3)
N (t))

for arbitrary t ∈ [ 0, T ] with T > 0 and

sup
t∈[ 0,T ]

I(1)(t) := sup
t∈[ 0,T ]

E||S̄(t)ξ−||qρ,2 ≤ c(q, c(ρ))E||ξ||qρ,2

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

S̄(t− s)F−N (s, ·, rN
s ) ds

∣∣∣∣∣∣∣∣q
ρ,2

≤ c(q, c(ρ))
t∫
0

E||F−N (s, ·, rN
s )||qρ,2 ds

≤ c(q, c(ρ))
t∫
0

E||g(rN
s )||qρ,2 ds

≤ c(q, T, c(ρ), cf )
(

1 +
t∫
0

E||rN
s ||

q
ρ,2 ds

)
I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

S̄(t− s)Σ(s, rN
s ) dW (s)

∣∣∣∣∣∣∣∣q
ρ,2

≤ c(q, c(ρ))
t∫
0

E||σ(s, rN
s )||qρ,2 ds

≤ c(q, T, c(ρ), cσ)
(

1 +
t∫
0

E||rN
s ||

q
ρ,2 ds

)
Then Gronwall‘s lemma leads to

sup
t∈[ 0,T ]

E||rN
t ||

q
ρ,2 ≤ c(q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

Completely analogous to the proof of 2.3.2(i) one defines a process r solving
Eq.(ξ,F,Σ) in the sense of 2.2.3 for arbitrary T > 0 and,since all constants ex-
cept T are time-independent,one even has existence of r = (rt)t≥0.
Since γ = 0 in the nuclear case the estimate for the solution process X in the
proof of 2.3.2(i) implies

sup
t∈[ 0,T ]

E||rt||qρ,2 ≤ c(q, T, c(ρ), cf , cσ)(1 + E||ξ||qρ,2)

for all T > 0.Thus by replacing the stochastic initial condition ξ by the de-
terministic initial condition h ∈ L2

ρ the proof is finished.
q.e.d.

As a conclusion one can say,that the spaces L2
ρ are not that appropriate for con-

sidering existence questions in the Heath-Jarrow-Morton model as the spaces
Hw resp. H0

w from [Te],since the properties of the shift-semigroup are such,that
they only allow the existence of a solution (rt)t∈[ 0,T ] for fixed T > 0 and not
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for a solution (rt)t≥0.

For the modified Heath-Jarrow-Morton equation described in this section there
exists a solution (rt)t≥0,if the conditions for f and σ are T-independent.
Here the shift-semigroup was modified by adding a dampening factor,which be-
comes larger with growing time.
With rt(x) denoting the rate one can contract for in t for a bond with start
in t+x and payoff an infinitesimal unit later the modification means,that the
promised rate is in comparison to the model in [HeJaMo] dampened the stronger
the larger the time t,when the contract is made,is,i.e. with raising t the writers
of the contracts become more carefully with their offered contracts,which for a
single writer could be interpreted as a sinking risk affinity with growing age.

(ii) The existence and uniqueness claim in [AsMa]

What is interesting about the result in [AsMa] is,that it is an existence (and
uniqueness) result with a non-Lipschitzian drift.As it was already mentioned in
chapter 2,Assing and Manthey show their result on spaces Lp

ρ with
p := max(2, ν).But they show the existence of a solution to the equation

u(t) = T (t)ξ +
t∫
0

T (t− s)F (u(s)) ds+
t∫
0

T (t− s)Σ(u(s)) dW (s) , t ≥ 0

where the semigroup (Tt)t≥0 is given by

[T (t)u](x) :=
∫

Rd

G(t, x− y)u(y) dy

:=
∫

Rd

(4λπt)−
d
2 exp− |x−y|2

4λπ u(y) dy , t ≥ 0 (3.19)

and f defining F fulfills the conditions

(f1) |f(x)− f(y)| ≤ cf |x− y|(1 + |x|ν−1 + |y|ν−1) , x, y ∈ R , cf > 0

which implies (PG) with exponent ν (cf.[AsMa],section 2,remark 1(c),p.241),and

(f2) uf(u) ≤ κ(1 + |u|2) , u ∈ R , κ > 0

(cf.section 2,theorem 1,p.240/241 there).

Further more remark 1(c) from [AsMa] tells that condition (f1) goes back to
[Ma] and ensures pathwise uniqueness.
But considering the proof of the uniqueness result from [Ma] it strikes,that one
estimates by (f1) in the following way there:
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E1t≤τN
(u(t, x)− v(t, x))2 ≤ c(N,K, ν)

((
t∫
0

∫
Rd

G(t− s, x− y)l2ν−2(y) dy ds

)

∗

(
t∫
0

∫
Rd

G(t− s, x− y)1s≤τN
|u(s, y)− v(s, y)| dy ds

)

+E1t≤τN

[
t∫
0

∫
Rd

G(t− s, x− y)(σ(u(s, y))− σ(v(s, y))) dW (s, y)

]2


Here l is given by(cf.[Ma],section 4.3,p.32)

l(x) = 1 + |x|n , x ∈ Rd for a n ∈ N

τN := inf
t∈[ 0,T ]

(|u(t, ·)|ν−1
l + |v(t, ·)|ν−1

l > N),inf ∅ := T ,N ∈ N

with | · |l defined by(cf. [Ma],chapter 1,p.17)

|ϕ|l := sup
x∈Rd

l−1(x)ϕ(x)

In order to have this estimate one needs

t∫
0

∫
Rd

G(t− s, x− y)l2ν−2(y) dy ds <∞

for arbitrary x ∈ Rd.I.e. the proof can only work if the semigroup is of type
(3.19).
Since both the shift-semigroup and S̄ are not of this type,the uniqueness result
from [AsMa] is not applicable to the situation of the general resp. modified
Heath-Jarrow-Morton equation.
Concluding the above considerations one can say,that in the case considered in
[AsMa] there is a unique solution,but for the uniqueness results one needs a
condition for f,which is stronger than (PG),and a dissipativity condition.

Considering the general suitability of the spaces Lp
ρ one can say the follow-

ing:
By (3.15) resp. (3.16) one gets in some sense restrictions to the absolute value
of rt(x) := f̄(t, t + x),x ∈ R+.Noting that rt(x) denotes the rate from time t
onwards to time t+x,this restriction makes sense,as one can not get arbitrarily
rich within a fixed time-window,here the one from t to t+x.
Note that in L2

ρ,since the dampening given by µρ is the stronger the larger x
is,functions f with f(x) < f(y) for x < y are preferred,which makes sense,since
the interpretation for rt(x) > rt(y) for x < y would be,that between t and t+x
one can contract for a higher rate than between t and t+y,as a consequence of
which there would be negative spot rates between t+x and t+y,which is not
part of the Heath-Jarrow-Morton model.
So in general the spaces Lp

ρ are suitable as state space for the Heath-Jarrow-
Morton model.

114



Bibliography

[AsMa] S.Assing,R.Manthey(2003)
Invariant measures for stochastic heat equations
Stochastics and Stochastics Reports, Vol.66,pp.243–256

[Ba] H.Bauer(2002)
Wahrscheinlichkeitstheorie
5 th edition,W.de Gruyter

[CuPr] R.F.Curtain,A.J.Pritchard(1978)
Infinite dimensional linear system theory
Lecture Notes in Control and Information Sciences
8 th edition,Springer

[DPZa92] G.Da Prato,J.Zabczyk(1992)
Stochastic equations in infinite dimensions
Cambridge University Press,Cambridge

[DPZa96] G.Da Prato,J.Zabczyk(1996)
Ergodicity for infinite dimensional systems
Cambridge University Press,Cambridge

[Fi] D.Fillipovic(2001)
Consistency problems for Heath-Jarrow-Morton interest rate models
Lecture Notes in Mathematics,Volume 1760,Springer

[HaPl] J.M.Harrison,S.R.Pliska(1981)
Martingales and stochastic integrals in the theory of continuous trading
Stochastic Processes and their Applications,Volume 11,pp.215–260

115



[HeJaMo] D.Heath,R.Jarrow,A.Morton(1992)
Bond pricing structure of interest rates:
A new methodology for contingent claim valuation;
Econometrica,Volume 60(1),pp.77–105

[KaSh] I.Karatzas,S.Shreve(1991)
Brownian motion and stochastic calculus
2nd edition,Springer

[Ma] R.Manthey(2001)
The long-time behaviour of the solutions to semilinear stochastic partial
differential equations on the whole space
Mathematica Bohemica,Volume 126(1),pp.15–39

[MaSt] R.Manthey,C.Stiewe(1992)
Existence and uniqueness of solutions to
Volterras population equation with diffusion and noise
Stochastics and Stochastics Reports,Volume 41,pp.135–161

[MaZa] R.Manthey,T.Zausinger(1999)
Stochastic evolution equations in L2ν

ρ

Stochastics and Stochastics Reports,Volume 66,pp.37–85

[OsPe] R.Oszepian,A.Pelczyinski(1975)
On the existence of a fundamental total biorthogonal
sequence in every separable Banach space and related constructions
of uniformly bounded orthonormal systems in L2

Studia Mathematica LIV,pp.149–159

[Se] J.Seidler(1993)
Da Prato-Zabczyk‘s maximal inequality revisited I;
Mathematica Bohemica,Volume 118,pp.67–106

[Te] M.Tehranchi(2005)
A note on invariant measures for HJM models;
Finance and Stochastics,Volume 9(3),pp.389–398

116


