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Chapter 1

Introduction

1.1 Aims of the diploma thesis

This diploma thesis has got two aims.

These are to confirm the theory introduced by Manthey and Zausinger in [MaZa)
for functions defined on © = R% with d € N(more detailed than in [MaZa]) and
to apply the results received in chapter 2 to the case described by Heath,Jarrow
and Morton in [HeJaMol(cf.chapter 7,proposition 4,p.93 there)(cf.chapter 3).

So chapter 2 is concerned about the theory proposed by Manthey and Zausinger
in [MaZa].

After repeating some properties of Hilbert spaces from [DPZa92] in section
2.1,the procedure is the same as in Manthey‘s and Zausinger‘s paper,i.e. one
defines spaces L2(©) with p > d for d € N and spaces L2V(0) with v € N
analogously to [MaZa](cf. the list of notations in section 1.2),s.t. L2(0) is a
separable Hilbert space.Then the results from chapter 2 and sections 3.1-3.3 in
[MaZal(cf. pp.40—69 there) are shown in the given situation.

First it is shown that the stochastic convolution

U(t,s)X(s, X (s))dW(s)

o &

is welldefined for a Q-Wienerprocess W on L?(0) with an operator Q as de-
scribed in chapter 2,a mapping

2:(0,T] x L2(0) — L(Q>L*(©), LZ(6))
defined by
(Xt P)¢) () = o(t, ()¢ (2),r € ©
for 0:[0,T] x R — R with (L1),(L2) and an almost strong evolution opera-
tor U(cf. section 1.3) under certain conditions to X.Theorem 2.2.4 shows the

existence of a continuous version of the stochastic convolution under certain
restrictions to U,which will be described in chapter 2.



Da Prato‘s and Zabczyk‘s theory then leads to the existence of a pathwise unique
solution in the sense of [MaZal(cf. section 2.2.,definition 2.2.3 in the following)
for an w-dependent,progressively measurable drift F s.t. both the drift and the
volatility are Lipschitzian.There is even,under additional assumptions on U with
initial condition & € L2%(©),a pathwise unique solution,which is P-almost surely
in L2%(©) C L2(©) for certain x € N.

Furthermore there is an estimate for the expectation of X depending on the
expectation of £ in Li(@) resp. Li"(@),which Manthey and Zausinger do not
show in their paper(cf.theorem 2.2.7).

The comparison theorem 3.3.1(ii) for w-dependent drifts from [MaZa](cf. sec-
tion 3.3,p.61 there) holds true in L2(©) as well(cf.theorem 2.2.11).

Having these preparations section 2.3 shows the existence of a solution in case
of a non-Lipschitzian function f defining the drift w-wisely by

F(t,w,¢)(z) = f(t,w, o(x))t € [0,T]p € L}(©)x €O

if f fulfills properties (PG) with exponent v € N and (LG)(cf.section 1.3) and if
the initial condition £ is appropriate.

Furthermore there is again an estimate for the expectation of the solution de-
pending on the expectation of the initial condition.(cf.theorem 2.3.2).

At the end of chapter 2 existence results in spaces Lg(@),which are considered in
[AsMal](cf. section 2,theorem 1,p.241 there),are shown with f having the above
mentioned properties instead of those mentioned in [AsMal.

Summarizing the results of chapter 2 one has

1. existencetof a solution to the SDE .
X(t):= [U(t,8)F(s,w,X(s))ds+ [U(t,s)X(s, X (s)) dW (s),t € [0,T]
0

0
with f defining F' as above being non-Lipschitzian and,in contrast to sec-
tion 3.4 from [MaZa],w-dependent.

2. existence of a solution to the above mentioned SDE in weighted LP-spaces
with p defined analogously to [AsMal].

3. estimates for the solutions,that Manthey and Zausinger do not make in
their paper.

The second aim and content of chapter 3 is the application of the result re-
ceived in chapter 2 to the model described by Heath,Jarrow and Morton in
[HeJaMol](cf.chapter 7,proposition 4,p.93 there).

In order to reach this aim there is first of all an introduction into the theory of
markets with bonds and one riskless asset based on [HaPl](cf.chapter 3,pp.232-
242 there) in section 3.1 and a repetition of the terms and conditions introduced
in [HeJaMo] in section 3.2.

In particular the following holds for f(t,T),which is the rate one can receive
from t € [0,7] up to T € [0, 7] with 7 > O:



ft,T)— f(0,T) = ga(s,T,w)ds

1
for all T € [0,7],t € [0,T] with f(0,-),0,0,,n = 1,2,...,k as in condition
(C1)(cf. section 3.2).

Under certain conditions absence of arbitrage is equivalent to

alt,T)=— Ek:l on(t,T) <)\n(t) - fan(t, s) ds)
n= t
for A\p:[0,7T] x Q — R given by
An(t) :=yn(t; S1,52,...,5),0 < S < Sy < ... < S <7 arbitrary
with 7, as in condition (C4)(cf.section 3.2).
In [HeJaMol(cf. chapter 7,p.93 there) there is a result telling that given

An:[0,7] x 2 — R and bounded,nonnegative o,,: S x R — R,
n =12 ... k(with T and k as above,St as in section 1.2),all Lipschitzian on

R there is a uniformly measurable family (f(¢,T)):e[o,r] of processes with

0 n=1 s

ft,T)— f(0,T) = j— i on(s, T, f(5,T)) <)\n(s) — }jan(s,y,f(s,y))dy> ds

kot -
+ > [ou(s, T, f(s,T)) dwy(s)
n=10
where w,, are real-valued Brownian motions on [0,T].
Using the time-homogeneity assumption

O—n(ta S1, ) = Un(t7 52, )

for all t € [0,7],81,82 € [t,T],n = 1,2,...,k,one gets with the shift-semigroup
(S(t))i>0 on R given by

[S(t)h](x) :=h(xz+1t) (1.1)
for all £ > 0,2 € R and all functions h defined on R and with
re = f(t,t+-) (1.2)
the so-called Heath-Jarrow-Morton equation
¢ t
re=8St)ro+ [ St —s)F(s,w,rs)ds+ [ St —v)E(s,rs) dW (s)
0 0

for all ¢ > 0,where f belonging to F is defined by



flomm) = ((()2)96)4')\0( x)
ga( 2)dz + Mo(-,z) (1.3)

forall z € Ry.

In order to apply the results of chapter 2 one has to show that the shift-
semigroup

[S(t)el(z) =@z +1t),p € L2(O),z € O,t >0

leads to an almost strong evolution operator in the sense of [MaZa],which has
got the properties needed in chapter 2.

Section 3.3 shows the applicability of the theory in the nuclear case,since there
it is shown that the evolution operator defined by U(t,s):=S(t-s) fulfills the con-
ditions needed in chapter 2.
Unfortunately it seems to be impossible to apply the results from chapter 2
in the cylindrical case,s.t. from section 3.3 onwards the results are always re-
stricted to the nuclear case.

The application of chapter 2 in the nuclear case with d = 1 shows existence of
a solution to the Heath-Jarrow-Morton equation.One can give up the nonnega-
tivity assumption on o from proposition 4 in [HeJaMo] and still get a solution
of the Heath-Jarrow-Morton equation.In order to show this one even does not
need the full strength of the theory,so it is possible to extend the framework
and allow to have a function A defined on [0,7] x Q x R, comparably to the
situation in definition 4 in [Te](cf.section 2.2,p.4 there).

A being progressively measurable with property (PG) with v = 1 is enough to
have the existence of a solution to the Heath-Jarrow-Morton equation,whereas
in case of an exponent v > 1 nonnegativity of o and a property similar to (LG)
for f are needed to have the existence of a solution.

In section 3.5 the differences to the results from [Te] and [AsMa] are described,and
it is shown that in case of functions

AR x QxR —-R
Ry xR—=R

s.t. the conditions from section 3.4 hold with a constant,which is indepen-
dent of t and w,and of a modified semigroup S given by

St):=e"tSt),t>0
there exists a solution r of
_ t_ t
re=St)ro+ [ St —s)F(s,w,rs)ds+ [ S(t—s)E(s,rs)dW(s), t >0
0 0

in the sense that in 2.2.3 condition (ii) holds for arbitrary T' > 0 and t € [0,T'] is
replaced by ¢ > 0 in 2.2.3(i) and (iv).The estimates shown before still hold,when



fixing an arbitrary 7" > 0.

Furthermore section 3.5 describes in how far there are restrictions to the rate
caused by the definition of spaces in [MaZa] and [AsMa] resp. in [Fi] and [Te]
and in how far these restrictions make sense due to the economic interpretation.

Summarizing one can say,that the theory developed in [MaZa] allows for the
following improvements of proposition 4 from [HeJaMo]:

1. Tt is allowed to give up the nonnegativity-assumption on ¢ as in the orig-
inal Heath-Jarrow-Morton model(cf. condition (C1) in section 3.1)

2. One has existence even with A being of the form

X[0,T]xOxR—R



1.2 List of notations

The following overview over the notation used in the following chapters is given
to finish the introduction:

Let © be a subspace of R? for d € N.

CLO):={p:(6,B(0)) — (R,B(0)) | ¢ is continuously differentiable with compact support}
L3(©) = {ga :(0,B(0)) — ) | fap )dx < oo}

13(0) = {1+ 0.5(0) — (R.B(R) | [ 1) yfie) < x|

with N 3 p > dy,(x) := (14 |2[>)7 %] - | euclidian norm in R?

L(B,K):={T: B — K |T is bounded and linear} ,
where B and K are Banach spaces.

L(K) = L(K,K)

Lo(B,K):={T:B — K | T is a Hilbert-Schmidt operator} ,
where B and K are Hilbert spaces.

Lo(K) = Lo(K, K)

14(0) = {1+ (0.5(6)) — (R.BR) | [ (o) () < o0
for p € N with norm || - ||p7p given by

pp (flw )P b ( dx))p

[l

LP([0,T] x Q;B) :=={ f:[0,T] xQ — B | Ef\|f(t)||%dt< 0
0

for a probability space (Q,F,P) with expectation E under P,a Banach space B
and fixed T' > 0 with norm given by

1

P

T
e = (Eoflf(t)ll?gdt> f € LP([0,T] x 2 B)
Sri={(s5,t) |0<s<t<T}, T>0

Let C([0,T]; LP([0,T] x §; B)) denote the following set

{¢:([0,T] xQ,Pr) — (B,B(B)) | ¢ € LP([0,T] x §; B)is time-continuous}
with p € N,where Pr is the o-algebra of predictable sets on [0,T'] with T > 0
and B is a Banach space.Let the norm on this space be given by

1 Xleo,r1:8) (pa) = ( S[%IOT]EHX O X € C([0,T]; LP([0,T] x ; B);
for p, ¢ € N,write || - ||co,7):8)(0) = || - llc(o,71:B)(pp) P €N



1.3 Notations from [MaZa]

Let B be a Banach space and T' > 0 fixed:
A family U=U(t, $)(s,t)es, Of operators from B onto itself is called an almost
strong evolution operator,if

(i) U(t,t)=I,te[0,T]
(ii) U(t,r)U(r,8)=U(t,s) ,0<s<r<t<T

(iii) U(-,8) is strongly continuous on [s,T'], U(t,) is strongly continuous on
[0,¢] and

sup ||U(¢, s)|| < e(T) < o0
(s,t)EST

holds true with the usual operator norm || - || .

(iv) there exists a closed linear operator A(t) on B for almost all ¢t € [0, T ],s.t.
U(t,s):D(A(s)) — D(A(t)) holds for all ¢ > s and

t
JA@U(r,s)pdr = (U(t,s) — )¢
holds for ¢ € Dy s(A) :={p € B|U(r,s)p € D(A(r)),s <r < t}.
Analogously to the theory of one-parameter semigroups (A(t))ic[o,7] is called

the generator of U.If (iv) even holds for all t € [0,7],U is called a strong
evolution operator.

Let A:[0,T] x R — R with a fixed T > 0.Take over the following notations
from Manthey‘s and Zausinger‘s paper(confer pp.42,44-46,54+69 there):

(L1) There is an L(T) > 0,s.t.
[A(t, ) — At y)| < L(T)|x -y

holds true for all (t,x,y)€ [0,T] x R x R.

(L2) There is an L(T) > 0,s.t.

[A(,0)] < L(T)



holds true for all t€ [0,T'].

(PG) There exists a constant c (T) > 0,s.t.
(At 2)] < ea(T)(1 + [z[),x € R

holds true for all ¢ € [0,T].

(LG) There exists a nonnegative constant ca (7'),s.t.

At, )
At z)

—ea(M)(1—z),x <0

> —CA
<a(T(l+z)z=>0

holds true for all t€ [0,T'].



Chapter 2

Stochastic evolution
equations in weighted
LP-spaces

For this chapter fix an arbitrary T > 0.

2.1 Some results on Hilbert spaces

During this section let Y,H be separable Hilbert spaces and let Q be an operator
in L(Y) defined by

Qyn = AnYn

for an orthonormal basis (y,)nen of Y and a sequence of nonnegative num-
bers a,,.

1
Define a Hilbert space ) := Q2Y by

Q%yn =4/ 0nYn
with the inner product given by

< 9071/} >y:: Z a:Ll <@, Yn >y < 7/17?Jn >y

neN
an#0

where < -,- >y denotes the inner product in Y.

Let (©2,F,P) be a probability space with a filtration (F;):c[o,r] and let (wp)nen
be an independent family of real-valued Brownian motions.

Furthermore let W be the corresponding Q-Wienerprocess,i.e. W is given by

W(t):= 5 Vagwa(tyn . t € [0,T]

neN
First of all consider a result from [DPZa92] in order to construct stochastic

10



integrals.
Definition 2.1.1:(cf.[DPZa92],section 4.2;pp.90,91;equations (4.6),(4.10))

A L5(Y, H)-valued process (®(t))tcjo,r) is called an elementary process,if
given a partition

O=th<ti<to<...<tp =T
of [0,T],L£(Y, H)-valued random variables there exist
@07 (blv ) ¢k‘71

with finitely many values,s.t. each ®,, is measurable w.r.t. the o-algebra F;
and

k-1
1) = 3 Pl 1) (1)

is fulfilled.
Given such a process the stochastic integral is defined by

f@(s) AV (s) = 'S B (W (tmin M) — Wt A1)
0

m=0
and the so-called Ito-isometry

2

t t
E OfCID(s) aw(s)|| = E{ ()2, (v, 1) ds
where || - |[z,(y,m) denotes the Hilbert-Schmidt norm,holds for all elementary

L5(Y, H)-valued processes (®(t)).e[o,r] and all t € [0,T'].
Lemma 2.1.2:(cf. [DPZa92],section 4.2,proposition 4.7(ii),p.93)

If @ is a Lo(Y, H)-valued,predictable process with

T
E{ ||¢)(5)||%2(y,H) ds < o0

there exists a sequence of elementary processes (®,,)neN,s.t.

n—oo

T
lim E{ 12(s) = P (8)lZ,(y 4y ds =0

holds true.Then one defines the stochastic integral belonging to ® as the H-
limit of the stochastic integrals belonging to ®,, constructed by 2.1.1.
Obviously Ito‘s isometry holds true for this stochastic integral as well.

In their paper Manthey and Zausinger consider a special kind of two-parameter

semigroup,which they call almost strong evolution operator(For a definition of
this term consider section 1.3).Note,that in his paper [Se],which Manthey and

11



Zausinger refer to later,Seidler uses the term evolution system,which differs from
the term strong evolution operator used in the sense of Manthey and Zausinger.
According to [Se](confer section 0,condition (E),pp.68,69 there) this term is
defined on separable Hilbert spaces H differing from the definition in section
1.3(with B:=H) in (iii) and (iv).These items are replaced by

(iii)* U, )e:Sr — H
is continuous for each ¢ € H

(iv)" LUt 5)p = ADU (L, 5)p

LUt s)p = Ut 5)A)y

for all ¢ € D, 5(A)

Thus given a Hilbert space H each evolution system in the sense of [Se] is a
strong evolution operator in the sense of [MaZa],which leads to the question
whether it suffices to assume properties (iii) and (iv) from the definition given
here,in order to be able to apply the theory derived in [Se],i.e. one has to check
whether one of the conditions (iii)‘,(iv)‘ is needed for one of the results in ques-
tion from [Se].
First of all one makes use of the following factorization formula cited in [Se]:

Lemma 2.1.3:

Let 9 be a predictable L2(Y, H)-valued process and let ¢ > 2 with

T
() B J B3I, m) s < o0

Having the properties from section 1.3 and
U(-, )¢ST — Eg(y, H),(p eH

for U,where ¢ denotes the multiplication operator ) — H belonging to
¢ € H the following holds for all t € [0,7],0 < a < 3:

t .
J U, s)¥(s) AW (s) = #2F¢(Ro Za,v)(t)
0
where W is a Q-Wienerprocess and R,Z are given by
t
= [(t —s)7*U(t, s)¢(s) dW (s)
0
and
t
= [(t—s)*'U(t,s)f(s)ds
0
for each process f € LI([0,T] x Q; H) and each ¢t € [0,T'].

Proof:
In [Se] Seidler only gives a hint,how this lemma can be shown.He suggests to

12



apply the stochastic Fubini theorem to a function h defined by

h(r,s) = (t = )" (s = 1)~ *1o,5) (MU (£, 7)3)(r)

One has h(-, s) € F; for each predictable process ¢ and arbitrary s € [0, t],since
Y(r) € Fr C Fsyr < s and h(r,s) = 0z,y,a) € Fo C F hold for r > s due to
the predictability of .

Show that the following property is fulfilled:

Nl

t [T
of ({E|h(s,az)||2£2(y’m ds) dr < 0o
So:

1
2

Sy

X

o &

T
(OfEHh s, ||L2(yH)d>

(

(ZEH (t —2)* Yz - s)"U(t, S)w(S)H%Q(y,H) ds) 2 dx

N

I
o o
o

El| (t - 2)° (2 — 5)~Lj0,0)(5)U(t, )0 (5)] 2, 50 ) ds> dz

|
Nl

oty O o

(t— x)c‘_l (f(x _ S)—20¢EH U(t, s)i(s) H%z(y,H) dS) dz

0

< ¢(T) ({ to—1 dt) ({ 572 ds) (({EW(S)H(ILQ();,H) ds> < o0

where property (iii) from the definition of almost strong evolution operators
(cf. section 1.3) and Young's inequality for convolutions as well as 2a < 1
and (¥) were used in the last step.Thus the stochastic Fubini theorem from
[DPZa92](cf. section 4.6,theorem 4.18,p.109(with 1 = Lebesgue measure) there)
is applicable and leads with the help of

s
sin Ta

(t—2)* Yz —s)"da

®—

for a € [0,1)(confer f.e. [DPZa92],section 5.3,proof of theorem 5.9,p.128) to
the following:

13



U(t,s)(s)dW (s) sinro (t—x) Yz —s5)" dz] U(t,s)v(s) dW (s)

o o

(t—x)* Yz — )" U(t, 8)(s) da:} dW (s)

(#0790 (U )05) da | V)

O B

(1= 0~ = 9 L0 (U )) AV (5)]

St —z)* o —s) U, 2)U(z, s)1(s) dW(s)} dz

— sinﬂ-ﬂa jt’(t _ x)("_llj(z‘;7 Jj) <f(.13 — 8)_QU($, 5)¢(3) dW(S)> dz

= siima ;(t — ) U (t,2)Y (z) do
= @ (r,y)

In this chain of equations the stochastic Fubini theorem was used in the fourth
step,whereas the semigroup property (ii) from the definition of almost strong
evolution operators(cf. section 1.3) was used in the fifth step.Thus the claim
holds true for almost strong evolution operators as they were used in [MaZa].
q.e.d.

Remark 2.1.4:

The factorization formula for strongly continuous one-parameter semigroups
can f.e. be found in [DPZa96](cf.chapter 5,section 2,theorem 5.2.5 there).

Additionally to the factorization formula the following results concerning es-
timates of stochastic integrals in Hilbert spaces are also needed:

Theorem 2.1.5:(cf. [DPZa92],chapter 7 lemma 7.2,p.182)
Let Q be as above with the additional assumption

> an <0
neN

(the so-called nuclear case) and let W be a Q-Wienerprocess on Y.

Given an arbitrary r > 1 and an arbitrary Lo(), H)-valued,predictable process

(®(t))tejo,7),0ne has
2r o
< ¢ sup E
s€[0,t] !

E| sup
s€[0,t]
t T
C,.E ({ 19112, 3119 ds) te[0,T)

J®(e) dw(e)
0

A

o) aw(e)
0

IN

2r 272
with ¢, := (2311) Cr = (r(2r —1))" (2311) ,where || - || denotes the norm
belonging to H.

14



Proof:
Confer [DPZa92],chapter 7,section 1,p.183.

Theorem 2.1.6:(cf. [DPZa92],chapter 7 lemma 7.7,p.194)

Let Q be as above with a,, = 1 for all n € N(the so-called cylindrical case)
and let W be a Q-Wienerprocess on Y(i.e. one has ) =Y).

For each r > 1 and each arbitrary Lo(Y, H)-valued,predictable process (®(t)):efo,7]
the following holds:

s 2r t T
s B||[oEav )| < ey (Of<E||¢>(s>|zg(y,H>>rde) tef0.4]
s€|0,
Proof:

Confer [DPZa92],chapter 7 section 1,pp.194,195.

In order to finish the section a short repetition concerning integrability of ran-
dom variables:

Definition 2.1.7:(cf. [DPZa92],section 1.1,p.19)

Let B be a separable Banach space.A B-valued random variable X on a proba-
bility space (2, F,P) is called Bochner-integrable,if

S{IIX(W)IIP(dw) < o0
holds true.Then the Bochner-integral is defined by
E[|X]] 1=£{||X(w)\lp(dw)
Lemma 2.1.8:

Let B be a separable Banach space,let (X (t)).c[0,7] be a B-valued process with

T
E [||X(s)|]ds < o0
0

Then

[ X(s)ds
0

is Bochner-integrable for all ¢ € [0,T'].

Proof:
According to 2.1.7 the following is to show for arbitrary t € [0,T]:
t
J 1S X (s)ds|| Pldw) < o
Q1o

15



With the help of the assumption one gets

;X(S,w) ds

J

Q

[| X (s,w)|| dsP(dw)

Pldw)< [
Q

oy

1X (s)] ds

= E
< o0

s.t. the Bochner-integral exists.
q.e.d.

16



2.2 Preparing results on L/Q)(Rﬁlr)

Let d € N be arbitrary but fixed,let © := RY and Y := L*(0), H := L2(0)
with a fixed p > d.

Then the measure 4, defined as in section 1.2(cf. the definition of L2(©) there)
is finite on ©.In the following leave out ©,when dealing with spaces of functions
defined on ©,i.e. write L instead of L*(©) resp. L? instead of L>(©) and so on.

Remark 2.2.1:

Note that the separability of L%(Rd) mentioned by Manthey and Zausinger
implies the separability of L%,sinee one can embed this space into Lﬁ(Rd) by

p(z):=0p e L2ze R\ O

For the rest of this chapter let U be an almost strong evolution operator in
the sense of section 1.3 on L%.

In this section the results of chapter 2 and sections 3.1-3.3 from [MaZa](cf.pp.40-
56 there) are shown in the situation of © = Ri.Especially the existence of the
stochastic integral both in L2 and L2* with £ € N and fixed natural numbers
p > d is ensured.

First of all let U be an almost strong evolution operator on Li with gener-

ator (A(t))ie[o,r)-First assume the following properties,which correspond to
(A0),(A1) from [MaZal(cf. [MaZal,chapter 2,p.42):

(CD) For each t € [0,T] A(t):D(A(t)) — L2 is linear and closed with
D(A(t)) C L2.Furthermore

is dense in L%.

(PP) The almost strong evolution operator U on L% is positivity preserving in
the sense,that

©>0=U(t,s)p >0,(s,t) € Sp, pe L?

holds true.

(i) The nuclear case
Let (an)nen be a sequence of nonnegative real numbers with

> a, <o
neN

17



and let (e, )nen be an orthonormal basis of L? with e,, € L* and

sup |len||oo < 00
neN

Such an orthonormal basis exists according to [MaZa](cf. chapter 2,p.40 there)
due to [OsPe].

In complete analogy to section 2.1 one gets a Hilbert space ) := Q%(LQ) and
defines the multiplication operator ¢ belonging to ¢ € L/% in L? by

¢(¥)(z) = p(x)y(z) v € L2z €O

While regarding the nuclear case denote ﬁg()ﬂ,Li) by L2. Thus the multi-
plication operator fulfills

19lles = 3 116(Q% ()2
neN
< sup [lenl|% TrQ ¢l -
neN

where T7rQ := .y an denotes the trace of Q.
Since Y is a Hilbert space

T
JElle(s)[[52ds < o0
0

implies

T T
E [llo(s)|Z,ds < sup |len]]% TrQ [ Ello(s)]3 2 ds
0 neN 0
< o0

for a Li—valued,predictable process p,as a consequence of which the stochas-
tic integral

¢(s) dW (s)

o o

exists for all ¢ € [0,T] due to 2.1.2,2.1.3.Having o with properties (L1),(L2)
define an operator

EZ[O,T] X L% —>£2

(Bt o)) (@) =0t p@)(@), v eV, pell, z€6 (21)
and define for ¢ € [0,T]
U(t,)3:[0,t] x L2 — Ly

by setting

18



(Ut )E) (s, 0)¥) () = (U(t, 5)(X(s, 0)¥))(x) ) € L*x € ©
Then one has for all Lz-valued,predictable processes X with
T
gE||X(s)||§72 ds < o0
and for all t € [0,T']:

t t
Ebf U (t, ) (s, X (9))||Z, ds < sup Henl\ioTrQb/’EHU(taS)U(S’X(S))lﬁ,z ds
n

T
< (T, e(T),ce(T)) (1 + ofEHX(S)H%Q ds)
< o0

as a consequence of which

U(t,s)S(s, X(s)) dW (s)

o

is welldefined and the Ito-isometry implies

t 2 t
E||[U(t s)%(s, X(5)dW(s)|| =E [[|U(t s)2(s,X(5))|Z, ds
0 0,2 0
(ii) The cylindrical case
Let a, = 1 for all n € N and Qe, := ane, for all n € N,where (e,)nenN is

an orthonormal basis as in case (i).In this case denote Lo(L?, L7) by La.
With (2.1) and (L1),(L2) for o

— 1 p — 2 2
Z(taw)wEM_{hELp|h_¢(w)v SOEva ¢€L }
holds for arbitrary ¢ € L2 € L*.
Define U(t,-)¥ for ¢ € [0,T] as in the nuclear case and make the follow-

ing assumption only for the cylindrical case.This assumption is just (A2) from
[MaZa](cf. chapter 2,p.45 there):

(CC) For (s,t) € St there exists an extension of U(t,s) to M(again denoted by
U(t,s)). Furthermore there exists a v € [0,1),s.t. U(t, s)¢ € Lo and

Ut 8)8llz, < c(T)(E—s)7lell7

hold for arbitrary ¢ € L2.

Defining U(t, )X for t € [0,7] as in the nuclear case,(CC) and (L1),(L2) lead
to
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1Tt 9)D)(s, 07, < e(T)(E—5)lo(s,9)l[7 2
< oe(T),co(T))(t—5) (L +lell72) (2:2)

for ¢ € L2,(s,t) € Sp.Thus with v € [0,1) one has the following inequa-
tion for ¢ € [0,T'] and predictable processes X in Lf) with

t
sup [(t— s)‘VEHX(s)HzQ ds < oo
te[0,T]0

Eoft |U(t,5)%(s, X (5))]|7, ds < c(c(T),cU(T))Ofts"Y ds

Fe{e(T), e (T)) J‘(t ) TE|X (5)| 2, ds
< o0

So as in the nuclear case the stochastic integral

JU(t, $)3(s, X(8)) dW (s)

is welldefined for all ¢ € [0,T'].Ito's isometry and (2.2) even imply:

t 2 t
E OfU(tS)E(SaX(S))dW(S) = beH(U(tS)E)(S,X(S))H%2 ds
0,2
< c(e(T),c.(T)) Of(t —8) L+ E[[X(s)|[52) ds
Define F by

F(t,w, )(x) = f(t,w,o(x)) (2.4)

for all ¢ € D(F),z € O,(t,w) € [0,T] x Q with D(F) := L2” for a function
f fulfilling (PG) with exponent v.Thus it is necessary to have the existence of
the stochastic integral in spaces Lff with k£ € N.

In the following the results hold,if the contrary is not explicitly mentioned,both
in the nuclear and in the cylindrical case.

(So again Lo denotes Lo (Q%LQ, sz).)

There are further assumptions needed on U,which correspond to (A3),(A4) and
(A5) from [MaZa](cf. chapter 2,p.46 resp. pp.54,55 there):

(E1) For each k € N there exists a constant ¢(x,T) > 0,s.t.
UL, 8)|])" < c(w, YUt )[4

holds in L2 for each ¢ € L2 and each (s,t) € St.

(E2) For each k € N there exists a constant ¢(k,T) > 0,s.t.

20
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B/ (] £ 00 ()Q?en)zydup

< ok, o(T)) Of(t — 5)TEllp(s)| 3%, ds

holds for each L2"-valued predictable process ¢ = (¢(t))ie[o,r] consid-
ered as a process of multiplication operators.

(BA) There exists a sequence (An(t))ie[o,r) of operators with the following
properties
(i) An(t) € L(L2),t € [0,T],and

sup [[An(t)[| < ¢(N),N € N
te[0,T
(ii) For each N € N the family (An(t))e[0,7] generates an almost strong
evolution operator Uy ,which is positivity preserving and fulfills

sup |[(Un(t,s) = U(t,s)gll52 — 0
(s,t)eST

for N — oo and ¢ € L2.

(E1),(E2) for U lead to the following lemma,which is an extension of remark
2.3.(ii) from [MaZal(cf. chapter 2,p.48 there):

Lemma 2.2.2:

Let x € Nlet ¢ = (¢(t))icio,r] be a L%“—valued,predictable process with the
property

t
sup [ (t —s)VE[|p(5)[|2%, ds < oo
te[0,T] 0

Then one has

JU(t, s)p(s) dW (s) € L2°

P-almost surely for ¢ € [0,T],where ¢(s) denotes the multiplication operator
belonging to ¢(s).

Furthermore there exists a positive constant c¢(x,c(T)) depending on k and U
with

t 2K

J Ut s)p(s) dW (s)

0

E

t
T)) [(t — ) Elo(s)|[ X ds < 00 (2.5)
p,2l{ 0

and there exists a positive constant ¢(k,v,q,T,c(T)) for all

2K
q> £

s.t.
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q

)¢(s) dW (s)

t
< c(k,7,q.T,¢c(T)) [ Ellp(s)]} 2. ds  (2.6)
P2k 0
holds.

Proof:
Fix an arbitrary ¢ € [0, T ].Define a predictable process x by x(s) := U(t, s)¢(s).Then

XQ%en:Q x [0,t] — Lz

is predictable for each n € N as well. Approximating x by elementary processes
(Xm)men as in section 2.1(cf. theorem 2.1.2 there),one gets

XmQZen: Q2 x [0,t] — L2

with only finitely many values in Lf).Thus for all n,me N there exists a repre-
sentative 1/)7(7?):9 x [0,t] x © — R with limiting process

P x[0,t] x O - R

s.t. the following equations hold with the help of the definition of x:

BJ [ [(U65)0()Qe0)(@) = 17 (5.0 sy (de) ds =0 (27
EJ [(f U(t, 5)6(s) dW (s >)< (nezNofwM(s,x)dwn(s))] hp(dz) =0 (2.8)

First of all application of the Burkholder-Gundy equation,(2.7) and (E2) implies

P (5,2) duon (s >)2ﬁup<dx>

(™ (s, x))2 ds) pp(d)

S
O K
[ X (Ut 5)6(s)QFen)?(a )ds) 11, (d2)
0 neN
[ (¢ = 5 Bllp(s) [ ds < oc

Using (2.8) implies

t
J Ut 5)o(s) dW (s) = 3 f¢(") ) dwy(s)
0 neN 0
P ® p,-almost surely for arbitrary ¢ € [0,T']. The last two equations together
imply (2.5).
In case of ¢ > 127*7
¢ q ¢ PETVis
E||[U(t, s)d(s) dW(s) JU s) dW (s)
0 025K 0 0,2

22



with r:= L > > 1 for arbitrary t € [0,T'].

_1
1—y

Consider the case k = 1 first.2.1.5 resp. 2.1.6 immediately lead to

2r
E| sup
s€[0,t] 0,2

gd@EQ@wumm&mde
Sd%dT»E<£@—d‘ﬂw@)ﬁ2%>

< e(q,e(T))E ( €Tz de] ‘? L)f ()7 de} q)

=c(y,¢,T,c(T)) [ El|p(e)]|? , de

for all t € [0,T],i.e. (2.6) in this case.

Coming to the case of k > 1 show that |U(t, s)¢(s)|* is a Hilbert-Schmidt op-
erator for all (s,t) € St.

(E1) and (E2) lead to

> Ef U (t,s) )IHQ2€n) (z )Up(dl')

neN

S

J Ut e)p(e) dW (e)

0

O« oy

(v, TE Y [(U(t,)|¢(s)* Q% en)?(x)p,(d)

neN O
clr, T, e(T))(t = )T El| |io(s)|" ||
c(r, T, e(T))(t = 5) " El|p(s)]]

A IA

0, 2:1 (2 9)

which is just the Hilbert Schmidt property.
In the case ¢ > 1= one has

‘ q PEYYis

J Ut s)p(s) dW (s)

0

E

Oj s)dW (s)

P2k 0,2

with r:= gL > ﬁ > 1 for arbitrary ¢ € [0,T'].
Fix t and consider a sequence (7n)nen of partitions of [0,¢] with

|7n5| == sup (tiy1 —t;) — 0 for N — o0
tieTNn

Then:

t 12

E || |[U(t, s)p(s)dW(s)

lim Z (U(t,ti)¢(ti))(W(ti+1 AN t) — W(tz A\ t)) ) dup

lim Y S (U )S(t)) (@b en) (wnltios At) — walts A1)

N—oot,ery neN

lim Y Z(WLMMMXQ%HWMmHAO—wMMAm) ()1 (d)

HuQme
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B (| T (06000IQ ) (i A1)~ (1A ) @l

N—ootery nEN

(J‘((U(t,sw(s))Q%en)?ds) ()11 ()

— ) |
e
=c¢(k)E

neN
<crRE[[ Oj(|U(t,s)¢(s)|“Q§en> ds(x)p,(dx)

neN

= c(R)E [|[U(t,5)8(s)|" |IZ, ds

O O — O—

where in the fourth step the fact that
E(|X; — X,|%) < Cu(t —s)2
holds true for each Brownian motion (X;):>0,all 0 < s < ¢t and all even natural

numbers a by lemma 40.2 from [Ba] was used.
2.1.5 resp. 2.1.6 imply for each ¢t € [0,T']

2r
E[ sup
s€[0,t] 0,2

< c(r, Q)B (Ofll UG (112, de)
(0. T, c(T))E <f<t—e) 7||so<e>||,)2ﬁ )

0

K

JU, dle) dW (e)
0

(g—2rK)T
2k t

T
!67m CL;| ‘!E||@( ||p 2&

t

= c(k,7,q,T, C(T))OfEnsﬁ( Hp or d

< ek q, T, e(T))

with r as above,using (2.9) in the second,Hoelder‘s inequality in the third and
the fact that

g
q> 25 = 24 <1

holds in the last step.So one especially has for each ¢ € [0,T]:

q

E||[U(t,s)p(s) dW(s)

t
c(%,7, ¢, T, ¢(T)) [ Bl (s)][7 25 ds
0

P2k

A oo

q.e.

Define the term solution in the same way as Manthey and Zausinger did:
Definition 2.2.3(cf. [MaZa],chapter 2,definition 2.7,p.55)

Let ¥ and F be defined from ¢ and f as in (2.1) resp. (2.4).Let f be s.t.(PG) is
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fulfilled with an exponent v € N.

A Li—valued,predictable process X is called a solution of Eq({,F,X) for
2 .00 2w 2 10 2

§€ Ly, Fi[0;T] x Qx L2 — L and ¥ : [0;T] x Ly — Lo

if it has the following properties:

(i) X(t) € L2 P-almost surely for each t € [0,T]

¢
(ii) sup f(t—s)"VE||X(s)||i2ds<oo
te[0,T]0 '

where v = 0 in the nuclear case and v as in (CC) in the cylindrical case.
(iii) X is pathwise continuous.

(iv) X solves the equation

X(t)= U(t,0)£+0ftU(t, s)F(s,X(s))ds+OftU(t7s)E(s,X(s))dW(s)

P-almost surely for each ¢t € [0,T'].

Following Manthey and Zausinger one first shows:
Theorem 2.2.4

Suppose (CD),(PP) and in the cylindrical case additionally (CC) hold.
Given a predictable process ¢ : [0,T] x  — Li,suppose there exists a q with

2
4> 1%

and

T
Eg’ [le(s)]]5,2 ds < o0

s.t. 7=0 in the nuclear case and v as in (CC) in the cylindrical case.
Then there exists a continuous modification of

Ul(t,s)p(s) dW(s)

o o

in Li.
Proof:
Let a € ( %7 457 ) with 7 as in (CC) in the cylindrical case and v = 0 in the nu-

clear case,so especially o < %,as a consequence of which 2.1.3 is applicable. Thus:

25



U1, 5)0(5) AW (5) = 3822 (R Z0 )0
WlchaU fo (t—s)"U(t,s)o(s) dW (s) and R, f(t) fo (t—s)27U(t, s) f(s) ds.

Claim 1:Z, y € L([0,T] x Q;L%)
Proof: One needs to show:

T
E [||Za,u(t)l[}2dt < oo
0

Changing expectation and integration and applying 2.1.5 resp. 2.1.6 with r := 2
and

B(s) := (t —s)""U(t,5)¢(s), s € [0, 1]

for fixed t € [0, T],which is Hilbert-Schmidt-valued by (CC),leads to

t q

[t =)~ U(t, s)p(s) dW (s) dt
0

T
JE
0 p,2

2

felq)B (]‘ It = 8)=oUt, )6(s)] 2, ds) dt
0 0

IN

:Cq)fE (jts 2&|U(t’5)¢($)||%2d5)2 dt
0 0

T t
< la.T)E (f (t = 8)~ a4 (s )|i,2ds) dt

0

0

T P
< T (g, ce(T)) (f s~ (2ot dS) EJ llp(s)]5,2 ds

T
=:¢(a,7, ¢, T, e(T)E [ [l¢(s)][} 2 ds < o0
0

where Young's inequation for convolutions and Jensen‘s inequality were used
in the second last step and the fact that

ae( ):2a+fy<1

holds,which ensures the existence of the integral in brackets,was used in the
last step.
Thus claim 1 is proven.

Claim 2: R, € L(L([0,T]xQ; L2),C([0,T]; L*([0,T] x Q; L2))) (cf. section
1.2 with B := L?)

Proof: In a first step show continuity in time under the assumption,that
(RoY (t))efo,r) C L% was already proven for processes Y as in the assump-
tion.

Note that the following holds for arbitrary ¢ € [0, ], > 0 and fixed w €
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R.Y(t +¢2,w) — RaY (t,w)

= t}_e(t +e—38)2" U (t+¢,8)Y(s,w)ds — f(t —8)27LU(t,5)Y (s,w) ds
0 0
t+e

[ (t+e—35)>"U(t+e,5)Y(s,w)ds

t

+

[(t+e—38) 21Ut +e,5) — (t—s)*"tU(t,9)]Y(s,w) ds

ST

Obviously the first term tends to 0 in L% as ¢ tends to 0.By the definition of
almost strong evolution operators U (-, s) is strongly continuous on [ s, 00 ),which
implies continuity of U(-,s) on [s,00),s.t. the second term tends to 0 in L? as
€ tends to 0 as well,as a consequence of which,continuity of R, is shown,since
t € [0,T] was chosen arbitrarily.

Now consider an arbitrary process Y from L?([0,T'] x Q; L2) and show
R, Y (t) € L2 for arbitrary ¢ € [0,T'].
Young'‘s inequality for convolutions and 1 — « < 1 imply:

2 2

E ft(t —5)271U(t, 5)Y (s)ds A(T)E
0

IN

ft(t —5)"(1=9)Y(5)ds
0

P2

t 2
< & (fs<1a>ds) E [ || (5)][2 ds
0 0

P2

2
T T
< &7 <fs—<1—a>ds> E [|[Y(s)|%,ds
0 0
< o0

Thus one has at least R, Y (t) € Lz P-almost surely.So there exists a version of
R,Y (t) in L?. As the estimate holds true for arbitrary t € [0,T],

q

T
sup E|[RY (t)|[> 5 < c(a, T, ¢(T)) (Ef Y ()17 d8> < o0
te[0,T] 0

follows and one has,as continuity was already shown
R.Y € C([0,T]; L*([0,T] x ©; L2)).By the last estimate one gets

||R04YHZC([0,T];L§)(2) < (e, T, e(T))IIY 1|24
for al Y € L9([0,T] x Q;L%).SO R, is a bounded,linear operator,which fin-

ishes the proof of claim 2.
Claims 1 and 2 imply the existence of a version of

Ul(t,s)p(s)dW(s)

Ot —

which is continuous in time.
q.e.d.

Then one can transfer theorem 3.2.1 from [MaZa] into the given situation with
the help of the following two results:
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Lemma 2.2.5:

Let (gn)nen be a sequence of measurable functions g, : Ry — Ry with

In(

ogm_
H-
\
CI:
Q
3
—-
—
~
U
Va)

forn e N,6 €[0,1),b>0,g > 0,t € [0,T].Then

n—1
gn(t) <q Y qptF79 4+ ¢, "7 sup  go(r)
k=0 r€[0,T]

holds with gg = 1,q1 = l—fé,qk ﬁ for k > 1,where I'(-) is the gamma-
function given by

I(t):= [a e ®da, t >0

Furthermore one has the following property

> e THIY) < oo
k=0

Proof:
Cf. [MaSt],Appendix,Lemma Al,pp.158,159
Remark 2.2.6:

Having g,, = g for all n € N with a bounded g,2.2.5 implies

IN

n—1
q lim <Z qr Tk(l‘s)) + ( lim g, T"(l"s)) sup ¢g(r)
k=0 n—oo

n—00 re[0,T]

g(t)
= q Y T = q¢(T,b,6)
k=0
Now one can prove a version of 3.2.1 from [MaZa] :
Theorem 2.2.7
Suppose f(-.w, ),w € Qand o fulfill (L1),(L2) with constants c;(T"),c,(T),with
a constant ¢y (T") independent of w. Suppose furthermore that f is progressively
measurable and U fulfills (CD),(PP) and (CC).
Let v=0 in the nuclear case and let v be as in (CC) in the cylindrical case.Then:
(i) For ¢ > % with
E[[¢]]52 < o0

there exist a pathwise unique solution X of Eq(¢,F,X) and a constant
c(q, T,y,e(T),cr(T),ce(T)) > 0 depending on q,T,U,f and o,s.t.
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) S[lépT]E||X(t)I|Z,2 < e(q, Ty, e(T), ¢4 (T), co (T)) (1 + El[¢]17 )
€10,

(ii): Suppose one additionally has (E1),(E2).
Then there exist,given x > ﬁ with

E||¢]|7%, < o0

P,2K

a pathwise unique solution X of Eq(¢,F,X) and a constant
c(k, T,y,¢(T),ci(T),ce(T)) > 0 depending on «,T,U,f and o with

tes[tépT]E\lX(t)\ pon < (ki T.7,¢(T), ¢4 (T), o (T)) (1 + EI€][2%)

Remark 2.2.8:

In [MaZa] the authors only show the finiteness of the sup-terms.As estimates of
the above type are shown f.e. in [AsMa] they are proven here as well.

Before it is possible to prove 2.2.7 another lemma is needed:
Lemma 2.2.9:
As in Manthey‘s and Zausinger‘s paper (cf. [MaZa],chapter 3,section 3,theo-

rem 3.3.1,p.56 there) it is assumed that f is progressively measurable.
Let f be as in 2.2.7.Then

<£ U(t,s)F (s, Y (s)) ds>

is continuous and adapted,i.e especially predictable,for each predictable,continuous
process Y = (Y(t))iecjo,7] With

t€[0,T]

sup E[Y(1)|[? 5 < o0
te[0,T']

Proof of 2.2.9:
First of all note that the Bochner-integral

jU(t, S F (s, Y (s)) ds

is welldefined according to 2.1.8,as the w-independence of c¢;(T") implies:

E 0ftU(t s$)F(s,-,Y(s))ds < OjF(s,-,Y(s))ds
< el e () [ BIIY (0] s
< AT e(T), ¢4 (T)) <1 + ‘Es[%pT]EIY(r)Ing)
< o0
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where (ii) from 1.3 and (L1),(L2) were used for f in the second step.

Let t € [0,T] be arbitrary.For all s € [0,t],w € Q

Ot—

U(t,r)F(r,w,Y(r,w))dr — jU(s, r)F(r,w,Y(r,w))dr
= fU(t,r)F(r,w, Y(r,w))dr+ bf[U(t,r) —U(s,r)|F(r,w, Y (r,w))dr

holds.As already mentioned in the proof of 2.2.4 U(-,r) is continuous,s.t. the
second term in the upper equation tends to 0 in Lz for s — t,since the continuity
of f in R resulting from (L1) and the time-continuity of Y imply

lm U(s,r)F(r,w, Y (r,w)) =U(t,r)F(r,w, Y (r,w))

s%
in L2 for fixed r € [0,5].
As the first term obviously tends to 0 for s — ¢ and ¢ € [0,T'] and w € Q were
chosen arbitrarily,the proof of continuity is finished.

As Y is predictable by assumption it is in particular adapted,so Y(t) is Fi-

measurable for each ¢ € [0,T].As (Ft):e[0,7] is a filtration,Y(s) is

Fi-measurable for all s € [0,¢] and fixed t € [0,T'].

Progressive measurability of f then implies F;-measurability of U (¢, -)F'(-,-, Y (+))
n [0,t].Thus

j‘U(t, S F (s, Y (s)) ds

is Fy-measurable for the fixed t.As this t was chosen arbitrarily,the process
is adapted as well,which finishes the proof.
q.e.d.

Proof of 2.2.7:
(1): First of all consider C([0, T']; L*([0, T']x€; L2)) with norm [|-||¢10,7):22)(2) 28

it was done in the proof of claim 2 in 2.2.4.This forms a Banach space.
Since f defining F by (2.4) is progressively measurable,

( b/t‘ U(t, s)F (s, Z(s)) ds>te[m

is predictable for processes Z from C([0,T']; L*([0,T] x €; L2)) by 2.2.9.
As it was suggested in the proof of 3.2.1 in [MaZa],follow [DPZa92].
Define a mapping K; for processes Z from C([0,T']; L*([0,T'] x ©; L2)) by

jU 8y, Z(s)) ds
)

(iii) from section 1.3 and (L1),(L2) for f imply
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K (D) oriam = swp ElIK(2)0)]2

te[0,T]
. 2

= sup E fU( 8)F(s,-, Z(s))ds

te[0,T] P2

T
< ele(T Ebf +11Z(s)1]32) ds
< Tele <1+ sup EIIZ()I|§,2>
te[0,T]

= Tec(e(T),cp(T 1+||Z||c( 0,T] L2)(2))

So K is a mapping from C([0,T']; L ([O,T] x ; L2)) onto itself.
Define a mapping Ko for processes Z as above by

Ka(2)(t) := OftU(t,s)E(s,Z(s))dW(s)
2.1.5 resp. 2.1.6 (case r :=1),(CC) and (L1),(L2) for o lead to

12 DNE qo,71:2) 29

¢
sup Ef||U(t7s)E(&Z(s))H%2 ds
te[0,T] 0

t
< Cmax(y25¢(c(T), eo(T))T'77,1) <1+ sup [ EIIZ(s)II,%,2d8>
te[0,T] 0

< (1, T,e(T), ¢ (T)) (1 + ;/CEHZ(S)Ii,z dS)

<Te(v,T,¢(T),co(T)) <1+ sup EIIZ(t)IIZ,2>
t€[0,T]

= Te(y, T, e(T), ¢ (1) (1+ 121 o.11100)2))
where the fact that v € [0,1) implies
t

Js77ds < o0
0

for all t € [0,T] was used in the second step.

Thus K also maps each process Z from C([0,T]; L*([0,T] x €;L2)) onto
C([0,T]; L*([0,T] x Q;L%)),if Z has got property 2.2.3(ii),which one needs in
order to do the second step.

Let X and Y be processes in C([0,T']; L*([0, T']x Q; L2)) with property 2.2.3(ii).
K(Z)(t) = U(t,0)¢ + Ka(Z)() + Ka(Z)(2) , Z € C10, T L2([0,T] x 9 12))

leads to
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) = KON Bgorpanen < 2 (K00 = KO oz

HIK2(X) = K2 (VI (0.7, W))
=: 2([1 4+ 12)
for T € [0,T] with the following estimates,which hold analogously to the cases
1K1 (2)[| and [|K2(Z)][:

IL < C(C(T)vcf(T))t:[%PT]EfHX Y(s)|[32ds
< Te(e(T), Cf( )) S EHX() Y()I[7 2
= (C( )||X YHC([OT 1iL2)(2)
I < T),co(T)) (t s f (t =) "E[[X(s) - (s)||i)2ds>
T
< (/s ”d8> c(e(T), eo(T)) sup E[X(t) =Y (1)[[2,
0 te[0,T]
= % Ye(e(T), eo(T))[|1 X — Y||C( [0,T};L2)(2)

Thus given T > 0,s.t.
Tc(c(T),cr(T)) + ﬁfl_Vc(c(T), (1)) <1

holds,K has a unique fixpoint X ,which is a solution to the wanted equation
on [0,T] by construction and fulfills 2.2.3(ii).Setting & := X (T) leads to a so-
lution on [T,2T] and by finite iteration of this procedure one gets a solution
on [0,T],which is unique in C([0,T]; L*([0,T] x ©; L2)) up to modifications
and has property 2.2.3(ii).Consider modifications,which are pathwise continu-
ous,that is,which fulfill 2.2.3(iii).

Let X,Y be two such modifications.2.1.5 resp. 2.1.6 with r := 2,(2.6)(with

k=1and ®(s) :=U(t, s)[X(s, X(s)) — 2(s,Y(s))],s € [0,¢]) and (L1) lead to:

E[[X(t) =Y(®)l52 < clq) <E jU(t s)[F' (s, X(s)) = F(s,, Y (s))] ds
+E jU(t, $)[2(s, X(s)) — X(s,Y(s))] dW (s)

< el T (D), () o () JBIX(S) - Y (5[
Due to the continuity of X and Y Gronwall‘s lemma is applicable and shows
[|X(t) =Y (t)||p2 =0 P-as.,t €[0,T]
i.e. for each ¢t € [0,T] there exists a P-zeroset N; with
X (tw) = Y (£,0)][2 = 0
for all w € NE.

Thus one has
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HX(t?w) - Y(t7w)||ﬂ,2 =0

for all t € Q and all

C
w e < U Nt> =: NQ

te[0,7]NQ

Since the N; are P-zerosets,Ng has P-measure 1l,ie. X(t) = Y(¢) for all
t €[0,7] N Q P-almost surely.Since Q is dense in R this implies

1X(#) =Y (B)llp2=0

for all t € [0,T'] P-almost surely due to the continuity of X and Y.
Assume there is an w,s.t. there exists a t € [0,7'],s.t.

IX (8 w) =Y (t,w)llp2 # 0
holds true.But then pathwise continuity of X and Y implies
X (5 w) =Y (L w)lp2 #0

first on an open subset of [0, 7' | containing ¢ and than inductively on [0, T |,which
is a contradiction to

Thus one has not only a pathwise continuous solution but even a pathwise
unique solution.

Due to its construction the solution fulfills at least 2.2.3(ii)—(iv).As (L1),(L2)
obviously imply (PG) with exponent v = 1 for f,property 2.2.3(i) is trivially
fulfilled.

Thus one has existence of a solution in the sense of 2.2.3.

The wanted estimate follows with the help of Gronwall‘s lemma from the fol-
lowing estimate:

t q

OfU(t, s)F(s,-, X (s))ds

q
P2

E[XH)|5. < cla) (EIIU(t,O)éllg,z +E
0,2

+E

Oft Ul(t,s)2(s, X (s))dW(s)

< el DB, t
(g, Ty, e(T), e5(T) o (T)) (1 + [EIXOI, ds)
< (g Toyae(T). s (T),cn(T) (11 BIEIL,)

(g, Toy,ofT), 5 (), o (T)) OfE||X<s>||z,2ds

for all ¢ € [0,T],where the procedure in the second step was analogous to
that in the estimate of E|| X (t) — Y (¢)]|7 .
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(ii): Proceed as in [MaZa],i.e. make use of Picard‘s iteration given by
Xo(t) := U(t,00&,t€[0,T)
Xn(t) = Xo(t) + ({t U(t,s)F(s,, Xn_1(s))ds
+OftU(t, $)2(s, Xp—1(8))dW(s),t € [0,T],;n € N
Then the following holds for all ¢ € [0,T']:

E||Xp1(t) = Xn(®)I[2%0
< ¢(k) <E

+E j‘U(t7 $)[E(s, Xn(s)) — X(s, Xpn—1(8))] dW (s)

2K

[F(S, 'ﬂXn(s)) - F(s» '7Xn*1(8))] ds

P2k

2K
Py2K

< e(m,e(T), e4(T), c0(T)) (J‘E||Xn<s> X1 ()2 ds

+j<t ) TEIXn(5) — X ()25, ds)

< ek, T e(T), ¢4(T), ¢0(T)) bf(t = 8) VB[ Xn(s) = Xno1(5)|[35, ds

where (L1),(E1),(E2) and (2.5) were used in the second step,whereas in the
third step the fact,that (t —s)?” can be estimated by T for (s,t) € St,was used.
2.2.5(set gn := B|| Xy 41 — Xu[[2%,,) implies

sup B[ X, p1(t) = X (8)|[2%, < gaT"™7) sup E|[X:(t) — Xo(1)]12%,
t€[0,T] te[0,T']
C(R777T7041f7(:),co(T)) and

qr = C“Wﬁgﬁ%iﬁ”” for k > 1.0ne has:

for all n € N with gp=1,q1 =

t 2K
sup E[|X1(t) = Xo()[[%, < (k) ( sup B || [U(t,s)F(s,U(s,0)§) ds
te[0,T] te[0,T] 0 P2k
+ 2K
+ sup E||[U(t,5)S(s,U(s,0)€) dW(s)
t€[0,T] 0 0.2k
= ¢(k) ( sup Ir(t)+ sup Ig(t)>
te[0,T] te[0,T]

Concerning Ip
Ip(t) < c(r, T, e(T), cp(T)) (L + E[[E]7%,) , t € [0,T]

(2.5) and (L1),(L2) for ¢ lead to

Is(t)

IN

bf‘(t—s Bl o (s, U (s, 0)6) |25 ds
— ( 7’YaT C(T)7 ( ))(1+E||€Hp2n)

AN
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Putting the estimates together one gets for all n € N:

s E[| X, 41(t) = Xu (D)2, < @ T Ve(k, 7, T, e(T), ¢4 (T), co(T)) (1 + E|[¢]|2
tefo,

< o0

Consider C([0,T]; L?>([0,T] x €; B)) from section 1.2 with B := L,Q)”.Due to
the above estimate and

¢ T~ =0, n— o0

following from 2.2.5,(X,,)nen is a Cauchy-sequence in the Banach space
C([0,T]; L?([0,T] x & Lf)“)) with norm || ||C([O’T];L%n)(25),s.t. there is a limit
process X,which is predictable and continuous by the definition of the Banach
space and lies in Lf) due to the fact that Li” C L% holds.

Thus at least property 2.2.3(i) is fulfilled.

Hoelder‘s inequality immediately implies

t - b ot i *
(69 BIX s < (5 #as) " (TBIXGZ. )
Then X fulfills 2.2.3(ii) with the help of the definition of

C([0,T]; L*([0,T] x £2; B)) and the fact that x > ﬁ holds true,since

> = <l
implies the existence of the left integral in the above estimate.
2.2.3(iv) holds due to the construction via Picard‘s iteration.
The existence of a pathwise unique,continuous solution follows analogously to
(i) .
Thus X is a solution of Eq(¢,F,X) in the sense of 2.2.3.
Concerning the estimate note that with (2.5) the following holds true for
te[0,T]:

t 2K

OfU(t, s)F(s,+, X(s))ds

2K
P2k

E[[X®)}5% < clr) <E|U(t70)£|;27:{2n +E

P2k

+E {tU(t,s)Z(&X(s))dW(s)

< en) (c(m,T>EII£ 25 o(m, T, (T, ey (T) (1 T EIIX ()25, ds)
. 0
el Ty ofT), e (1)) (1 + (=) TBIX B, d))
< em Ty elT),ef (T, cn (1)) (1 + B€]1252)

el T e(T), 5 () e (T)) (1 n Of(t ) VE||X ()25, ds)

Then 2.2.5,2.2.6(g,, := E[|X||2%, for all n € N) imply the wanted estimate.
q.e.d.
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By 2.2.7 one immediately gets the following extension of 3.2.2 from [MaZa:
Corollary 2.2.10:

(i): Under the assumptions of part(i) of 2.2.7 there exists a pathwise unique
solution V to Eq(0,0,X),s.t. given arbitrary q with ¢ > % there exists a posi-
tive constant c¢(q,T,y,¢(T),cr(T)) depending on ¢,T,U and o with

sup E‘ |V(t)||z,2 < C(Qa Ta s C(T)a Co (T))
t€[0,T]

(ii): Under the assumptions of part(ii) of 2.2.7 there exists a pathwise unique
solution V to Eq(0,0,X),s.t. given arbitrary x with x > ﬁ there exists a posi-
tive constant ¢(k,T,v,c(T),c,(T)) depending on x,T,U and o with

sup E|‘V(t)| %52& S C(Kv Tv s C(T)v C(T(T))
te[0,T]

The next step will be to show the comparison theorem 3.3.1(ii) from [MaZa]
in case © = RY.

Theorem 2.2.11:

Let f; i=1,2;0 be as in theorem 2.2.7(i).
Suppose,there exists ¢ > —— s.t.

-

E[|¢D]]5 5 < 0
and (CD),(PP),(CC) and (BA) hold for U.
Then the conditions

FO(tw,u) < Ot w,u); (tw,u) €[0,T] x 2 x R
and
£ <@

P-almost surely imply

XMW (1) < X®(t)
P-almost surely for all ¢t € [0,7T'].

For a proof define in analogy to [MaZa] a mapping Qa:L? — L? and a Q-
Wienerprocess W)y, for fixed M € N by

M
QJW(’IZ)) = Z QA < 1/)76n >O €n

n=1
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M
War(t) := > Vagwy(t)en
n=1
where < -,- >g denotes the inner product in L2®.Thus for M — oo one has

Qu tending to Q and Wiy tending to W in L2.Given N € N;i=1,2; denote by
X](\?M the solution of the equation

. ) t . i
XOu() = Un(t,060 + Of Un(t,s)FO (s, Xy () ds

+ f Un(t,8)S(s, X 1s(5)) dWas (5)
0

with ¢ € [0,T] and Uy from (BA).The existence and uniqueness of this so-
lution will be shown in 2.2.13.

Two lemma are needed in order to show 2.2.11.The first one is a version of
lemma 3.3.2 from [MaZal:

Lemma 2.2.12:

Defining Y := X%?M;izl,Q; for fixed N, Me N
YO(h) <y@(t)

holds P-almost surely for all ¢ € [0, T].

Proof of 2.2.12:
Follow the proof of 3.3.2 from [MaZal.

Given a fixed j € N and k=1,2,...,j define t;, := L and processes Zk J,V,”) by
28)(6) = €0 + [ 205, 25)(0)) W)

Vol (8) == Z5(t1) + f (AN (Vo (5) + FO (s, Vo (5))) ds

for t € [0,¢1] and

20 =V, () + fz 2 (5)) AW (s)

V() = 20 (trsr) +f An()V () + FO (s, V) (s5))) ds

for t € [t, trt1 ];k:l,2,...,J-1.Manthey and Zausinger claim,that these processes
own pathwise continuous modifications.

Given solutions A%

o j,Z( ) consider

Ya(X) = €0 + f (s, X (s)) dWay (s)

in C([0,T]; L*([0,T] x ©; L2)).One has:
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sup  Ell7a(Z5)(8) — va(Z8H ()12,

te[0,T]
t ) o 2
= sup B||[(S(s, Z5(s) — E(s, Z5}(5)) dWar (s)
te[0,T] 0 0,2
< Te(M) sup E[[S(t, Z§(t) — S(t, Z5(1)|12,
t€[0,T]
< Te(M)(T) sup E||Z{(t) — Z80(1)]12,
te[0,T]
and thus in || . ||C([07T];L’2;)(2)—DOI‘H1:

17a(Z8)) = 1a(Z8D e o.ryia@ < VI (DINZS) ~ Z8 ooz e)

Thus there exists a unique pathwise continuous version of the solution anal-

ogously to the proof of 2.2.7(i).
So there is a pathwise unique,continuous, L2-valued solution Zélz

Let Véf},%{? be two solutions.Defining

Yaw(X)() = Z0) (1) () + {AN(S)X(s,w) + FO (5,0, X (s,w)) ds

for arbitrary w € (2,one gets:

sup Ellyao (Vi () = vau (Vi DI
te[0,T]
t ) . ) . ) . 2
= sup E||[ An(s)[Vyo)(s) = Va2 (s)] + FO (s, Vi (s)) — FO(s,-, Vo) (s)) ds
t€[0,T] 0 0,2

§2< sup |AN(t>|2+c§m<T>> T sup EJ|Vy) () = Vo ()2,
te[0,T'] te[0,7T']

AN + o (DT su E([Vy) ) = Vi (#)]12

)

s.t. the following holds true in C([0,T']; L*([0,T'] x €; L2)):

(Vi) = vaw(VaDlleqoriazye < 2N + o MV =V lleqorize

As above pathwise uniqueness and continuity of Vo(,?L follows.

By the structure of the Z ,(jzl and Vk(ZT)L it is obvious,that pathwise continuity for
)

n

k-1 implies first pathwise continuity of Z,gz on [tg,tx+1] and then pathwise

continuity of V,C(ZT)L on [tg,tr+1] by the same procedure as above.
Consider_ing these pathwise continuous modifications and defining mappings
Z" V.0 % [0,T] — L2 by

Z]@(t) — Z}j}(t) ct € [toothr); k=0,1,2,....5—1
(1) (i
V;7(0) =g

V;(l)(t) — Vk(’z)(t% tc (tk7tk+l] i k=0,1,...,5—1

(1) A O]
Z0(T) = V(1)
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leads to the following equations:

200)= €9+ [AanEVO () + FO(s, -, VO(s)) ds
0

+ f‘ (s, 2" (s)) AW (s)
0

for t € [tg,txy1 );k=0,1,...,5 —1 and

VO = €9+ [V (6) + FOGs, Vi (6)) ds
0

s (i
+ of X(s,Z;7(s)) AW (s)
for t € (tp thyr]sk=0,1,...,j—li=1,2.
Thus by [KaSh](cf. chapter 5,proposition 2.1.8 there) the following holds true
for t € [0,t1):

20 (t,2) = é%m+(

SIS

H&4W@MWM@>W)

o (s, 28D (5,2)) (Q¥ ) () duwn (s)

Mz

= W)+

S
Z
LN

< D)+

_ (2)

= Z;(t,x)
for Lebesgue-almost all x € ©.Thus

o O

o(s, 2\ (5,2))(Q¥ en) () dwy(s)

3
Il
-

) )4y i 72
Z;7(t) < Z;7(t) in L
P-almost surely on [0,¢; ) and thus
ZP(t) > 2V (1) P-as.  (2.10)

with ¢; = % for all j € N.
Given s € [0,T],define an operator B(s):L2 — L2 w-wisely by

F® (s, VP ()= FP s,V (s))

Bls)e = v (5)—v D (s)

in case Vj(z)(s,w) # Vj(l)(s,w) and

else,where C(T) denotes the common Lipschitz-constant of f(1) and () i.e.
C(T) = Inax(cf<1) (T), Cf(z) (T))

Setting An(s) := An(s) + B(s),s € [0, T ],one obviously gets
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VA v = zﬁunfzﬂ@o+fAM$wfk@fn”wn@
0

D s VD)~ PO,V (5)) ds
0

for t € [0,¢1].Since Ay € L(L2) holds by (BA) the definition of B immedi-
ately leads to

Un(t,s)(B(s) + C(T)  I):L> — L2, (s,t) € St
{HAN(??)UN(@S)(B(S) + C(T) x 1)¢l[p2ds < (T, C(T))[[An ()] ||l .2

Thus D(Ay) := L2(cf. (BA)) for all N € N implies,by theorem 9.11 from
[CuPr],the existence of an almost strong evolution operator in the sense of sec-
tion 1.3 with generator (An(t) + B(t) + C(T) * I)e[o,r) for all N € N.

Let N € N be fixed.

According to section 1.3 Uy is positivity preserving.Since ||B(t)|| < C(T') obvi-
ously holds for all t both Qx given by

Qnit,s) =3 QW(ts), (s.t) € Sz

a=0
with QW (£, s) = Un(t, s)
t
QW (t, )¢ = [ Un(t.r)(B(r) + C(T) x QY (1. s)p dr
for p € L%,a =1,2,...(cf. [CuPr],pp.252-262) and Uy given by
Un(t,s) = Qn(t,s)e CDE=5) | (5t) € Sp

have got this property.Then for all ¢ € L[%

Un (t, 3)90 = @y (t, S)e*C(T)(t*S)SD
t
= Qn(ts) (e‘cm“"s) + [ —C(T)e=CM=s) dT) o

= Qnt )+ [ Qultr) (—CT)e OO 4 DQn (r, s)p dr

where the semigroup property of Q) was used in the second step.
Thus by [CuPr](cf. theorem 9.2 there)

(AN+B+C(T)*I)—O(T)*I:AN—FB:AN
generates the operator Un.So

VA - v(t) = On(t0)(Z5) (1) — 251 (1))
t —
+gumuﬁw@@mw“@»—ﬂ”@WW”@nm
> 0
holds true for all ¢ € [0,¢;] by (2.10) and f1) < f).
Then Zj(.z) (t1) = Vj(l)(tl);izlﬂ;implies
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Z0 () < 2P (t1) in L2 P-as.

s.t. the wanted inequations are shown on [0,¢;].By the same arguments as
before one gets

vV () < v (t) in L2 P-as
ZzM(t) < 2P (t) in L2 P-as

for ¢ € [t1,t2],and so on,s.t. finally

1 2 .
Vjilz(t) < V{Q; (t) in L2 P-as.
: 2
Z;(t) < Z;7(t) in Ly P-as.

is shown for all ¢ € [0,T].
Considering Vj(l) for arbitrary j € N leads

. ] j—1 i
sup E|[VV ()12, < C<EII£(”II§,2+Z sup E|V,§7}<t>|2,2>
te[0,T] k=0 t€[tk,tr+1]
< ev(y)

and an analogue estimation holds for Z; with a positive constant cz (7).
By 2.2.7 the above definition of Y(*) implies

sup E|[YO@)]2, < (D)
te[0,T]

for a positive constant depending on £().
So

S E[|[V(6) — YO )12, + 1257 (1) — YO@)]12,5] < ev,2(5,69) < 00
€|0,
By (L1) for f and (L1),(L2) for o one gets

E||V7 (1) - YO @),
FAn (VO () + FO(s, VO () ds+ | (s, 20 (s)) dWar (5
0 0

— (ft Un(t,s)FD(s,-, Y (s))ds — ftUN(t,s)E(s,Y(i)(s)) dWM(s)>
0 0

=E

2

p;2
thi1 ) )
[ BIS(s, Z(s)) = B(s, YO (s)))enl 2  ds

M

< (C(T), ¢(N)) (Z

n=1

tet1

+ 3[ E||X(s, y® (s))en| |f,72 ds

t , ‘
+ OfEHVj(Z)(s) = YO@)I[7 d8>

tht1

< oI, M, e(N), C(T), eo(T)) | [ E|| 2 (s) — Y (s)[]2 , ds

F(trsr — t) (1 + s[%pT]EHW(r)Hi,Q) + OfEva '(5) = YO (s)][2, ds]
re|0,
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e o, M, (N, O(T), o (T)) | 3y (trs1) + OftEij‘“(s) YO ()2, ds}

for t € (tg,te+1 ],k €{0,1,...,5 —1}. Consider g;:

tht1 . ) )
B (tys1) == g‘E||Z;“<s>—Y<1><s>||,%,2ds+<tk+1—m) <1+ sup E|Y<l><r>||z,2>

re[0,T]
< T sup E[[[V@) =~ YO@)2,+ 127 0) = YO (r)]2,]
re[0,T]
+i 11+ sup EHY“)(T)H/%2
J re[0,T ] _ ’
< Tevz(5,6) + 51+ e(€9))
< 00

Due to the continuity of Vj(i) and Y Gronwall’s lemma is applicable and
leads to

E|VO() — YO@)|20 < (T, M,e(N),C(T), o (T)) B (t1)et "
= T, M,e(N),C(T), ¢y (T))5;(trr1)
Given t € [tg,tg+1 ),k €{0,1,...,7 — 1} one has

E|IZ0 () - YOWIE, < ¢ (BIV (1) - YO 1)12,
2

LB || (205, YO (5)) — (5, 20 (5))) dWar(s)

172

p,2
¢
+E tf AN )P YO )IZ 2+ [[FO (s, YO ()] dSD
k
= C(L(j) + 12(§) + Is)
First consider I;(j):
5(j)

< e&(T,M,c(N),C(T),co(T))

OfEHZ;”(s) — YO (s)[2,ds + 1 (1 + sup E|Y<l><r>||,%72>]

< T M), O o (1) | [ BIZD (5) = YO ds + 301+ ()

Considering I3,t € [tg,tr+1 ) implies t — t; < %,S.t.

0<I3< ¢(T,N,C(T)) |1+ sup E||Y(i)(7’)||,2),2>
re[0,T]
< LT, N,C(T))(1 + ¢(€D))

J

holds true using (BA)(ii) and (L1),(L2) for f®).Considering I>(j) condition (L1)
for o leads to

t ) .
0 < Ir(j) < e(M,co(T)) [E||Z{(s) — YO (5)| 12 5 ds
tr

Thus
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E[Z(t) - YO@)[2, < L1 +aT, M, e(N),C(T), cn(T))(1 + c(6D))
t ) ]
4{@J44N%CH%%ngEW¢V$fY@@m%ds
s.t. Gronwall‘s lemma implies
B Z(t) - YO@)]2, < 11+ )1+ (€9))e < 0

where C' denotes the maximum of the two constants from the equations be-
fore.This term obviously tends to 0 in case of j tending to oo,i.e.

lim E||Z{(t) - YO (1)[12, =

Jj—0o0

holds true for ¢ € [tg,tx41 ),k € {0,1,...,5 — 1}.Thus by the construction of
the tj this holds true for all ¢ € [0,T].

What has been shown so far is:
1 2 1 2
zM() < 2P v < v )
holds true P-almost surely for all ¢ € [0,7"] and one has
lim sup E||IZ{(t) - YO(1)]2, =0
J=0¢e[0,T] ’

9

The second property leads to the existence of a subsequence (Z](l)(t)) 1eN,Which

converges to YV (t) P-almost surely in L2.With the help of the first property
this leads to

YD () <Y®3(t) P-as., t€[0,T]

q.e.d.

The second lemma is a version of the claim,Manthey and Zausinger make in
the second step of their proof.

Lemma 2.2.13:
Under the assumptions of 2.2.11 one has
lim E|| XY, 0 — X @)]2, =
N N,M M 2
and
; (1) i 2 _
Jim BIIX (1) - XO@)]F7, =0
)

where X](sz solves

ax\ D) = (AOXD (1) + FO(t,w, XD @) ) dt + 2(t, XD (£)dWy (£)
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X47(0) = 9.
in the sense of 2.2.3.

Proof:
For all NMe Nji =1,2;t € [0, T ];w € Q

X0 (1 w) = Un(£,0)6(w) + 7Y, (X @) () + 70 (X (@) (1)

holds with the 'y terms given by
%JX,U(X fUN 8)FW(s,w, X (s,w))ds

M (X (W) = fUN(-,s (s, X (s,w)) dWp(s)

0
for a solution.Then one has for any two solutions XS?M,X%? a1 and arbitrary
€ [0,T] with T € [0,T]:

L i i i
o E||[Un(t,)[FD(s,, X 1,(5) = FO(s,-, XV 1(5))] ds

0

0,2
t
< e(e(N JEHX]%M ) = X Va1 ()25 ds

T(( )es(T)) sup E|X (1) — X (1)]12,
re[0,T]

IN

and thus in C([0,T]; L*([0,T] x Q; L2))

H’YIJXU(X](\;)M) WXU(XJ(\;)M 1)||C([o T1;L2)(2)

< VTe(e(N),cf (T HX _XNM1||C[OT]L2)()

2

[ U 0,5) 55, X030 5)) = D6, X g ()] W o)

M)fE||UN<t, $)[S(5, X\ a1 (5)) — (s, Xna0,1 ()] |12, ds

t .
< (M, e(N),co(T)) [ ElIX 1 (5) = X as1(5)]120 ds
0

IA

T e(M, ¢(N), co(T)) s[upT]EIIX” 2 () = X5 ()12
relo

and thus in C([0,T]; L*([0,T] x ©; L2)):

H“YZiV’M(XJ(\;,)M) v 1(X1(v ) leqor02)2)
< VT V), e @NIX sy ~ X arlleornize)

Completely analogous to the proof of 2.2.7(i) the above estimates ensure the
i
)

existence of a pathwise unique and continuous solution X](V - In the same way
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one gets the existence of pathwise unique,continuous solutions X ](Vi[) and X,
Fix N,Me N:

Taking the difference between solutions X s and X,s,one gets for

fixed t € [0,T]:

X (t) = X§7(8) = an () + b (F) + an (F) + by (5) + an (%)

with the terms defined by

an(§) = [Un(:,0) ~ U2, 0)]¢®
b (F) = [ Un () [F O (s, Xy (5)) = FO (s, X (s))] ds
0

an(F) = Of"[UN(t, s) — U(t, s)]FD(s, -, X\V(s)) ds
b (%) = jUN@z $)[Z(s, X {0 (8)) — (5, X7 ()] dWas (5)
an() = g’[UN(t, s) — U(t, $)]S(s, X\D (s)) AW (s)

Use the following consideration for an estimate of the ay-terms:
By (BA)(ii)

lim sup ||[Un(ts)—Ul(t, 8)]@“,2)72 =0
N—oo (5 1)eSy
holds true for all ¢ € L2.Let r € [0,T'] be arbitrary.As f and o fulfill (L1),(L2)
by assumption,X](\f[)(r) € L? for i=1,2 and M € N hold true

F(r,, X (r) € L2, o(r, X} (r)) € L2

follows obviously with F defined by (2.4) and o defined analogously to (2.4)(with-
out w-dependence).Thus

lim sup  E|[Un(ts) — Ut )] F(r,, X7 (r)][2, =0
N—oo (s tyeSy
and
lim sup E[|[Un(t5) = Ut s)]o(r, X5 ()25 =
N—oo (s 1esr
As r € [0,T] was arbitrary one has in particular
lim sup E||[Un(t,s)—U(t,s)]F(s,-, X](\f[)(s))H2 5=0
N—oo (5 tyeSp
and
Jimsup Bf[[Un(t. )~ Ul 9)o(s, X4 (5)) |2 =
T (s,t)EST

Consider the following estimates for the ay-terms:
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Ellay (@72 < sup [|[[Un(ts) = Ut )l 2

(s,t)eST
Ellan(F)l2 <T sup 1[Nt 8) = Ut )IFO (s, X5 ()13
Bllay(®)a. = B [U(t.5) = Ult. o) X4 (9) (o)
¢ @) M & 2
= B[ [0 05) - U5 X0 0 d £ o (slen)
M t @) 2 r
= Y aEf (f[UN(t,s) —U(t,s))=(s, X ;7 (3))en ds) (z)pp(dz)
n;[l ) 0 '
< X ap supllen|Z T sup E[|[Un(ts) = Ut s)lo(s, X5 ()22

3
Il
_

neN (s,t)eST

By (BA)(ii) resp. the above considerations these terms tend to 0 as N tends to
0.

Furthermore the properties of f and o lead to

E||by (F)[25 < c<c<N>,cf<T>>jE||X§é? (5) — X ()2
E||bn (2)|[2.5 < e(M, e(N), ¢ (T)) J‘EHX%’?M(s) — X (s)][2. ds
s.t.

E[[ X\ (1) - X502, < C(Ellan(©)22 + Ellan (F)|2 5 + Ellay (2)]12 )
t ) ,

(M, (N}, (T), e (1)) [ BIXR 1s(5) = X35 ()17 ds)
holds true.As X )M and X, @) are time- continuous, Gronwall‘s lemma is ap-
plicable,s.t. the first part of the claim follows by the fact that the apy-terms
tend to 0 for N — oo.

Consider X](\ff) with an arbitrary Me N:

. t
xW) - xO() = ({U (t, $)[FO (s,w, XD (s)) = FO (5,0, XD (s))] ds

+ [U (6 X5 6) = 56, X ()] W)
=S [ alU $)S (s XO()](en) dun(s)
n=M+10

for all t € [0,T],w € Q,s.t. analogously to the by-terms above the follow-
ing holds:
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E[|X{ ()~ XOWD|Py < e(M,e(T), ¢y (T), co(T)) [(t — ) TE|| X (s) — XD (s)[]2, ds

o &

2

(E|| 2 [ vau 50 X0 ()] (en) dwns)
n=M+10 0,2
< o(M,e(T),e T)) f(t = )= TBlIX (s) — X0 (s)]|2 ds
0
TS SEI| U550, X (5))] (en)]2 d
n=M+1 0

Since the numbers a,, are nonnegative and fulfill
o0
> an <0

in the nuclear case,one gets

(o]

2, an jEII [U(t, 5)S(s, X (s))](en)|[7 2 ds

n=M+1 0

< Te(e(T), co(T)) <Sup |en|oo>2 (f an) <1+ sup E|X<“(t)||§,2>

neN n=1 te[0,T']
< o0

This sum obviously tends to 0 as M tends to oco,s.t. the nuclear case is
finished.

For the cylindrical case(i.e. a, = 1 for all n) apply (2.3) for ¢ € L2,

(s,t) € Sp.Thus the summand belonging to the stochastic rest is again finite
and converges to 0 for M — oco.

Having this property both in the nuclear and in the cylindrical case,applying
2.2.5/2.2.6 (with g, := E||X](\2) - X(i)Hf}’Q) finishes the proof.

q.e.d.

Proof of 2.2.11:
First by 2.2.12

XU () < X$h ()t €10,T]

P-almost surely in Li.Then 2.2.13 implies the claim by first taking N — oo
and then taking M — oco.
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2.3 The case with a non-Lipschitzian f

The aim of this section is to show the main result of this chapter,which is a
result like 3.4.1 from [MaZa],in case © = R4 with an w-dependent f.In order to
do so,there is still one lemma necessary.

Lemma 2.3.1

Consider an arbitrary,real-valued,progressively measurable function f defined on
[0,T]x QxR

and define

fntw,x) = f(t,w,z) V—-N
vt w, z) = ig{fN(t,w,u) + M|u — x|

forallt € [0,T]w € Q,x € RN, Me N.
Then fy and fn, ar are progressively measurable as well.

Proof:
Consider fy first.
Fix x € R.What has to be shown is

110,01 fn(, Lx)"H(A) € B([0,t]) x Fy

for all Borel-sets A on R.
Let b€ R and t € [0,T] be arbitrary. For all N € N with b > —N one gets

{(s,w) € [Oat] xQ | fN(vaal') < b} = {(s,w) | f(s,w,w) V-N< b}
= {(s,w) | f(s,w,z) < b}
S B([O,t])X]:t

due to the progressive measurability of f.But for b < —N:
{(s,w) €[0,t] x Q| fn(s,w,x) <b} = {(s,w)]| f(s,w,x) V—-N < b}

B([0,t]) x Fi

S
Thus progressive measurability for each fn (-, -, ) with € R,N € N is shown,which
finishes the consideration of fy.

Finally consider fy a with N,M € N. As above one gets for arbitrary
wx € R

{(s,w) € [0,t] x Q| fn(s,w,u) + Mlu—2z| <b} = {(s,w) ]| fn(s,w,u) <b— M|u—z|}
S B([O,t]) X ft
for fixed M€ N due to the progressive measurability of fy.

Thus fn (-, -, u) + M|u — z| is progressively measurable for fixed u,xe R,Me N,
which implies the progressive measurability of
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fN,M('mf) : (fn(yu) + Mlu — x|)

= inf
ueEQ

for fixed x€¢ R,Mée N as countable infimum of progressively measurable map-

pings.

Let ue R\ Q.

As Q is dense in R there exists a sequence (uy)nen of rational numbers con-

verging to u for n — co.
The continuity of f obviously implies the continuity of fx and

fn+ M- —al
for fixed x € R.Thus by u,, — u
In(sssun) + Mlun — 2| — fa( - u) + Mlu — =
As such a sequence exists for every u€ R,one has for arbitrary x€ R:

= inf .. Mlu —
ulAngN<v su) + Mlu — |
= fNJW('v'vx)
Thus one gets progressive measurability of fn ar(-,-,z) for each x€ R,which

finishes the proof.
q.e.d.

Now one can finally show the wanted result:
Theorem 2.3.2:
Let (CD),(PP),(CC) and (BA) be fulfilled,let £:[0,T] x @ x R — R defining F
be progressively measurable and continuous on R with properties (PG) with ex-
ponent v € N and (LG) with w-independent constant and let 0:[0,T] xR — R
defining ¥ fulfill (L1),(L2). Let v be as in (CC) in the cylindrical case and let
it be 0 in the nuclear case.
(i):In case v = 1,given a natural number g > % with

E|[¢]]52 < o0

there exists a solution X to Eq(¢,F,X),s.t.

tes[lé%]EHX(t)lﬂ,z < (g7, T, e(T), ¢4 (T), ¢ (T)) (1 + E[][7 )

holds with a positive constant c(...) depending on U f,0,q,T.

(ii): If in addition (E1) and (E2) hold and there is a natural number v > ﬁ
with

E|[¢][7%, < oo
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there exists a solution X to Eq(¢,F,%),s.t.

t S[%PT]EHX(t)H%,”zy < e, T,¢(T), c(T), co(T))(1 + E[[E][7%,)
€10,

holds for a positive constant c(...) only depending on U f,o,v and T.

Proof:
Following the proof of Manthey and Zausinger show (ii) first,and then show
(i),which was not shown in [MaZa].

Proof of (ii): B
Step 1: Define mappings g,h:R — R by

0<u<wv
(t,w)E[0,T]xQ

g(v) := min ( inf J(t,w,u)1g,00) (v), 0) —cf(T)(1 = v)L(_ao,0y(v) (2.11)

h(v) := max sup Jtw,u)L(Za0,0)(0),0 | +cp(T)(1+v)1g,00)(v) (2.12)
(t,w)E[0,T]xQ

Since f fulfills (LG),g and h fulfill the conditions

(2.13) <0,5(v) < f(t,w,v),(t,w,v) €[0,T] x Ax R

QI

(2.14) h > 0,h(v) > f(t,w,v),(t,w,v) €[0,T] x 2 xR
Then define mappings fy,ar for N, M € N as in 2.3.1.Then:
—N < fym(t,w,0) < fn(t,w,0) < cp(T)
ie. fx and fnar fulfill (L2) with w-independent constant
¢(N) := max{N,c;(T)}.
Claim: For arbitrary N,Me N
lfvm(tw,z) — fnm(tw,y)| < Mz —ylite0,T]we Qxye R
holds true,s.t. the fn as also fulfill (L1).

Proof: Fix arbitrary t € [0,T], w € Q and x,y€ R and define

Zy = arg lng(fN(tawaz) + M|‘T -z )’Zy = arg 1n1f:‘{(fN(t7waz) + M|y - Z|)
z€ ze

First consider the case z, = 2z, =: Z.Then the definition of fx s implies

ly — 2|)
(y—2)|) = M|z -y

fN’M(t,w“'IJ) - fN,M(t,way>

w2

= M(lz -2z -
< M(lz-z-

and analogously
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—(fnmtw ) = fnut,wy) = fnu(t,wy) — fyutwz) < Mo -yl
which proves the claim.

So let z, # 2z, in what follows.
Assuming fy a(t,w,z) — fy . (t,w,y) <0 the claim follows from

fN7M(t,w,Jf) - (fN(t’waZI) +M|y_ Zw|) < fN,M(t7w7x) - fN,M(tawvy)

and the above case.Otherwise the claim follows from the following chain of
inequations:

Mz —y| = M(lz— zy| = [y — 2y])

fN(tvwvzy) —&-M‘JZ - Zyl - (fN(t7w7Zy) +M|y _ZUD

v (tw,w) — v (t,w,y)

0

Step 2: Defining Fn a by (2.4),theorems 2.3.1, 2.2.7 and 2.2.11 imply the
existence of pathwise unique solutions Xy ar of Eq(§, Fiv ar, X) with

VIV ||I

Xy < Xy (2.15)

Denoting solutions of Eq(£™,Fy ar,2),Eq.(£7, Fy e ¥) resp. Eq.(0,0,%) by XO,M,XN,M
resp. V,one gets the following relations:

Xnar(t) < Xnwm(t) S_ m(t)  (2.16)
Xy a(t) SV(t) < Xo, wlt) (2.17)

P-almost surely for each t € [0,7"] and arbitrary N, M € N.Theorem 2.2.7(ii)
implies

sup EHXO’M( )Hp 2v S C(V M T)(l +E||£+Hp 21/)
t€[0,T]

for each M € N.Furthermore:

2v

t
Bl Xonr ()2 < () <EIIU(t 0)e+ 12 + EHI Ut ) Fo.at (5, - Kot (5)) ds
0

2v
p,2v

ps2v

OftU(t, $)5(s, Xo.r(s)) AW (s)

= IO+ 1P + 121
First (E1) leads to

IN(t) = c(w)BIU0)E7(12, < c(v, T)EIET|[%
< o, DEIE|[}%,

By (PP) (E1) additionally implies

P2V
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t

f t S |F0 M( S, ,X())M(S))lyds
0

I_](VQI)(><CVT

p,2
and thus

— t — —_
2 < e, T,e(T) B 11h(Xo.01(5)) 72, ds

t —
< ¢ T,e(T) Eof_f { (14 X3 (8,U))1 %001 (5.9)>03 (5:9)
(€]
+(1 + V2V (Say))l{XoyM(s,y)<O}(Svy)] N’P(dy) ds
t T )
< e, T,e(T),cp(T)) | 1+ OfEHXo,M( )2, ds + OfEHV(S)Hif'zuz ds)

< e Toe(T), e (T), co(T)) (1 n OftE||Xo7M<s>| 2 ds)

< T e(T), es(T),co(T)) (1 n Of<t ) VB Ko 0 ()2 ds)

where (2.14) was used in the first,(2.12) and (2.17) were used in the second,2.2.10(ii)
was used in the fourth and the fact,that (¢ — s)” can be estimated by T7,was
used in the fifth step. B

Considering the process @(t) := o(t, Xo,m(t)) , t € [0,T],in L2”, (E2);(L1),(L2)
for o and v € [0,1) imply

jj(\f)[) (t) < C(V, T) (Z‘(t — 5)77E||U(3,X0,M( ))‘ p,2v ds

t —
< e Tueo(T) (14 (0 3) 7Bl r(6) 2 5
0
Thus one has for arbitrary ¢ € [0,T']:

Bl Ko (Ol < clo, TYBIIE]I2%,
el Tl (o (T) (146 =) 7Bl Ko r(0) 25 5
< vy Toe(T).c f<T> <T>><1t+E||§\|p2y>
+c(v,7, T, ¢e(T), c T)) [(t — s)7 E[|Xo,nm(s)|[2%, ds

(=)

Setting g := E||Xo ar[|2%, one gets

g(t) < C(1 + Bll€]124,) +cof<t— 5)~g(s) ds

for v € [0,1),C:=c(v,y,T,c(T),cr(T),co(T)),i.c. the conditions of 2.2.5 are ful-
filled with g, := g for all n € N.Since g is bounded for all M € N,2.2.6 leads to

E||Xo.m (0)[3%2 < c(v,7, T, (1), ¢4(T), co(T)) (1 + EJI€][2,,)
for arbitrary M € N,s.t. due to the M-independence of the constant

Sup. E||Xo.m (0)l17%, < (.7, T, e(T), ¢4 (T), co(T)) (1 + El[¢][3%2,,)

MeN
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It was essential for the M-independence of the constant,that (2.14) is applicable
for all M € N.

An analogous estimate holds true for X y ,,(with a constant possibly dependent
on N) and thus by (2.16) also for Xn .

Step 3: As Manthey and Zausinger did,show the convergence of (Xn a)men
in L% to a process Xy solving Eq.(§, Fn,X).
Manthey and Zausinger define

ZN,M(t) = XN7M(t) — XN’l(t);N,M € N;t € [O,T]
(2.15) implies
0<Znm(t) < Znps1(t)

and

sup El|Zyas(0)l2s < ) | sup EllXwar(®)lZ, + sup EllXna (0],
ek el telo)

< o0

Claim 1:By the definition

ZN(t) = sup ZN’M(t),N eNite [O,T]

MEN
from [MaZa] one gets,for each N € N,a pathwise continuous process Zx,which
is unique up to a zeroset in 2 x ©.
Proof: Consider continuity first:
Xn, v is pathwise continuous for all NNM € N by 2.2.7,as a consequence of
which Zy a(w) is continuous for arbitrary w € Q as the difference of X,y (w)
and Xy 1(w) and Zy(w) is continuous as the supremum of the continuous
Zn,m(w).As w was chosen arbitrarily,pathwise continuity is shown.
By 2.2.7 Xy wm(t) is pathwise unique for all N,Me N and arbitrary
t €[0,T],s.t. Zn p(t) is pathwise unique as well for all N\Me N and arbitrary
t €[0,7T].Thus

Zn(t,w) == sup Zn m(t,w)
MEN

is unique in Lf) except for w € Q,s.t.

1Zn 31t llp2 = 12w a2 ()l p2 = sup [[Zn,a(E w)llp.2
MeN

with natural numbers M # M and fixed Nt holds true.But then,according
to the definition of the norm,the definition of p, from section 1.2 implies

ZNyM(t,w,x) = Zn i (t,w,x) for p,-a.a. €O

s.t. Zn(t) is unique P ® p,-almost everywhere for all N,t,which finishes the
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proof.
Due to the construction of the process one gets:

sup E|[Zn(?)

||p 21/
t€[0,T]

Claim 2: By setting
XN(t) = ZN(t) + XNJ(t),NE N,t € [O,T}

one gets a pathwise continuous stochastic process X y,s.t.

Xn(t,w) € L2” holds true for every fixed N € N and every w € €.
Proof:From the pathwise continuity of Zy shown in claim 1 and the pathwise
continuity of X, one gets pathwise continuity of X .

Furthermore one already knows

sup EHZN(t)| p,2v <o
t€[0,T]

sup E||XN,1(t)| p,2v < o0
te[0,T]

for each fixed Ne N,which implies

sup EHZN(t) +XN,1(LL)| ,2)17/2 < o0
te[0,T']

Thus there exists a process Xy € {¢ : [0,T] x @ — L2” | sup E[|(t)[|2%, < co}s.t.
¢

p,2v

Xn(t) = Zn(t) + Xna ()t € [0,7]

P-almost surely in Li”,i.e. for fixed N there exists a modification Xp,s.t.
Xn(t,w) € L2 holds true for all t € [0, T ],w € Q,which was the claim.

Fix an arbitrary ¢ € [0,7].By (2.15) one gets Xy () T Xn(t) P-almost
surely.Since

sup E[| Xy (8)]3%, < oo
MEN
dominated convergence implies
Jim B[ X (1) = X (0], = 0

As t € [0,T] was arbitrarily chosen,one gets

T
lim fE||XN’M(t)—XN(t)|p2th< T sup lim E||Xym(t) — Xn(t )|p2y
M—o0p te[0,7] M—o0
- 0 (2.18)

Furthermore one has the following estimate for all ¢ € [0, T ]:
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2v

E[[Xn®)}2 = E S}\IJP(XN,M(t) = Xna(t) + Xna(t)
P2V
2v
< ¢(v) |E|| sup Xy m(2) +2E|| XN 1] i”éul
M p,2v
<

3c(v) sup E||Xnm ()25,
MEN
and thus
sup ElIXn(O]25, < 3e) sup BllXna (0],

t€[0,T] o MEN
< Ny, Te(T), ¢4 (T), eo(T)) (1 + E[[€]12%,,)

P2V

In the same manner one gets processes X ,X in Lf,”,s.t.

T

A}@OOJEHXN,M@) — X n(0)][2%, ds =0
T — —

N}im JE||Xo,m(t) — X (t)| if’QV ds =0

and

Xn(t) < P
Xn@) <V(t) < X(2)

P-almost surely for all t € [0,T'].
Step 4: (2.18) is just convergence in probability of (Xy am)men to Xn,as
a consequence of which there must be a subsequence of (X, ar) men,which con-

verges to Xy P-almost surely.As in the fourth step of the proof of 3.4.1(ii)
in [MaZa] let w.l.o.g. (Xn a)men itself be this sequence.

t ¢

B ‘ ‘XNm —U,0)¢ — [ Ut 5)Fx (s, X (5)) ds — [ U(t,5)S(s, Xn(s)) dW(s)
0 0

< B (0) + T (1) + 103 ()

where the terms are given by:

IJ(\},)J\/I(t) = E|[Xn (1) — Xnar ()]} 24 < e, p) (BIXn(t) = Xnvoar (0)]12%,)¥

t 2
I$h () == A(D)E || [ Fx(s,-, Xn(s)) — Fnoaa(s, -, Xna(s)) ds

0 0,2
I](\?’M(t) =E OftU(t7 $)[E(s, XN (s)) — Z(s, Xn,p(8))] dW (s)

s.t. at least the first term tends to 0 for M — oo by (2.18).Consider the second
term:
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T
I3y (1) < ele(D)) (E S 11w (s, X () = E(s, s X ()1 o ds

T
+E [[|Fn(s, - XN (s) = Fn (s, Xnoa(s))]]2 o d5>
0

= c(e(D)USHT) + IT(T))

By (PG)
I = B J [ (s X))~ (s X aa5,0) P ) s
< B (N D)+ Xl + [ Xar(5,0)") ) s
< (N T,elT),v,es(T)) <1 + OB (9)]25, + Bl Xoar ()5 ds)
s.t.
- Xna(t) < Xnm(t) < Xn(t),P-fsite[0,T]
implics

T
I73(T) < o(N, T, v,¢(T), ¢4(T), o (T)) (1 + ?OfEIIXN(S)H?»,Vzu d8>

So (11(\?,1]\)4)M€N is a bounded sequence in L2”.Then (2.18) and the continuity
of Fy ensure

: (21) _
thloo Ina(T) =0

Fix L < M;L,Me N;and get in analogy to the consideration of I](\?ll\)/[ with
Inm T fN

T
lim Iy < i JEI (5,0, Xaar(5)) = Pt (5,0 X ()72 s
T
= JEHFN(s,w,XN(s)) — FN’L(s,w,XN(s))Hi,Q ds
which tends to 0 for L — oo since fy,r T fn.Thus

. 2
Jim I3, (1) =0
Finally one gets by (E2),(L1),Hoelder‘s inequality and

v> s = G <1 (219)

the following estimate for the third term:
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1©, (10 < A f (t — ) Bllo(s, Xn (5)) — 05, X ae(5))] 3,5 ds

< (1), e (T)) ;(t —8) "E[[Xn(s) — Xnm(s)]]32 ds
< ce(e(T), e (T)) ((fsvji ds) V (JTEHXN(S) — Xnm ()25, ds) )
S v

T
(7, T,e(T), co(T)) ({EIIXN(t) — Xy ()12, d8>

which tends to 0 for M — oo by (2.18).Thus (iv) from 2.2.3 holds true for
X .Consider the other properties from 2.2.3:

Since Xy is predictable by its construction and fulfills X € Li” according to
claim 2 from step 3,property 2.2.3(i) is fulfilled.By (2.18),(2.19) and property
2.2.3(i1) for Xn ar one gets

t t
sup [ (t — ) VE[|Xn(s)|[2 2 ds < 2[ sup [ (t — ) VE[[Xn(s) — Xnam(s)]]5 2 ds
te[0,T] 0 te[0,T] 0

t
+ sup f(t—s)"*EIIXN,M(s)II,%,zds]
te[0,T]0

v—1

v

T v T
< 2 (f e dS) (f E||Xn(s) = Xnm(s)][2%, dS)
0 0

t
+ sup [(t—s) VB[ XN ()]} ds]
te[0,7]0

< o0
for all t € [0,T] and arbitrary N,Me N.
Thus Xy has property 2.2.3(ii) as well.
By claim 2 from step 3 Xy is pathwise continuous,which is just 2.2.3(iii),s.t.

all properties from 2.2.3 are fulfilled,which means that Xy is a solution of
Eq.(§,Fn,X) for all N € N.

Step 5:
Due to the definition of X for N € N and step 2 one already knows that
sup E||X v (#)[12%, < cv,7,T.¢(T), ¢4 (T), o (T), N)(1 + E[[¢][2%,)

P p;2v
te[0,T']

holds.Show the N-independence of the constant.First of all
v 2 3

E||X y(1)|[2, < cv) (L0 + L0 (1) + 1V (1))

for all t € [0,T'] with

I (t) = E||U(t,0)¢ [

p,2v
2v

Q) =E

OftU(taS)Fﬁ(Sw,Xn(s))ds

ps2v

57



2v

100) = B | [ U056, X (s aw ()
p,2v
Then
1) = E|UL0E |2
< DEUEOE I,
= e TLoT) B,
by (E1),

I9() < C(V,C(T))ftIIF&(SmXN( $))I17%, ds
c(v,e(T)) OfEHg(XN(S))Hi:jQV ds

< c(y,T,c(T),cf(T)(Hf’EIIXN 8)[12%, ds )

< el Tel@ey(r) (14 [0 o) BN 6)55)

by (2.13) and by (CC),(L1),(L2)

IA
~o

t
100) < e Tl o () (1+ = 9) B0 (93 05
Together the three estimates lead to

E[[Xy(t) c(v, T)E]|¢]|7

||p2y— p,2v

v, Ty (T, ef(T), co(T)) (1 n f t— 8) VB Xy ()25, ds)
< el Tl s (D). ca(T)(1+ BJE25.)
e, T, e(T), s (T), e (T)) ({(t TR Xy ()2

for all t € [0,T].Then 2.2.5 and 2.2.6 with g,, := E|| X y||*“

o0y for all n € N show

E[| Xy )35, < (v, 7, T, e(T), ¢4 (1), co (T))(1 + E|€][2%,)
for all N € N s.t.

sup BIX (0], < (7. T.e(T). er(D). (1)1 + Elf|22,)

NeN

holds true.The fact that (2.13) holds true for all N € N was essential for the
N-independence of the constant. Then

sup BIX(1)[[2%, <c(v) | sup E[IX () - Xom ()%, + Sup, EHXO w8152,
t€[0,T] tefoa N

E|[Xo,m (8)[[3%,,4 < c(v,7, T, e(T), ¢4 (T), co(T)) (1 + El[¢][32,,)

and
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Xpn(t) < Xn(t) < X(¢) in L3¥

lead to

p,2v py2v

fS{l;I;]EIIXN(t)Iz” < c(,7, T, e(T), ¢4 (1), co(T)) (1 + E[€][75,)  (2.20)

for all t € [0,T'].
By fn | f 2.2.11 implies
Xni1(t) < Xn(t) P-as. te [0,T], NeN (2.21)
Show that X given by
X(t) := ﬁg%XN(t% te[0,T]

is a solution in the sense of 2.2.3.
First fix ¢ € [0,T].Define

YN(t) = Xl(t) —XN(t) s NeN

By (2.21) this is a sequence of random variables,that are positive almost surely
with

YN(t) § YN+1(t) P-a.s.

and
sup E[[Yn(t)|[0%, =  sup E[[X1(t) — Xn(1)[12%,
te[0,T'] te[0,T]
< c(v)( sup B[ X1 (t)|[2%, + sup EIXN(t)I?,?QV)
te[0,T'] te[0,T]

which is finite by (2.20).Analogously to the procedure in the case of the Xy ps
one gets

T
Jim [ B[V (1) Y (1) 2, dt = 0
—>OOO

for Y given by

Y(t) := ;E%YN(t) , t€[0,T)

By the definitions of X and Y

Y(t) = sup Yi(t) =  sup (X1(t) — Xn ()

NeN NeN
= Xi(t) - X(t)
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holds true for all ¢ € [0,T],s.t.

E[|Xn(t) = X(1)]|2%, = E[|X1(t) = Yn(t) — X1(t) + Y ()|~

p,2v 5 p,2v
= E|Yn@®) -Y®)I5%,

for all t € [0,T] implies

T
Jim [ EI[Xn(t) — X(0)||2, dt =0 (2.22)
*)OOO

With the estimate

t t 2
EHX(t) —U(t,0)¢ — OfU(t,s)F(s, -, X (s))ds — OfU(t,s)Z(s,X(s)) dW (s)
0,2
. 2
<3 <E|X(t) - XN(t)||§72 + 02(T)EHJF(3, X(8))— Fn(s,-, Xn(s))ds
p,2

+E

OftU(t, $)[2(s, X(s)) — X(s, Xn(s))] dW (s)

=30+ 1P @)+ 1P (1)) p7

one gets analogously to the procedure in step 4:

N

I () < e(v,p) (BIIX () — Xn(8)][2%,)

T
IPM < cp,T) (EJIIF(S,',X(S)) — F(s,, Xn(s))II} 2 ds

T
+EJ ||F(Sa ) XN(S)) - FN(S7 '7XN(S))||2,2>

v—1
v

IY(t) < e(T,e(T), o (T)) <Ofsz dS) <0fE||X(8) — Xn ()35, d8>

By the definition of fy for any =z € © fn(-,-,x) differs from f(-,-,z) if and
only if one has f(-,-,2) < —N. But then

f2(" B m) > flgv(a " x)
sit. F(-,-,¢) > Fx(-,-,¢) holds true in L2 for all ¢ € L2”,which means Fy 1 F
in Lf,.
Thus analogously to the procedure in step 4 (2.20) implies
: (4) _
1\17%111\1 Iy (T)=0

for 7 = 1,2, 3,since f is continuous in R as well.

Thus X solves the equation from 2.2.3 (iv) P-a.s. for ¢t € [0,T'].

Due to the fact that X (¢) < Xn(¢) holds true P-a.s. for all t € [0,T],
N € None gets

BJIX ()12, < inf BlIXx(0)]2%,
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But one also has

< B[| Xy (@)

D := I&I&EHXN(t)I p2v S p2v
for all N € N s.t. (2.18) implies
2
D<B|| ut Xv(0) L CEIXOI
Thus for all £ € [0,T]: |
tes[%pT]EHX( 2w = tes[lfl)g“]f\lfnf E[|Xn (0[5, < fsup B[ X (D152

NEN

< o,y T, e(T), ¢4 (T), co (T)) (1 + EI[E]]7%,)

Thus the wanted estimate holds true and

sup E[|X(?)
te[0,T]

leads to X(t) € L2 P-almost surely for all ¢ € [0,T]s.t. 2.2.3(i) is ful-
filled.Completely analogous to the X y-case one gets

||p 21/

te[0,T] 0

t
+ sup [(t—s)VE[[Xn(s)][7 dS]
te[0,7]0

for arbitrary N € N.As all Xy have property 2.2.3(ii),the last integral is fi-
nite,s.t. by (2.22) property 2.2.3(ii) is also fulfilled for X .

Due to Xy being a solution of Eq.({,Fn,>) each path of a process Xy is con-
tinuous.But then each path of X is continuous as the infimum of a family of
continuous processes.So X owns property 2.2.3(iii) as well,which finishes the
proof.

Proof of (i):
Consider functions fy . fn,m and foar as in the proof of (ii).Then given
¢ > 72 and £ with

E|[¢]l;,2 < o0
theorem 2.2.7(i) ensures the existence of pathwise unique continuous solutions

X noarXo,m, XN,y and V (case & = F = 0) with properties (2.16) and (2.17).Con-
sider again X ps.For arbitrary ¢ € [0,T'] one has
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t q
Bl X001, < ) <E||U<t,o>s||z,2 n Hbfwt,s)Fo,M(s, - Xoar(s)) ds

q
P2

p,2

+E

Oft Ul(t,s)X(s, Xo.a(s)) dW(s)

= IO@)+ 120+ 1P

with the following estimates for the I-terms:

TN (t) < e(q, c(T)E|E]]? 5

[SIIS)

L= E|J

¢ 2
Ik (Of U(t,s)Fo,m(s, -,)_(OJV[(S))ds) (x)up(dx)]

IN

c(c(T))EOf A(o.ar ()], ds

IN

(D). es (TNB | [(1 X359, 0y 529
+ (1 + Vz(s’ y)) 1{X0,1\4(S,y)<0} (53 y)} up(dy)} : ds

t T
< g, T, e(T), ¢ (T)) (1 + 0f1*3||Xo,1\4(8)HZ,2 ds + OfEHV(S)HZ,z d8>

< g, T.e(T),es(T),co(T)) (1 n jE|Xo,M<s>||z,2 ds)

where (2.14) was used in the second and 2.2.10(i) was used in the last step
and

~ t —
I < e(q.T.v,e(T)) [ Ello(s, Xoa(s))]|%, ds
0

< @ T,y olT),cr(T)) (1 + B0 ds>

where (2.6) with £ = 1 was used for the process @(t) := o(t, Xo am(t)) in the
first and (L1),(L2) for o were used in the second step.

Putting the estimates together

Bl Ko (2 < cla T,7,e(T),es (7). o (1)1 + B o)
0, T (7). 4 (T), 0 (7)) [ B Ko, ()] .

holds true,s.t. Gronwall‘s lemma leads to

tes[lé%]EllXo,M(t)IIZ,z < (g, T, 7, e(T), ¢ (T), ¢ (T)) (1 + E[]]7 )
and one gets by the M-independence of the constant
sup_ E||Xom (1)II} 2 < e(a, T, 7,¢(T), cp(T), o (T))(1 + E[E]]} )

te[o,T
MEN

As in the proof of (ii) the analogue of the last estimate holds true for Xy ,
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with a constant possibly depending on N and thus by (2.16) for Xy as as well.
Defining Zy s as in part (ii) one has

0<Znm(t) < Znns1(t) P-ast e [0,T]
and
sup E|[Zym@)]52 < () | sup E[Xnum(@)|[].+ sup E[Xni(t)[},
] te[0,T] te[0,T

te[0,T }
MeN MeN

< o0

Completely analogous to the proof of claim 1 in step 3 of (ii) Zy defined by

ZN(t) = ]\Sjgl)\]ZN’M(t)’N eNite [O,T]

is a pathwise continuous process,which is unique up to a P-zeroset on ) x ©
and fulfills

sup E||Zy (1[5 < oo
te[0,T]
Then X defined by
Xn(t):=Zn(@)+ Xna(t),N e Nt €[0,T]

is pathwise continuous as well.
Analogously to the proof of (ii) dominated convergence implies

A}@@EHXN,MU) —Xn)|[2,=0

for all t € [0,7'] and thus

T
i [B|[ X ar(t) ~ Xn(0)[2dt =0 (223)
—>000

In the same manner one gets processes X and X , with
T — —
lim [E[|Xonm(t) — X(t)]|] 5dt =0
M—o0 0 ’

T
Jim [EX 0 (6) = X ()[4 de =0
—00 [
By the same method as in the proof of (ii) one gets
E[[Xn®)][52 < (N, q,T,c(T), cs(T), co(T)) (1 + El[][7 5)
and again there exists a subsequence of (Xy ar)amen,which converges to Xy

P-almost surely.Again let w.l.o.g. the sequence itself be this subsequence.Then

E ‘ ‘XN@) U, 0)¢ jU(t, $)Fx (s, X (s)) ds — be(t, §)S(s, X (s)) AW (s)

P2
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1 2 3
< B3I () + Ty (1) + T (1)
with I-terms given by:

I (1) = E||Xn (1) — Xnar(8)]]2

t

I (1) = A(T) [ E|[Fx (s, Xn(5) = Fxar(s, - X (8)||20 ds
0

2

OftU(t7 $)[E(s, XN (s)) — 2(s, Xn,pm(8))] dW (s)

I§V}M(t) =B

P2
By the estimate

L 29
I = ElIXn () - Xnac()ll
g 12
< (Bl XN() — X )]]52)
for all ¢ > % > 2,]1(\}’)M(t) converges to 0 for M — oo given arbitrary ¢ € [0,T'].
Dividing Iﬁ)M into terms Iﬁ?/[ (T);i=1,2; as in the first part of the proof leads to

T
IZNT) = E{ 1EN (s, Xn () = Fn (s, Xy ()]} o ds

T

IRy (T) :=E [[|Fn(s, Xna(s) = Fn (s, Xn o (s))|]2 o ds
0

Condition (PG) with exponent v = 1 implies

|fN(Saw7XN(S’w7y)) - fN(S>wa XN,M(S7w7y))|
< (N, ep(T)(1+ [Xn (s, w, )| + [ XN (s,w,9)])

Analogously to the first part of the proof (1}31134) MeN is a bounded sequence in
LF% with

q

T
IO < (Ebf 1Fn (s, XN () = Fiv (s, X (5))]]72 d5>

which converges to 0 for M — oo due to the continuity of F.
Analogously to the procedure in the proof of part (ii)

. (22) _
N}linoo INu(T) =0

holds true,s.t. I](\?’)M converges to 0 for M — oo for all t € [0,T'].
By Ito‘s isometry,(CC),(L1) and Hoelder‘s inequality

)

I () < oT) J‘(t — 8)E|lo(s, Xn(s)) — o(s, X (5))][2.0 ds

< oe(T), (7)) ;(t —8)"E[[Xn(s) — Xnm(s)]]7 2 ds
A Y9 q%z T %
< e(e(T), e (T)) <Of s a2 ds) <OfE||XN(s) — XN (3]} o ds)
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which converges to 0 for M — oo by (2.23),since
q> 15 =<1 (224)
ensures the existence of the first integral on the righthand side.

Then the sum of the I](\?M converges to 0 for M — oo,s.t. Xy fulfills prop-
erty 2.2.3(iv).
By its construction Xy is predictable.For all N € N

t t
sup [(t—s)VE[[Xn(s)[l52ds < 2| sup [(t —s) VE|[Xn(s) — Xn ()22 ds
te[0,T] 0 _te[O,T] 0

t
+ sup [(t—s) VE[[ Xy (s)]] 5 ds
te[0,7]0
- a2

a—2 2

T g q T q

< 2 (fd> (fEHXN(s)—XN,M(s)|z,2ds>
0 0

t
+ sup [(t =) VE[| XN (s)]]7 2 ds

te[0,T]0
holds true with arbitrary M € N.The righthand side is finite,since Xy s as
a solution of Eq(&,Fv a,%) has property 2.2.3(ii) and the first term tends to 0

for M — oo as in the estimate of I](V)M,b t. 2.2.3(ii) is fulfilled for Xy.v =1
implies that 2.2.3(i) is trivially fulfilled and the pathwise continuity follows anal-
ogously to the proof of part (ii).

Thus for arbitrary N € N Xy is a solution of Eq.(£,Fn,X).

Defining processes XN,)_( analogously to Xy ,these processes solve Eq.({ 7, Fy,X)
resp. Eq.(6T,F* %) with estimates

Xpy(t) < Xn(t) < X(t)
Xn(t) <V(t) < X(t)

P-almost surely for all ¢ € [0,7T'].
Consider arbitrary N € N:

El[X ()25 < e(@)I V() + IR (1) + I (1))
with
IV(@) = E||U(t 0)& 12,

q

IP(t) = Fy (s, X (s)) ds

p,2
q

0ftU(t7 $)%(s, X 5 (s))dW(s)

P2

For an estimate of lﬁ) consider (2.6) (with x = 1 and ¢ := X(-, X )). This
leads to
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t q

JU(tvs)E(&XN(S))dW(S)

E

t
< c(q,7,T.¢(T), co(T)) [ E[| X ()] ds
py2 0
for all t € [0,T].
So the I -terms have the following properties:

L sup IW(1) < e(q. o(T))EIE[5 5 < ela, o(T))EII€]]7 5

S
100 = clareD) [ BIF (s Xn (o)} ds
) < lg.e(T) J Bl (D ds
< a7l cr(0) (14 [ BIXAL ds)

3. 19(t) < eq T, e(T), s (T) (1 T jE|XN<s>|z,2 ds)

Then applying Gronwall‘s lemma leads to
E[[Xx(0)52 < (g7, T, ¢(T), cp(T), ¢ (T)) (1 + E[[¢][7 o)

i.e. X is bounded in L9([0,T] x €; L?) by an N-independent constant.
Defining Yy,Y and X as in part (ii) implies

YN(t) S YN+1(t) P-a.s.

and

sup E[[Yn(t)|[;2 = sup E[Xi(t) - Xn(@)I[7
te[0,T'] te[0,T]

< cg)| sup E|IXi(0)[[7, + sup
te[0,T] te[0,T

] E[[Xn(t)] |Z,z>

< o0

Analogously to the procedure in case Xy jr one gets

T
Jm JE|YN(f) = Y(B)[5,dt =0
—00 ’
By the obvious chain of equations

E[[Xn(t) = X (D52 = ElX2(t) = Yn(t) = X1 (t) +Y(D)[5
= E|Yn(t) -Y(1)l5.
for all t € [0,T] one has

T
Jim [ B[ X () - X(0)|[35dt =0 (2.25)
—o0 ’

66



Analogously to part (i) one estimates in the following way:

E||X(t) —U(t,0)¢ — jU(t,s)F(s, - X(s))ds — JU(t,S)Z(&X(s)) dW (s)
<3 <E|X(t) — XN(t)||2p’2 + CQ(T)E“JF(S, - X(8)) — Fn(s,, Xn(s))ds

+E

n 2

[ Ut X () = 2, Xov ()] WV (3) )
p,2

= 3(I0) () + 1Y () + IV (1))

Consider the I-terms:

I (1) < (BIX () - Xn(0)][2,)7

- T
P < 2 (EJIF(SmX(S)) — F(s,, Xn(s))ll3 2 ds

T
+Ebf 1F' (s, Xn(5)) = Fn (s, Xn(s))I[7 2 d5>

TP (1) < e(e(T), o (T)) <OfTs ds> <OfTE|X<s> — Xn(9)ll52 ds)

With the help of (2.24) and (2.25) one gets property 2.2.3(iv) for X with the
same arguments as in (ii).

As v =12.2.3(i) is trivially fulfilled.Concerning 2.2.3(ii) estimate in the follow-
ing manner:

|

te[0,T] 0

t
+ sup [(t— s)_'VEHXN(S)HiQ ds}
te[0,T] 0

This estimate holds true for arbitrary N € N.As X fulfills 2.2.3(ii) for arbi-
trary N € N (2.25) then implies the finiteness of the righthand side,s.t. 2.2.3(ii)
is fulfilled for X.As in part (ii) pathwise continuity of X follows from that of X
for arbitrary N € N.

So X is a solution to Eq.(¢,F,X) in the sense of 2.2.3.

Analogously to the proof of (ii) one gets the following chain of inequations for X:

sup B[ X(®)|[j,=  sup inf B[ Xy(@)|[7, < sup E[[Xn ()]
te[0,T] P2 te[o, 7] VeEN £2 tel0.T] P2
< elg, ), T,e(T),c(T), ¢ (T)) (1 + E[E]7 )
Thus one also has the wanted estimate,which finishes the proof.
q.e.d.

As it was already mentioned in the introduction the aim of chapter 3 is to show
an existence result for the so-called Heath-Jarrow-Morton model with the help of
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the theory developed here.In this model,which will be described at the beginning
of chapter 3,U will be defined by the shift-semigroup.In [AsMa] the authors claim
an existence (and uniqueness) result(confer [AsMa],section 2,theorem 1,p.241)
in spaces Lg(Rd) with a semigroup,which is not the shift-semigroup,but builds
an almost strong evolution operator with properties (CD),(PP),(CC),(E1) and
(E2) by setting

Ul(t,s) =S(t—s),(s,t)e RL

and a function f fulfilling conditions different from those here.In [AsMa] p was
defined by

P := max(2,v)

In order to be able to emphasize differences between the Heath-Jarrow-Morton
model and the model from [AsMa] show that the existence result from [AsMa]
can be transferred to the given situation.

Theorem 2.3.3:
Let o,f and U be as in 2.3.2.Set

p = max(2,v)
if max(2,v) is an even number and

p:=max(2,v) +1
else.
Let h € LT be a deterministic initial value.
Then there is a pathwise continuous solution of

X(t) = U(t,O)thjEU(t, s)F (s, -,X(s))ds+jU(t,s)E(s,X(s))dW(s)

0
X(0)=nh
in L? and for each q with ¢ > % there is a positive constant c¢(p,q,7,T,c(T),c4(T),co(T)),s.t.

o E[[ X3, < @, q,7, T, e(T), 5 (T), ¢o(T)) (1 +[|1]I7 )
€10,

holds true with C(p7qa’77TaC(T)»Cf (T),Co (T)) depending on paquafva and T.

Proof:

Show a number of claims in case v > 1.

Note,that in case v = 1 one has p = 2,s.t. theorem 2.3.2(i) immediately leads
to the wanted result.

So let v > 1.

Claim 1:
If Y is a predictable Lb-valued process with
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sup E[[Y(8)][2, < oo
t€[0,T]

the Bochner-integral

t
JU(t s, Y (s))ds
0
exists in L for all ¢ € [0,T] and the corresponding process is continuous and
adapted.
Proof: Proceed as in the proof of 2.2.9,i.e. consider for arbitrary ¢ € [0,T'] the

following estimate:
2
t P
psp P2

g\U(t,s)F(s, LY (s))|% ds

jU(tvs)F(S,',Y(s))ds

2
P

< (p.c(T)E <j|F<s,~,Y(s>>’z’ds )
0,2
< elpre(T),es(T))E (f(l Y () 1) ds) '
0
< o(p.T,e(T), c;(T))E (1+ sup (Y (r >|§>
rel[0,T]

= o T,c(T),cp(T)E 1+< sup [[Y'(r)
re[0,T]

< ¢, T,e(T),ce(T)) |1+ | sup E|Y(r)
rel0,T]

< o

For this estimate (E1),(ii) from section 1.3,(L1),(L2) for f and the fact that
one has % < 1 by the definition of p,which implies the applicability of the re-
verse of Jensen‘s inequality were needed.

Thus the Bochner-integral

ftU(t,s)F(s, Y (s))ds € L
0

exists for processes Y as in the claim.Completely analogous to the proof of
2.2.9 one has continuity and adaptedness.
Having a predictable, Lf-valued process Y with

sup E[[Y(8)][2, < oo
te[0,T']

and thus

t T
sup [(t—s) VE||]Y (s NE,ds < Js™7ds | sup E[lY(®)[, < o0
te[0,7]0 0 te[0,T] ’

2.2.2 applied in case x := & leads to
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E)fU(L‘, s)X(s,Y(s))dW(s) € LD

P-almost surely for all t€ [0,7'] and for all ¢ > £ there exists a positive

constant ¢(p,q,y,T,¢s(T)) s.t.
jU(t, $)X(s,Y (s)) dW (s)

E

t
< C(I%Qa%ﬂ CO’(T)) IEHY(S)H%’p ds < 00
PP 0

Thus by claim 1

t t
U(t,00h + [U(t,s)F(s,-,Y(s))ds + [U(t,s)%(s,Y (s)) dW(s) € Lb
0 0
P-almost surely for all ¢ € [0,T] and each predictable,Ll%—valued process Y
with

t
Y(t) € Lb P-as. fa. t € [0,T], sup [E|[Y(s)][},ds < oo
te[0,T]0 ’
and each deterministic i € L%,
But the wanted process X should additionally fulfill

X(t) = U(t,O)h—FOftU(t, $)F(s,-, X (s))ds +0ftU(t,s)E(s,X(s))dW(s)

for all t € [0,T'] pathwisely,and it should be continuous.
In order to prove existence follow the proof of 2.3.2(ii).

Claim 2:

Suppose f fulfills (L1) and (L2),whereas ¢,U and « have the same properties as
above.

Then there exists a pathwise unique continuous solution X of the wanted equa-

tion and for all ¢ > ﬁ there exists a positive constant ¢(p,q,7,T,c(T),cr(T),co (T)),s.t.

o E[[ X3, < cp,q,7, T, e(T), ¢5(T), ¢o(T)) (1 +[|A]I7 )
€10,

holds true.

Proof: Define analogously to the proof of 2.2.7(ii) a sequence (X, )neN in
C([0,T]; L*([0,T] x Q; L?)) (B := L# in section 1.3).By the above considera-
tions

t
E[[ X1 (t) = Xu(OIIF, < c(v,0,4, T, ¢0(T), Cf(T))JEHXn(S) — X1 (s)[f, ds

s.t. with the same steps as in the proof of 2.2.7(ii) (X, )nen is a Cauchy-
sequence in C([0,T]; L*([0,T'] x Q; L?)) with norm || - lloqor):e)(q) and its
limit process has the wanted properties.

q)

Claim 3:
Let f fulfill conditions (PG) (with an exponent v > 1),
(LG) and (D).Then there exists a solution X with the properties claimed in the
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theorem.

Proof: Follow the proof of 2.3.2(ii).

As in step 1 there define mappings g,h and,for NMe N, fn,m and processes
XN men-Xn v and XQM(,Which exist by claim 2).

29
Since ||¢]9 , = || |g0|g||p’32 for arbitrary ¢ € LY (E2) implies the following:
2q
t _ q t _ » 2
E||[U(t,s)Fom(s,-, Xom(s))ds < cp, g, DE||[U(t,s)|Fon(s, -, Xon(s))|2 ds
0 PP 0 P2

t — —
< ep, g, T, c(T))E [ ||h(Xo,m)4 , ds
0

i.e. one gets

— t —
E||XO,M(t>||%,p S C(pa q,7, T’ Cf(T), CU(T)7 h) (1 + {EHXO,M(S)HZ,;J ds)

analogously to steps 1 and 2 in Manthey‘s and Zausinger‘s proof,since

q

E

jU(t, )X (s, Xo,a(s)) dW (s)

t —
< c(p,q,7,¢(T)) [ Ello(s, Xo,n(s))]f, ds  (2.25)
p,p 0
holds true for arbitrary M € N.But by claim 2

) S[%I;]EHXO,M(UH%,;; <ep g, T, e(T), ¢p(T), o (T)) (1 +[[AIIF )
€0,

for all M € N,s.t. the M-independence of the constant implies

sup. E||Xom @)}, < clp: 0,7, Te(T), ¢ (T), o (T)) (1 + [|1]]7 )

telo,
MeEN

Analogous estimates hold true for Xy pr and X N.M with fixed N € N.

Obviously step 3 from 2.3.2(ii) still works.

Step 4 differs from the considerations in the proof of 2.3.2(ii) in terms IJ(\},)M and

I
Iy (1) = El[Xn(t) — Xnau 0],
< cp PEIXN() — Xnu @G,
< op g, p) (Bl Xn(t) — Xnm()]]9,)7 )
I$t):= E OfU(us)[z(s,XN(s))—E(S,XN,M)] AW (s)

< e(el(T).eo(T)) OfE|XN<s> X ()25 ds

q

T
< ep, g, pe(T), co(T)) ({EIXN(S) — Xnm ()3, dS)

By these estimates the two terms converge to 0 for M — oo in this case as
well and the results from step 4 in the proof of 2.3.2.(ii) still hold.
Analogously to (2.25) one gets
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t q

of U(t,s)(s, X n(s)) dW(s)

E

IN

(b4, c(T))OfE|a<s,XN<s>>IIz,p ds

PP

IN

c(p,q;7.T,c(T), co(T)) (1 + jEHXN(S)HZ,p ds)

and thus analogously to the beginning of the proof

Sup E[[Xn()I3, < 0 a7, T, e(T), ¢p(T), o (T)) (1 +[[AI17 )
NeN

i.e. the estimates are N-independent as they already were in the other proofs.
Define

X(t) = Alfrel%XN(t),t €1[0,T]
as in step 5 in the proof of 2.3.2(ii).
Analogously to that proof one can show that this defines a solution.

Pathwise uniqueness follows as in the proof of 2.3.3.
q.e.d.

Remark 2.3.4:
(i) As it was already mentioned Assing and Manthey chose
P := max(2,v)
in their paper.The way p is chosen in 2.3.3 ensures
f£eN

which is necessary,since (E2) and 2.2.2 only hold for natural numbers x and
thus would not be applicable in situations with odd numbers v > 3.

(ii) In [AsMa] the existence result was denoted for a deterministic initial con-
dition h,whereas the existence claim in [MaZa] was denoted for random initial
conditions.

As already mentioned in the proof of 2.3.3,the case v = 1 is already given by
2.3.2(i),s.t. in case v = 1 2.3.3 also holds true for random initial conditions &
with

E|[¢]l5,2 < o0

for fixed ¢ > ﬁ.The proof of 2.3.3 shows that one can keep the claim for

random initial conditions with fixed g > ﬁ,if one additionally assumes
Ellll,, < oo

This leads to the following corollary:
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Corollary 2.3.5:

Let o,f and U as in 2.3.2,define p as in theorem 2.3.3 .
Let g > % be fixed and let £ be a random initial condition,s.t.

EJ¢]]2, < o0
holds true.

Then there exists a solution of

t

X(t)= U(t,0)§+be(t,s)F(s,-,X(s))ds+OftU(t,s)E(s,X(s))dW(s)
X(0)=¢

in L2 with X(t) € L P-almost surely for all ¢ € [0,T] and a positive con-
stant c¢(p,q,7,T,c(T),cr(T),co(T)) depending on p,q,U,f,0 and Ts.t.

) S[lépT]EHX(t)H%,p <clp,q, 7. T, e(T), cp(T), co(T)) (1 + E[E]]2 )
€0,
holds true.
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Chapter 3

The application to the
Heath-Jarrow-Morton
model

3.1 A market model by Harrison and Pliska

In their paper [HaPl] Harrison and Pliska develop a stochastic model of a so-
called frictionless market,i.e. of a market with short selling and without trans-
action costs.

Consider the model with continuous trading-time,which is described in chapter
3(ctf. pp.232-242 there) of [HaP]].

Let (Q,7,P) be a probability space,(F;):ef0,7],7 > 0 arbitrary but fixed,the
augmented right-continuous,complete filtration.Let

P=P(t);0<t<r7

with P = (B, P(-,81),...,P(-,S;)) for k € N arbitrary with adapted,right-
continuous P(-,S");n = 0,1,. ..,k with left limits denote the k + 1-dimensional
price process belonging to bonds Syp—Sk,where Sj is locally riskless,i.e. there
exists a process (r');cj0,7] with

t

B(t):exp(frsds>70<t<7
0

rt is interpreted as the riskless interest rate at time t.

The condition of adaptedness implies,that at any time each agent knows the
current and former prices of the bonds.One defines the so-called intrinsic dis-
count process for P by

1
Bt = BO
and the discounted price process by

Z(t,8,) == B P(t,Sp)it € [0,7]n=1,2,...,k
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Suppose that the set P of probability-measures under which the family
(Z(t,Sn)st € [0,7 )n=1,2,...k i @ (Ft)te[0,7)-martingale is not empty.

Definition 3.1.1:

A trading strategy is a k4-1-dimensional process ¢=(¢¢)ic[0,7] With com-
ponents ¢™;n = 0,1,..., k;which are locally bounded and predictable.

Here ¢} denotes the number of shares the agent holds at time t.

¢, is called the portfolio of the agent at time t.

There exist a value-process V(¢) and a gain-process G(¢) associated to the trad-
ing strategy given by

A strategy ¢ is called self-financing,if
V(t,0) =V(0,0) +G(t,9) 0 <t <7

holds.The corresponding discounted value- resp. gain-processes are defined by

k
V*(t7¢) = ¢z(£) + Z (b?Z(ta Sn)’o St<T
n=1
Remark 3.1.2:
A trading strategy ¢ is self-financing if and only if
Vr(t,¢) =V*(0,0) + G*(t,¢),t € [0,7]
holds true.

Definition 3.1.3:

(i) A trading strategy ¢ is called admissible,if V*(¢) = (V*(t, #)):e[0,7] 18
a martingale with respect to P and fulfills both V*(¢) > 0 and

Vit 0) =V*(0,0) + G*(t, ).t € [0, 7]
(ii) A contingent claim is a random variable X:Q2 — R.It is called available,if
there exists an admissible trading strategy ¢ with V*(7,¢) = 8- X

Then one says ¢ generates X and one denotes 7 := V*(0, ¢) as the price
associated with X.

75



(iii) A market is called complete,if each contingent claim with
Ef:X <

is available.

Theorem 3.1.4: (cf. [HaPl],chapter 3,section 3.4,theorem 3.35,p.241)

Denote by Mp the set of all martingales w.r.t the probability measure P and
by M(Z) C Mp the set of all martingales M w.r.t. P with

M, = My + flbfﬂn dZ(s, Sn)
for predictable processes H";n = 1,2, ..., k; with
E|H!, |<oo0<t<7
for all n =1,2,...,k with stopping times (7, )meN,S-t.
77}i_r}noo Plrp,=71)=1
Then the model is complete if and only if Mp = M(Z) holds true.
Corollary 3.1.5: (cf. [HaPl],chapter 3,section 3.4,corollary 3.36,p.241)

If P only consists of a single probability measure,the model is complete.
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3.2 The framework of the Heath-Jarrow-Morton
paper

As already mentioned in the introduction,this section‘s aim is to repeat the es-
sential conditions and results from [HeJaMo].

First of all [0, 7] with 7 > 0 denotes the trading interval of the economy.Furthermore
let (€2,F,P) be a probability space and (F;)¢c[0,-] the augmented,right-continuous
and complete filtration generated by k > 1 independent,real-valued Brownian
motions wi,ws,...,w on [0, 7] with w,(0) =0 for alln =1,2,...,k.

To each T' € [0, 7] there is a bond with payoff-time T,i.e. an option,which gives
the owner a known payoff at time T,and a riskless asset,i.e. an asset,which en-
sures at any time t a certain interest rate for a bond starting in t with payoff
an infinitesimal unit later.

Denote by P(t,T) the price of a bond with payoff-time T in t.

For arbitrary T € [0,7] and ¢t € [0,T] Heath, Jarrow and Morton assume the
following:

1. P(T,T) =1
2. P(t,T) >0

3. L log P(t,T) exists

Condition 1 means,the payoff of a bond must always be 1 unit of money(=UM),
condition 2 means that there is no trivial arbitrage opportunity,i.e. there is no
chance to get the payoff of a bond without having payed a positive number of
UM before.By condition 3 the following definition is possible:

f(t,T) = - log P(t,T),T € [0,7]t € [0,T]

As the payoff for a bond is always 1 UM at the payoff-time by condition 1,the
writer,i.e. the one who offers the bond,must choose the price in t of a bond
with payoff-time T in such a way,that he can surely(,i.e. almost surely under
the preceding probability measure P) make exactly one UM out of P(¢,7) UM
between t and T.Then P(t,T) > 1 would mean,that it is P-almost surely im-
possible to get a positive rate by investing of money in bonds,s.t. it would make
sense to keep the money instead of investing it into a bond with payoff-time T.
Suppose for T and T+h with small h > 0 there is a safe interest rate r,f.e. via a
savings book.Then the following must hold true,since the payoff is equal at any
time by condition 1:

P(t,T)e ™ = P(t, T+ h) < r=— (10% IB“»T*h,);lOgP(t’T))

Thus the rate of a riskless asset with start in T and payoff an infinitesimal
unit later viewed from time t is
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. log P(t,T4+h)—log P(t,T S
}lbli%_og ( }1 og P(t,T) _ —%logP(t,T)

= f(t7 T)

So f(t,T) is the interest rate one can contract for in time t for a riskless as-
set starting in T with payoff an infinitesimal unit later.In order to ensure this
rate,the writer of such a riskless asset must be able to reach this interest rate
between t and T for sure.

Besides the trivial arbitrage possibility,which is excluded by the condition 2 for
P(t,T),it should in general be impossible to have an arbitrage possibility,i.e. in
the sense of section 3.1 one has to exclude the existence of an admissible trading
strategy ¢ with

V(0,¢) =0 and EV(7,¢) >0
for 7 € [0, T].Therefore introduce analogously to section 3.1 the following nota-

tions.
By Z(t,T) denote the discounted price in t of a bonds with payoff-time T given by

Z(t,T) = 2D

where

B(t) == exp (Oft fy:y) dy)

is the number of UM one gets in T by investing 1 UM in t,s.t. one buys a
bond with payoff an infinitesimal unit later at any time in [¢,7'].

In [HeJaMo] the authors assume the following property:

F.T) — FO.T) = [a(s.T,w)ds
1) 0

Jr
forall T € [0,7],t € [0,T]

where (f(0,T))re[o,- is deterministic with

£0,):([0,7], B([0,7])) — (R, B(R))

a:St x 8 — R is a uniformly measurable mapping B(St) x F — B(R) with
T

[ la(t,T,w)|dt < co P-a.s.
0

and 0,:57 xQ — R is a uniformly measurable mapping B(S7)x F — B(R) with

T
[o%(t, T,w)dt < oo P-asisn=1,2,...,k
0
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The different processes o,;n = 1,2, ..., k;underline the sensitivity of the process
against changes of any of the Brownian motions w,;n =1,2,...,k.

In order to assure,that B(t) defined as above is P-almost surely positive and
finite,Heath,Jarrow and Morton assume

T

c2) [I|f Ot|dt<oof<fastw)|ds> dt < oo P-a.s.
0

Furthermore they show(cf. [HeJaMo] appendix,proof of equation (8),pp.99,100),that
(C2) and assumption (C3) consisting of the following three conditions

t

. 2
(a) f(fan(s,y,w)dy> ds < oo P-as;t€[0,7];n=1,2,...,k
0 s

t

2
t [T
(b) i (fan(s,y,w)dy> ds < oo P-as;t € [0,t];T € [0,7]in=1,2,...,k
0

T

()t— [ (fo’n 8,1y, w) dwy (s )) dy is continuous P-a.s. for T € [0,7];
t

n=12,....,k

imply the following property of the bond-price process:
InP(t,T)= InP(0,T)+ f[f_(s, s) +b(s, T)] dv

k
22 fa

P-almost surely with t and T as above,w € Q and

a?(s,T)ds + Zk: ftan(s,T)dwn(s) (3.1)

n=10

l\)\»—t

ogﬂ

T
an(t, T w) == — [o,(t,s,w)ds

t

b(t, T,w) = f ts,w)ds+%i 2(t,T,w)

n=1

foralln=1,2,...,ks.t.
dP(t,T) = [f(t,t) +b(t,T)|P(t,T)dt
k
+ Z a,(t, T)P(t,T) dw,(t)

follows P-almost surely with the help of Ito‘s formula.Applying Ito‘s lemma
one gets

InZ(t,T)= InZ0,T) +£< ;Za(sT))d

n=1

+ Z fan s, T)dw,(s) (3.2)
k=10

for t,T as above.Then Heath,Jarrow and Morton describe under which assump-
tions there is a probability measure,s.t. the relative prices of the bonds are
martingales w.r.t. (F).

To proceed one needs the following assumptions:
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(C4) For arbitrary Sp,S2,...,5 € [0,7] with 0 < S1 < S < ... < S <71
there exist solutions

Yn (s, 581,82,...,8): Q2 x[0,S1] > Rn=1,2,....k

of

B S) = 3 an(ts ;) (= (t: 1. Sr- 1 S)) (3:3)

n=1

k,s.t.:

7 )

P x ds-almost everywhere for j =1,2,...

S1
f ’Y%,(’U; S1,82;...,8:)dv < oo P-assn=1,2,....k
0

OHE‘I)

Y2(s; 51,92, ..,Sk) ds))

n=1 0

k Si k
E (emp (Z S n(s;S1, 82, ..., Sk) dwy(s) — 3 3
n=1
1

S1
E <6xp (Zﬁ:l Of[an(s,y) + vn(s; 51, 8o, ..., Sk)] dw, ()

k Si
_% Z f[an(&y)‘f"Yn(SaSlySZ,,Sk)]2d5>> =1
n=1 0
yE{Sl,SQ,...,Sk}

(C5) For arbitrary S1,S2,...,Sr € [0,7] with 0 < S; < So < ... < Sk <7 let

ai(t,S1)  aqo(t,S1) - ag(t,Sh)
ai(t,S2) as(t,S2) - ag(t,S2)
ay(t,Sk) ao(t,Sk) -+ ax(t,Sk)

be nonsingular P x ds-almost surely.

One interprets v, as the market price of risk associated with the factor w,, for
any n.
To understand this write (3.3) for a bond with payoff in T.i.e.

b(t,T) = ﬁ (b T)(=yn(t: 51, Sy -, S1))

Remember the definitions from the preceding page:
T

an(t,T,w) :=— [op(t,s,w)dssn =1,2,...,k
t
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T k
b(t,T,w) :=— [a(t,s,w)ds+ 1 > a2(t,T,w)
t n=1

Thus a,(t, T) describes the covariance between the rate of the bond with payofi-
time T and the n-th random factor w,,whereas b(t,T) describes the expected
rate above the riskless rate for the bond with payoff-time T.

With S7,S53,...,5; € [0,7], 0 < S1 < S2 < ... < Sk < 75t (Cl)-
(C3) are fulfilled, (C4) is fulfilled if and only if there is a probability measure
P(S1,82,...,Sk) equivalent to Ps.t. Z(t,S,)n = 1,2,...,k; is a (Ft)iefo,5,1-
martingale under P(S1, Ss,...,S;)(cf. [HeJaMo],chapter 4,proposition 1,p.84).
The proof works via a Girsanov-argument and one receives the probability mea-
sure by

k
B TS — exp (Z (5.1, o, S) duwn (s)

o

=1

3

-3 ’7%(5;51,527~-~75k)d3>

1

M=
o

By

t
W12k (1) 1= wp (8)— [ V(83 S1, G2, ..., Sg) dsit € [0,S1]in=1,2,...,k (3.4)
0

one gets real-valued independent Brownian motions on ((Q2,F,P(S1, 52, ..., Sk)),(Ft)te[0,5:1)-

Having (C1)—(C4) and thus the existence of a probability measure P(S1, Sa, ..., Sk),(C5)
is fulfilled if and only if P(S1, S, . .., Sk) is unique(cf. [HeJaMo],chapter 4,propo-

sition 2,p.85).

So (C1)—(C5) for 0 < 51 < Sy < ... < S < 7 implies the existence of a
unique,but S,,-depending probability measure under which Z(¢, S,,),t € [0, S1],is

a (Ft)iefo,s, -martingale for any n =1,2,... k.

Furthermore one has the following result(cf. [HeJaMo],chapter 4,proposition
3,p.86)

Theorem 3.2.1:

Given {a(-,T); T € [0,7]}{on(-,T); T € [0,7]} for n =1,2,...,k with
(C1)—(C5).Then the following are equivalent:

(i) There is a unique probability measure,denoted by P again,s.t. Z(t,T) is
a martingale under P for all T € [0,7] and ¢t € [0,57] with arbitrary
S1 € [0, T].

(i1) yn(t; 51,82, ..., 8k) = (T, To, ..., Tg) for n = 1,2,... k for all se-
quences (Sy) and (7,) as in (C4),(C5).

(iii) For all T € [0,7],t € [0,T]
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k T
alt,T) = — ;1 on(t,T) ()\n(t) - {Un(t, s) ds)

holds true with A, (t) := v, (t; S1,52,...,5%) for n = 1,2,...,k and for
arbitrary S1, Se, ..., Sk,t € [0,S571).

(ii) is called the standard finance condition for arbitrage free pricing,since this
condition is necessary to have absence of arbitrage.

(iii) is called the forward drift restriction,since the restriction to an « of that
type is sufficient to have (i).

Thus in case that (C1)-(C5) are fulfilled and the relative prices (Z(t,T))¢ci0,1]
are martingales under P for T' € [0, 7 ],the following equation holds:

0 n:l
t

+ E S on(s,T) dw,(s)

n=10

FeT) - FO.T) = =3 ouls,T )(An<s>—fon<s7y>dy> ds

Having this result Heath,Jarrow and Morton describe how to price a contin-
gent claim having these assumptions.
As it was already mentioned,having assumptions (C1)—(C5) for fixed

0<S1 <SS <...<85. <7

there is exactly one probability measure P(S7,Ss, ..., Sk),s.t. all Z(t,S,);
n=1,2 ..., k; are martingales.

By corollary 3.1.5 the uniqueness of P(S7,5s,...,Sk) as measure under which
the Z(t,S,);n = 1,2, ..., k; are martingales implies the completeness of the mar-
ket considered here.

The discounted payoff induced by the admissible,self-financing trading strategy
¢ is given by:

VE(t, ¢) := ¢} + f GrZ(t,5,),0 <t <7

n=1

By 7 := 51 one gets

¢51+Z¢s Z(81,5n)

as the discounted payoff of a contingent claim in S; and thus

k _
9%, B(S1) + ¥ 65 P(S1,50)

as the actual payoff,where (;5%1 denotes the number of riskless assets and ¢g’f
denotes the number of bonds with payoff in S, held by the agent at time 5.

In [HaPl] Harrison and Pliska show the absence of arbitrage given completeness
of the market at least in case of a discrete trading time,i.e. incaset =0,1,...,7
instead of ¢ € [0, 7] in section 3.1.So there is no admissible,self-financing strat-

egy ¢ with
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V(0,9) =0,EQV(7,¢) 20
for at least one Q€ P.Since the market considered here is complete,one has
E (55517 B(t) = P(t, $1; X)

where E denotes the expectation under the probability measure P,under which
all Z(t,T) are martingales,and P(t,S1; X) denotes the value of the contingent
claim X with payoff in Sy in ¢ € [0, 57 ].Thus one has

_ ¢sl k
P(t,81;X)=E ( %+ BEg 2_)2¢>§f2(51,5n)|ft) B(t)

So,in order to be able to price the contingent claim,it must be possible to de-
termine B and Z.With the help of (C1),(3.4) and the forward drift restriction
resp. (3.2) and (3.4)

f(tvt) = fan(sa y) dy ds

=

A

N

+

=
o

S

3

—

w

Cb

E (PE(;(Séf)‘)) < oo,u € [S1, 7]

and the completeness of the market all the other bonds can be replicated by
an admissible,self-financing strategy,applying only the bonds with payoff-times
Snin=1,2, ..., k;and the riskless asset.

In the following have a closer look at the stochastic differential equation consid-
ered in chapter 7 of [HeJaMo).

As it was already mentioned in section 1.1,one finds the following result in
[HeJaMo|:

Given trading time [0,7] with 7 > 0,k € N and T € [0, 7],s.t.property (i)

from 3.2.1 holds.
For n=1,2,... k let

e )\,:[0,7] x 2 — R be predictable and bounded

e 0,: ST x R — R be bounded,nonnegative and Lipschitzian on R

Then there is a uniformly measurable family (f(t,T'))¢c[0,7] of processes with
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t T
f(t7T) - (O7T) = f_ i UH(S>T7 f(S,T)) (An(s) - fUn(S,y,f(s,y))dy> ds

0 n s

by

Il
—

+ zk: O'n(S,T7 f(S,T)) dwn(s)

n=1

o o

for all T € [0,7].
Thus one has for all x € R with t+x< 7 :

Ftt o) Ot a) = [ oulsittaf(s,t+)) (ms) - t}wan(&y,f(s,y))dy) ds

0 n s
k

+ X

n=1

In order to have at least the situation described in [MaZa] one needs the follow-
ing time-homogeneity assumption on o:

Il
_

on(s,t+z, f(s,t + ) dw,(s)

o &

0n<ta S1, ) = O-Tb(t, 52, )

for all t € [0,7],81,82 € [t,7],n =1,2,..., k. Then the equation becomes:

_ _ t k _ t+x B
ftt+z)— f(0,t+ ) = Off ; on(s, f(s,t + 1)) ()\n(s) - f an(svf(s,y))dy> ds
s fgn(S,f(S,t—i—x))dwn(s)

n=10

So (1.1) and (1.2) imply the following equation:

t—s+x

o5 (St — 8)r2) (@) (An<s> T a(srw) dy) s

0

@)= (SO@+ [ 5

o &

n=1

£ 3 [ou(s (S(t — s)re) (x)) duwa(s)

n=10

Analogously to (2.4)(without w-dependence) one gets for the shift-semigroup
(5(t))e=0

[S@)F(s,)] = f (s, [SH)])

and the equation for r becomes

ﬁ
3
—
8
S~—"
I
—
%)
A
=
S~—"
M= 3
<
=
8
&

(51t = 90u(6r) @) (5= 9) [ als.n ) dy) (0)) ds

(S(t— 8)on(s,rs))(x)An(s) ds

3
I
-

3
Il
-

+ \
O O O
M=

[S(t = 8)on(s,1s)](x) dwy(s)

-+
3
1=

Remember,that ¢ € [0,7] and t+x< 7 must hold true,s.t. this is,given a fixed
t,only the case for x € [0,7 — t].Choose T very big,in order to claim that r is
defined on Ry .
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Now fix k = 1.Then one has for all ¢t € [0,7] with 7> 0 and all z € R

(S(t = s)o(s,rs))(x) dw(s)

for an arbitrary real-valued Brownian motion w with w(0) = 0.
On the Hilbert space L2(R) the equation becomes

re = S(t)ro+ Oft St —s5)(S(o(s,rs)) — A(s)o(s,7s)) ds + Oft S(t— s)X(s,rs) dW (s)

with S defined by(cf. (1.3))

for all functions e defined on R, ,¥ defined from o by (2.1),and o defined anal-
ogously to (2.4) (without w-dependence)

Thus given the assumptions

c: [0, T]xR—=R
A 0,T]xQ—=R

one gets a function £:[0,7] x 2 x R — R defined by (1.3).Then defining F
by (2.4) gives the so-called Heath-Jarrow-Morton equation

re = S(t)ro + j S(t— s)F(s,w,rs)ds + E);S(?f —8)X(s,rs) dW(s)
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3.3 The shift-semigroup

Consider the shift-semigroup as an evolution operator in the framework of chap-
ter 2 with dimension d = 1,s.t. p is a fixed number with p > 1.The aim of this
section is to show that the shift-semigroup fulfills the conditions imposed on U
in chapter 2 with U defined on L2(R) resp. L2(R) by

U(t,s):=S({t—s) (3.5)

for all (s,t) € Sr.For the rest of the chapter write L? instead of L*(Ry),L2
instead of L2(R.y),and so on.

As it was already mentioned by Manthey nd Zausinger in their paper(cf.[MaZa),section
2,example 2.6,p.55) each positivity preserving,strong continuous semigroup de-

fines an almost strong evolution operator in the sense of section 1.3 by (3.5).

First of all show the strong continuity of the shift-semigroup on L%.

A shift-semigroup (7}):>0 defined on a Banach space B is called strongly con-
tinuous,if

lmTip=pp €B
holds true.

First consider functions ¢ € C!.As such functions are continuous and differ
from 0 only on compact sets,each ¢ € C! is uniformly continuous on this com-
pact set,i.e. for each ¢ > 0 there exists a t(¢) > 0,s.t.

o(@ +1) — p(x)| <ecp?

for all ¢t < t(e),z € Cp(p),where Cp(p) denotes the compact set associated
with ¢ and ¢, is given by

cpi= [(1+2?)"%dx (3.6)
Ry

which is finite since p > 1.
As ¢ equals 0 outside the above compact set and is continuous on this compact
set

llplloo := sup |o(2)]
rz€R
exists and for all ¢t € [0,T']
J (e +1) = o(@)? ppdz) = [ (px+1) = () (1+a%) "2 de < dey [loll3
R, R,

holds true,ie. [(S(t) — Id)g] € L2 for all t € [0,T] and all € C}.In par-
ticular one has the following for all ¢ < ¢(e):

86



=

1S(®)¢ — ¢l

P2 = (f (p(z+1) = @(x))Qup(dl‘)> (3.7)

R+

IN

%
gcy? (f (1+2%)"% d:z?) =¢

Ry

Thus one has strong continuity on C! in the || - ||, 2-norm.
In order to continue the following lemma is needed.

Lemma 3.3.1:
L? is a dense subset of Lf) for each p € N.

Proof:
Let ¢ € L7 and define

¢n(r) = min(p(z), n(1 +2?)7F)
for all z € R4 and all n € N.Then by (3.6) p > 1 implies
[ % (x)dz < n%c, <
Ry

for all n € N.By the definition of ¢, one obviously has ¢,(z) — @(z) as
n — oo for all z € Ry. So (¢n)nen is a sequence in L?s.t. @, — ¢ in L2 for
n — 0o holds true,which finishes the proof,since ¢ was chosen arbitrarily from
L2

2.
q.e.d.

It is known (f.e. from [Fi],section 5.1,proof of 5.1.1,p.77),that C} is a dense
subset from L?By 3.2.1 this implies that C; is also dense in L?i.e. for each
@ € L2 there exists a sequence (¢n)nen C C} with

<pn—>gpinL%f0rn—>oo
Such a sequence leads to

1S@)e = ¢llp2 < [ISE) (@ = en)llp2 + |[SE)en — @nllp2  (3.8)
+lon — @llp.2

for all t € [0,T].In order to get the wanted estimate for S(t)¢ — ¢,one needs
another lemma:
Lemma 3.3.2:

There is a constant c¢(p,T) > 0,s.t. the following holds true for all ¢t € [0,T]
and all ¢ € L%:

1S@)ellp.2 < clp, Tl ellp2 (3:9)

87



Proof:
Let ¢ resp. t be arbitrary from LFQ, resp. [0,T].Then:

L
2 2

Pla+ )1+ @+ 0278 (i) T e

[ Az +t)(1+ 22" dx =
Ry

o 4

I3
oo 2\ T 2
+tf<p2(x—|—t) <1+(a:+t)2 (#) ) dz

The second term is the simpler one.The estimate

(Z) P <2, o>t

and the fact,that wi-l-t is at most 1 for all x,t in this framework,lead to:

oo 2 75 —p o
_tfgo?(ﬁt) <1+(x+t)2 (ﬁt) ) dr < fcp (x+1) (M) 1+ (z+t)?) 2 dz
< 2 [ @) (1+2?)"5de
Ry
Now the difficult first term.By the estimates
(x+1)2<4T? ,0<2<t<T (3.10)
(1+2?)75<1,0<a<t

one gets

[SI)s)

Ple+ )1+ @+ F (i) de

Ot —

t
< (144725 [ @2z + )1+ (x +1)2)"5(1 +2%)~ % da
0

< +4T2)%Rf P (2)(1+a?)~5 do

These estimates imply:

1S(®)pllp2 = <f @2(x+t)up(dx)>

R+
3
= fg02(z+t)(l+x2) 2dx>
Ry
< clp, Dllellp,2

where the constant is given by
c(p,T) :=1/2° + (1 +4T2)%
q.e.d.

By 3.3.2(cf. (3.9)) one can simplyfy (3.8) to
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1S = ¢llp2 < (clp, T) + Dl = @nllp2 + [[SE)on = @nllp2

With the help of the preceding consideration of C! for each n € N and each
e > 0 there is t(e,n) > 0 with

||S(t)90n - ‘anP,? < %

for all t < t(e,n)(cf.(3.7)).
As ¢, is an approximating sequence of ¢ in L/%,i.e. for each € > 0 there is
N(e) € N with

lle = @nllo2 < s

for all n > N(e),with fixed € > 0 one has for arbitrary n > N(e)
1S()p — ollp2 <€

for all t < t(e,n),s.t. the following result is shown:

Theorem 3.3.3:

The shift-semigroup (S(t))e[o,7) is strongly continuous on L%.

Remark 3.3.4:

Note,that S(t):L2 — L2 holds true for arbitrary ¢ > 0,as one can replace T by t
for fixed t > 0 in (3.9).But as already seen above there is no constant C' > 0 with

1S@ellp2 < Cllellp2

forall t > 0,p € L,Q,,note the T-dependence of the constant in 3.3.2 .

Thus it is important to fix T' > 0,in order to be able to apply 2.3.2.Thus by
(3.5) (S(t))ie[o,r] generates an almost strong evolution operator U.

So one has to prove that U has the properties (BC),(PP),(CC),(E1),(E2) and
(BA).

(i) The nuclear case
First consider the nuclear case,since there

e property (CC) is not needed.

e (E1) implies (E2) analogously to [MaZa](cf. chapter 2,remark 2.3(ii),p.47
there),since the shift-semigroup is positivity preserving.

It will be shown that U defined by (3.5) has the necessary properties in order
to apply Manthey‘s and Zausinger‘s theory in this case.

Theorem 3.3.5:
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Consider the shift-semigroup (S(t))c[o,7] and define an almost strong evolution
operator U by (3.5).
Then U has properties (CD),(PP),(E1),(E2) and (BA).

Proof:
Denote by A the generator of the shift-semigroup on Li.
By the definition of the generator:

(0): D(A):= {peLy| lim 3(([SH)e])(z) - ¢(z)) € R,x € Ry}
' = {p e L2 | ¢is differentiable}
(ii): [Ap(z) = ¢'(x),x € Ry,p € D(A)

Thus A is a linear operator.
Since C! is a dense subset in Li

C!CcD(A)cC L2
implies the density of D(A) in L?.

Consider ¢ € C! C D(A).As ¢ has compact support,o’ has compact support as
well.Due to its continuity on this compact set ¢’ has a maximum on this set,s.t.
with ¢, < oo for ¢, as in (3.6) Ay € L2 holds true.

By the density of C! in D(A) there is to each ¢ € D(A) a sequence

(@n)nen C CL converging to ¢ in Li—norm,i.e.

lim ¢, (z) — ¢(z),n-fa. x € Ry

n— oo

Concerning the derivatives of ¢ and ¢,, one gets

_ . (z+h)—p(z) . n(z+h)—pn(x)
[¢'(2) = @ (a)| = |lim EEEREL — i Eeletiimeals)
_ lim p(z+h)—p(@) = (Pn(z+h) —pn(z))
h—0 12
< i o@D —gn@th)|+le@) - en ()]
- h—0 Al

which implies

lim_["(z) — ¢, ()] = 0

n—oo

for p,-almost all z € Ry as the terms in the nominator tend to 0 p,-almost
everywhere for n — 00,s.t. one gets the existence of

Rf () pp(da) < 2 <f (' (z) = 4 (2))? pp(d)

since the righthand side is smaller than 2(e%c, + ||Ap,|2,) < oo for n big
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enough.
So A € L2 also holds true for ¢ € D(A).

Let (¢pn)nen C D(A) be a converging sequence with limit ¢ € D(A).
Of course convergence in || - ||, 2-norm is meant,i.e.

lim [ (on(x) — p(x))? pp(dr) =0

n—>ooR+
which implies ¢, — ¢ py-almost everywhere on R, .In analogy to the above
consideration one gets ¢, — ¢’ p1,-almost everywhere.
This obviously implies
Apn = ¢, = ¢’ = Ap

in L%,i.e. A is closed.So:

A:D(A) — L2 is closed,linear operator with D(A) being a dense subset of L?.
This is just property (CD).

As already mentioned the shift-semigroup is positivity preserving,s.t. U de-
fined by (3.5) is positivity preserving as well.
Thus one gets a family (A(t))ic[o,7) defined by A(t) := A for all t,which gener-
ates an almost strong evolution operator,which is positivity preserving.
This is just property (PP).
Furthermore one has for arbitrary ¢ € Lf) and k € N:
U s)leD)™ = (lo(- +t =)™ = lp(- +t = 9)[" = U(t, 5)[e]”
for all (s,t) € Sp,i.e. (E1) holds true with constant

ek, T)=1keN
As already mentioned above this immediately implies (E2).
As Manthey and Zausinger mention in their paper(cf.[MaZal,example 2.6,p.55) a
positivity preserving,strong continuous,one-parameter semigroup fulfills (BA),which
finishes the proof.

(ii) The cylindrical case

In Manthey‘s and Zausinger‘s theory the cylindrical case differs from the nuclear
one in two aspects:

1. Property (CC) is needed.

2. (E1) does not imply (E2),i.e.(E2) must be shown separately.
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Remember that (CC) was the following property:
There exists an extension of U(t,s) on M for (s,t) € St,s.t.
Ut,s)¢p € La(L?, L2) =: Lo

holds true for all ¢ € Lf,,(where ¢ denotes the multiplication operator asso-
ciated with ¢,)and there is a v € [0,1) with

Ut 5)¢llZ, < c(T)(t =) ellf,  (3.11)

First consider the part of (CC) concerning the extension.
For each function h of the form h = i) the definition of the shift-semigroup
and (3.5) lead to:

[U(t,s)h](x) = p(x +t = s)p(z + 1t —s)
Then one can show U(t, s)h € M with the help of Hoelders inequality:

Rf U2, 8)h](2)| pp(dw) = Rf p(z +t = s)l[¢(x+ 1t = )| p,(dr)

IN

Ik wz(ac—l—t—s),up(da:)) (f wz(x—f—t—s)dm)

R, R,
c(p, T)llellp,2

Thus one has an extension of U(t,s) on M .

IN

[Y]l2 < 00

But considering the orthonormal sequence (e, )nen in L? from chapter 2 one
gets for ¢ € LFQ):

Z ‘|U<t73)¢(en)”272 = Z f (,02(.%'+t—8)6%(.%4—75—5)(1—1—3:2)_% dx
neN neEN R4

< op,T) GZNRf P*(@)e () (1 +a%) "5 do

For an estimate of type (3.11) one needs a term of the type
.. )t=9)77 > <@, hy >/%,2
neN
where h, = e,(1 + 2%)% is an orthonormal-basis of L2 and v € [0,1).With
©?e2(1 4 -2)~% >0 Jensen‘s inequality implies

2
< @, hy >§,2: (Rf o(T)hy () (1 + 1”2)75 d:c)
< ] P@R@) 1+ Fde
Ry

= [ ()2 (x)(1 +2?) % dx

s.t. it seems impossible to get the wanted estimate.
So one has (at least by this method) no
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e convergence of the sum

e appropriate estimate of the sum.
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3.4 Existence of solutions to the HIJIM equation

As Heath,Jarrow and Morton consider an SDE with the operator generating
the shift-semigroup,one has to restrict oneself to the nuclear case,since,as seen
above,not all the properties needed in the proof of 2.3.2 hold true in the cylin-
drical case.

(i) The Heath-Jarrow-Morton case
In the following it will be shown,that there is a solution to the Heath-Jarrow-
Morton equation

ry = S(t)h + j S(t—s)F(s,-,rs)ds+ fS(t —85)X(s,7rs)dW(s) (3.12)
0 0

in Lf) with given ¢ and A and f defined by (1.3) under appropriate assump-
tions.

Remark 3.4.1:
Let A:[0,T] x @ — R be predictable and ¢:[0,7] x R — R and { defined
as in (1.3).

Note that in order to apply the results from chapter 2 one needs a progressively
measurable function f,i.e. one needs

Lio)xaf(s @) € B([0,t]) x Fy
for all t € [0,T],x € R.To have this it is enough to assume
(3.13) 1i0410(-,2) € B([0,t]),t € [0,T], € R
Proof:
Given (t,w) € [0,T] x Q define
o(t,w,z) = o(t,x)

for all fixed x € R.As (F)icjo,r) is a family of o-algebras,(3.13) implies the
following:

l[O,t]XQU('a ',I) € B([O’t]) x Fi
for all t € [0,T ],z € R.Then one also has

l[O,t]XQfU('a'az) dz € B([Oat]) X ft
0

and
x

1[O,t]XQU('7'7x)fg('7'az) dz € B([Oat]) x Fi
0

for all t € [0,T] and all x € R.As a predictable process A is progressively
measurable as well,as a consequence of which
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1[0,t]x(l>‘0('a -,l’) € B([07t]) x Fi
holds true.With the help of the definition of f one gets
Lio)xaf(s @) € B([0,t]) x Fy

for allt € [0,T] and all z € R.
q.e.d.

Consider the situation given by the existence claim from [HeJaMo] (cf. sec-
tion 7,proposition 4,p.93)i.e. o is a real-valued function on [0,7] x R,which
is Lipschitzian in R,nonnegative and bounded and (A(t))¢c[o,7] is a real-valued
process,which is predictable and bounded.

(Note that the authors in [HeJaMo] write 7 instead of \.)

Denote the exact assumptions on o and A: Let

o:([0,T] x R, B([0,T]) x B(R)) — (R,B(R)) be nonnegative,s.t. there
exists a positive constant ¢, (7") with

(1) |o(t,2) — o(t,y)| < co(T)]x -yl
(02) o(t,z) <c

for all t € [0,T];x,y€ R.

Let A:([0,T] x Q,Pr)— (R,B(R)) be such that there exists a positive con-
stant M (T') with

() (At w)| < MA(T)
forallt € [0,T]w € Q.

By remark 3.4.1 these assumptions imply the progressive measurability of f
defined as above and the following lemma:

Lemma 3.4.2:

(i) o fulfills (L1) and (L2).
(ii) For arbitrary w € Q f(-,w,-) fulfills (PG) with exponent v = 1 and (LG)
with an w-independent constant.

Proof:

First (i).(L1) holds true obviously(cf.(c1) above) and (L2) is the special case
x =0 of (¢2).

Concerning (ii) the assumptions lead to the following estimates for f:
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lf(t,w,z)| = |o(t Ofat z)dz — A(t,w)o(t,x)
< lolt,a)| f (t,2) ds| + [A(t w)o(t, 2)|
< (T )|$|+MA( )eo (T)
< ep(T)(1 + [=])
with ¢¢(T) := (max(cy (T), MA(T)))? > ¢ (T) max(c,(T), Mx(T)) for all

(t,w) € [0, 7] x Q and all z € R.
For this c¢(T),all > 0 and arbitrary (¢,w) € [0,T'] x  one has

T

ftw.a) = olt,a) [ o(t,2) dz — A(t,w)o(t,)

0
A(T)x + |\t w)|o(t, z)
c5(T)x + Mx(T)co(T)
cp(T)(1+ )
where the nonnegativity of ¢ was used in the second and z > 0 was used in
the last step.But for z < 0 one gets:

VARVANZAN

0
ftwa) = —o(t,z) [o(t,z)dz — A(t,w)o(t,z)
‘o
> - < o(t,z) [o(t,z)dz| + |)\(t7w)|0(t,x)|>
x
> —co(T)(~x) — MA(T)eo (T)
> e (T)(1 - )
for arbitrary (t,w) € [0,T] x Q,where z < 0 was used in the last step.
q.e.d.
Remark 3.4.3:

It seems to be impossible to have (L1),(L2) for f,since one has in case of
(t,w) €0, T] x Q and x,y€ R,s.t. w.lLo.g. = >y,

‘f(tvwax) - f(tawvy” =

fgco t,z)dz — o(t,y) fya
0 0
(, w)(o(t,y) —ol(t,x))|
(o(t,z) — U(t,y))ofy o(t, 2) d
A, w)(o(t,y) —olt,x))]

where it seems impossible to estimate the first term by a term of the form
C|z — y| with a positive,y-independent constant C.

IN

xr
+ |o(t,z) [olt,
y

Defining ¥ by (2.1) in the nuclear case and F from f by (2.4),theorems 2.3.2(i)
and 3.3.5 imply:

Theorem 3.4.4:

Given o with the above formulated assumptions and (3.13) and A with the
above formulated assumptions, there exists a solution r of the Heath-Jarrow-
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Morton equation

re = S({t)h+ fS(t —8)F(s,,rs)ds+ jS(t — 8)X(s,1s) dW(s)
0 0

in the sense of 2.2.3 on [0, T'] for all finite T > 0 and all deterministic i € L2 s.t.
for all ¢ > 2 there exists a positive constant c¢(q,T,c(p, T),co(T"),Mx(T)) depend-
ing on q,T,U,0 and A with

. Ellre|[5» < c(q, T, c(p, T), co(T), MA(T)) (1 + [[2]]} o)
€[0,

Remark 3.4.5:

If one puts the question,whether all properties of ¢ assumed in 3.4.4 are neces-
sary to apply 2.3.2,one immediately notices,that one cannot give up the Lipschitz-
assumption,as this is just (L1).As S(o(t,-));t € [0,T]; is a part of the function
f(t,-);t € [0,T];it is necessary to assume boundedness of o in order to have
property (LG) for f.

But it is not necessary to have the nonnegativity-assumption from [HeJaMo].It
suffices to assume,that o is Lipschitzian in R and bounded,since then the fol-
lowing holds true for all (¢,w) € [0,T] x

T

flt,w,z) < ‘a(t,x)fa(t,z) dz‘ + At ,w)o(t, z)]

< cg(T)|x[|)+ Mx(T)eo(T)
(max(co (1), Ma(T)))?(1 + x)

for x > 0 and analogously for x < 0

IN

ftwz) > — ( o(m);fa(t,z) dz’ + |)\(t7w)a(t,x)|)
> —((T)|x| + Mxco(T))
> —(max(co(T), MA(T)))*(1 — )

Thus even without assuming nonnegativity of o f fulfills (PG) with exponent
v =1 and (LG) with an w-independent constant,as a consequence of which one
gets the existence of the solution.

So for o,\ with the assumptions from proposition 4 from [HeJaMo]| there exists
a solution of the equation

t

ri(z) = ro(t—kx)—i—bff(s,-,rs(x—i—t—s))ds

t
+ (f S(t—s)X(s,rs) dW(s)> (x) (3.14)
0
for z € Ry and the solution r has the property
(3.15) [ (@)1 +2?)"%de < oo, t€[0,T]
Ry

This also holds true without the nonnegativity-assumption for o from [HeJaMo].

Note,that in the model regarded by Heath,Jarrow and Morton there was no
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nonnegativity-assumption on o (cf.[HeJaMo],section.2,condition C1(iii),p.80),s.t.
the result is a real improvement of proposition 4 from [HeJaMo] at least in case
k=1

In this simple case only theorem 2.3.2(i) was applied.So it may be possible
to get an existence result in a model extending the one from [HeJaMo] by the-
orem 2.3.2(ii) resp. theorem 2.3.3/corollary 2.3.5.

(ii) Extension of the model from [HeJaMo]

Consider from now on functions A of the form

AX[0,T]x QxR —R

Thus one gets for f:

ftw,z) =0t x) [o(t,z)dz — A(t,w,x)o(t, x)

Ot—sy

Then:
Theorem 3.4.6:

(i)Let 0:[0,7] x R — R be Lipschitzian in R and bounded with property
(3.13),for all w € Q let A(-,w, ) be continuous in R,predictable and let it fulfill
(PG) with exponent v = 1 for a constant independent of w.

Having a deterministic h € Lf),there is a solution of the Heath-Jarrow-Morton
equation in L% in the sense of 2.2.3 and for all ¢ > 2

—p Ellri[52 < ¢l T, c(p, T), co(T), ex(T)) (1 + [[1]]5 2)
€10,

holds true with a positive constant c¢(q,T,c(p, T),cr,cx) dependent on q,T,U,o
and .

(ii) Let o be nonnegative,bounded and Lipschitzian in R with property (3.13),let
A be continuous in R,predictable and let it fulfill (PG) with exponent v > 1
and (LGA) given by the inequations

“AMtyw,z) <ex(T)(142), >0
At,w,z) <ex(T)(1—2x), <0

for all (t,w) € [0,T] x Q and a constant cy(7T") > 0.

Having a deterministic initial condition h € L with p as in 2.3.5,there is a
solution of the Heath-Jarrow-Morton equation in L% in the sense of 2.2.3.The
paths of the solution are almost surely in L5 and have the property

sup El[rl3, < c(p,q, T, c(p,T), co(T),ex(T)) (1 + [[R[]3 )
te| 0,

for all ¢ > p with a constant c¢(p,q,T,c(p,T),ce(T),cx(T)) > 0 dependent
on p,q,T,U,c and A.
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Proof:

(i): The proof of lemma 3.4.2 shows,that the assumption,that A fulfills (PG)
with exponent v = 1 is sufficient to have (PG) with exponent v = 1 and (LG)
for f.Then the claim follows again by 2.3.2(i).

(ii): Show that f fulfills (PG) with exponent v > 1 and (LG) under the given
assumptions.Then 2.3.3 leads to the claim.

So let (t,w) € [0,T] x Q be arbitrary.Then one has for arbitrary x € R:

lf(t,w,z)| = |o(t,x) Ofla (t,2)dz — \t,w,z)o(t, )
< 1S(a(t,)(@)] + [A(E w, z)||o(t, 2
< (D] + co(T)ex(T)(A + |2[")
< (M)A + [x]”)

with ¢¢(T) := ¢2(T) + 2¢, (T)ex(T),which is obvious,if one considers the term
co(T)|z] + o (T)ex(T) (1 + |a]”)

first for x with |z| < 1 and then for x with |z| > 1.

So it remains to show,that (LG) also holds true for f.Fix an arbitrary pair
(t,w) € [0,T] x Q.

First consider x > 0:

ftw,x) = gca (t,2)dz + (= A(t,w,x))o(t, x)

02 (T)w +o(t,z)(—A(t,w,))
(e +o(t,2)(ex(T)(1 + 2))
(c5(T) + co(T)ex(T))(1 + x)

where (LGA) was used in the third step. For z < 0 (LGA) leads to:

INIAIA

0
fltw,z) = —o(t, ) (f (t,z)dz + A(t,w,w))

> —o(t,x) f t,z dz’ + A(t,w x))

> —o(t,z)(co ( )| + At w, z))

> —cx(D)|z] + o(t, ) (=A(t, w, @)

> —c(T) (=) +o(t,z)(—ex(T)(1 - 7))

> —(c2(T) +co(T)ex(T))(1 - x)
So property (LG(A)) for A ensures property (LG) for f,which finishes the proof
ged.
Remark 3.4.7:

Note,that in contrast to 3.4.4 and 3.4.6(i) one needs nonnegativity of o in
3.4.6(ii),since without this assumption one could only estimate
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f@wﬂﬂSWﬁwH(
f&waﬂz—WGwN(

bfa(t,z) dz

fa(t,z) dz
0

+ |)\(t,w,x)|) , x>0

+M@wﬂﬂ>,x§0

s.t.,as A fulfills (PG) with exponent v > 1,there seems to be no chance to
have the estimates from (LG) for x with |z| > 1.

So one can conclude:
Extending A to a mapping A:[0,T] x Q x R — R,one gets

e a solution of (3.14) with property (3.15) in case of A fulfilling (PG) with
exponent without the need to assume nonnegativity of o.

e a solution of (3.14) with

(3.16) J ()P pp(de) < oo P-fisit € [0,T]

Ry
for p as in 2.3.5. in case of A fulfilling (PG) with an exponent v > 1
and (LGA) and o being nonnegative.

So in this model one does not lose the existence result from [HeJaMo] and in
case ¥ = 1 one even does not lose the improvement,that one can give up the
nonnegativity-assumption on o.

Remark 3.4.8:

The extension does not only allow the application of part (ii) from 2.3.2,it
also makes it possible to compare this model to the one in [Te],since there the
market price of risk is defined not only on [0,7"] x 2 as well.

How can this extension of A be interpreted?

Since A represents the so-called market price of risk,the extension means that
the market price depends both on the time at which the consideration starts
and on how far the times,up to which the rate shall be determined,are away
from this time.

So one now has existence of a solution to the Heath-Jarrow-Morton equa-
tion (3.12) in different situations(see the assumptions in 3.4.4.,3.4.6(i) resp.
3.4.6(ii)).
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3.5 Comparison to other models

(i) Tehranchi‘s model

In his paper Tehranchi defines the term Heath-Jarrow-Morton model on spaces

H, = {f : Ry — R [ ist absolut stetig [ f?(z)w(x)dz < oo}
Ry

HY = {f € Hy | f(00) := lim f(x) = o}

with a growing weight-function w:R — [1,00) in the following way
(cf.[Te],section 2.2,definition 4,p.4 there):

A Heath-Jarrow-Morton model is a pair (\,0) with

ARy x QX Hy, P ® B(H,)) — (G, B(G))
SRy x QX Hy, P @ B(Hy,)) — (L2(G, HY), B(La(G, HY)))

s.t. there is a non-empty set of initial conditions h € H,,for which there ex-
ists a unique,continuous, H,,-valued solution ( f¢):>¢ of the Heath-Jarrow-Morton
equation

fe=S(@)h —l—oftS(t —s)a(s,w, fs)ds + jS(t —8)X(s,w, fs) dW (s)

with
a(s,w, f) = Faryu(E(t,w, ) — 2w, A w, f)
where Fyy sy is a mapping from Lo(G, HO) to H,, defined by
Faiv(A)(z) =< A%, , AL, >, A€ L(G,H?)

with 8, (f) := f(z),I.(f) := fox f(z)dz for f € Hy,x € Ry
In this case P denoted the o-algebra of predictable sets on Ry x Q,G was a
Hilbert space and W a cylindrical Brownian motion on G.

The weighted spaces are also used in [Fi] in order to define a Heath-Jarrow-
Morton model.Fillipovic describes,why it makes sense to consider this kind of
spaces:

Given a fixed time it is unrealistic to expect the rate from this time onward up
to a time far away to differ essentially from the rate up to a time,which is only
an infinitesimal unit further away,i.e. for fixed ¢t > 0 and large € R one expects

re(z) = r(z +e)
for small enough € > 0.This is ensured by the fact that,since w > 1 is a growing
function,a large difference between r,(z) and r.(z + €) and thus a large r;(z) is

punished by w > 1 and the larger x the larger is this punishment.
In Fillipovic's and Tehranchi‘s Heath-Jarrow-Morton model the processes are
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such that it is possible to integrate the weighted terms r}(x)w(z) over R.

In his paper Tehranchi uses corollary 5.1.2 from [Fi] in order to have a local
Lipschitz property for Fy s (cf.[Te],section 2.1,proposition 3,p.5) for appropri-
ate weighting functions w.

Taking G = L? the model Tehranchi uses differs from the one considered here
in two aspects.The first one is,that here only the nuclear case is considered,since
the shift-semigroup does not fulfill (CC) and (E2) in the cylindrical case.The
second one is that S defined as in [Fi] does not allow for an estimate like in
5.1.2 in [Fi],as a consequence of which one does not get the existence of a
unique,continuous solution by assuming oA to be Lipschitzian,which is the
case in the basic situation in [HeJaMo](cf. chapter 7,proposition 4,p.93 there).
Furthermore in [Te] one has existence of (f;)¢>o instead of (r¢)sefo,r] for fixed
T > 0,since by the definition of the norm in [Te](cf. section 2.1,definition 1,p.3
there) the following holds true for arbitrary ¢t > 0,h € H,,:

1S fllm, = floo+1)+ T 2@+ tyw(z) da

oo

< g’f’Q(aﬁ—&—t)w(x—l—t) dx

< floo) + T F2(@yw(z) do = || £l

where f € HY was used in the second and the third and the fact,that w is
a growing function,was used in the second step.Thus one gets for the operator
norm || - || 2,w:

IS@Ollcw<1,t20

whereas due to (3.9) one has for the operator norm || - || in L2 ,
ISl < e(p,T) , t € [0,T)]
for the operator norm || - || in Li with the constant having the property
e(p, T) — oo for T — o0

To understand the importance of this difference consider once again the proof
of 2.3.2.

In that proof one first considered solutions to Eq(&,Fn ar,%) in the sense of 2.2.3
with fn,ar, N,M€ N corresponding to Fi ar given by

fN(tawvu) = f(taw7u) \ (_N)
It w,u) = ig‘lg(fN(t,w,v) + M|u —v))

for (t,w,u) € [0,T] x 2 x R.

The fy,a fulfill (L1),(L2),s.t. given o fulfilling (L1),(L2) as well there exist
pathwise unique solutions to Eq(§,Fn ar,2) for initial conditions ¢ with

E|[¢][5,2 < o0
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2
for a ¢ > 7= resp.

E|[¢][3%, < o0

for a k > ﬁ by theorem 2.2.7.
Looking in the proof of 2.2.7 it strikes,that in the proof of part (i) the solution
is found by finding a contraction in C([0,T']; L*([0,T'] x ©; L2)) for T > 0,s.t.

T(c(e(T), ¢5(T)) + e(e(T), 0 (T))) < 1

holds true.Thus there is exactly one process X on [0,7] being a fixed point
of IC given by

¢ ¢
KY)(t) =U(t,00§+ [U(t,s)F(s,,Y(s))ds + [U(t, s)E(s, Y (s)) dW(s)

0 0
After that by setting ¢ := X (7T') one gets a fixpoint
X € C([0,T];L*([0,T] x € L2)) by induction,which is the wanted solution
according to the definition of C.

In order to get a solution X = (X (t))¢>0 by this contraction argument it would
be necessary to have

sup ||U(t,s)|]| < C < oo
(s,t)es
with S :={(s,t) |0 < s <t;s,t € Ry} for a positive constant C.
Since this does not hold true in the shift-semigroup case,it is only possible to
prove the existence of processes (r¢):e[o,r] for fixed T > 0 with the help of the
theory from [MaZa].

But one can solve the problem by considering a modification of the shift-

semigroup.
Define
[S(el(@) = etp(x+1); >0, 2 € Ry, e L2
Then:
Lemma 3.5.1:

(i) There exists a positive constant c(p),s.t. the following holds true for all
tZOandalhpEL%:

1S®¢llp2 < clp)llellp2  (3.18)
(i) (S(t))s>0 is a strongly continuous semigroup.
Proof:

Let ¢ € L,% be arbitrary.
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(i): Let ¢ > 0 be arbitrary. Then one gets analogously to the proof of 3.3.2:

(M)

t —
J et at)Edr = e‘gtofso2<w+t><1+(x+t)2>‘5(J&fwz) de
+

)

o) 2
te2 [ p2(z +1) <1+($c+t) ($+t) ) dx
t
In analogy to the proof of 3.3.2 one gets the following estimates:

e <1+(“T+t) (w+t)2> drs e [t dr

< 2pf30 Y1 +2%)"% dz
Ry

L
2

? 2 7%
e [P0+ @+ 077 (i) e
—2t (1+44t2)% f e} (z)(1+2%) "5 da
where remark 3.3.4 was applied for the second estimate.
In order to get an estimate independent of t,search for a constant,by which

g(t) :== e724(1 +4¢?) is bounded.Since g is nonnegative 0 is a lower bound for g.
So look for maximizers of g. The first derivative is of the following form:

- _ - 1
gt)= e (-2 —8t? + 8t) = —8e 2t (t2 —t+ 1)
—8e™ 2 (t—3)" <0
for all ¢ > 0,s0 g is monotonically decreasing in t,i.e. one gets for all ¢t > 0
g9(t) < g(0) =1
s.t.
[ ez +t) A+ (z+t)?) " 5de < (20 +1 f ©*(x)(1 4 22)~% da

Ry
= (2°+ )H@II
follows by the estimates above.Thus for all ¢ > 0

[N

1S@®ellp2 = (f €2t¢2(w+t)up(dx)>

R+

[ e 2 (x +t)(1 +22)"% da:)

R
< clo)llellp2
with a positive constant c(p) given by

c(p):i=v2r+1

(ii): Let s,te Ry be arbitrary.One has for all x € Ry

[S(t +5)¢] = e"Fp(z +t+5) = [S(t) (e @ + 5)](x) = [S(t)(S(s)9)](x)
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Thus the semigroup property is proven.
It remains to show strong continuity,i.e.

lim S(t)p = ¢

must hold true.
This property is obviously fulfilled for ¢ € C} with

s —t __ : —
lime™ =1, lim o(z + 1) = p(2)

As already mentioned in section 3.3 C! is a dense subset of Lf),s.t. there exists
a sequence (pn)nen C C! with

on — @ in L2 for n — oo

for the given ¢ € L%.Analogously to the procedure there one gets by part (i)

15()e = @llp2 < (clp) + Do = @nlloz + [1S(t)on — @nllp2

for all ¢ > 0 and finally for fixed € > 0

15(t)e — ¢

p2,4+ S €

for all t <t with £ > 0 depending on &,which proves strong continuity.
q.e.d.

Define an almost strong evolution operator U from S by (3.5).Then:
Theorem 3.5.2
U has properties (CD),(PP),(E1),(E2) and (BA).

Proof:
Denote the generator of S by A.By the definition of the generator one gets

D(4) == {p € L} | lim {([S(t)¢](z) — ¢(z)) € R,z € Ry}
In this case the following holds true for arbitrary x € R:

lim 2(e™"p(z +1) — (@) = lim (e p(z +1) — e Op(2))
= lim (e (p(z +1) - p(2)) + (7" = e7)p())
= ¢'(z) — ()
Thus A = A — I and D(A) = D(A) with A from section 3.3. B
So A is a linear operator and analogously to the proof of 3.3.5 D(A) is a dense
subset of L%.
Have a closer look at the proof of 3.3.5.In that proof one first considered func-
tions from C}.Both these functions and their derivatives reach a maximum,s.t.
by ¢, < 00 Ap € L,Q) holds true in case ¢ € C} C D(A).By the above mentioned
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density of C} in D(A) for any ¢ € D(A) there is a sequence (¢, )nen C CL, s.t.
[lon = ¢llp2 — 0 for n — oco.
Analogously to the proof of 3.3.5 one shows

lim ¢,(z) — ¢(x),p-a.a z € Ry

n—oo

lim |¢'(z) — ¢}, (z)] = 0,up-a.a. € Ry
n—oo

This implies the finiteness of

R, Ry

analogously to the proof of 3.3.5,s.t. Ap € Lf, for p € D(A).

By the above limit properties A is a closed operator analogously to the situation
in 3.3.5.Thus one has the following conclusion:

A:D(A) — L2 is a linear,closed operator,with D(A) being a dense subset of L2.
This is exactly property (CD).

Since S differs from the shift-semigroup only by the positive factor e~ ,again
analogously to 3.3.5 U is a positivity preserving almost strong evolution oper-
ator generated by A(t) := A for t € [0,T] with T > 0 arbitrary,which is just
property (PP).

For arbitrary ¢ € Lf) and k € N one has

(Ut s)leh)™ = e (- +t = s)|* < e (- +t+ )" = U(t, 5|l

for all s <t from R4 i.e. (E1) holds true with ¢(k) = 1 for all k € N.

As already mentioned at the beginning of section 3.3. (E1) implies (E2).

By example 2.6 from [MaZa](cf. p.55 there) S has property (BA) as well,since

it is a (strongly continuous) one-parameter semigroup.This finishes the proof.

Note,that as in the case of the shift-semigroup property (CC) cannot be shown,s.t.
one has to restrict to the nuclear case in this section as well.

Let o and A be analogously to the situation in theorem 3.4.4,i.e. one has:

o(Ry xR, B(R4) x B(R)) — (R,B(R)) is nonnegative,and there is a
positive constant ¢, with

(1) o(t,z) — o(t,y)] < colz —y|
(52) o(t,z) < cq
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for all t € Ry ;x,y€ R.

Given X:(R4 x Q,P) — (R, B(R)) there is a positive constant M) (T") with
() At w)| < MA(T)

forallt e Ryw € Q.

Remark 3.5.3:

Let o be such,that for all t > 0

1i9¢10(-,2) € B([0,t]),tc Ry, 2z € R

holds true.Then f:R; x 2 x R — R given by

ftw,z) :=o(t,x)

O—sy

o(t,z)dz+ At,w)o(t,x), (tw,z) e Ry x A xR
is progressively measurable.

Proof:
The proof works in the same manner as the one of 3.4.1.

As in section 3.4(cf. 3.4.2) o fulfills (L1),(L2),whereas f fulfills (PG) with ex-
ponent 1 and (LG),where one can replace t € [0,T'] by t € Ry and ¢,(T) resp.
cf(T) by ¢, resp. cy.

Theorem 3.5.4:

Given o,\ with (54);i=1,2;(\) and ¢ having the additional property from 3.5.3,there
exists a solution r of the modified Heath-Jarrow-Morton equation

re = S(t)h + ftS’(t —8)F(s,,7s)ds + ftS'(t — 8)X(s,rs) dW(s)

for t > 0 and all deterministic h € L2 s.t. there is a positive constant ¢(q,T,c(p),co (T),Mr(T))
for all ¢ > 2 and all T' > 0,which is depending on q,T,U,0 and A with

) S[%pT]EHTtHZ,Q < e(q, T e(p), o (T), MA(T)) (1 + |15 2)
€10,

Proof:
As in the proof of 2.3.2 define for N,Me& N mappings
v, v Rye X Q@ X R — R by
In(tw,x) = flt,w,z)V(-N);t>0, weQ, z € Ry
and

fnm(t,w, z) = (fntwu)+Mlz—ul);t>0,we, zeRy

inf
ueR
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Again the fy pr fulfill (L1),(L2).
Analogously to the proof of 2.2.9 one has continuity and predictability of

St —s)Ena(s,, Z(s))ds

O —

forallt > 0,if Zis a Lf,—valued predictable process with
sup E||Z(r)[[2 2 < oo
r>0

since

(t—s)Fnm(s, -, Z(s))ds

IN

(53 K Z(S)) ds

o o
9]

p,2
t

< clelp),er (N, M) [(1+El|Z(s)]]p2) ds
0

< cle(p),cp(N,M))t (1+§1§8E||Z(T)||p,2)
< o0

holds true,as a consequence of which the Bochner-integral is welldefined.Considering
Ky from the proof of 2.2.7 for processes Z € C([0,T]; L*([0,T] x Q;L;f)) one
gets for arbitrary T > 0:

‘|IC1(Z)H2C([07T];L2)(2) = sup E||’C1(Z)(t)||2,2
s te[0,T]
’ 2
= sup E||[S({t—s)Fnm(s,,Z(s))ds
te[0,T] 0 0,2
< 2 p)E‘({HFN,M(Sv7Z(8))||;2),2d8
<

T
? p)EOfo(N,M)Q(l +112(s)l172) ds

(0,T]
= Telelp),cr(N, M))(1+ HZ||2C([O,T];L2P)(2))
So K1 is a mapping from C([0,T]; L*([0,T] x ©; L2)) onto itself.
KCo from the proof of 2.2.7(i) maps processes Z
from C([0,T]; L*([0,T] x Q; L2)) to C([0,T]; L*([0,T] x Q; L?2)),if these have
property 2.2.3(ii),as one has analogously to the proof there:

< Te(elp),er(N, M)) 1+tesup E|Z(t)||?),2>

t
1Ko ()& (0.71:02)2) < E0f||U(t78)E(S,Z(S))H3:2 ds

T e(e(p), o) (1 n OfE|Z<s>||z,2 ds)

IA

IN

T(1+T)c(e(p),es) [ 1+ sup EIZ(t)||2,2>
te[0,T]
= T +T)e(c(p) co) A+ 1211 o,1122)2)

Given processes X,Y with 2.2.3(ii) one gets:
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(X)) — ’C(Y)H?c([o,:r];Lg)(z) < 2 (||’C1(X) - ’Cl(Y)HQC([O’T];L?,)(?)

HIIC(X) = K2 () o720 )
= 2([1 + I2)

with estimates

L< A(p) sup ]EfHFNM( ;5 X (5)) = Fnoa (s, Y ()] 2 ds
te[0,T

< A(p)cG(N, M)tes[léPT]EofHX(S) =Y ()2 2 ds
< Tcle(p),cp(N, )) Sup ]E||X(t) -Y ()22
= Tec(e(p),cr(N, M))HX Y13 [0,T]522)(2)
t S 2 S
Bs clelp)en) ([BIXE) -V ()12
< Te(elp)sco) ( sup E[[X(t) — (t)||2,2>
te[0,T']
= Tec(e(p),co)l|X — YHC ([0,T];L2)(2)

Thus one has the existence of a unique fixpoint X of IC with

K(2)(t) = S(t)€ + K1 (2)(t) + Ka2(2)(t)

in C([0,T]; L*([0,T] x Q; L2)) for stochastic £ in L? with a fixed T > 0,s.t.

T < Slorer N

holds true.Analogously one gets a unique fixpoint on [0,T'] by setting

¢ := X(T),s.t. one has a fixpoint on [0,2T].Due to the T-independence of the
constants ¢(...) in the estimates one can repeat this procedure infinitely many
times and thus get a fixpoint on R ,which is unique up to modifications and
fulfills 2.2.3(ii)(with v = 0 (nuclear case)) for all T > 0.As it was shown in
the proof of 2.2.7(i) there is even a pathwise unique,continuous fixpoint,which
corresponds to a solution of the wanted equation.Analogously to the proof of
2.2.7(1) (i) and (iv) from 2.2.3 hold true with T" = oo.Denote this solution by
VM,

For fixed T' > 0 and ¢ with
E|[¢][5,2 < o0

one gets by the above estimates:
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q
St —s)F(s,-,rNM)ds
q
+E )X (s, 7MY dW (s) )
0 0,2
c(q, c(p))EI[E]17 2
t
+ela T Coegue) (14 [ B2, ds
0
c(q,T,c(p),cs (N, M), co)(1 +E[[¢][7 )
¢
+e(q, T, c(p), e (N, M), o) [ EllrFM]|7 5 ds
0

o— o

Ellr" M5, < lq) <E|S(t)€IIZ,z

P2

IN

IN

for all t € [0,T],s.t. Gronwall's lemma implies the wanted estimate for r™M

In the same manner one gets existence of V'™ and 7> defined analogously
to the proof of 2.3.2.

In order to have a comparison between these processes,one needs a comparison
theorem like 2.2.11.

Consider the procedure from section 2.2.

The estimates in the proof of 2.2.12 show,that the corresponding estimates in
the new situation are such,that the considered processes are defined on R s.t.
completely analogous to the proof of 2.2.12 one first gets a version on [0, T'],then
on [0,2T'] and inductively on R4 .Due to the T-independence of the constants
belonging to U,f and o the proof of 2.2.13 also works in the new situation,s.t.
one has a comparison result like 2.2.11 with ¢ > 0 instead of t € [0,T].

Defining 7>™:M € N;analogously to the proof of 2.3.2 (L1),(L2) for o and
fn,m with time-independent constants ¢, and cy(N, M) for all NMe N im-
plies for ¢ € [0,T] with T > 0 arbitrary

Bl M2, < TOM) + 17 () + 17 (1)

where the terms are defined as follows:

1M (t) := c(@ElSH)EIS 2 < cla. c(p))EIIE]]] 2

t q
I = c@B||[5t—s)Fo(s,- M) ds

0 . 0,2

< )E [ ||k 5 ds
0
t
< c<q7c<p>,cf>Eg’ I [(1+<f27M<y>>2>1fg,M<y>>o<s,y)
R
F(+ V2 (5, Lo <o(5,9)] ioldy)|* ds
t

<

(@, T.c(p)scprco) (1 T B, ds)
0
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. t
I = c(@E||[5(t-s)x MY AW (s)
0 . P2
< (0)) [ Ello(s,73M)I7
0
< el Tclp)rer) (1+fE||r°M| i)
The procedure in the estimates is the same as in the proof of 2.3.2(i) except for

the fact that there is no y-dependence of the constant belonging to fj(\j),since

~ = 0 in the nuclear case.
Thus for arbitrary 7' > 0 and ¢ € [0, 7]

_0,M
Ellry M9, < (g, T, clp)crco)(1+E[E]|%,)
t
+c(q, T, ¢(p), ¢t ¢o) OfEHfS’MHZ,g ds

s.t. Gronwall‘s lemma implies

_0,M
) S[lépT]EHTt 5.2 < (g, T, c(p), cf, ¢o) (1 + El[][7 )
€10,
for arbitrary T' > 0 and by the M-independence of the constant

_0,M
s B, < o, Ticlp) g0 1+ BE]S )
Me‘N

holds true as well.Defining ™ N,M¢c N,analogously to the proof of 2.3.2 one
gets

N,M
Sup Bl IG5 < o(N.g.1 clp), er, co) (1 + EIIE]]S 2)
MeN

and by the comparison theorem one gets an estimate of that kind for rV-M

and arbitrary 7" > 0.

N

As in the proof of 2.3.2(i) there are processes r 7 and rV with

rN <rN <7 P-as.te0,T]
rN <V(t) <7(t) P-as.t € [0,T]

for all N € N with the following properties:

T
lim fE||riV’ — ) [|9,dt =0
MHooO

£ 0,M
lim [E[FM 5|7, dt =
Mlglooof |7 Til|h o dt =0

T
lim [Elr,™ —r]N||?,dt =0
M—o0 |
for arbitrary 7" > 0.For such 7' > 0 one has analogously to the proof of 2.3.2
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E[lr]|[9 5 < e(N,q,T,c(p),cpyco) (1 +E|[E]]] )t € [0,T]
Furthermore 7V solves Eq.(h,Fy,Y) in the sense of 2.2.3 for this and thus for
all T > 0 and (r]¥);>0 exists for all N € N,since except T all constants are
time-independent.

As in the proof of 2.3.2(i) one gets

2 3
Bl[r]I7 2 < ca) L0 () + 17 (1) + Iy (1)
for arbitrary ¢ € [0,T] with T' > 0 and

sup 10 (t):= sup E|IS(H)E7]]72 < ela,c(p)EI[E]]]

te[0,T] te[0,T]
q
IP(t) = S(t — s)Fy (s,-,r) ds
t r2
< @ clp)) [BIFy (sl ds
t
< elaclo)) [ Bllg(ed)Ilf 2 ds
t
< e T,clp),cp) (1 |y |z,2ds)
0
t B q
IP) = E||[S(t—s)S(s,r))dW(s)
0 . 0,2
< p)) [Ello(s,r 5 ds
0

< ola,T,elp),co) (HfElerll is)

Then Gronwall‘s lemma leads to

b ]EIIT 15,2 < c(a, T, c(p), cr,ce) (1 +EI[E][7 )

Completely analogous to the proof of 2.3.2(i) one defines a process r solving
Eq.(&,F,X) in the sense of 2.2.3 for arbitrary 7' > 0 and,since all constants ex-
cept T are time-independent,one even has existence of r = (;);>0.

Since v = 0 in the nuclear case the estimate for the solution process X in the
proof of 2.3.2(i) implies

sup El|re[[7 5 < (g, T, c(p), cr,co) (1 + E|[€]]7 )
t€[0,T']
for all T > 0.Thus by replacing the stochastic initial condition £ by the de-
terministic initial condition h € L2 the proof is finished.
q.e.d.

As a conclusion one can say,that the spaces Lg are not that appropriate for con-
sidering existence questions in the Heath-Jarrow-Morton model as the spaces
H,, resp. HY from [Te],since the properties of the shift-semigroup are such,that
they only allow the existence of a solution (r¢);co,r) for fixed 7' > 0 and not
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for a solution (r¢)¢>o.

For the modified Heath-Jarrow-Morton equation described in this section there
exists a solution (r;);>0,if the conditions for f and ¢ are T-independent.

Here the shift-semigroup was modified by adding a dampening factor,which be-
comes larger with growing time.

With r;(z) denoting the rate one can contract for in t for a bond with start
in t+x and payoff an infinitesimal unit later the modification means,that the
promised rate is in comparison to the model in [HeJaMo] dampened the stronger
the larger the time t,when the contract is made,is,i.e. with raising t the writers
of the contracts become more carefully with their offered contracts,which for a
single writer could be interpreted as a sinking risk affinity with growing age.

(ii) The existence and uniqueness claim in [AsMa]

What is interesting about the result in [AsMa] is,that it is an existence (and
uniqueness) result with a non-Lipschitzian drift.As it was already mentioned in
chapter 2,Assing and Manthey show their result on spaces Lf with

p := max(2,v).But they show the existence of a solution to the equation

t

u(t) =T)E + OfT(t —8)F(u(s))ds + OftT(t —5)X(u(s))dW(s), t>0

where the semigroup (73);>0 is given by

[T@ul(z) = | Gtz —y)uly)dy

Rd
= [ (@) Fexp -2y yydy, >0 (3.19)
Rd

and f defining F fulfills the conditions

(f1) [f(@) = fW)| < erle—yl(L+ |2+ Jy[" 1), 2y €R, e >0
which implies (PG) with exponent v (cf.[AsMa],section 2,remark 1(c),p.241),and
(f2) uf(u) <w(l+u?),ueR, k>0

(cf.section 2,theorem 1,p.240/241 there).

Further more remark 1(c) from [AsMa] tells that condition (f1) goes back to
[Ma] and ensures pathwise uniqueness.

But considering the proof of the uniqueness result from [Ma] it strikes,that one
estimates by (f1) in the following way there:
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Elic  (u(t,z) —v(t,2)? < ¢(N,K,v) ((ft J Gt —s,x—y)?2(y)dy ds)

0 R4

*<j f G(t—s7x—y)1s<mu(s,y)—v(s,y)|dyds>

0 R4
t

[ [ Gt —s,2—y)(o(u(s,y) —a(v(s,y))) dW(svy)]

0 R4

+E1t§‘r1\1

Here 1 is given by(cf.[Ma],section 4.3,p.32)
l(x)=1+z|", z€e R foraneN

TN = tei[%,fT]“u(t’ MW+ @) > N),inf @ :=T,N e N

with | - |; defined by(cf. [Ma],chapter 1,p.17)

loli == sup 171 (z)p(z)
rzeRI

In order to have this estimate one needs

t
[ [ Gt —s,z—y)* 2(y)dyds < o0
0 R4
for arbitrary x € R%I.e. the proof can only work if the semigroup is of type
(3.19).
Since both the shift-semigroup and S are not of this type,the uniqueness result
from [AsMa] is not applicable to the situation of the general resp. modified
Heath-Jarrow-Morton equation.
Concluding the above considerations one can say,that in the case considered in
[AsMa] there is a unique solution,but for the uniqueness results one needs a
condition for f,which is stronger than (PG),and a dissipativity condition.

Considering the general suitability of the spaces L one can say the follow-
ing:

By (3.15) resp. (3.16) one gets in some sense restrictions to the absolute value
of r¢(x) := f(t,t + z),x € R, Noting that r;(z) denotes the rate from time t
onwards to time t-+x,this restriction makes sense,as one can not get arbitrarily
rich within a fixed time-window,here the one from t to t+x.

Note that in Lz,since the dampening given by p, is the stronger the larger x
is,functions f with f(z) < f(y) for < y are preferred,which makes sense,since
the interpretation for ri(x) > r(y) for © < y would be,that between t and t+x
one can contract for a higher rate than between t and t+y,as a consequence of
which there would be negative spot rates between t+x and t+y,which is not
part of the Heath-Jarrow-Morton model.

So in general the spaces LL are suitable as state space for the Heath-Jarrow-
Morton model.
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