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1 Introduction

The field of interacting particle systems began as a branch of probability theory
in the late 1960’s. Much of the original impulse came from the works of Spitzer
and Dobrushin. Since then, this area has grown and developed rapidly, estab-
lishing surprising connections with many other fields. The original motivation
for this field came mainly from statistical mechanics. One of the aims was to
analyze stochastic models which describe the time evolution of systems, whose
equilibrium measures are classical Gibbs states. In particular, one wanted to get
a better understanding of the phenomenon of phase transition in the dynami-
cal framework. As time passed, it became clear that models with very similar
mathematical structure appear naturally in other contexts – neural networks,
spreading of infection, ecological systems, economical and sociological models,
biology, demography, etc.

An interacting particle system usually consists of infinitely many particles,
which interact with each other in some position space (for example lattice Zd, or
continuum Rd, or more general topological space X). As might be expected, the
behavior of an interacting particles system depends in a rather sensitive way on
the precise nature of the interaction. Thus most of the research deals with certain
types of models in which the interaction is of a prescribed form. In most of the
considered models it is assumed that the position space is a lattice. However,
this assumption is not always suitable. Therefore, in many cases it is reasonable,
and even necessary to consider interacting particle systems in continuum.

In this work we study some classes of Markov processes for interacting parti-
cle systems in continuum. More precisely, we deal with Glauber and Kawasaki
dynamics and consider applications of certain birth-and-death processes to de-
mography.

The Glauber dynamics was first studied on the lattice. In the classical d-
dimensional Ising model with spin space S = {−1, 1}, the Glauber dynamics
means that particles randomly change their spin value, which is called a spin-flip.
In the Kawasaki dynamics, pairs of neighboring particles with different spins
randomly exchange their spin values. Under appropriate conditions on the coeffi-
cients the corresponding dynamics has a Gibbs measure as a symmetrizing (and
hence invariant) measure. We refer to [CMR02, Lig85, Mar99] for a discussion of
the Glauber and Kawasaki dynamics of lattice spin systems.

Let us now interpret a lattice system with spin space S = {−1, 1} as a model
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1 Introduction

of a lattice gas. Then σ(x) = 1 means that there is a particle at site x, while
σ(x) = −1 means that the site x is empty. The Glauber dynamics of such a
system means that, at each site x, a particle randomly appears and disappears.
Hence, this dynamics may be interpreted as a birth-and-death process on Zd.
A corresponding interpretation of the Kawasaki dynamics yields that particles
randomly jump from one site to another.

If we consider a continuous particle system, i.e., a system of particles which
can take any position in the Euclidean space Rd, then an analog of the Glauber
dynamics should be a process in which particles randomly appear and disappear
in the space, i.e., a spatial birth-and-death process. The generator of such a
process is informally given by the formula

(HGF )(γ) = −
∑
x∈γ

d(x, γ)(D−
x F )(γ)−

∫
Rd

b(x, γ)(D+
x F )(γ) dx, (1.0.1)

where

(D−
x F )(γ) = F (γ \ x)− F (γ), (D+

x F )(γ) = F (γ ∪ x)− F (γ).

The coefficient d(x, γ) describes the rate at which the particle x of the configura-
tion γ dies, while b(x, γ) describes the rate at which, given the configuration γ, a
new particle is born at x.

Furthermore, an analog of the Kawasaki dynamics of continuous particles
should be a process in which particles randomly jump over the space Rd. The
generator of such a process is then informally given by

(HKF )(γ) = −2
∑
x∈γ

∫
Rd

c(x, y, γ)(D−+
xy F )(γ) dy, (1.0.2)

where

(D−+
xy F )(γ) = F (γ \ x ∪ y)− F (γ)

and the coefficient c(x, y, γ) describes the rate at which the particle x of the
configuration γ jumps to y.

Further we describe the contents of the work chapter by chapter in more details.

Configuration spaces – general facts and notations

In this chapter we give the necessary definitions and facts, related to the config-
uration spaces, which are used in this thesis. These spaces can be constructed
for a quite general underlying space X, we restrict ourselves to a locally compact
topological spaces.
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The subject of Section 2.1 are the space of finite configurations Γ0(X) and the
configuration space Γ(X), and their topological properties. The space of finite
configurations Γ0(X) is given by

Γ0(X) = {η ⊂ X : |η| <∞} ,

(where |γ| denotes the number of elements of the set γ) and the configuration
space Γ(X) is defined as

Γ(X) := {γ ⊂ X : |γ ∩ Λ| <∞ for all bounded Λ ⊂ X} .

In the Section 2.2 we remind the definitions and basic facts about Lebesgue-
Poisson and Poisson measures. There we also define the correlation functions,
which can be regarded as a density of the correlation measure w.r.t. Lebesgue-
Poisson measure. We also remind the notion of Gibbs measures through Georgii-
Nguyen-Zessin equation, and quote some existence theorems for Gibbs measures,
corresponding to pair potentials.

In Section 2.3 we recall the notions of marked configuration spaces and measures
on them, in particular marked Lebesgue-Poisson and marked Poisson measures.

Glauber and Kawasaki equilibrium dynamics for determinantal
point processes

Spatial birth-and-death processes were first discussed in bounded volume by
Preston in [Pre75], see also [HS78]. By using the theory of Dirichlet forms,
Glauber and Kawasaki dynamics of continuous particle systems in infinite vol-
ume, which have a Gibbs measure as symmetrizing measure, were constructed
in [KL05, KLR07]. In [SY02] Shirai and Yoo investigate the Glauber dynamics
on the lattice which has, instead of a Gibbs measure, a so-called determinantal
point process (on the lattice) as an invariant measure. Thus we came to the
problem of construction of Glauber and Kawasaki dynamics in continuum, which
have a determinantal point process as an invariant measure. Below we define a
determinantal point process.

Let X be a locally compact Polish space. Let ν be a Radon measure on X and
let K be a linear, Hermitian, locally trace class operator on L2(X, ν) for which
000 ≤ K ≤ 111. Then K is an integral operator and we denote by K(·, ·) the integral
kernel of K.

A determinantal (also called fermion) point process, abbreviated DPP, cor-
responding to K is a probability measure on Γ whose correlation functions are
given by

k(n)
µ (x1, . . . , xn) = det(K(xi, xj))

n
i,j=1.
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1 Introduction

DPPs were introduced by Macchi [Mac75]. These processes naturally arise in
quantum mechanics, statistical mechanics, random matrix theory, and represen-
tation theory, see e.g. [BO05, ST03, Sos00] and the references therein.

In [Spo87], Spohn investigated a diffusion dynamics on the configuration space

Γ(R) for which the DPP corresponding to the Dyson kernel K(x, y) =
sin(x− y)

x− y
is an invariant measure.

In the case where the operatorK satisfies the conditionK < 111, Georgii and Yoo
[GY05] (see also [Yoo06]) investigated Gibbsianness of fermion point processes.
In particular, they proved that every fermion process with K as above possesses
Papangelou (conditional) intensity.

Using Gibbsianness of fermion point processes, Yoo [Yoo05] constructed an
equilibrium diffusion dynamics on the configuration space over Rd, which has a
DPP as an invariant measure. This Markov process is an analog of the gradient
stochastic dynamics which has the standard Gibbs measure corresponding to a
potential of pair interaction as invariant measure (see e.g. [AKR98]).

On the other hand, in the case of an invariant Gibbs measure, one considers, as
described above, also further classes of equilibrium processes on the configuration
space, e.g. Glauber and Kawasaki dynamics in continuum.

Using the theory of Dirichlet forms (see e.g. [MR92]), we construct conservative
Markov processes on Γ with cadlag paths which have a DPP µ as symmetrizing,
hence invariant, measure. First we derive the properties of the bilinear forms,
which correspond to Glauber and Kawasaki dynamics. We show that they are
closable, Dirichlet, quasi-regular, and then apply the appropriate theorems from
[MR92] which give the existence of the process. The main technical difficulty we
have to deal with is the absence of a good explicit form of the Papangelou intensity
r(x, γ). Furthermore, we discuss the explicit form of the L2(µ)-generators of
these processes on the set of cylinder functions, and give examples of Glauber
and Kawasaki dynamics, for which the conditions of the existence theorems are
satisfied. These generators will have the form (1.0.1) in the case of Glauber
dynamics, and (1.0.2) in the case of Kawasaki dynamics (with Rd replaced by a
general topological space X). Since we essentially use the Papangelou intensity
of the fermion point process, our study here is restricted by the assumption that
K < 111. We also obtain a sufficient condition for the existence of the spectral gap
of the Glauber dynamics generator.

Spectral Gap for Glauber dynamics

Another question which arises in connection with different dynamics is the rate
of convergence to equilibrium. As one of the characteristics which give us the
information about the speed of convergence we can consider the spectral gap of
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the generator. Most commonly, the Poincaré inequality

c · Varµ(f) ≤ E(f, f), f ∈ D(E),

where Varµ(f) =
∫

(f −
∫
fdµ)2dµ, is used in the context of the spectral gap

analysis. The largest c for which the inequality holds is the spectral gap of the
generator L in L2(µ), where L is the generator corresponding to the Dirichlet
form E .

For the Glauber dynamics in continuum the problem of the existence of the
spectral gap was studied in [BCC02, BCDPP06, Wu04, KL05]. Furthermore,
in [KMZ04] under certain conditions on the invariant measure the one-particle
invariant subspace of the generator was constructed, the spectral gap and the
second gap between the one-particle branch and the rest of the spectrum were
estimated.

In [BCC02] the generator of the Glauber dynamics in a finite volume was
studied. Precisely, the authors consider a non-negative finite range potential φ
and activity z which satisfy the condition of the low activity-high temperature
regime (LAHT). For any finite volume Λ ⊂ Rd and a boundary condition η
outside Λ one can associate the finite volume Gibbs measure µΛ,η. They showed
the Poincaré inequality in bounded volume, which implies that the generator of
the Dirichlet form has a spectral gap (0, GΛ,η). Moreover, they proved that the
infimum of GΛ,η over all finite volumes and boundary conditions η is positive.

This result was extended in [KL05] to the case of general non-negative poten-
tials and the infinite volume dynamics, and, moreover, an explicit estimate of the
spectral gap was shown. To produce this estimate, the coercivity identity ap-
proach was used. Similar results were obtained with other techniques in [Wu04],
where also the hard core case was considered. In the aforementioned articles the
existence of spectral gap was obtained by using different methods. However, in
all of them the potential is assumed to be positive, and this assumption is crucial
for the proof. Therefore there emerged a question, if the spectral gap can exists
in the case when the potential has a negative part. In Chapter 4 we present an
answer to this question. Precisely, we show the existence of the spectral gap for
a certain class of pair potentials, which do not have to be positive. Namely, we
consider the Glauber dynamics on Rd with corresponding invariant measure µ,
for which the Papangelou intensity r(x, γ) exists. The Markov generator of the
process is given on cylinder functions by

(HF )(γ) = −
∫

Rd

γ(dx) (F (γ\x)−F (γ))−
∫

Rd

r(x, γ)(F (γ∪x)−F (γ))dx, µ-a.e.

We define the “carré du champ” and the “carré du champ itéré” operators
respectively as

�(F,G) :=
1

2
(H(FG)− FHG−GHF ),
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1 Introduction

and

�2(F,G) :=
1

2
(H�(F,G)−�(F,HG)−�(G,HF )),

cf. [Bak85, BÉ85a, BÉ85b, BÉ86, Bak94]. If H is the Laplace operator on a
n-dimensional Riemannian manifold, then �(f, f) = |gradf |2 and �2(f, f) =
|Hessf |2 + Ric(gradf, gradf) (Weitzenböck formula), where |Hessf | denotes the
Hilbert-Schmidt norm of the Hessian of f and Ric(·, ·) is the Ricci curvature
tensor.

We calculate explicitly the “carré du champ” and the “carré du champ itéré”
which correspond to the Glauber dynamics generator. Using these expressions
we obtain in Theorem 4.2.7 the coercivity identity for the generator H.

We use the so-called coercivity inequality to investigate the spectral properties
of the generator H. We say that the coercivity inequality holds for a positive
essentially self-adjoint operator H with constant c if∫

Γ

(HF )2(γ)µ(dγ) ≥ c E(F, F ), c > 0.

If it is fulfilled then the interval (0, c) does not belong to the spectrum of H. Note
that the Poincaré inequality is slightly stronger and means that, in addition to
the fact that (0, c) does not belong to the spectrum of H, that the kernel of H
consists only of constants. Using the coercivity identity we derive the following
sufficient condition for the fact that the interval (0, c) does not belong to the
spectrum of H (Theorem 4.3.2). If for each fixed γ ∈ Γ the kernel

r(x, γ)(r(y, γ)− r(y, γ ∪ x)) + (1− c)
√
r(x, γ)

√
r(y, γ)δ(x− y) (1.0.3)

is positive definite then the coercivity inequality holds for H with constant c.
As the main example we consider a Gibbs measures µ corresponding to a trans-

lation invariant pair potential φ and activity z. Writing the condition (1.0.3) for
such a Gibbs measure µ and c = 1 we obtain the condition∫

Rd

∫
Rd

(1− e−φ(x−y))ψ(y)ψ(x)dxdy ≥ 0 (1.0.4)

for all ψ ∈ C0(Rd). Note that this condition does not contain the activity z. When
we speak about regular functions in the following, we have in mind regularity in
the sense of pair potentials, cf. Section 2.2.2. Consider the class K of pair
potentials φ of the form

φ := − ln(1− f),

where f is a continuous positive definite regular function such that f(0) ≤ 1.
Then we obtain (Theorem 4.4.5) that for a tempered Gibbs measure µ, for a
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pair potential φ ∈ K and for all activities z > 0 the generator of the Glauber
dynamics, operator H, fulfills the coercivity inequality for c = 1. The class K
contains also non-positive potentials, see e.g. examples in Section 4.4.3. Further
properties of potentials which belong to K are examined in Proposition 4.4.7.
We mention that such potentials are positive definite in the sense of generalized
functions, and integrable at 0.

Spatial Markov Processes in Mutation-Selection Models

In Chapter 5 we present an application of birth-and-death processes on config-
uration spaces to a generalized mutation-selection balance model. It is a gen-
eralization of a model presented in [SEK05]. The model describes aging of a
population as a process of accumulation of mutations in a genotype. A rigorous
treatment demands that mutations correspond to points in abstract spaces. Our
model describes an infinite-population, infinite-sites model in continuum. The
dynamical equation of Kimura-Maruyama type which describes the system is a
fairly standard one for mathematical mutation-selection theory.

The problem can be posed in terms of evolution of states (differential equation)
or, equivalently, represented in terms of Feynman-Kac formula. The questions
of interest are existence of a solution, its asymptotic behavior and properties of
the limiting state. In the non-epistatic case the problem was posed and solved in
[SEK05]. The articles [KMP07], [KMZ07] were motivated by this work, and treat
the case of a more general potential – the epistatic one. In both articles the space
of the possible positions of mutations is Rd. The generalization to a topological
space X seems natural and necessary because the geometrical structure of the
DNA is far from the geometrical structure of Rd. In our model we consider a
topological space X as the space of positions of mutations and the influence of
an epistatic potential.

Let X be a Polish space, interpreted as the space of positions of possible mu-
tations. The set of all genotypes γ is thus the configuration space Γ(X). The
emergence of mutant alleles is described by a stochastic process, the state of the
population of genotypes at each fixed moment of time t is described by a proba-
bility measure µt on Γ(X). The time development of the population is modelled
by a Kimura-Maruyama type equation

d

dt
µt(F ) = µt

(∫
X

(F (· ∪ x)− F (·))dσ(x)

)
− µt(F · Φ) + µt(F )µt(Φ).

Here Φ : Γ −→ R+ is a selection cost function, which consists of two parts:

Φ(γ) = Φne(γ) + Φe(γ).
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1 Introduction

Φne(γ) is the nonepistatic part, which describes the life costs of a mutation, is
given by

Φne(γ) := 〈h, γ〉 =
∑
x∈γ

h(x), h(x) ≥ c > 0.

Φe(γ) is the epistatic part, which describes the coexistence costs of mutations, is
defined by

Φe(γ) :=
∑

{x,y}⊂γ

φ(x; y), φ ≥ 0.

As the configuration γ may contain, in general, infinite number of points, the
above cost functions are well-defined only in a bounded region Λ ⊂ X.

The questions of interest for us are: existence of solution µt and asymptotic
behavior µt for t → +∞. The useful choice of time parameterization is to start
the process in the remote past, namely at time t = −T < 0, in the state µ−T .
Then we arrive at t = 0 in the state µ0,T . The limiting state for long time is then
given by

lim
T→+∞

µ0,T = µ0.

Another representation of the model, which gives us the explicit solution of our
Kimura-Maruyama type equation can be explicitly written as

µTt (f) =
E
[
f(ξTt )e−

R t
−T Φ(ξT

τ )dτ
]

E
[
1 · e−

R t
−T Φ(ξT

τ )dτ
] ,

where ξTτ denotes the Markov process corresponding to the generator L, started
in µT−T = µ. Here L is given by

LF (γ) :=

∫
X

(F (γ ∪ x)− F (γ))dσ(x). (1.0.5)

Performing the limit T −→ +∞ gives us heuristically

µ0(f) =

∫
Ω(R−→E)

f(ξ(0))dνΦ(ξ(·)),

where

dνΦ(ξ(·)) =
1

Z
e−

R 0
−∞ Φ(ξ(τ))dτdν0(ξ(·)),

Z is the normalizing constant, and E = Γ(X).
The aim of Chapter 5 is to give proper sense to νΦ, defining the measure first

in a bounded volume and for finite time and then going to the limit. By means
of νΦ we derive the large time asymptotic for µT0 . In the first section we consider
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the generator L as given above and in the subsequent section the more general
case of the birth-and-death Markov generator.

Thus in Section 5.2 we consider the model, corresponding to the generator
L given by (1.0.5). First we construct the pure birth Markov process ξτ (γ̂),
0 ≤ τ ≤ T , on (Γ̂(X, [0, T ]), ν0

T ), starting from an empty configuration at time
t = −T , which corresponds to the generator L. Here ν0

T denotes a marked
Poisson measure on Γ̂(X, [0, T ]) with intensity measure σ(dx)dt. Next, we take
into account the influence of the cost function, what is for convenience done in
two steps. First we consider only the influence of the nonepistatic part Φne and
then add the influence of the epistatic part Φe.

Denote by νh the path space measure on the space Γ̂(X,R+), obtained under
the influence of Φne. The restriction of νh to Γ̂(Λ, [0, T ]) is defined for bounded
Λ ⊂ X as

dνhΛ,T (γ̂Λ) =
1

ZΛ,T

exp

{
−
∫ T

0

ΦT,Λ
ne (ξτ (γ̂Λ))dτ

}
dν0

Λ,T (γ̂Λ),

where ZΛ,T is the normalizing constant. Then we obtain in Theorem 5.2.4 the
measure νh as the limit of measures νhΛ,T . The statement of the theorem is: there
exists a weak limit νh of measures νhΛ,T for Λ ↑ X, T → +∞. The measure νh is

a marked Poisson measure on Γ̂(X,R+) with intensity measure e−sh(x)σ(dx)ds.
We are also interested in the final distribution of mutations µh. The restriction

of µh to Γ̂(Λ, [0, T ]) is defined for bounded Λ ⊂ X and F (η) = e〈f,η〉, η ∈ Γ(X)
as ∫

Γ(X)

F (γΛ)dµ0
Λ,T (γΛ) =

∫
Γ̂(Λ,[0,T ])

F (ξ0(γ̂Λ))dνhΛ,T (γ̂Λ)

We obtain in Theorem 5.2.6 the measure µh as the weak limit of measures µ0
Λ,T .

The measure µh is a Poisson measure on Γ(X) with intensity measure 1
h(x)

σ. This

theorem was also proved in [SEK05].
Now we include the influence of the epistatic part of the potential Φe(γ).

We consider the Gibbs perturbation νβ,φ of measure νh, obtained in Theorem
5.2.4, through Φe. Denote by νβ,φΛ the restriction of the measure νβ,φ to the space

Γ̂(Λ,R+), which is given by

dνβ,φΛ (γ̂Λ) =
1

Zβ,Λ
exp

{
−β
∫ +∞

0

ΦΛ
e (ξτ (γ̂Λ))dτ

}
dνhΛ(γ̂Λ).

To construct the weak limit of νβ,φΛ we use the cluster expansion method cf.
[KKDS98, Kun99]. Under the following assumptions

• h ≡ const
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1 Introduction

• φ(x, y) ≥ 0, ∀x, y ∈ X.

•
C(β, h) = esssup

y∈X

∫
X

βφ(x, y)

h(h+ βφ(x, y))
σ(dx) ≤ 1

2e

on the cost function

Φ(γ) =
∑
x∈γ

h(x) +
∑

{x,y}⊂γ

φ(x; y)

we obtain Theorem 5.2.11, which gives us the existence of the weak limit νβ,φΛ →
νβ,φ, Λ ↑ X.

In the Section 5.3 we consider the process, corresponding to the birth-and-death
generator

LF (γ) =
∑
x∈γ

d(x)(F (γ \ x)− F (γ)) +

∫
b(y)(F (γ ∪ y)− F (γ))σ(dy).

Analogously to the previous section we first construct the Markov birth-and-death
process Y T

t , −T ≤ t ≤ 0 on (Ω(X̂T ), πρ), starting from an empty configuration at
time t = −T , corresponding to L. Here πρ denotes the marked Poisson measure

on Ω(X̂T ) with intensity measure ρ(dx, ds, dl) = b(x)d(x)e−d(x)lσ(dx)dsdl. As in
the case of birth process we consider the influence of a selection cost function

Φ(γ) := 〈h, γ〉 =
∑
x∈γ

h(x), h ≥ c > 0.

Again, we are interested in the path space measure νh on the space
Γ̂(X × (−∞, 0],R+), the restriction of which to Γ̂(Λ × [−T, 0],R+) is defined
for Λ ⊂ X as

dνhΛ,T (γ̂) =
1

ZΛ,T

exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂))dt

}
dπT,Λρ (γ̂).

In Theorem 5.3.3 we obtain νh as the weak limit of νhΛ,T . The measure νh is a

marked Poisson measure on Ω(X̂) with intensity measure τ ,

τ(dx, dl, ds) = exp {−((−s) ∨ l)h(x)} b(x)d(x)e−d(x)ldσ(x)dlds.

We also calculate the final distribution of mutations µh. We show in Theorem
5.3.5 that µh is the weak limit of measures µ0

Λ,T , and µh is a Poisson measure on

Γ(X) with intensity measure
σ(dx)

h(x) + d(x)
.

14



Acknowledgements

First of all I owe my gratitude to my supervisor Prof. Yu. G. Kondratiev for
his advice and permanent support. Furthermore, I would like to thank Prof.
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2 Configuration spaces

2.1 Configuration spaces

Let X be a locally compact topological space (describing the position space of
particles). Denote by B(X) the corresponding Borel σ-algebra on X, and by
Bc(X) the collection of all sets from B(X) which are relatively compact. Bb(X)
is the collection of all bounded Borel sets.

For any n ∈ N0 := N ∪ {0} we define the space of n-point configurations Γ
(n)
0

by

Γ
(n)
0 = Γ

(n)
0 (X) := {η ⊂ X| |η| = n} , Γ

(0)
0 := {∅},

where | · | denotes the cardinality of a set. The space Γ
(n)
0 (Λ) for Λ ∈ Bc(X) is

defined analogously.
For every Λ ∈ Bc(X) we define a mapping NΛ : Γ

(n)
0 → N0; NΛ(η) := |η ∩ Λ|.

For short we write ηΛ := η∩Λ. A topological structure on Γ
(n)
0 may be introduced

through the natural projective mapping of

X̃n := {(x1, . . . , xn) ∈ Xn| xk 6= xl if k 6= l} ,

onto Γ
(n)
0 defined by

symn : X̃n → Γ
(n)
0

(x1, . . . , xn) 7→ {x1, . . . , xn}.

Hence symn induces a topology on Γ
(n)
0 . The corresponding Borel σ-algebra on

Γ
(n)
0 we denote by B(Γ

(n)
0 ), and it coincides with the σ-algebra generated by the

mappings NΛ, i.e.

B(Γ
(n)
0 ) = σ ({NΛ | Λ ∈ Bc(X)}) .

Finally, we define the space of finite configurations Γ0

Γ0 :=
⊔
n∈N0

Γ
(n)
0

equipped with the topology of disjoint union O(Γ0).

17



2 Configuration spaces

The configuration space Γ := Γ(X) over X is defined as the set of all subsets
of X which are locally finite:

Γ := {γ ⊂ X : |γΛ| <∞ for all Λ ∈ Bc(X)} .

Elements γ ∈ Γ we will call locally finite configurations. One can identify any
γ ∈ Γ with the positive Radon measure

∑
x∈γ δx ∈ M(X), where δx is the Dirac

measure with mass at x,
∑

x∈∅ δx:=zero measure, and M(X) stands for the set
of all positive Radon measures on B(X). The space Γ can be equipped with the
vague topology, which is the relative topology as a subset of the space M(X),
i.e., the weakest topology on Γ with respect to which all maps

Γ 3 γ 7→ 〈f, γ〉 :=

∫
X

f(x) γ(dx) =
∑
x∈γ

f(x), f ∈ C0(X),

are continuous. Here, C0(X) is the space of all continuous, real-valued functions
on X with compact support. The corresponding Borel σ-algebra on Γ we denote
by B(Γ), and it is equal to the σ-algebra generated by mappings NΛ : Γ → N0,
NΛ(γ) := |γ ∩ Λ|, i.e.

B(Γ) = σ ({NΛ |Λ ∈ Bc(X)}) .

Given any Λ ∈ B(X) we can introduce the space Γ(Λ) of configurations contained
in Λ

Γ(Λ) :=
{
γ ∈ Γ| γX\Λ = ∅

}
,

the σ-algebra B(Γ(Λ)) may be introduced in a similar way:

B(Γ(Λ)) = σ ({NY �ΓΛ
: Y ∈ Bc(X)}) .

The following classes of function are used in the following: L0(Γ) is the set of
all measurable functions on Γ. FL0(Γ) is the set of cylinder functions, i.e. the
set of all measurable functions G ∈ L0(Γ) which are measurable w.r.t. B(Γ(Λ))
for some Λ ∈ Bc(X). These functions are characterized by the following relation:
there exists Λ ∈ Bc(X) such that

F (γ) = F �Γ(Λ) (γΛ).

2.2 Measures on configuration spaces

For the construction of measures on Γ and Γ0 we fix an intensity measure σ on
the underlying space X. Assume σ is a non-atomic and locally finite measure on
(X,B(X)). Having in mind applications, we assume σ(X) = ∞.

18



2.2 Measures on configuration spaces

We will call probability measures on (Γ,B(Γ)) also point processes.
We say that a measure µ on (Γ,B(Γ)) has Papangelou (conditional) intensity

if there exists a measurable function r : X × Γ → [0,+∞] such that∫
Γ

µ(dγ)

∫
X

γ(dx)F (x, γ) =

∫
Γ

µ(dγ)

∫
X

σ(dx)r(x, γ)F (x, γ ∪ x) (2.2.1)

for any measurable function F : X×Γ → [0,+∞]. Here and below, for simplicity
of notations we just write x instead of {x}.

2.2.1 Poisson and Lebesgue-Poisson measure

For any n ∈ N the product measure σ⊗n can be considered as a measure restricted
to the space (X̃n,B(X̃n)). Let σ(n) := σ⊗n ◦ (symn)−1 be the corresponding mea-

sure on Γ
(n)
0 . For n = 0 we put σ(0)({∅}) := 1.

The Lebesgue-Poisson measure λzσ on Γ0 is defined as

λzσ :=
∞∑
n=0

zn

n!
σ(n).

Here z > 0 is the so-called activity parameter. For Λ ∈ Bc(X) we obtain
λzσ(Γ(Λ)) = ezσ(Λ). The restriction of λzσ to Γ(Λ) will be also denoted by λzσ.
Therefore, we can define a probability measure πΛ

zσ on Γ(Λ) by

πΛ
zσ := e−zσ(Λ)λzσ.

For every Λ ∈ Bc(X) define a projection pΛ : Γ → Γ(Λ); pΛ(γ) := γΛ. We notice
that the family {πΛ

zσ, Λ ∈ Bc(X)} is consistent and thus, by a version of Kol-
mogorov’s theorem for projective limit spaces, such family uniquely determines a
measure πzσ on (Γ,B(Γ)) such that πΛ

zσ = πzσ ◦p−1
Λ . The measure πzσ on (Γ,B(Γ))

is called Poisson measure with intensity measure zσ.
Calculation of Laplace transform of the Poisson measure πσ yields∫

Γ

exp(〈γ, f〉)dπσ(γ) = exp

(∫
X

(ef(x) − 1)dσ(x)

)
. (2.2.2)

This characteristic can also be used to define the Poisson measure using the
Minlos theorem, see e.g. [Oli], [GV64].

A measure µ on (Γ,B(Γ)) is said to have correlation functions k
(n)
µ , if for any

n ∈ N, there exists a non-negative, measurable, symmetric function k
(n)
µ on Xn

such that∫
Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ) (2.2.3)

=
1

n!

∫
Xn

f (n)(x1, . . . , xn)k
(n)
µ (x1, . . . , xn)σ(dx1) · · ·σ(dxn).
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2 Configuration spaces

for any measurable, symmetric function f (n) : Xn → [0,+∞]. These are well
known correlation functions of statistical physics, see e.g [Rue69], [Rue70].

If there exists ξ > 0 independent of n such that

∀(x1, . . . , xn) ∈ Xn : k(n)
µ (x1, . . . , xn) ≤ ξn, (2.2.4)

then we say that the correlation functions k
(n)
µ satisfy the Ruelle bound.

Note that any probability measure µ on (Γ,B(Γ)) satisfying the Ruelle bound
has all local moments finite, i.e.,∫

Γ

〈f, γ〉n µ(dγ) <∞, f ∈ C0(X), f ≥ 0, n ∈ N.

2.2.2 Gibbs measures

Fix a measure σ on (X,B(X)). For γ ∈ Γ and x ∈ X, we consider a relative
energy E(x, γ) ∈ (−∞,+∞] of interaction between a particle located at x and
the configuration γ. We suppose that the mapping E is measurable.

A probability measure µ on (Γ,B(Γ)) is called a (grand-canonical) Gibbs mea-
sure corresponding to activity z > 0 and the relative energy E if it satisfies
the Georgii–Nguyen–Zessin identity ([NZ79, Theorem 2], see also [Kun99, Theo-
rem 2.2.4]):∫

Γ

µ(dγ)

∫
X

γ(dx)F (x, γ) =

∫
Γ

µ(dγ)

∫
X

zσ(dx) exp [−E(x, γ)]F (x, γ ∪ x)

(2.2.5)
for any measurable function F : X × Γ → [0,+∞]. Let G(z, E) denote the
set of all Gibbs measures corresponding to z and E. Note that in terms of
Papangelou intensity it means just that r(x, γ) = z exp [−E(x, γ)] . In particular,
if E(x, γ) ≡ 0, then (2.2.5) is the Mecke identity, which holds if and only if µ is
the Poisson measure πzσ with intensity measure zσ(dx).

We assume that

E(x, γ) ∈ R for σ ⊗ µ-a.e. (x, γ) ∈ X × Γ. (2.2.6)

Consider the special case of Gibbs measures corresponding to translation in-
variant pair potentials φ. Here we assume that the position space of particles is
X = Rd.

For each x ∈ X and γ ∈ Γ, we define

E(x, γ) :=

{ ∑
y∈γ

φ(x− y), if
∑
y∈γ

|φ(x− y)| <∞,

+∞, otherwise
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2.2 Measures on configuration spaces

where φ is a pair potential, φ : Rd → (−∞,∞], which is a measurable function
such that φ(−x) = φ(x) ∈ R for all x ∈ Rd \ {0}. We formulate some conditions
on the pair potential φ under which the corresponding Gibbs measure exists.

(SS) (Superstability) For every r ∈ Zd define a cube

∆r =

{
x ∈ Rd : ri −

1

2
≤ xi < ri +

1

2

}
.

These cubes form a partition of Rd. We set Nr(γ) = γ(∆r). One says that
φ is superstable if there exist A > 0, B ≥ 0 such that, for all γ ∈ Γ0 holds∑

{x,y}⊂γ

φ(x− y) ≥
∑
r∈Zd

[
AN2

r (γ)−BNr(γ)
]
.

(S) (Stability) There exists B ≥ 0 such that, for any γ ∈ Γ, |γ| <∞,∑
{x,y}⊂γ

φ(x− y) ≥ −B|γ|.

(I) (Integrability) We have

C :=

∫
Rd

| exp[−φ(x)]− 1|σ(dx) <∞.

(LR) (Lower regularity) We say φ is lower regular if there exists a positive de-
creasing function ϕ on [0,+∞) such that φ(x) ≥ −ϕ(|x|) for all x ∈ Rd

and ∫ ∞

0

td−1ϕ(t)dt <∞. (2.2.7)

In Chapter 4 we will use the following regularity condition, from which conditions
(LR) and (I) follow:

(R) (Regularity) We say that φ is regular if φ is bounded from below and there
exists an R > 0 and a positive decreasing function ϕ on [0,+∞) such that
|φ(x)| ≤ ϕ(|x|) for all x ∈ Rd with |x| ≥ R and∫ ∞

R

td−1ϕ(t)dt <∞. (2.2.8)

For the notion of tempered Gibbs measure and the following theorem, see
[Rue70].
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2 Configuration spaces

Theorem 2.2.1. Assume that X = Rd and φ is translation invariant.
1) Let (S) and (I) hold and let z > 0 be such that

z <
1

e
(e2BC)−1,

where B and C are as in (S) and (I), respectively. Then there exists a Gibbs
measure µ ∈ G(z, E) whose correlation functions exist and satisfy the Ruelle
bound.

2) Let φ be a non-negative potential which fulfills (I). Then, for each z > 0,
there exists a Gibbs measure µ ∈ G(z, E) whose correlation functions exist and
satisfy the Ruelle bound.

3) Let φ satisfy (I), (SS) and (LR). Then the set Gtemp(z, E) of all tempered
Gibbs measures is non-empty and each measure from Gtemp(z, E) has correlation
functions which satisfy the Ruelle bound.

2.3 Marked configurations

2.3.1 Marked configuration spaces

Let (X,B(X)) be given as in Section 2.1. Additionally, let S be a complete
separable metric space, the corresponding Borel σ-algebra we denote by B(S).
The elements of this space we call marks.

The space of marked n-point configurations Γ̂
(n)
0 (X × S) for n ∈ N, is defined

by

Γ̂(n)
0 (X ×S) :=

{
η̂ = {(x1, s1), . . . , (xn, sn)} ∈ Γ(n)

0 (X × S)
∣∣∣ xi 6= xj if i 6= j

}
(2.3.1)

and Γ̂
(0)
0 (X×S) := {∅}. We will denote Γ̂

(n)
0 (X×S) for short Γ̂

(n)
0 , if no confusion

of underlying spaces is possible. For every η̂ = {(x1, s1), . . . , (xn, sn)} ∈ Γ̂
(n)
0 we

may assign a configuration η = {x1, . . . , xn} ∈ Γ
(n)
0 . We define analogously the

space Γ̂
(n)
0 (Y × S), Y ∈ B(X). Also we use the shorthand η̂Y (resp. ηY ) for

η̂ ∩ (Y × S), Y ∈ B(X) (resp. η ∩ Y ) and x̂ := (x, s) ∈ X × S.
In order to define a measurable structure on the marked configuration space

we use the following family of sets I (the “local” sets),

I := {B ∈ B(X)× B(S)| ∃Λ ∈ Bc(X) with B ⊂ Λ× S} (2.3.2)

and the mappings, defined for any Y ∈ B(X) and every B ∈ I with B ⊂ Y × S,

NB : Γ̂
(n)
0 (Y × S) → N0 (2.3.3)

η̂ 7→ |η̂ ∩B|.
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2.3 Marked configurations

To define more structure on Γ̂
(n)
0 , we may use the following natural mapping

symn : ˜(X × S)n → Γ̂
(n)
0 , n ∈ N, (2.3.4)

symn(x̂1, . . . , x̂n) := {x̂1, . . . , x̂n},

where

˜(X × S)n := {(x̂1, . . . , x̂n) ∈ (X × S)n| xk 6= xj if k 6= j} . (2.3.5)

Using this mapping we can identify the space of n-point marked configuration with

the symmetrization of ˜(X × S)n, i.e., ˜(X × S)n/Sn, where Sn is the permutation

group over {1, . . . , n}. This gives us a measurable structure on Γ̂
(n)
0 . We denote

the σ-algebra on Γ̂
(n)
0 by B(Γ̂

(n)
0 ), and it coincides with the σ-algebra generated

by the mappings NB, i.e.,

B(Γ̂
(n)
0 ) = σ(NB|B ∈ I). (2.3.6)

Finally, we define the space of finite marked configurations Γ̂0(X × S)

Γ̂0(X × S) :=
⊔
n∈N0

Γ̂
(n)
0 (X × S) (2.3.7)

equipped with the σ-algebra B(Γ̂0) of disjoint union.
The space of marked configurations Γ̂(X × S) = Γ̂ is defined as

Γ̂(X×S) := {γ̂ := {(x, sx)|x ∈ γ} ∈ Γ(X × S) : γ ∈ Γ(X), sx ∈ S for all x ∈ γ} .

Its measurable structure is given by

B(Γ̂) := σ(NB|B ∈ I). (2.3.8)

2.3.2 Marked Poisson and Lebesgue-Poisson measures

For the construction of the marked Lebesgue-Poisson measure on Γ̂0 we need,
first of all, to fix an intensity measure σ on the underlying space X. Thus, let
us assume that σ is a non-atomic Radon measure on X, i.e., σ({x}) = 0 for
all x ∈ X and σ(Λ) < ∞ for all Λ ∈ Bc(X). Additionally, we need a kernel
τ : X × B(S) → R+, i.e., ∀x ∈ X τ(x, ·) is a finite measure on (S,B(S)) and
τ(·, A) is B(X)-measurable for each A ∈ B(S). Moreover, we assume that the
following condition is fulfilled for any Λ ∈ Bc(X)∫

Λ

τ(x, S)σ(dx) <∞. (2.3.9)
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2 Configuration spaces

This condition reflects the different roles of mark and position variables.
In the product space X × S we define a σ-finite measure στ by

στ (dx, ds) := τ(x, ds)σ(dx), (2.3.10)

that means for A×B ∈ B(X × S)

στ (A×B) =

∫
A

τ(x,B)σ(dx), (2.3.11)

which is a non-atomic Radon measure.
For any Y ∈ B(X) and n ∈ N, the product measure (στ )⊗n can be considered

as a measure on (Ỹ × S)n. Let

(στ )(n) := (στ )⊗n ◦ (symn)−1 (2.3.12)

be the corresponding measure on Γ̂
(n)
0 , define (στ )(0)({∅}) := 1. Then we consider

the so-called marked Lebesgue-Poisson measure λzστ on B(Γ̂0), which coincides

on each Γ̂
(n)
0 with the measure zn

n!
(στ )(n), as follows

λzστ :=
∞∑
n=0

zn

n!
(στ )(n), (2.3.13)

where z > 0 is the activity parameter. As a consequence λzστ is σ-finite. For
Λ ∈ Bc(X) we obtain λzστ (Γ̂0(Λ × S)) = ezσ

τ (Λ×S). Therefore, we can define a
probability measure πτ,Λzσ on Γ̂0(Λ× S) by

πτ,Λzσ := e−zσ
τ (Λ×S)λzστ .

In order to obtain the existence of unique probability measure πτzσ on (Γ̂,B(Γ̂))
such that πτ,Λzσ = πτzσ ◦ p−1

Λ , Λ ∈ Bc(X) we notice that the family {πτ,Λzσ , Λ ∈
Bc(X)} is consistent. Thus, by a version of Kolmogorov’s theorem for projective
limit spaces such family determines uniquely a measure πτzσ on B(Γ̂) such that
πτ,Λzσ = πτzσ ◦ p−1

Λ . The measure πτzσ is called marked Poisson measure.
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3 Glauber and Kawasaki dynamics
for determinantal point processes

3.1 Determinantal point processes

In this chapter we assume X to be a locally compact, second countable Hausdorff
topological space. We fix a metric on X which generates the topology on X. For
any x ∈ X and r > 0, we denote by B̄(x, r) the closed ball in X with center
at x and radius r, and by B(x, r) the corresponding open ball. We fix a Radon,
non-atomic measure ν on (X,B(X)).

Let K be a linear Hermitian operator on the space L2(X, ν) (real or complex)
which satisfies the following assumptions:
(1) K is locally of trace class, i.e.,

Tr(PΛKPΛ) <∞ for all Λ ∈ Bc(X),

where PΛ denotes the operator of multiplication by the indicator function 11Λ of
the set Λ.
(2) We have 000 ≤ K ≤ 111.

Under the above assumptions K is an integral operator, and its kernel can be
chosen as

K(x, y) =

∫
X

K1(x, z)K1(z, y) ν(dz),

where K1(·, ·) is any version of the kernel of the integral operator
√
K, [LM07]

(see also [GY05, Lemma A.4]).
A point process µ having correlation functions

k(n)
µ (x1, . . . , xn) = det(K(xi, xj))

n
i,j=1

is called the fermion (or determinantal) point process corresponding to the oper-
ator K. Under the above assumptions on K, such a point process µ exists and is
unique, see e.g. [Mac75, Sos00, ST03, LM07].

Using the definition of a fermion process, we see that µ has all local moments
finite, i.e., ∫

Γ

〈f, γ〉n µ(dγ) <∞, f ∈ C0(X), f ≥ 0, n ∈ N. (3.1.1)
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3 Glauber and Kawasaki dynamics for DPPs

In what follows, we will always assume that the operator K is strictly less than
111, i.e., 111 does not belong to the spectrum of K. Then, as has been shown by
Georgii and Yoo in [GY05], the fermion process µ has Papangelou (conditional)
intensity r(x, γ), defined by (2.2.1).

We explain the construction of the explicit formula for the Papangelou intensity
r(x, γ) in short, following [GY05]. For each Λ ∈ Bc(X), let PΛ : L2(X, ν) →
L2(X, ν) be the projection operator and KΛ := PΛKPΛ the restriction of the
operator K on L2(Λ, ν). Define also J[Λ] := KΛ(111 − KΛ)−1. Denote by J[Λ](·, ·)
the kernel of the operator J[Λ] (chosen analogously to the kernel of K). For any
γ ∈ Γ, Λ ∈ Bc(X) set

det J[Λ](γΛ, γΛ) := det
[
J[Λ](xi, xj)

]m
i,j=1

,

with γΛ = {x1, . . . , xm} being any numeration of points of γΛ (in the case γΛ = ∅,
set det J[Λ](∅,∅) := 0). Now, for any x ∈ Λ and γ ∈ Γ, set

rΛ(x, γΛ) :=
det J[Λ](x ∪ γΛ, x ∪ γΛ)

det J[Λ](γΛ, γΛ)
, (3.1.2)

where the expression on the right hand side is defined to be zero if
det J[Λ](γΛ, γΛ) = 0. Let {Λn}n∈N be any sequence in Bc(X) that increases to
X. Then r(x, γ) is given by

r(x, γ) = lim
n→∞

rΛn(x, γΛn) for ν ⊗ µ-a.a. (x, γ) ∈ X × Γ. (3.1.3)

Set J := K(111−K)−1. J is an integral operator and we choose its kernel J(·, ·)
analogously to choosing the kernel of K. Note that

Tr(PΛJPΛ) =

∫
Λ

J(x, x) ν(dx) <∞ for Λ ∈ Bc(X). (3.1.4)

The following proposition is a direct corollary of Theorem 3.6 and Lemma A.1
in [GY05].

Proposition 3.1.1. We have, for ν ⊗ µ-a.e. (x, γ) ∈ X × Γ:

r(x, γ) ≤ J(x, x). (3.1.5)

In what follows, we will consider a determinantal point process µ corresponding
to an operator K as defined above. We introduce the set FCb(C0(X),Γ) of all
functions of the form

Γ 3 γ 7→ F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

where N ∈ N, ϕ1, . . . , ϕN ∈ C0(X) and g ∈ Cb(RN). Here, Cb(RN) denotes the
set of all continuous, bounded functions on RN . Note that these functions have
the following property: there exists a set Λ ∈ Bc(X) such that

F (γ) = F �ΓΛ
(γΛ).

26



3.2 Dirichlet forms

3.2 Dirichlet forms

In this section we will only cite the most important definitions. For a complete
reference see [MR92].

Let (E,B,m) be a measure-space. Let D := D(E) be a linear subspace of
L2(E,m) and E : D ×D → R a bilinear map. We define its symmetric part and
antisymmetric part (Ẽ , D), (Ě , D), respectively, by

Ẽ(u, v) :=
1

2
(E(u, v) + E(v, u)); Ě(u, v) :=

1

2
(E(u, v)− E(v, u)),

u, v ∈ D. Clearly E(u, v) = Ẽ(u, v) + Ě(u, v). For α ≥ 0 we set

Eα(u, v) := E(u, v) + α(u, v); u, v ∈ D.

Assume (E , D) is positive definite. Then (E , D) is said to satisfy the weak sector
condition if there exists a constant K > 0 such that

|E1(u, v)| ≤ KE1(u, u)
1/2E1(v, v)

1/2 for all u, v ∈ D.

Definition 3.2.1. Let (E , D) be a positive definite bilinear form on L2(E,m).
(E , D) is called closable (on L2(E,m)), if for all un ∈ D, n ∈ N, such that (un)n∈N
is E-Cauchy (i.e. E(un − um, un − um) −−−−→

n,m→∞
0) and un −−−→

n→∞
0 in L2(E,m), it

follows that E(un, un) −−−→
n→∞

0.

Definition 3.2.2. A pair (E , D) is called a symmetric closed form on L2(E,m),
if D is a dense linear subspace of L2(E,m) and E : D × D → R is a positive
definite bilinear form which is symmetric (i.e. E = Ẽ) and closed on L2(E,m)

(i.e. D is complete w.r.t. the norm E1/2
1 ).

Definition 3.2.3. A pair (E , D) is called a coercive closed form on L2(E,m) if
D is a dense linear subspace of L2(E,m) and E : D ×D → R is a bilinear form
such that the following two conditions hold:

(i) Its symmetric part (Ẽ , D) is a symmetric closed form on L2(E,m).

(ii) (E , D) satisfies the weak sector condition.

Definition 3.2.4. A coercive closed form (E , D) on L2(E,m) is called a Dirichlet
form if for all u ∈ D the following holds:

u+ ∧ 1 ∈ D and E(u+ u+ ∧ 1, u− u+ ∧ 1) ≥ 0

and E(u− u+ ∧ 1, u+ u+ ∧ 1) ≥ 0.
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3 Glauber and Kawasaki dynamics for DPPs

Remark 3.2.5. It is shown in [MR92, Theorem I.2.8.], that a coercive closed
form E uniquely determines a pair of strongly continuous contraction resolvents
(Gα)α>0, (Ĝα)α>0 on L2(E,m), such that

E(Gαf, u) + (Gαf, u) = (f, u) = E(u, Ĝαf) + (u, Ĝαf).

Corresponding to these resolvents are two strongly continuous contraction semi-
groups (Tt)t≥0 and (T̂t)t≥0.

In order to define quasi-regularity, we have to introduce some potential theo-
retic notions.

Define for F ⊂ E, F closed

D(E)F := {u ∈ D(E)|u = 0 m-a.e. on E \ F}.

Definition 3.2.6. (i) An increasing sequence (Fk)k∈N of closed subsets of E is

called an E-nest, if
⋃
k≥1D(E)Fk

is dense in D(E) w.r.t. Ẽ1/2
1 .

(ii) A subset N ⊂ E is called E-exceptional, if N ⊂
⋂
k≥1 F

c
k for some E-nest

(Fk)k∈N.

(iii) A property is said to hold E-quasi-everywhere (E-q.e.), if there exists an
E-exceptional set N , such that the property holds on E \N .

(iv) An E-q.e. defined function f on E is called E-quasi-continuous, if there
exists an E-nest (Fk)k∈N, such that f|Fk

is continuous for every k ∈ N.

Definition 3.2.7. A Dirichlet form (E , D) on L2(E,m) is called quasi-regular, if
the following conditions hold:

(i) There exists an E-nest (Fk)k∈N consisting of compact sets.

(ii) There exists an Ẽ1/2
1 -dense subset of D whose elements have E-quasi-contin-

uous m-versions.

(iii) There exists un ∈ D, n ∈ N, having E-quasi-continuous m-versions ũn,
n ∈ N, and an E-exceptional set N ⊂ E, such that {ũn|n ∈ N} separates
the points of E \N .

3.3 Glauber dynamics

3.3.1 Existence results

Fix a determinantal point process µ, corresponding to the operator K.
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3.3 Glauber dynamics

For a function F : Γ → R, γ ∈ Γ, x ∈ γ, y ∈ X \ γ, we introduce the following
notations

(D−
x F )(γ) := F (γ \ x)− F (γ), (D+

y F )(γ) = F (γ ∪ y)− F (γ).

Consider a measurable mapping

X × Γ 3 (x, γ) 7→ d(x, γ) ∈ [0,∞),

for which we assume that, for each Λ ∈ Bc(X)∫
Γ

µ(dγ)

∫
Λ

γ(dx)d(x, γ \ x) <∞. (3.3.1)

The coefficient d(x, γ \ x) describes the death rate, i.e. the rate at which the
particle x of the configuration γ dies. We define the bilinear form

EG(F,G) :=

∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ \ x)(D−
x F )(γ)(D−

xG)(γ), (3.3.2)

where F,G ∈ FCb(C0(X),Γ). As we see later in Theorem 3.3.8, EG corresponds
to the Glauber dynamics generator. We will write for short EG(F ) instead of
EG(F, F ).

Note that for any F ∈ FCb(C0(X),Γ), there exist Λ ∈ Bc(X) and C > 0 such
that

|(D−
x F )(γ)| ≤ C11Λ(x). (3.3.3)

In fact, for F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉) denote supp ϕk = Λk ∈ Bc(X) and
Λ = ∪nk=1Λk, and assume |g(y)| ≤ C/2 for all y ∈ RN . Then (D−

x F )(γ) = 0 for
x ∈ X \ Λ, otherwise |(D−

x F )(γ)| ≤ C.
Therefore, by assumption (3.3.1) the right-hand side of the formula (3.3.2) is

well-defined and finite.

Lemma 3.3.1. We have EG(F,G) = 0 for all F,G ∈ FCb(C0(X),Γ) such that
F = 0 µ-a.e.

Proof. It suffices to show that, for F ∈ FCb(C0(X),Γ) such that F = 0 µ-a.e.,
we have (D−

x F )(γ) = 0 µ̃-a.e. Here, µ̃ is the measure on X × Γ defined by

µ̃(dx, dγ) := γ(dx)µ(dγ). (3.3.4)

For any F as above, we evidently have that F (γ) = 0 µ̃-a.e. Therefore, it is
enough to show that F (γ \ x) = 0 µ̃-a.e. By (2.2.1) we get for Λ ∈ Bc(X)∫

Γ

µ(dγ)

∫
Λ

γ(dx)|F (γ \ x)| =
∫

Γ

µ(dγ)

∫
Λ

ν(dx)r(x, γ)|F (γ)|. (3.3.5)
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3 Glauber and Kawasaki dynamics for DPPs

Since F is bounded and by (3.1.1), the integral on the left-hand side of (3.3.5) is
finite. Therefore,

r(x, γ)|F (γ)| <∞ for µ⊗ ν-a.a. (x, γ) ∈ X × Γ. (3.3.6)

Because F = 0 µ⊗ ν-a.e., from (3.3.5) and (3.3.6), we get F (γ \x) = 0 µ̃-a.e.

Lemma 3.3.2. The bilinear form (EG,FCb(C0(X),Γ)) is closable on L2(Γ, µ),
and its closure will be denoted by (EG, D(EG)).

Proof. Let (Fn)
∞
n=1 be a sequence in FCb(C0(X),Γ) such that ‖Fn‖L2(Γ,µ) → 0 as

n→∞ and
EG(Fn − Fk) → 0 as n, k →∞. (3.3.7)

To prove the closability of EG, it suffices to show that there exists a subsequence
{Fnk

}∞k=1, such that EG(Fnk
) → 0 as k →∞.

Let Λ ∈ Bc(X). By Cauchy inequality and (3.1.1), we have∫
Γ

µ(dγ)

∫
Λ

γ(dx)|Fn(γ)| ≤ ||Fn||L2(µ)

(∫
Γ

〈11Λ, γ〉2µ(dγ)

)1/2

→ 0 as n→∞.

Therefore, there exists a subsequence of (Fn)
∞
n=1, denoted by (F

(1)
n )∞n=1, such that

F
(1)
n (γ) → 0 for γ(dx)µ(dγ)-a.e. (x, γ) ∈ Λ×Γ. Hence, there exists a subsequence

(F
(2)
n )∞n=1 of (F

(1)
n )∞n=1 such that F

(2)
n (γ) → 0 for γ(dx)µ(dγ)-a.a. (x, γ) ∈ X × Γ.

Next, by (2.2.1), (3.1.4) and (3.1.5)∫
Γ

µ(dγ)

∫
Λ

γ(dx)|F (2)
n (γ \ x)| =

∫
Γ

µ(dγ)

∫
Λ

ν(dx)r(x, γ)|F (2)
n (γ)|

≤
∫

Γ

µ(dγ)|F (2)
n (γ)|

∫
Λ

J(x, x)ν(dx) → 0 as n→∞.

Therefore, there exists a subsequence (F
(3)
n )∞n=1 of (F

(2)
n )∞n=1 such that

(D−
x F

(3)
n )(γ) → 0 for µ̃-a.e. (x, γ) ∈ X × Γ. (3.3.8)

Now, by (3.3.8) and Fatou’s lemma,

EG(F (3)
n ) =

∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ \ x)(D−
x F

(3)
n )(γ)2

=

∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ \ x)
(
(D−

x F
(3)
n )(γ)− lim

m→∞
(D−

x F
(3)
m )(γ)

)2

≤ lim inf
m→∞

∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ \ x)
(
(D−

x F
(3)
n )(γ)− (D−

x F
(3)
m )(γ)

)2
= lim inf

m→∞
EG(F (3)

n − F (3)
m ),

which by (3.3.7) can be made arbitrarily small for n large enough.
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3.3 Glauber dynamics

Lemma 3.3.3. (EG, D(EG)) is a Dirichlet form on L2(Γ, µ).

Proof. On D(EG) we consider the norm ‖F‖D(EG) := (‖F‖2
L2(µ) + EG(F ))1/2, F ∈

D(EG). For any F,G ∈ FCb(C0(X),Γ), we define

S(F,G)(x, γ) := d(x, γ \ x)(D−
x F )(γ)(D−

xG)(γ), x ∈ γ, γ ∈ Γ.

Using the Cauchy inequality, we conclude that S extends to a bilinear continuous
map from (D(EG), ‖ · ‖D(EG)) × (D(EG), ‖ · ‖D(EG)) into L1(X × Γ, µ̃). Let F ∈
D(EG) and consider any sequence (Fn)

∞
n=1 in FCb(C0(X),Γ) such that Fn → F

in (D(EG), ‖ · ‖D(EG)). In particular, Fn → F in L2(µ). Then, step by step
analogously to the proof of Lemma 3.3.2, we find some subsequence (Fnk

)∞k=1,
such that

(D−
x Fnk

)(γ) → (D−
x F )(γ) for µ̃-a.e. (x, γ) ∈ X × Γ.

Therefore, for any F,G ∈ D(EG),

S(F,G)(x, γ) = d(x, γ\x)(D−
x F )(γ)(D−

xG)(γ) for µ̃-a.e. (x, γ) ∈ X×Γ (3.3.9)

and

EG(F,G) =

∫
X×Γ

S(F,G)(x, γ) µ̃(dx, dγ). (3.3.10)

Define R 3 x 7→ g(x):=(0 ∨ x) ∧ 1. We again fix any F ∈ D(EG) and let
(Fn)

∞
n=1 be a sequence of functions from FCb(C0(X),Γ) such that Fn → F in

(D(EG), ‖·‖D(EG)). Consider the sequence (g(Fn))n∈N. We evidently have: g(Fn) ∈
FCb(C0(X),Γ) for each n ∈ N and, by the dominated convergence theorem,
g(Fn) → g(F ) as n → ∞ in L2(µ). Next, by the above argument, we have, for
some subsequence (Fnk

)∞k=1, (D−
x g(Fnk

))(γ) → (D−
x g(F ))(γ) as n→∞ for µ̃-a.e.

(x, γ).
For any x, y ∈ R, we evidently have

|g(x)− g(y)| ≤ |x− y|. (3.3.11)

Therefore, the sequence d(x, γ \x)1/2(D−
x g(Fn))(γ), n ∈ N, is µ̃-uniformly square-

integrable, since so is the sequence d(x, γ \ x)1/2(D−
x Fn)(γ), n ∈ N. Hence

d(x, γ \ x)1/2(D−
x g(Fnk

))(γ) → d(x, γ \ x)1/2(D−
x F )(γ) as k →∞ in L2(µ̃).

By (3.3.9) and (3.3.10), this yields: g(F ) ∈ D(EG).
Finally, by (3.3.9)–(3.3.11), EG(g(F )) ≤ EG(F ), which means that (EG, D(EG))

is a Dirichlet form.
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3 Glauber and Kawasaki dynamics for DPPs

We now need the bigger space
..

Γ consisting of all Z+ ∪ {∞}-valued Radon

measures on X (which is Polish, see e.g. [Kal86]). Since Γ ⊂
..

Γ and B(
..

Γ) ∩ Γ =

B(Γ), we can consider µ as a measure on (
..

Γ,B(
..

Γ)) and correspondingly (E , D(E))

as a bilinear form on L2(
..

Γ, µ).

Lemma 3.3.4. (EG, D(EG)) is a quasi-regular Dirichlet form on L2(
..

Γ, µ).

Proof. By [MR00, Proposition 4.1], it suffices to show that there exists a bounded,

complete metric ρ on
..

Γ generating the vague topology such that, for all γ0 ∈
..

Γ,
ρ(·, γ0) ∈ D(EG) and∫

X

S(ρ(·, γ0))(x, γ)γ(dx) ≤ η(γ) µ-a.e.

for some η ∈ L1(
..

Γ, µ) (independent of γ0). Here, S(F ) := S(F, F ). The proof
below is a modification of the proof of [MR00, Proposition 4.8] and the proof of
[KL05, Proposition 3.2].

Fix any x0 ∈ X, denote for short B(r) := B(x0, r). For each k ∈ N, we define

gk(x) :=
2

3

(
1

2
− dist(x,B(k)) ∧ 1

2

)
, x ∈ X,

where dist(x,B(k)) denotes the distance from the point x to the ball B(k). Next,
we set

φk(x) := 3gk(x), x ∈ X, k ∈ N.

Let ζ be a function in C∞
b (R) such that 0 ≤ ζ ≤ 1 on [0,∞), ζ(t) = t on

[−1/2, 1/2], ζ ′ ∈ [0, 1] on [0,∞). For any fixed γ0 ∈
..

Γ and for any k ∈ N, the
restriction to Γ of the function

ζ (|〈φkgk, ·〉 − 〈φkgk, γ0〉|)

belongs to FCb(C0(X),Γ) (note that 〈φkgk, γ0〉 is a constant). Furthermore,
taking into account that ζ ′ ∈ [0, 1] on [0,∞), we get from the mean value theorem,
for each γ ∈ Γ, x ∈ γ

S (ζ (|〈φkgk, ·〉 − 〈φkgk, γ0〉|)) (x, γ) ≤ d(x, γ \ x)(φkgk)2(x)

≤ d(x, γ \ x)11B(k+1/2)(x). (3.3.12)

Set

ck :=

(
1 + 2

∫
d(x, γ \ x)11B(k+1/2)(x)µ̃(dx, dγ)

)−1/2

2−k/2, k ∈ N,
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3.3 Glauber dynamics

which are finite positive numbers by (3.3.1), and furthermore, ck → 0 as k →∞.
We define

ρ(γ1, γ2) := sup
k∈N

(
ckζ

(
sup
j∈N

|〈φkgj, γ1〉 − 〈φkgj, γ2〉|
))

, γ1, γ2 ∈
..

Γ.

By [MR00, Theorem 3.6], ρ is a bounded, complete metric on
..

Γ generating the
vague topology.

Analogously to the above, we now conclude that, for any fixed γ0 ∈
..

Γ, ρ(·, γ0) ∈
D(EG) and ∫

X

S(ρ(·, γ0))(x, γ)γ(dx) ≤ η(γ) µ-a.e.

where

η(γ) := sup
k∈N

(
c2k

∫
X

d(x, γ \ x)11B(k+1/2)(x)γ(dx)

)
.

Finally,∫
Γ

η(γ)µ(dγ) ≤
∞∑
k=1

c2k

∫
d(x, γ \ x)11B(k+1/2)(x)µ̃(dx, dγ) ≤

∞∑
k=1

2−k = 1.

Thus, the lemma is proved.

Lemma 3.3.5. The set
..

Γ \ Γ is exceptional for EG.

Proof. We modify the proof of [RS98, Proposition 1 and Corollary 1] according
to our situation. It suffices to prove the lemma locally, i.e., to show that, for any
fixed a ∈ X and r > 0

Na := {γ ∈ Γ̈ | sup
x∈B̄(a,r)

γ({x}) ≥ 2}

is EG-exceptional.
By [RS98, Lemma 1], we need to prove that there exists a sequence un ∈ D(EG),

n ∈ N, such that each un is a continuous function on
..

Γ, un → 11Na pointwise as
n→∞, and supn∈N EG(un) <∞.

Fix some n ∈ N such that
2/n < r. (3.3.13)

Let
{B̄(ak, 1/n) | k = 1, . . . , Kn},

with ak ∈ B̄(a, r), k = 1, . . . , Kn, be a finite covering of B̄(a, r). Let f : R → R
be given by f(u) := (1− |u|) ∨ 0.
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3 Glauber and Kawasaki dynamics for DPPs

For each k = 1, . . . , Kn, we define a continuous function f
(n)
k : X → R by

f
(n)
k (x) := f

(
n dist(x, B̄(ak, 1/n))

)
, x ∈ X.

We evidently have:
11B̄(ak,1/n) ≤ f

(n)
k ≤ 11B̄(ak,2/n). (3.3.14)

Let ψ ∈ C1
b(R) be such that 11[2,∞) ≤ ψ ≤ 11[1,∞) and

0 ≤ ψ′ ≤ 2. (3.3.15)

We define a continuous function

..

Γ 3 γ 7→ un(γ) := ψ

(
sup

k∈{1,...,Kn}
〈f (n)
k , γ〉

)
,

whose restriction to Γ belongs to FCb(C0(X),Γ). Evidently, un → 11Na pointwise
as n→∞.

By (3.3.13)-(3.3.15) and the mean value theorem we have for each γ ∈ Γ, x ∈ γ,

(D−
x un)

2(γ) ≤ 2 sup
k∈{1,...,Kn}

|〈f (n)
k , γ \ x〉 − 〈f (n)

k , γ〉|2 = 2 sup
k∈{1,...,Kn}

f
(n)
k (x)2

≤ 2 sup
k∈{1,...,Kn}

11B̄(ak,2/n)(x) ≤ 211B̄(a,2r)(x).

Hence, by (3.3.1),
sup
n
EG(un) <∞,

which implies the lemma.

We now have the main result of this section.

Theorem 3.3.6. Let (3.3.1) hold. Then we have:

1. There exists a conservative Hunt process

M =
(
ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ

)
on Γ (see e.g. [MR92, p. 92]), which is properly associated with (EG, D(EG)),
i.e., for all (µ-versions of) F ∈ L2(Γ, µ) and all t > 0, the function

Γ 3 γ 7→ ptF (γ) :=

∫
ΩΩΩ

F (X(t)) dPγ (3.3.16)

is an EG-quasi-continuous version of exp(−tHG)F , where (HG, D(HG)) is
the generator of (EG, D(EG)). M is up to µ-equivalence unique. In par-
ticular, M is µ-symmetric (i.e.,

∫
GptF dµ =

∫
F ptGdµ for all B(Γ)-

measurable F,G : Γ → R+), so has µ as an invariant measure.
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3.3 Glauber dynamics

2. M from 1. is up to µ-equivalence (cf. [MR92, Definition IV.6.3]) unique
among all Hunt processes M′ =

(
ΩΩΩ′,F′, (F′

t)t≥0, (ΘΘΘ
′
t)t≥0, (X

′(t))t≥0, (P
′
γ)γ∈Γ

)
on Γ having µ as invariant measure and solving the martingale problem for
(−HG, D(HG)), i.e., for all G ∈ D(HG)

G̃(X′(t))− G̃(X′(0)) +

∫ t

0

(HGG)(X′(s)) ds, t ≥ 0,

is an (F′
t)-martingale under P′

γ for EG-q.e. γ ∈ Γ. (Here, G̃ denotes an
EG-quasi-continuous version of G, cf. [MR92, Proposition IV.3.3].)

Remark 3.3.7. In Theorem 3.3.6, M can be taken canonical, which means that
ΩΩΩ is the set of all cadlag functions ω : [0,∞) → Γ (i.e., ω is right continuous
on [0,∞) and has left limits on (0,∞)), X(t)(ω) := ω(t), t ≥ 0, ω ∈ ΩΩΩ, (Ft)t≥0

together with F is the corresponding minimum completed admissible family (cf.
[FŌT94, Section 4.1]) and ΘΘΘt, t ≥ 0, are the corresponding natural time shifts.

Proof of Theorem 3.3.6. The first part of the theorem follows from Lemmas 3.3.4,
3.3.5, the fact that 1 ∈ D(EG) and EG(1, 1) = 0, and [MR92, Theorem IV.3.5 and
Proposition V.2.15]. The second part follows directly from the proof of [AR95,
Theorem 3.5]. �

Now we will derive an explicit formula for the generator of EG. However, for
this we have to demand stronger conditions on the coefficient d(x, γ).

Theorem 3.3.8. Assume that, for each Λ ∈ Bc(X),∫
Λ

γ(dx)d(x, γ \ x) ∈ L2(Γ, µ), (3.3.17)∫
Λ

ν(dx)b(x, γ) ∈ L2(Γ, µ), (3.3.18)

where

b(x, γ) := r(x, γ)d(x, γ), x ∈ γ, γ ∈ Γ. (3.3.19)

Then, for each F ∈ FCb(C0(X),Γ), we have µ-a.e.

(HGF )(γ) = −
∫
X
ν(dx) b(x, γ)(D+

x F )(γ)−
∫
X
γ(dx) d(x, γ\x)(D−

x F )(γ) (3.3.20)

and (HG, D(HG)) is the Friedrichs extension of (HG,FCb(C0(X),Γ)) in L2(Γ, µ).
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3 Glauber and Kawasaki dynamics for DPPs

Proof. By (2.2.1) we get:∫
Γ

(HGF )(γ)F (γ)µ(dγ) = −
∫

Γ

∫
X

b(x, γ)(D+
x F )(γ)F (γ)ν(dx)µ(dγ)

−
∫

Γ

∫
X

d(x, γ \ x)(D−
x F )(γ)F (γ)γ(dx)µ(dγ)

=

∫
Γ

∫
X

d(x, γ \ x)(D−
x F )(γ)F (γ \ x)γ(dx)µ(dγ)

−
∫

Γ

∫
X

d(x, γ \ x)(D−
x F )(γ)F (γ)γ(dx)µ(dγ)

= EG(F, F ).

The expressions above are well-defined by assumptions (3.3.18).

The coefficient d(x, γ \ x) describes the rate at which the particle x of the con-
figuration γ dies, while b(x, γ) describes the rate at which, given the configuration
γ, a new particle is born in x.

3.3.2 Examples

In this section we give examples of birth and death rates d(x, γ) and b(x, γ), for
which the conditions of Theorem 3.3.8 are fulfilled. For each s ∈ [0, 1], we define

d(x, γ) := r(x, γ)s−111{r(x,γ)>0}, (3.3.21)

then the coefficient b(x, γ) from Theorem 3.3.8 is given by

b(x, γ) := r(x, γ)s11{r(x,γ)>0}.

Proposition 3.3.9. Let the coefficient d(x, γ) be given by (3.3.21). Then for
each s ∈ [0, 1] the condition (3.3.1) is satisfied, and hence the conclusion of
Theorem 3.3.6 holds for the corresponding Dirichlet form.

Furthermore, for s = 1, conditions (3.3.17) and (3.3.18) are satisfied, and the
Theorem 3.3.8 holds for the corresponding generator (HG, D(HG)).

Proof. We have, by (2.2.1) (3.3.21) and Proposition 3.1.1,∫
Γ

µ(dγ)

∫
X

γ(dx)d(x, γ \ x)11Λ(x)

=

∫
Γ

µ(dγ)

∫
X

ν(dx)r(x, γ)s11Λ(x)

≤
∫

Γ

µ(dγ)

∫
X

ν(dx)(1 ∧ J(x, x))11Λ(x) <∞,
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3.3 Glauber dynamics

so the condition (3.3.1) is satisfied.

For s = 1 the condition (3.3.17) is equivalent to existence of the second local
moment, cf. (3.1.1), and therefore fulfilled. It remains to check (3.3.18):

∫
Γ

µ(dγ)

(∫
Λ

ν(dx)b(x, γ)

)2

=

∫
Γ

µ(dγ)

∫
Λ

ν(dx)r(x, γ)

∫
Λ

ν(dy)r(y, γ)

≤
∫

Γ

µ(dγ)

∫
X

ν(dx)(1 ∧ J(x, x))11Λ(x)

∫
X

ν(dy)(1 ∧ J(y, y))11Λ(y) <∞,

Hence the proposition is proved.

We finally note that all our assumptions are trivially satisfied in the case of
bounded coefficients d(x, γ), b(x, γ).

3.3.3 Spectral gap of the generator

Here we consider the case d ≡ 1. We first show the coercivity identity for the
gradient D−. For any γ ∈ Γ and F ∈ FCb(C0(X),Γ), (D−)2F (γ) is the el-
ement of the Hilbert space T⊗2

γ = L2((Rd)2, γ⊗2) given by (D−)2F (γ, x, y) =
D−
xD

−
y F (γ), x, y ∈ γ. Moreover, for x, y ∈ γ :

D−
xD

−
y F (γ) =

{
F (γ \ {x, y})− F (γ \ x)− F (γ \ y) + F (γ), x 6= y,
F (γ)− F (γ \ x) = −D−

x F (γ), x = y.
(3.3.22)

We also get

Tr(D−)2F (γ)((D−)2F (γ))∗ =
∑
x,y∈γ

(D−
xD

−
y F (γ))2. (3.3.23)

Lemma 3.3.10. (Coercivity identity) For any F ∈ FCb(C0(X),Γ), we obtain

∫
Γ

(HGF (γ))2µ(dγ) =

∫
Γ

[
Tr(D−)2F (γ)((D−)2F (γ))∗+

∑
x,y∈γ,x 6=y

(
r(y, γ \ {x, y})
r(y, γ \ y)

− 1

)
(D−

y F )(γ \ x)(D−
x F )(γ \ y)

]
µ(dγ)
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3 Glauber and Kawasaki dynamics for DPPs

Proof. We get from (3.3.20)∫
Γ

(HGF (γ))2µ(dγ) =

∫
Γ

µ(dγ)

(∫
X

γ(dx) (D−
x F )(γ)

)2

(3.3.24)

+ 2

∫
Γ

µ(dγ)

∫
X

ν(dx) r(x, γ)(D+
x F )(γ)

∫
X

γ(dy) (D−
y F )(γ)

+

∫
Γ

µ(dγ)

(∫
X

ν(dx) r(x, γ)(D+
x F )(γ)

)2

.

The first summand can be written as∫
Γ

µ(dγ)

(∫
X

γ(dx) (D−
x F )(γ)

)2

(3.3.25)

=

∫
Γ

µ(dγ)
∑
x∈γ

(D−
x F (γ))2 +

∫
Γ

µ(dγ)
∑

x,y∈γ,x 6=y

D−
x F (γ)D−

y F (γ).

To transform the next two we use (2.2.1):

2

∫
Γ

µ(dγ)

∫
X

ν(dx) r(x, γ)(D+
x F )(γ)

∫
X

γ(dy) (D−
y F )(γ) (3.3.26)

= −2

∫
Γ

µ(dγ)

∫
X

γ(dx) (D−
x F )(γ)

∫
X

(γ \ x)(dy)(D−
y F )(γ \ x)(dy)

= −
∫

Γ

µ(dγ)
∑

x,y∈γ,x 6=y

[(F (γ \ x)− F (γ))(F (γ \ {x, y})− F (γ \ x))

+(F (γ \ y)− F (γ))(F (γ \ {x, y})− F (γ \ y))] .

The last summand is∫
Γ

µ(dγ)

(∫
X

ν(dx) r(x, γ)(D+
x F )(γ)

)2

(3.3.27)

=

∫
Γ

µ(dγ)
∑

x,y∈γ,x 6=y

r(y, γ \ {x, y})
r(y, γ \ y)

(D−
y F )(γ \ x)(D−

x F )(γ \ y).

By (3.3.23)-(3.3.27) the lemma follows.

Theorem 3.3.11. Suppose the operator HG is essentially selfadjoint in L2(Γ, µ),
and ∫

(r(y, γ \ x)− r(y, γ))dy ≤ δ < 1. (3.3.28)

Then (0, 1− δ) does not belong to the spectrum of the operator HG.
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3.3 Glauber dynamics

Proof. We fix any F ∈ FCb(C0(X),Γ). By (3.3.22) and (3.3.23) we have

Tr(D−)2F (γ)((D−)2F (γ))∗ ≥
∑
x∈γ

(D−
xD

−
x F (γ))2 =

∑
x∈γ

(D−
x F (γ))2. (3.3.29)

Using (2.2.1), (3.3.28) and Cauchy-Schwarz inequality, we have∣∣∣∣∣
∫

Γ

µ(dγ)
∑

x,y∈γ,x 6=y

(
r(y, γ \ {x, y})
r(y, γ \ y)

− 1

)
(D−

y F )(γ \ x)(D−
x F )(γ \ y)

∣∣∣∣∣
≤
∫

Γ

µ(dγ)
∑

x,y∈γ,x 6=y

∣∣∣∣(r(y, γ \ {x, y})r(y, γ \ y)
− 1

)∣∣∣∣ (D−
x F )2(γ \ y)

=

∫
Γ

µ(dγ)

∫
X

γ(dy)

∫
X

(γ \ y)(dx)
∣∣∣∣(r(y, γ \ {x, y})r(y, γ \ y)

− 1

)∣∣∣∣ (D−
x F )2(γ \ y)

=

∫
Γ

µ(dγ)

∫
X

γ(dx)(D−
x F (γ))2

∫
X

dy |r(y, γ \ x)− r(y, γ)|

≤ δ(HGF, F )L2(µ) (3.3.30)

Note that according to [GY05, Theorem 3.1], r(x, γ) ≥ r(x, η) if γ ⊂ η. Therefore,
we can omit the modulus sign in the integral. Using Lemma 3.3.10, (3.3.29) and
(3.3.30), we get for each F ∈ FCb(C0(X),Γ)

(HGF,HGF )L2(µ) ≥ (1− δ)(HGF, F )L2(µ). (3.3.31)

By assumption, (3.3.31) holds for each F ∈ D(HG). Thus (0, 1 − δ) does not
belong to the spectrum of operator HG.

We have the following example of a DPP for which the condition of Theorem
3.3.11 is fulfilled.

Example 3.3.12. Let X = R1 and K(f) := k ∗ f the convolution operator for
the function k(x) = ρe−a|x|, where ρ, a > 0, such that ρ < a/2 (the last condition
means that ||k||1 < 1, and thus ||K|| < 1 by Young’s inequality). Then the
Fourier transform of k is equal to k̂(t) = 2ρa/(a2 + t2). Hence

ĵ(t) =
k̂

1− k̂
=

2ρa

σ2 + t2
,

where σ2 = a2 − 2ρa, and therefore j(x) = ρa
σ
e−σ|x|. Hence ĵ ≥ 0, and j(x) ∈

L1(R), and the corresponding operator K belongs to the class of operators con-
sidered in [GY05, Example 3.10]. Therefore the Papangelou intensity r(x, γ) can
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3 Glauber and Kawasaki dynamics for DPPs

be calculated through formulas (3.1.2), (3.1.3) but with J in place of J[Λ]. The
associated integral kernel can be written in the form

J(x, y) := j(x− y) = u(x ∨ y)v(x ∧ y),

with u(x) = eσx and v(x) = ρa
σ
e−σx. Therefore, if γ = {x1, . . . , xn} with x1 <

. . . < xn then

det J(γ, γ) = u(x1)u(xn)
n−1∏
i=1

d(xi+1 − xi)

with d(xi+1 − xi) = 2ρa
σ

sinh(σ(xi+1 − xi)). For definition of J(γ, γ) see Section
3.1. Then we obtain

r(x, γ) =



d(lx(γ))d(rx(γ))

d(lx(γ) + rx(γ))
, if lx(γ), rx(γ) <∞,

u(x)d(rx(γ))

u(rx(γ))
, if x < x1,

d(lx(γ))v(x)

v(lx(γ))
, if x > xn,

where lx(γ) and rx(γ) are the distances from x to the closest point on the left,
respectively on the right (which we set ∞ if there are no points from γ on the left,
respectively, on the right of x). Consider first the case when lx(γ), rx(γ) < ∞.
Denote the neighbour of x to the left by z1, to the right by z2. Then∫

R
(r(y, γ \ x)− r(y, γ))dy =

∫ z2

z1

(r(y, γ \ x)− r(y, γ))dy.

After some elementary calculations we get∫
R
(r(y, γ \ x)− r(y, γ))dy =

ρa

σ2
+
ρa

σ
[ (z2 − z1) cothσ(z2 − z1) (3.3.32)

− (z2 − x) cothσ(z2 − x)

−(x− z1) cothσ(x− z1)] .

Setting x = z1 + ε(z2 − z1), 0 ≤ ε ≤ 1/2 (or resp. x = z2 + ε(z1 − z2),
0 ≤ ε ≤ 1/2) we rewrite the right-hand side of (3.3.32) as

ρa

σ

[
1

σ
+ (z2 − z1)(cothσ(z2 − z1)− cothσ(1− ε)(z2 − z1))

+ ε(z2 − z1)(cothσ(1− ε)(z2 − z1)− cothσε(z2 − z1))
]
.
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3.4 Kawasaki dynamics

Denote z = z2 − z1 and use

cothx− coth y = − sinh(x− y)

sinh x sinh y
.

Then we obtain that the right-hand side of (3.3.32) is equal to

ρa

σ

1

σ
− ρa

σ

[
z sinh(σεz)

sinh(σz) sinh(σ(1− ε)z)
+

εz sinh(σ(1− 2ε)z)

sinh(σεz) sinh(σ(1− ε)z)

]
.

The expression in brackets is bounded from below by 0 and from above by 1
σ
,

hence we obtain that∫
R
(r(y, γ \ x)− r(y, γ))dy ≤ ρa

σ2
<

a2

2(a2 − 2ρa)
.

For ρ small enough the expression above is less than one, and therefore there
exists a spectral gap of the corresponding generator.

3.4 Kawasaki dynamics

3.4.1 Existence results

In what follows, we will consider a determinantal point process µ corresponding
to an operator K as defined in Section 3.1.

For a function F : Γ → R, x ∈ γ, y ∈ X \ γ, γ ∈ Γ, we introduce the following
notation

(D−+
xy F )(γ) = F (γ \ x ∪ y)− F (γ).

We consider a measurable mapping

X ×X × Γ 3 (x, y, γ) 7→ c(x, y, γ \ x) ∈ [0,∞).

Assume that

c(x, y, γ) = c(x, y, γ)11{r(x,γ)>0, r(y,γ)>0}, x, y ∈ X, γ ∈ Γ. (3.4.1)

Remark 3.4.1. As we will see below, the coefficient c(x, y, γ \ x) describes the
rate of the jump of particle x ∈ γ to y. If r(y, γ\x) = 0, then the relative energy of
interaction between the configuration γ\x and point y is +∞, so that the particle
x cannot jump to y, i.e., c(x, y, γ \x) should be equal to zero. A symmetry reason
also implies that we should have c(x, y, γ \ x) = 0 if r(x, γ \ x) = 0.
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3 Glauber and Kawasaki dynamics for DPPs

Further, we assume that, for each Λ ∈ Bc(X),∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

ν(dy)c(x, y, γ \ x)(11Λ(x) + 11Λ(y)) <∞. (3.4.2)

We define the bilinear form

EK(F,G) :=
∫

Γ
µ(dγ)

∫
X
γ(dx)

∫
X
ν(dy)c(x, y, γ \ x)(D−+

xy F )(γ)(D−+
xy G)(γ), (3.4.3)

where F,G ∈ FCb(C0(X),Γ). As we see later, EK corresponds to the Kawasaki
dynamics generator. We use the notation EK(F ) := EK(F, F ).

We note that, for any F ∈ FCb(C0(X),Γ), there exist Λ ∈ Bc(X) and C > 0
such that

|(D−+
xy F )(γ)| ≤ C(11Λ(x) + 11Λ(y)), γ ∈ Γ, x ∈ γ, y ∈ X \ γ.

Therefore, by assumptions (3.4.1), (3.4.2) the bilinear form EK in (3.4.3) is well-
defined.

Using (2.2.1) and (3.4.1), we have, for any F ∈ FCb(C0(X),Γ):

EK(F ) =

∫
Γ

µ(dγ)

∫
X

ν(dx)

∫
X

ν(dy)r(x, γ)c(x, y, γ)

× 11{r(y,γ)>0)}
r(y, γ)

r(y, γ)
(F (γ ∪ y)− F (γ ∪ x))2

=

∫
Γ

µ(dγ)

∫
X

ν(dx)

∫
X

γ(dy)r(x, γ \ y)c(x, y, γ \ y)

× 11{r(y,γ\y)>0}
1

r(y, γ \ y)
(D−+

yx F )2(γ).

Therefore, for any F,G ∈ FCb(C0(X),Γ),

EK(F,G) =

∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

ν(dy)c̃(x, y, γ \ x)(D−+
xy F )(γ)(D−+

xy G)(γ),

where

c̃(x, y, γ) := c(y, x, γ)11{r(x,γ)>0}
r(y, γ)

r(x, γ)
.

Therefore, without loss of generality, in what follows we assume that c̃(x, y, γ) =
c(x, y, γ), i.e.,

r(x, γ)c(x, y, γ) = r(y, γ)c(y, x, γ). (3.4.4)

Lemma 3.4.2. We have EK(F,G) = 0 for all F,G ∈ FCb(C0(X),Γ) such that
F = 0 µ-a.e.
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3.4 Kawasaki dynamics

Proof. It suffices to show that, for F ∈ FCb(C0(X),Γ) such that F = 0 µ-a.e.,
we have (D−+

x,y F )(γ) = 0 µ̃-a.e. Here, µ̃ is the measure on X ×X × Γ defined by

µ̃(dx, dy, dγ) := c(x, y, γ \ x)γ(dx)ν(dy)µ(dγ). (3.4.5)

For any F as above, we evidently have that F (γ) = 0 µ̃-a.e. Next, by (2.2.1)
and (3.4.1)∫

Γ

µ(dγ)

∫
Λ

γ(dx)

∫
Λ

ν(dy)|F (γ \ x ∪ y)|c(x, y, γ \ x)

=

∫
Γ

µ(dγ)

∫
Λ

ν(dx)

∫
Λ

ν(dy)r(x, γ)|F (γ ∪ y)|c(x, y, γ)11{r(y,γ)>0}
r(y, γ)

r(y, γ)

=

∫
Γ

µ(dγ)

∫
Λ

ν(dx)

∫
Λ

γ(dy)|F (γ)|c(x, y, γ \ y) r(x, γ \ y)
r(y, γ \ y)

11{r(y,γ\y)>0}

=

∫
Γ

µ(dγ)

∫
Λ

ν(dx)

∫
Λ

γ(dy)|F (γ)|c(x, y, γ \ y)r(x, γ \ y)
r(y, γ \ y)

. (3.4.6)

Since F is bounded, by (3.4.2) the integral in (3.4.6) is finite. Therefore,

|F (γ)| r(x, γ \ y)
r(y, γ \ y)

<∞ for µ̃-a.a. (x, y, γ) ∈ X ×X × Γ. (3.4.7)

Because F = 0 µ̃-a.e., by (3.4.6) and (3.4.7), F (γ \ x ∪ y) = 0 µ̃-a.e.

Lemma 3.4.3. Assume that, for some u ∈ R,∫
Λ

ν(dx)

∫
Λ

γ(dy)r(x, γ \ y)r(y, γ \ y)u11{r(y,γ\y)>0}c(x, y, γ \ y) ∈ L2(Γ, µ) (3.4.8)

for all Λ ∈ Bc(X). Then the bilinear form (EK,FCb(C0(X),Γ)) is closable on
L2(Γ, µ), and its closure will be denoted by (EK, D(EK)).

Proof. Let (Fn)
∞
n=1 be a sequence in FCb(C0(X),Γ) such that ‖Fn‖L2(Γ,µ) → 0 as

n→∞ and

EK(Fn − Fk) → 0 as n, k →∞. (3.4.9)

To prove the closability of EK, it suffices to show that there exists a subsequence
{Fnk

}∞k=1 such that EK(Fnk
) → 0 as k →∞.

Since ‖Fn‖L2(Γ,µ) → 0 as n → ∞, there exists a subsequence (F
(1)
n )∞n=1 of

(Fn)
∞
n=1 such that F

(1)
n (γ) → 0 for µ̃-a.a. (x, y, γ) ∈ X ×X ×Γ. Next, by (3.4.8),
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3 Glauber and Kawasaki dynamics for DPPs

we have, for any Λ ∈ Bc(X),∫
Γ
µ(dγ)

∫
Λ
γ(dx)

∫
Λ
ν(dy)c(x, y, γ \ x)r(y, γ \ x)u+111{r(y,γ\x)>0}|F (1)

n (γ \ x ∪ y)|

=
∫

Γ
µ(dγ)

∫
Λ
ν(dx)

∫
Λ
ν(dy)r(x, γ)c(x, y, γ)r(y, γ)u+111{r(y,γ)>0}|F (1)

n (γ ∪ y)|

=
∫

Γ
µ(dγ)

∫
Λ
ν(dx)

∫
Λ
γ(dy)r(x, γ \ y)r(y, γ \ y)u

× 11{r(y,γ\y)>0}c(x, y, γ \ y)|F (1)
n (γ)|

≤
(∫

Γ
µ(dγ)|F (1)

n (γ)|2
)1/2(∫

Γ
µ(dγ)

(∫
Λ
ν(dx)

∫
Λ
γ(dy)r(x, γ \ y)

× r(y, γ \ y)u11{r(y,γ\y)>0}c(x, y, γ \ y)
)2)1/2

→ 0 as n→∞.

Therefore, there exists a subsequence (F
(2)
n )∞n=1 of (F

(1)
n )∞n=1 such that

F
(2)
n (γ \ x ∪ y) → 0 as n→∞ for

c(x, y, γ \ x)r(y, γ \ x)u11{r(y,γ\x)>0}γ(dx)ν(dy)µ(dγ)-a.e. (x, y, γ) ∈ X ×X × Γ.

By (3.4.1), the latter measure is equivalent to µ̃, and therefore

(D−+
x,y F

(2)
n )(γ) → 0 for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ. (3.4.10)

Now, by (3.4.10) and Fatou’s lemma,

EK(F (2)
n ) =

∫
(D−+

xy F
(2)
n )(γ)2 µ̃(dx, dy, dγ)

=

∫ (
(D−+

xy F
(2)
n )(γ)− lim

m→∞
(D−+

xy F
(2)
m )(γ)

)2

µ̃(dx, dy, dγ)

≤ lim inf
m→∞

∫
((D−+

xy F
(2)
n )(γ)− (D−+

xy F
(2)
m )(γ))2 µ̃(dx, dy, dγ)

= lim inf
m→∞

EK(F (2)
n − F (2)

m ),

which by (3.4.9) can be made arbitrarily small for n large enough.

Lemma 3.4.4. (EK, D(EK)) is a Dirichlet form on L2(Γ, µ).

The proof of Lemma 3.4.4 is analogous to that of Lemma 3.3.3, so we omit it.
Now, analogously to the previous section, we consider µ as a measure on

(
..

Γ,B(
..

Γ)) and correspondingly (E , D(E)) as a bilinear form on L2(
..

Γ, µ).

Lemma 3.4.5. Under the assumption of Lemma 3.4.3, (EK, D(EK)) is a quasi-

regular Dirichlet form on L2(
..

Γ, µ).
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3.4 Kawasaki dynamics

Proof. Analogously to [MR00, Proposition 4.1], it suffices to show that there

exists a bounded, complete metric ρ on
..

Γ generating the vague topology such

that, for all γ0 ∈
..

Γ, ρ(·, γ0) ∈ D(EK) and∫
X

γ(dx)

∫
X

ν(dy)S(ρ(·, γ0))(x, y, γ) ≤ η(γ) µ-a.e.

for some η ∈ L1(
..

Γ, µ) (independent of γ0). Here,

S(F,G) := c(x, y, γ \ x)(D−+
xy F )(γ)(D−+

xy G)(γ),

and S(F ):=S(F, F ). The proof below is a modification of the proof of [MR00,
Proposition 4.8] and the proof of [KL05, Proposition 3.2].

For a fixed x0 ∈ X, denote for short B(r) := B(x0, r). For each k ∈ N, we
define

gk(x) :=
2

3

(
1

2
− dist(x,B(k)) ∧ 1

2

)
, x ∈ X.

Next, we set φk(x) := 3gk(x), x ∈ X, k ∈ N.
Let ζ be a function in C1

b(R) such that 0 ≤ ζ ≤ 1 on [0,∞), ζ(t) = t on

[−1/2, 1/2], ζ ′ ∈ [0, 1] on [0,∞). For any fixed γ0 ∈
..

Γ and for any k, n ∈ N, the
restriction to Γ of the function

ζ

(
sup
j≤n

|〈φkgj, ·〉 − 〈φkgj, γ0〉|
)

belongs to FCb(C0(X),Γ) (note that 〈φkgj, γ0〉 is a constant). Furthermore,
taking into account that ζ ′ ∈ [0, 1] on [0,∞), we get from the mean value theorem,
for each γ ∈ Γ, x ∈ γ, and y ∈ X \ γ,

S

(
ζ

(
sup
j≤n

|〈φkgj, ·〉 − 〈φkgj, γ0〉|
))

(x, y, γ)

≤ c(x, y, γ \ x)
(

sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉 − (φkgj)(x) + (φkgj)(y)|

− sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)2

≤ c(x, y, γ \ x) sup
j≤n

| − (φkgj)(x) + (φkgj)(y)|2

≤ 2c(x, y, γ \ x)
(

sup
j≤n

(φkgj)(x)
2 + sup

j≤n
(φkgj)(y)

2

)
≤ 2c(x, y, γ \ x)(11B(k+1/2)(x) + 11B(k+1/2)(y)). (3.4.11)
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3 Glauber and Kawasaki dynamics for DPPs

For each k ∈ N, we define

Fk(γ, γ0) := ζ

(
sup
j∈N

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)
, γ, γ0 ∈

..

Γ.

Then, for a fixed γ0 ∈
..

Γ,

ζ

(
sup
j≤n

|〈φkgj, γ〉 − 〈φkgj, γ0〉|
)
→ Fk(γ, γ0)

as n → ∞ for each γ ∈
..

Γ and in L2(µ). Hence, by (3.4.11) and the Banach–
Alaoglu and the Banach–Saks theorems (see e.g. [MR92, Appendix A.2]),
Fk(·, γ0) ∈ D(EK) and

S(Fk(·, γ0))(x, y, γ) ≤ 2c(x, y, γ \ x)(11B(k+1/2)(x) + 11B(k+1/2)(y))

for γ(dx)ν(dy)µ(dγ)-a.a. (x, y, γ) ∈ X ×X × Γ.
Define for k ∈ N

ck :=
(

1 + 2
∫
c(x, y, γ \ x)(11B(k+1/2)(x) + 11B(k+1/2)(y)) γ(dx)ν(dy)µ(dγ)

)−1/2

2−k/2,

which are finite positive numbers by (3.4.2), and furthermore, ck → 0 as k →∞.
We define

ρ(γ1, γ2) := sup
k∈N

(
ckFk(γ1, γ2)

)
, γ1, γ2 ∈

..

Γ.

By [MR00, Theorem 3.6], ρ is a bounded, complete metric on
..

Γ generating the
vague topology.

Analogously to the above, we now conclude that, for any fixed γ0 ∈
..

Γ, ρ(·, γ0) ∈
D(EK) and ∫

X

γ(dx)

∫
X

ν(dy)S(ρ(·, γ0))(x, y, γ) ≤ η(γ) µ-a.e.,

where

η(γ) := 2 sup
k∈N

(
c2k

∫
X

γ(dx)

∫
X

ν(dy)c(x, y, γ \ x)(11B(k+1/2)(x) + 11B(k+1/2)(y))

)
.

Finally,∫
Γ
η(γ)µ(dγ) ≤ 2

∞∑
k=1

c2k

∫∫∫
c(x, y, γ \ x)(11B(k+1/2)(x) + 11B(k+1/2)(y)) γ(dx)ν(dy)µ(dγ)

≤
∞∑
k=1

2−k = 1.

Thus, the lemma is proved.
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3.4 Kawasaki dynamics

Lemma 3.4.6. The set
..

Γ \ Γ is exceptional for EK.

Proof. It suffices to prove the lemma locally, i.e., to show that, for any fixed
a ∈ X and r > 0

Na := {γ ∈ Γ̈ : sup
x∈B̄(a,r)

γ({x}) ≥ 2}

is EK-exceptional.
By [RS98, Lemma 1], we need to prove that there exists a sequence un ∈ D(EK),

n ∈ N, such that each un is a continuous function on
..

Γ, un → 11Na pointwise as
n→∞, and supn∈N EK(un) <∞.

The proof is analogous to the proof of Lemma 3.3.5. So we choose n, define
the functions fk and un as in Lemma 3.3.5. Then by (3.3.13)-(3.3.15), and the
mean value theorem, we obtain, for each γ ∈ Γ, x ∈ γ, y ∈ X \ γ,

(D−+
xy un)

2(γ) ≤ 4

(
sup

k∈{1,...,Kn}
〈f (n)
k , γ \ x ∪ y〉 − sup

k∈{1,...,Kn}
〈f (n)
k , γ〉

)2

≤ 4 sup
k∈{1,...,Kn}

|〈f (n)
k , γ \ x ∪ y〉 − 〈f (n)

k , γ〉|2

≤ 8

(
sup

k∈{1,...,Kn}
f

(n)
k (x)2 + sup

k∈{1,...,Kn}
f

(n)
k (y)2

)
≤ 8

(
sup

k∈{1,...,Kn}
11B̄(ak,2/n)(x) + sup

k∈{1,...,Kn}
11B̄(ak,2/n)(y)

)
≤ 8(11B̄(a,2r)(x) + 11B̄(a,2r)(y)).

Hence, by (3.4.2),
sup
n
EK(un) <∞,

which implies the lemma.

We now have the main result of this section.

Theorem 3.4.7. Let (3.4.2) and (3.4.8) hold. Then we have:

1. There exists a conservative Hunt process

M =
(
ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ

)
on Γ (see e.g. [MR92, p. 92]), which is properly associated with (EK , D(EK)),
i.e., for all (µ-versions of) F ∈ L2(Γ, µ) and all t > 0, the function

Γ 3 γ 7→ ptF (γ) :=

∫
ΩΩΩ

F (X(t)) dPγ (3.4.12)
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3 Glauber and Kawasaki dynamics for DPPs

is an EK-quasi-continuous version of exp(−tHK)F , where (HK , D(HK)) is
the generator of (EK , D(EK)). M is up to µ-equivalence unique (cf. [MR92,
Chap. IV, Sect. 6]). In particular, M is µ-symmetric (i.e.,

∫
GptF dµ =∫

F ptGdµ for all F,G : Γ → R+, B(Γ)-measurable), so has µ as an invariant
measure.

2. M from 1) is up to µ-equivalence (cf. [MR92, Definition 6.3]) unique among
all Hunt processes M′ = (ΩΩΩ′,F′, (F′

t)t≥0, (ΘΘΘ
′
t)t≥0, (X

′(t))t≥0, (P
′
γ)γ∈Γ) on Γ

having µ as invariant measure and solving the martingale problem for
(−HK , D(HK)), i.e., for all G ∈ D(HK)

G̃(X′(t))− G̃(X′(0)) +

∫ t

0

(HKG)(X′(s)) ds, t ≥ 0,

is an (F′
t)-martingale under P′

γ for EK-q.e. γ ∈ Γ. (Here, G̃ denotes an
EK-quasi-continuous version of G, cf. [MR92, Ch. IV, Proposition 3.3].)

Remark 3.4.8. In Theorem 3.4.7, M can be taken canonical, i.e., ΩΩΩ is the set of
all cadlag functions ω : [0,∞) → Γ (i.e., ω is right continuous on [0,∞) and has
left limits on (0,∞)), X(t)(ω) := ω(t), t ≥ 0, ω ∈ ΩΩΩ, (Ft)t≥0 together with F is the
corresponding minimum completed admissible family (cf. [FŌT94, Section 4.1])
and ΘΘΘt, t ≥ 0, are the corresponding natural time shifts.

Proof of Theorem 3.4.7. The first part of the theorem follows from Lemmas 3.4.5,
3.3.5, the fact that 1 ∈ D(EK) and EK(1, 1) = 0, and [MR92, Chap. IV, Theo-
rem 3.5 and Chap. V, Proposition 2.15]. The second part follows directly from
the proof of [AR95, Theorem 3.5]. �

Now we will derive explicit formula for the generator of EK. However, for this,
we will demand stronger conditions on the coefficient c(x, y, γ \ x).

Theorem 3.4.9. Assume that, for each Λ ∈ Bc(X),∫
X

γ(dx)

∫
X

ν(dy) c(x, y, γ \ x)(11Λ(x) + 11Λ(y)) ∈ L2(Γ, µ). (3.4.13)

Then, for each F ∈ FCb(C0(X),Γ),

(HKF )(γ) = −2

∫
X

γ(dx)

∫
X

ν(dy)c(x, y, γ \ x)(D−+
xy F )(γ) µ-a.e. (3.4.14)

and (HK, D(HK)) is the Friedrichs extension of (HK,FCb(C0(X),Γ)) in L2(Γ, µ).

Proof. By (2.2.1) and (3.4.4), the theorem easily follows from our assumption
(3.4.13).
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3.4 Kawasaki dynamics

3.4.2 Examples

For each s ∈ [0, 1], we define

c(x, y, γ) := a(x, y)r(x, γ)s−1r(y, γ)s11{r(x,γ)>0, r(y,γ)>0}. (3.4.15)

Here, the function a : X2 → [0,∞) is measurable, symmetric (i.e., a(x, y) =
a(y, x)), bounded, and satisfies

sup
x∈X

∫
X

a(x, y) ν(dy) <∞. (3.4.16)

Assume also that there exists Λ ∈ Bc(X) such that the integral operator J (for
definition see Section 3.1) fulfills

sup
x∈X\Λ

J(x, x) <∞. (3.4.17)

We remind that c(x, y, γ) satisfies the balance condition (3.4.4). Analogously to
the Proposition 3.3.9 we get

Proposition 3.4.10. Let the coefficient c(x, y, γ) be given by (3.4.15), and let
conditions (3.4.16), (3.4.17) hold. Then, for each s ∈ [0, 1], conditions (3.4.2) and
(3.4.8) are satisfied, and therefore the conclusion of Theorem 3.4.7 holds for the
corresponding Dirichlet form.

Furthermore, for s = 1, condition (3.4.13) is satisfied, and hence the conclusion
of Theorem 3.4.9 holds for the corresponding generator (HK, D(HK)).

Proof. Let s ∈ [0, 1]. We have, by (2.2.1), (3.4.16), (3.4.17) and Proposition 3.1.1,∫
Γ

µ(dγ)

∫
X

γ(dx)

∫
X

ν(dy)c(x, y, γ \ x)(11Λ(x) + 11Λ(y))

=

∫
Γ

µ(dγ)

∫
X

ν(dx)

∫
X

ν(dy)a(x, y)r(x, γ)sr(y, γ)s

× 11{r(x,γ)>0, r(y,γ)>0}(11Λ(x) + 11Λ(y))

≤
∫

Γ

µ(dγ)

∫
X

ν(dx)

∫
X

ν(dy)a(x, y)

× (1 ∧ J(x, x))(1 ∧ J(y, y))(11Λ(x) + 11Λ(y))

= 2

∫
Γ

µ(dγ)

∫
X

ν(dx)11Λ(x)(1 ∧ J(x, x))

×
∫
X

ν(dy)a(x, y)(1 ∧ J(y, y)) <∞,

so that condition (3.4.2) is satisfied.
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3 Glauber and Kawasaki dynamics for DPPs

Next, setting u = −s, we see that in order to show that (3.4.8) is satisfied, it
suffices to prove that, for each Λ ∈ Bc(X),∫

Λ

ν(dx)

∫
Λ

γ(dy)a(x, y)r(x, γ \ y)s ∈ L2(µ).

So, by Proposition 3.1.1, (2.2.1), (3.4.16), (3.4.17), and the boundedness of a, we
have:∫

Γ
µ(dγ)

(∫
Λ
ν(dx)

∫
Λ
γ(dy)a(x, y)r(x, γ \ y)s

)2

=
∫

Γ
µ(dγ)

∫
Λ
ν(dy)r(y, γ)

∫
Λ
ν(dx1)

∫
Λ
ν(dx2)a(x1, y)a(x2, y)r(x1, γ)sr(x2, γ)s

+
∫

Γ
µ(dγ)

∫
Λ
ν(dy1)

∫
Λ
ν(dy2)

∫
Λ
ν(dx1)

∫
Λ
ν(dx2)r(y2, γ)r(y1, γ ∪ y2)

× a(x1, y1)a(x2, y2)r(x1, γ ∪ y2)sr(x2, γ ∪ y1)s

≤
∫

Λ
ν(dy)J(y, y)

∫
Λ
ν(dx1)

∫
Λ
ν(dx2)a(x1, y)a(x2, y)(1 + J(x1, x1))(1 + J(x2, x2))

+
∫

Λ
ν(dy1)

∫
Λ
ν(dy2)

∫
Λ
ν(dx1)

∫
Λ
ν(dx2)a(x1, y1)a(x2, y2)

× J(y1, y1)J(y2, y2)(1 + J(x1, x1))(1 + J(x2, x2)) <∞.

Now, let s = 1. Analogously to the above, we have:∫
Γ
µ(dγ)

(∫
X
γ(dx)

∫
X
ν(dy)c(x, y, γ \ x)(11Λ(x) + 11Λ(y))

)2

=
∫

Γ
µ(dγ)

∫
X
ν(dx)r(x, γ)

∫
X
ν(dy1)

∫
X
ν(dy2)a(x, y1)a(x, y2)

× r(y1, γ)r(y2, γ)11{r(x,γ)>0, r(y1,γ)>0, r(y2,γ)>0}(11Λ(x) + 11Λ(y1))(11Λ(x) + 11Λ(y2))

+
∫

Γ
µ(dγ)

∫
X
ν(dx1)

∫
X
ν(dx2)r(x2, γ)r(x1, γ ∪ x2)

×
∫
X
ν(dy1)

∫
X
ν(dy2)a(x1, y1)a(x2, y2)r(y1, γ ∪ x2)r(y2, γ ∪ x1)

× 11{r(x1,γ∪x2)>0, r(x2,γ∪x1)>0, r(y1,γ∪x2)>0, r(y2,γ∪x1)>0}

× (11Λ(x1) + 11Λ(y1))(11Λ(x2) + 11Λ(y2))

≤
∫
X
ν(dx)

∫
X
ν(dy1)

∫
X
ν(dy2)a(x, y1)a(x, y2)

× J(y1, y1)J(y2, y2)(11Λ(x) + 11Λ(y1))(11Λ(x) + 11Λ(y2))

+
∫
X
ν(dx1)

∫
X
ν(dx2)

∫
X
ν(dy1)

∫
X
ν(dy2)a(x1, y1)a(x2, y2)

× J(y1, y1)J(y2, y2)(11Λ(x1) + 11Λ(y1))(11Λ(x2) + 11Λ(y2)). (3.4.18)
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3.4 Kawasaki dynamics

We can write the first integral as

4

∫
Λ

ν(dx)

∫
Λ

ν(dy1)

∫
Λ

ν(dy2)a(x, y1)a(x, y2)J(y1, y1)J(y2, y2)

+ 4

∫
Λ

ν(dx)

∫
Λ

ν(dy1)

∫
X

ν(dy2)a(x, y1)a(x, y2)J(y1, y1)J(y2, y2)

+ 4

∫
Λ

ν(dx)

∫
X

ν(dy1)

∫
X

ν(dy2)a(x, y1)a(x, y2)J(y1, y1)J(y2, y2)

+

∫
Λc

ν(dx)

∫
Λ

ν(dy1)

∫
Λ

ν(dy2)a(x, y1)a(x, y2)J(y1, y1)J(y2, y2).

The finiteness of the first integral follows immediately from our assumptions. To
get a bound for the other ones note that∫

X

ν(dy2)a(x, y2)J(y2, y2) ≤ ca

∫
Λ

ν(dy2)J(y2, y2) + cJ

∫
Λc

ν(dy2)a(x, y2)

and ∫
Λc

ν(dx)a(x, y1)a(x, y2) ≤ ca

∫
Λc

ν(dx)a(x, y1).

Here we used the notations |a| ≤ ca, and sup
x∈X\Λ

J(x, x) ≤ cJ . The finiteness of the

second summand in (3.4.18) we get analogously.

We finally note that all our assumptions are trivially satisfied in the case when
the coefficient c(x, y, γ) is bounded.
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4 Spectral Gap for Glauber
dynamics

Throughout this chapter we will consider the configuration space Γ := Γ(Rd) over
Rd.

Fix a point process µ with Papangelou intensity r, defined in (2.2.1), for which

the correlation functions k
(1)
µ and k

(2)
µ exist and are locally integrable. This means

that the first two local moments exist, i.e., for all Λ ∈ Bb(Rd)∫
Γ

〈11Λ, γ〉µ(dγ) <∞,

∫
Γ

〈11Λ, γ〉2µ(dγ) <∞. (4.0.1)

We also assume the following local integrability condition∫
Rd

r(x, γ)|r(y, γ)− r(y, γ ∪ x)|dx ∈ L1
loc(dy) for µ-a.a. γ ∈ Γ. (4.0.2)

For Gibbs measures, corresponding to an integrable pair potential φ, the condition
above is fulfilled, for example, if the second correlation function k

(2)
µ is bounded.

In this case, by assumption (4.0.1), using (2.2.1) and the definition of kµ we obtain
that the following integral is finite:∫

Γ

µ(dγ)

∫
Λ

dy

∫
Rd

dx e−E(x,γ)e−E(y,γ)|1− eφ(x−y)|

=

∫
Γ

∑
x∈γ,y∈γΛ

|1− eφ(x−y)|µ(dγ)

=

∫
Γ

∑
{x,y}⊆γ

11Λ(y)|1− eφ(x−y)|µ(dγ) +

∫
Γ

∫
Λ

k(1)
µ (x)dxµ(dγ)

=

∫
Γ

∫
Λ

dy

∫
Rd

dx|1− eφ(x−y)|k(2)
µ (x, y)µ(dγ) +

∫
Γ

∫
Λ

k(1)
µ (x)dxµ(dγ) <∞.

4.1 Glauber dynamics

Here we introduce the Dirichlet form which will be considered throughout this
chapter, and the corresponding birth and death dynamics, which is called Glauber.
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4 Spectral Gap for Glauber dynamics

This Dirichlet form is a special case of the one considered in Section 3.3, namely
we choose constant death rate d(x, γ) ≡ 1.

We recollect shortly the notations used in this chapter. Define two types of
difference operators for F : Γ → R, γ ∈ Γ, and x, y ∈ Rd

(D−
x F )(γ) := F (γ \ x)− F (γ), (D+

x F )(γ) := F (γ)− F (γ ∪ x). (4.1.1)

Now we introduce the aforementioned bilinear form, cf. [KL05, KLR07]

E(F,G) :=

∫
Γ

µ(dγ)

∫
Rd

γ(dx)(D−
x F )(γ)(D−

xG)(γ), (4.1.2)

for functions F,G ∈ FCb(C0(Rd),Γ). The following properties of the bilinear form
E , which are useful for our considerations, were proved in [KL05]. The bilinear
form (E ,FCb(C0(Rd),Γ)) is closable on L2(Γ, µ) and its closure is a Dirichlet
form which we will denote by (E , D(E)). The generator (L,D(L)) of (E , D(E)) is
given by

(LF )(γ) =

∫
Rd

γ(dx) (D−
x F )(γ)−

∫
Rd

r(x, γ)(D+
x F )(γ)dx µ-a.e. (4.1.3)

for functions F,G ∈ FCb(C0(Rd),Γ) ⊂ D(L).

Theorem 4.1.1. ([KL05]) There exists a conservative Hunt process

M = (ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ)

on Γ (see e.g. [MR92, p. 92]) which is properly associated with (E , D(E)), i.e., for
all (µ-versions of) F ∈ L2(Γ, µ) and all t > 0 the function

Γ 3 γ 7→ ptF (γ):=

∫
ΩΩΩ

F (X(t)) dPγ

is an E-quasi-continuous version of exp(−tH)F , where H = −L. M is up to
µ-equivalence unique (cf. [MR92, Chap. IV, Sect. 6]). In particular, M is µ-
symmetric, and has µ as an invariant measure.

4.2 Coercivity identity for Glauber dynamics

4.2.1 Carré du champ

For F,G ∈ FCb(C0(Rd),Γ) we define the “carré du champ” corresponding to L
as

�(F,G) :=
1

2
(L(FG)− FLG−GLF ), (4.2.1)
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4.2 Coercivity identity for Glauber dynamics

see, e.g. [BÉ85a, Bak94]. Splitting the generator L in its death and birth part

L−F (γ) :=
∑
x∈γ

D−
x F (γ), L+F (γ) :=

∫
Rd

r(x, γ)D+
x F (γ)dx, (4.2.2)

such that L = L− − L+ one obtains

�(F,G) = �−(F,G) + �+(F,G),

where the “carré du champ” splits correspondingly into the death and birth part

�−(F,G) :=
1

2

∑
x∈γ

D−
x F (γ)D−

xG(γ),

�+(F,G) :=
1

2

∫
Rd

r(x, γ)D+
x F (γ)D+

xG(γ)dx.

Iterating the definition of “carré du champ” one may introduce the so-called
“carré du champ itéré” �2 as follows

�2(F,G) :=
1

2
(L�(F,G)−�(F,LG)−�(G,LF )), (4.2.3)

see, e.g. [Bak85, BÉ85a, Bak94]. Using the splitting in birth and death part we
rewrite �2 in the following way:

2�2(F, F ) =
(
L−�−(F, F )− 2�−(F,L−F )

)
(4.2.4)

−
(
L+�+(F, F )− 2�+(F,L+F )

)
+
(
L−�+(F, F )− L+�−(F, F )− 2�+(F,L−F ) + 2�−(F,L+F )

)
All summands will be treated separately, where the following product rule type
formulas are at the base of further calculations.

Lemma 4.2.1. For cylindric function F ∈ FCb(C0(Rd),Γ)

D−
y

[∑
x∈·

D−
x F (·)

]
(γ) =

∑
x∈γ\y

D−
y F (γ \ x)−

∑
x∈γ

D−
y F (γ), (4.2.5)

D+
y

[∑
x∈·

D−
x F (·)

]
(γ) =

∑
x∈γ

D+
y (γ \ x)−

∑
x∈γ∪y

D+
y (γ). (4.2.6)

For a function Hy(γ) : Γ× Rd → R such that the expressions below are µ-a.s.
well-defined we have

D+
x

(∫
Rd

r(y, γ)Hy(γ)dy

)
=

∫
Rd

r(y, γ)D+
xHy(γ)dy

+

∫
Rd

D+
x r(y, γ)Hy(γ ∪ x)dy, (4.2.7)
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4 Spectral Gap for Glauber dynamics

D−
x

(∫
Rd

r(y, γ)Hy(γ)dy

)
=

∫
Rd

r(y, γ)D−
xHy(γ)dy

+

∫
Rd

D−
x r(y, γ)Hy(γ \ x)dy. (4.2.8)

Proof. Using the definition of difference operators D−
x and D+

x

D−
y

[∑
x∈·

D−
x F (·)

]
(γ) = D−

y

[∑
x∈·

(F (· \ x)− F (·))

]
(γ)

=
∑
x∈γ\y

(F (γ \ {x, y})− F (γ \ y))−
∑
x∈γ

(F (γ \ x)− F (γ))

=
∑
x∈γ\y

(F (γ \ {x, y})− F (γ \ x))− F (γ \ y)

−
∑
x∈γ

(F (γ \ y)− F (γ)) + F (γ \ y)

=
∑
x∈γ\y

D−
y F (γ \ x)−

∑
x∈γ

D−
y F (γ).

Analogously

D+
y

[∑
x∈·

D−
x F (·)

]
(γ) = D+

y

[∑
x∈·

[F (· \ x)− F (·)]

]
(γ)

=
∑
x∈γ

[F (γ \ x)− F (γ)]−
∑
x∈γ∪y

[F (γ ∪ y \ x)− F (γ ∪ y)]

=
∑
x∈γ

[F (γ \ x)− F (γ ∪ y \ x)]− F (γ)

−
∑
x∈γ∪y

[F (γ)− F (γ ∪ y)] + F (γ)

=
∑
x∈γ

D+
y (γ \ x)−

∑
x∈γ∪y

D+
y (γ).

By definition of D−
x and D+

x we obtain

D+
x

(∫
r(y, γ)Hy(γ)dy

)
=

∫
r(y, γ)Hy(γ)dy −

∫
r(y, γ ∪ x)Hy(γ ∪ x)dy

=

∫
r(y, γ)(Hy(γ)−Hy(γ ∪ x))dy +

∫
r(y, γ)Hy(γ ∪ x)dy

−
∫
r(y, γ ∪ x)Hy(γ ∪ x)dy

=

∫
r(y, γ)D+

xHy(γ)dy +

∫
D+
x r(y, γ)Hy(γ ∪ x)dy.
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4.2 Coercivity identity for Glauber dynamics

Analogously we get the following formula

D−
x

(∫
r(y, γ)Hy(γ)dy

)
=

∫
r(y, γ \ x)Hy(γ \ x)dy −

∫
r(y, γ)Hy(γ)dy

=

∫
r(y, γ \ x)Hy(γ \ x)dy −

∫
r(y, γ)Hy(γ \ x)dy

+

∫
r(y, γ)(Hy(γ \ x)−Hy(γ))dy

=

∫
r(y, γ)D−

xHy(γ)dy +

∫
D−
x r(y, γ)Hy(γ \ x)dy. �

We will use the lemma above only for Hy(γ) = (D+
y F )(γ) or (D+

y F )2(γ), then
all integrals are well-defined.

Now we compute step by step the summands of 2�2(F, F ). The calculations
in the subsequent lemmas are done µ-a.e. and for F ∈ FCb(C0(Rd),Γ). For the
first summand in (4.2.4) we obtain the following statement:

Lemma 4.2.2.

L−�−(F, F )(γ)− 2�−(L−F, F )(γ)

=
1

2

∑
x∈γ

∑
y∈γ\x

(
D−
xD

−
y F
)2

(γ) + �−(F, F )(γ).

Proof. By definition of D−
x

L−�−(F ) =
1

2

∑
x∈γ

D−
x

[∑
y∈·

(D−
y F )2(·)

]
(γ)

=
1

2

∑
x∈γ

∑
y∈γ\x

(D−
y F )2(γ \ x)−

∑
y∈γ

(D−
y F )2(γ)

 .

Using (4.2.5) we get

2�−(F,L−F ) =
∑
y∈γ

D−
y F (γ)D−

y

[∑
x∈·

D−
x F (·)

]
(γ)

=
∑
y∈γ

D−
y F (γ)

∑
x∈γ\y

D−
y F (γ \ x)−

∑
x∈γ

D−
y F (γ)
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4 Spectral Gap for Glauber dynamics

=
∑
x∈γ

∑
y∈γ\x

D−
y F (γ)D−

y F (γ \ x)−
∑
y∈γ

(D−
y F )2(γ)

 .

The difference of these two expressions is:

L−�−(F )− 2�−(F,L−F )

=
∑
x∈γ

1

2

∑
y∈γ\x

(D−
y F )2(γ \ x)− 1

2

∑
y∈γ

(D−
y F )2(γ)


−
∑
x∈γ

∑
y∈γ\x

D−
y F (γ)D−

y F (γ \ x)−
∑
y∈γ

(D−
y F )2(γ)


=

1

2

∑
x∈γ

∑
y∈γ\x

(D−
y F )2(γ \ x)− 2

∑
y∈γ\x

D−
y F (γ)D−

y F (γ \ x)

+
∑
y∈γ

(D−
y F )2(γ)

)

=
1

2

∑
x∈γ

∑
y∈γ\x

(D−
y F (γ \ x)−D−

y F (γ))2 +
1

2

∑
x∈γ

(D−
x F )2(γ)

=
1

2

∑
x∈γ

∑
y∈γ\x

(D−
xD

−
y F )2(γ) +

∑
x∈γ

(D−
x F )2(γ)


So, by using the definition of �− we get the statement of the lemma.

For the second summand of 2�−
2 in (4.2.4) we derive the following expression.

Lemma 4.2.3.

L+�+(F, F )(γ)− 2�+(F,L+F )(γ)

= −1

2

∫
Rd

∫
Rd

r(x, γ)r(y, γ)(D+
xD

+
y F )2(γ)dxdy

+
1

2

∫
Rd

∫
Rd

r(x, γ)D+
x r(y, ·)(γ)(D+

y F )2(γ ∪ x)dxdy

−
∫

Rd

∫
Rd

r(x, γ)D+
x F (γ)D+

x r(y, ·)(γ)D+
y F (γ ∪ x)dxdy.
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4.2 Coercivity identity for Glauber dynamics

Proof. Using definitions of L+ and �+, and Lemma 4.2.1, (4.2.7) we gain

L+�+(F ) =
1

2

∫
r(x, γ)D+

x

[∫
r(y, ·)(D+

y F )2(·)dy
]

(γ)dx

=
1

2

(∫
r(x, γ)

∫
r(y, γ)D+

x (D+
y F )2(γ)dydx

+

∫
r(x, γ)

∫
D+
x r(y, ·)(γ)(D+

y F )2(γ ∪ x)dydx
)
.

2�+(F,L+F ) =

∫
r(x, γ)D+

x F (γ)D+
x

[∫
r(y, ·)D+

y F (·)dy
]

(γ)dx

=

∫
r(x, γ)D+

x F (γ)

∫
r(y, γ)D+

xD
+
y F (γ)dydx

+

∫
r(x, γ)D+

x F (γ)

∫
D+
x r(y, ·)(γ)D+

y F (γ ∪ x)dydx.

The difference of the two expressions above is

L+�+(F )− 2�+(F,L+F )

=
1

2

(∫
r(x, γ)

∫
r(y, γ)D+

x (D+
y F )2(γ)dydx

+

∫
r(x, γ)

∫
D+
x r(y, ·)(γ)(D+

y F )2(γ ∪ x)dydx
)

−
(∫

r(x, γ)D+
x F (γ)

∫
r(y, γ)D+

xD
+
y F (γ)dydx

+

∫
r(x, γ)D+

x F (γ)

∫
D+
x r(y, ·)(γ)D+

y F (γ ∪ x)dydx
)
.

We treat first the summands without D+
x r(y, ·)(γ), i.e. the first and the third.

1

2

∫
r(x, γ)

∫
r(y, γ)D+

x (D+
y F )2(γ)dydx

−
∫
r(x, γ)D+

x F (γ)

∫
r(y, γ)D+

xD
+
y F (γ)dydx

=

∫ ∫
dxdyr(x, γ)r(y, γ)

[
1

2
D+
x (D+

y F )2(γ)−D+
y F (γ)D+

y D
+
x F (γ)

]
=

∫ ∫
dxdyr(x, γ)r(y, γ)

[
1

2

(
(D+

y F )2(γ)− (D+
y F )2(γ ∪ x)

)
−D+

y F (γ)
(
D+
y [F (γ)− F (γ ∪ x)]

)]
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4 Spectral Gap for Glauber dynamics

=

∫ ∫
dxdyr(x, γ)r(y, γ)

[
−1

2
(D+

y F )2(γ)− 1

2
(D+

y F )2(γ ∪ x)

+D+
y F (γ)D+

y F (γ ∪ x)
]

= −1

2

∫ ∫
r(x, γ)r(y, γ)(D+

xD
+
y F )2(γ)dydx.

The latter gives the statement of the lemma.

Finally we calculate the mixed terms of the splitting (4.2.4).

Lemma 4.2.4. For a cylinder function F ∈ FCb(C0(Rd),Γ) we have µ-a.e.

(L−�+(F, F )− L+�−(F, F )− 2�+(F,L−F ) + 2�−(F,L+F ))(γ)

=
∑
x∈γ

∫
Rd

r(y, γ)(D−
xD

+
y F )2(γ)dy +

3

2

∫
Rd

r(y, γ)(D+
y F )2(γ)dy

+
1

2

∑
x∈γ

∫
Rd

D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy

+
∑
y∈γ

D−
y F (γ)

∫
Rd

D−
y r(x, ·)(γ)D+

x F (γ \ y)dx.

Proof. Again, using (4.2.8) and definitions of D−
x and D+

x we get

L−�+(F ) =
1

2

∑
x∈γ

D−
x

[∫
r(y, ·)(D+

y F )2(·)dy
]

(γ)

=
1

2

∑
x∈γ

∫
r(y, γ)D−

x (D+
y F )2(γ)dy

+
1

2

∑
x∈γ

∫
D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy

=
1

2

∑
x∈γ

∫
r(y, γ)[(D+

y F )2(γ \ x)− (D+
y F )2(γ)]dy

+
1

2

∑
x∈γ

∫
D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy.

Using (4.2.6) we obtain

−2�+(F,L−F ) = −
∫
r(y, γ)D+

y F (γ)D+
y

[∑
x∈·

D−
x F (·)

]
(γ)dy

= −
∫
r(y, γ)D+

y F (γ)

[∑
x∈γ

D+
y F (γ \ x)−

∑
x∈γ∪y

D+
y F (γ)

]
dy.

60



4.2 Coercivity identity for Glauber dynamics

Calculating the difference of these two terms and reordering the summands

L−�+(F )− 2�+(F,L−F )

=
1

2

∑
x∈γ

∫
r(y, γ)[(D+

y F )2(γ \ x)− (D+
y F )2(γ)]dy

+
1

2

∑
x∈γ

∫
D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy

−
∫
r(y, γ)D+

y F (γ)

[∑
x∈γ

D+
y F (γ \ x)−

∑
x∈γ∪y

D+
y F (γ)

]
dy

=
1

2

∑
x∈γ

∫
r(y, γ)(D+

y F )2(γ \ x)dy +
1

2

∑
x∈γ

∫
r(y, γ)(D+

y F )2(γ)dy

+

∫
r(y, γ)(D+

y F )2(γ)dy −
∑
x∈γ

∫
r(y, γ)D+

y F (γ)D+
y F (γ \ x)

+
1

2

∑
x∈γ

∫
D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy.

Therefore

L−�+(F )− 2�+(F,L−F )

=
1

2

∑
x∈γ

∫
r(y, γ)(D−

xD
+
y F )2(γ)dy +

∫
r(y, γ)(D+

y F )2(γ)dy

+
1

2

∑
x∈γ

∫
D−
x r(y, ·)(γ)(D+

y F )2(γ \ x)dy.

Analogously, using (4.2.6)

−L+�−(F ) = −1

2

∫
r(x, γ)D+

x

[∑
y∈·

(D−
y F )2(·)

]
(γ)dx

= −1

2

∫
r(x, γ)

[∑
y∈γ

(D−
y F )2(γ)−

∑
y∈γ∪x

(D−
y F )2(γ ∪ x)

]
dx.

Using (4.2.8) and the definition of D−
x

2�−(F,L+F ) =
∑
y∈γ

D−
y F (γ)D−

y

[∫
r(x, ·)D+

x F (·)dx
]

(γ)
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4 Spectral Gap for Glauber dynamics

=
∑
y∈γ

D−
y F (γ)

∫
r(x, γ)D−

y D
+
x F (γ)dx

+
∑
y∈γ

D−
y F (γ)

∫
D−
y r(x, ·)(γ)D+

x F (γ \ y)dx

=
∑
y∈γ

D−
y F (γ)

∫
r(x, γ)D−

y (F (γ)− F (γ ∪ x))dx

+
∑
y∈γ

D−
y F (γ)

∫
D−
y r(x, ·)(γ)D+

x F (γ \ y)dx.

The difference of these two expressions is

− L+�−(F ) + 2�−(F,L+F )

= −1

2

∫
r(x, γ)

[∑
y∈γ

(D−
y F )2(γ)−

∑
y∈γ∪x

(D−
y F )2(γ ∪ x)

]
dx

+
∑
y∈γ

D−
y F (γ)

∫
r(x, γ)D−

y (F (γ)− F (γ ∪ x))dx

+
∑
y∈γ

D−
y F (γ)

∫
D−
y r(x, ·)(γ)D+

x F (γ \ y)dx

=
1

2

∑
y∈γ

∫
r(x, γ)(D−

y F )2(γ)dx+
1

2

∑
y∈γ∪x

∫
r(x, γ)(D−

y F )2(γ ∪ x)dx

−
∑
y∈γ

∫
r(x, γ)D−

y F (γ)D−
y F (γ ∪ x)dx

+
∑
y∈γ

D−
y F (γ)

∫
D−
y r(x, ·)(γ)D+

x F (γ \ y)dx,

which is the same as

−L+�−(F ) + 2�−(F,L+F ) =
1

2

∑
y∈γ

∫
r(x, γ)(D+

xD
−
y F )2(γ)dx

+
1

2

∫
r(y, γ)(D−

y F )2(γ ∪ y)dy

+
∑
y∈γ

D−
y F (γ)

∫
D−
y r(x, ·)(γ)D+

x F (γ \ y)dx.

Exchanging x and y and using D−
y F (γ ∪ y) = D+

y F (γ) for y ∈ γ, and the fact
that D−

xD
+
y F (γ) = D+

y D
−
x F (γ) for x ∈ γ, y 6∈ γ we obtain the statement of the

lemma.
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Adding the three parts of the splitting according to (4.2.4) we gain the following
expression for �2

�2(F, F )(γ) =
1
2
�(F, F )(γ) + �+(F, F )(γ)

+
1
4

∑
x∈γ

∑
y∈γ\x

(
D−
xD

−
y F
)2 (γ) +

1
2

∑
y∈γ

∫
Rd

r(x, γ)
(
D+
xD

−
y F
)2(γ)dx (4.2.9)

+
1
4

∫
Rd

∑
x∈γ

D−
x r(y, ·)(γ)

[
(D+

y F )2(γ \ x) + 2D+
y F (γ \ x)D−

x F (γ)
]
dy

+
1
4

∫
Rd

∫
Rd

r(x, γ)r(y, γ)(D+
xD

+
y F )2(γ)dxdy (4.2.10)

+
1
4

∫
Rd

r(x, γ)
∫

Rd

D+
x r(y, ·)(γ)

[
−(D+

y F )2(γ ∪ x) + 2D+
y F (γ ∪ x)D+

x F (γ)
]
dydx

This representation for �2 will turn out to be not very convenient. There are
three terms of fourth order in the difference operator, precisely lines (4.2.9) and
(4.2.10). One should expect that in a natural representation all these three terms
have the same integral w.r.t. the reversible measure µ, which is not the case
for the summand (4.2.10). We rearrange the summands in order to obtain this
property.

Theorem 4.2.5. For all F,G ∈ FCb(C0(Rd),Γ) it holds µ-a.e that

�2(F, F )(γ) =
1
2
�(F, F )(γ) + �+(F, F )(γ)

+
1
4

∑
x∈γ

∑
y∈γ\x

(
D−
xD

−
y F
)2 (γ) +

1
2

∑
y∈γ

∫
Rd

r(x, γ)
(
D+
xD

−
y F
)2(γ)dx (4.2.11)

+
1
4

∫
Rd

∑
x∈γ

D−
x r(y, ·)(γ)

[
(D+

y F )2(γ \ x) + 2D+
y F (γ \ x)D−

x F (γ)
]
dy (4.2.12)

+
1
4

∫
Rd

r(x, γ)
∫

Rd

r(y, γ ∪ x)(D+
xD

+
y F )2(γ)dydx (4.2.13)

+
1
4

∫
Rd

r(x, γ)
∫

Rd

D+
x r(y, ·)(γ)

[
−(D+

y F )2(γ) + 2D+
y F (γ)D+

x F (γ)
]
dydx. (4.2.14)

Proof. Using just the definition of D+
x the last two summands of �2 can be

rewritten as follows

1

4

∫
Rd

r(x, γ)

∫
Rd

r(y, γ ∪ x)(D+
xD

+
y F )2(γ)dydx

+
1

4

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)

[
(D+

xD
+
y F )2(γ)− (D+

y F )2(γ ∪ x)

+2D+
y F (γ ∪ x)D+

x F (γ)
]
dydx (4.2.15)
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It remains to simplify the last bracket. Expanding the first summand of the
bracket

(D+
xD

+
y F )2(γ) = (D+

y F )2(γ ∪ x)− 2(D+
y F )(γ)(D+

y F )(γ ∪ x) + (D+
y F )2(γ)

= ((D+
y F )2(γ ∪ x)− (D+

y F )2(γ)) + 2(D+
y F (γ)−D+

y F (γ ∪ x))D+
y F (γ)

and using

2D+
xD

+
y F (γ)D+

y F (γ) = 2(D+
y F (γ)−D+

y F (γ ∪ x))D+
y F (γ)

we obtain

(D+
xD

+
y F )2(γ) = ((D+

y F )2(γ∪x)−(D+
y F )2(γ))+2D+

xD
+
y F (γ)D+

y F (γ). (4.2.16)

Inserting (4.2.16) in (4.2.15) and using D+
xD

+
y F (γ) = D+

y D
+
x F (γ) for x, y 6∈ γ we

obtain

(D+
xD

+
y F )2(γ)− (D+

y F )2(γ ∪ x) + 2D+
y F (γ ∪ x)D+

x F (γ)

= −(D+
y F )2(γ) + 2D+

y D
+
x F (γ)D+

y F (γ) + 2D+
y F (γ ∪ x)D+

x F (γ)

= −(D+
y F )2(γ) + 2D+

x F (γ)D+
y F (γ)− 2D+

x F (γ ∪ y)D+
y F (γ)

+ 2D+
y F (γ ∪ x)D+

x F (γ).

According to Lemma 4.2.6 the last two terms cancel each other. Thus (4.2.15)
can be simplified to∫

Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)[−(D+

y F )2(γ) + 2D+
x F (γ)D+

y F (γ)]dydx,

what yields the result.

Lemma 4.2.6. For µ-a.a. γ ∈ Γ holds that

r(x, γ)D+
x r(y, ·)(γ)dxdy = r(y, γ)D+

y r(x, ·)(γ)dydx

Proof. As the above equality has to be interpreted µ-a.s. it is sufficient to show
that the expression below is symmetric under the interchange of x and y, what
we check using (2.2.1):∫

Γ

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)H(γ ∪ x ∪ y, x, y)dydxµ(dγ)

=

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

r(y, γ)H(γ ∪ x ∪ y, x, y)dydxµ(dγ)

−
∫

Γ

∑
x,y∈γ
x 6=y

H(γ, x, y)µ(dγ). �
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4.2 Coercivity identity for Glauber dynamics

4.2.2 Coercivity identity

In this section we consider the integrals of � and �2 w.r.t. µ. Remember that
L is symmetric w.r.t. µ. Denote H := −L. We will use the representation of �2

given by Theorem 4.2.5. The calculations below are based on the frequent use of
the identity D+

x F (γ \ x) = D−
x F (γ) (for x ∈ γ) and the repeated application of

the definition of the Papangelou intensity, cf. (2.2.1). First, one notes that for
F ∈ FCb(C0(Rd),Γ)

1

2

∫
Γ

�(F, F )(γ)µ(dγ) =

∫
Γ

�±(F, F )(γ)µ(dγ) (4.2.17)

=
1

2

∫
Γ

∫
Rd

r(x, γ)(D+
x F )2(γ)dxµ(dγ). (4.2.18)

Thus we get the following representation for the Dirichlet form

E(F, F ) =

∫
Γ

F (γ)HF (γ)µ(dγ) =

∫
Γ

�(F, F )(γ)µ(dγ). (4.2.19)

Next we calculate the integral of the “carré du champ itéré” �2 w.r.t µ. We
see that the integrals of all three forth order terms (given in lines (4.2.11) and
(4.2.13)), coincide with ∫

Γ

∑
x∈γ

∑
y∈γ\x

(
D−
xD

−
y F
)2

(γ)µ(dγ).

Calculating the integral of (4.2.12)∫
Γ

∫
Rd

∑
x∈γ

D−
x r(y, ·)(γ)

[
(D+

y F )2(γ \ x) + 2D+
y F (γ \ x)D−

x F (γ)
]
dyµ(dγ)

=
∫

Γ

∫
Rd

r(x, γ)
∫

Rd

D−
x r(y, ·)(γ ∪ x)

[
(D+

y F )2(γ) + 2D+
y F (γ)D−

x F (γ ∪ x)
]
dydxµ(dγ)

=
∫

Γ

∫
Rd

r(x, γ)
∫

Rd

D+
x r(y, ·)(γ)

[
(D+

y F )2(γ) + 2D+
y F (γ)D+

x F (γ)
]
dydxµ(dγ)

and comparing it with the integral of (4.2.14), one can find some cancellations.
Summarizing, one obtains the coercivity identity

Theorem 4.2.7. For all F ∈ FCb(C0(Rd),Γ) holds∫
Γ

(HF )2(γ)µ(dγ) =

∫
Γ

�2(F, F )(γ)µ(dγ) (4.2.20)

=

∫
Γ

�(F, F )(γ)µ(dγ) +

∫
Γ

∑
x∈γ

∑
y∈γ\x

(
D−
xD

−
y F
)2

(γ)µ(dγ)

+

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)D+

y F (γ)D+
x F (γ)dydxµ(dγ).
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4 Spectral Gap for Glauber dynamics

Proof. The first equality can be easily checked by symmetricity of L w.r.t µ and
(L, 1)L2(Γ,µ) = 0, where 1 denotes the function constantly equal to 1; the integral
of �2 w.r.t µ was calculated above.

4.3 Sufficient condition for the spectral gap

Most commonly in the context of spectral gap the Poincaré inequality

c

∫ (
f −

∫
fdµ

)2

dµ ≤ E(f, f)

for operator H is used. We use the so-called coercivity inequality to investigate
the spectral properties of H. We say that the coercivity inequality holds for a
positive essentially self-adjoint operator H with constant c if∫

Γ

(HF )2(γ)µ(dγ) ≥ cE(F, F ), c > 0. (4.3.1)

If this inequality is fulfilled then the interval (0, c) does not belong to the spectrum
of H. Note that the Poincaré inequality is slightly stronger and means that, in
addition to the fact that (0, c) does not belong to the spectrum of H, it also
implies that the kernel of H consists only of constants. Using the results of the
previous subsection we can express the coercivity inequality in terms of the “carré
du champ” and �2 as∫

Γ

�2(F, F )(γ)µ(dγ) ≥ c

∫
Γ

�(F, F )(γ)µ(dγ). (4.3.2)

Inserting in (4.3.2) the representations derived in the previous sections we obtain
the following inequality sufficient for (4.3.1)

(1− c)

∫
Γ

∫
Rd

r(x, γ)(D+
x F )2(γ)dxµ(dγ) (4.3.3)

+

∫
Γ

∫
Rd

∫
Rd

r(x, γ)D+
x r(y, ·)(γ)D+

y F (γ)D+
x F (γ)dydxµ(dγ) ≥ 0.

For fixed γ and introduce following notations

Kγ(x, y) = r(x, γ)(r(y, γ)− r(y, γ ∪ x)), ψγ(x) = D+
x F (γ).

We write formally, for the convenience of representation∫
Γ

∫
Rd

r(x, γ)(D+
x F )2(γ)dxµ(dγ)

=

∫
Γ

∫
Rd

∫
Rd

√
r(x, γ)

√
r(y, γ)(D+

x F )(γ)(D+
y F )(γ)δ(x− y)dxdyµ(dγ).
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4.4 Sufficient condition for Gibbs measures

Hence it is sufficient for the inequality (4.3.1) that the following holds∫
Γ

∫
Rd

∫
Rd

(Kγ(x, y)+(1−c)
√
r(x, γ)

√
r(y, γ)δ(x−y))ψγ(y)ψγ(x)dxdyµ(dγ) ≥ 0.

(4.3.4)
In order to formulate the final theorem we need to introduce the following defi-
nition

Definition 4.3.1. A locally integrable function B : Rd × Rd −→ C is called a
positive definite kernel if for all ψ ∈ C0(Rd) holds∫

Rd

∫
Rd

B(x, y)ψ(x)ψ(y)dxdy ≥ 0. (4.3.5)

Theorem 4.3.2. If for each fixed γ ∈ Γ the kernel

r(x, γ)(r(y, γ)− r(y, γ ∪ x)) + (1− c)
√
r(x, γ)

√
r(y, γ)δ(x− y) (4.3.6)

is positive definite then the coercivity inequality (4.3.1) holds for H with con-
stant c.

4.4 Sufficient condition for the spectral gap for
Gibbs measures

In this section we investigate the consequences we can draw from condition (4.3.6)
in the case when µ is a Gibbs measure for a translation invariant pair potential
φ and activity z. The aim is to derive sufficient conditions in terms of potential
φ. We remind that in this case r(x, γ) = z exp [−E(x, γ)] .

Corollary 4.4.1. Let µ be a Gibbs measure for a translation invariant pair
potential φ and activity z. If for each fixed γ ∈ Γ the kernel

e−E(x,γ)e−E(y,γ)z(1− e−φ(x−y)) + (1− c)e−
1
2
E(x,γ)e−

1
2
E(y,γ)δ(x− y) (4.4.1)

is positive definite then the coercivity inequality (4.3.1) holds for H with con-
stant c.

Applying Theorem 4.3.2 to e−
1
2
E(x,γ)ψγ(x) instead of the function ψγ gives

Corollary 4.4.2. Let µ be a Gibbs measure for a translation invariant pair
potential φ and activity z. If for each fixed γ ∈ Γ the kernel

e−
1
2
E(x,γ)e−

1
2
E(y,γ)z(1− e−φ(x−y)) + (1− c)δ(x− y) (4.4.2)

is positive definite then the coercivity inequality (4.3.1) holds for H with con-
stant c.
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4 Spectral Gap for Glauber dynamics

4.4.1 Spectral gap for a certain class of potentials

For the Poisson point process, i.e. the Gibbs measure for φ = 0, one has spectral
gap c = 1, which follows also immediately from condition (4.4.1). In order to
check the condition (4.4.2) for c = 1 it is sufficient to prove non-negativity of the
expression ∫

Rd

∫
Rd

e−
1
2
E(x,γ)e−

1
2
E(y,γ)(1− e−φ(x−y))ψ(y)ψ(x)dxdy. (4.4.3)

Hence considering e−
1
2
E(x,γ)ψ(x) instead of ψ one is led to the sufficient condition∫

Rd

∫
Rd

(1− e−φ(x−y))ψ(y)ψ(x)dxdy ≥ 0 (4.4.4)

for all ψ ∈ C0(Rd). We remind the definition

Definition 4.4.3. A measurable function u : Rd −→ C is called positive definite
if for all ψ ∈ C0(Rd) ∫

Rd

∫
Rd

u(x− y)ψ(x)ψ(y)dxdy ≥ 0.

So the condition (4.4.4) means that x 7→ 1−e−φ(x) is a positive definite function.

Remark 4.4.4. Note that the condition (4.4.4) does not contain the activity z,
it is just a condition on potential.

When we speak about regular, stable or superstable functions we have in mind
these properties in sense of pair potentials, cf. Section 2.2.2.

Theorem 4.4.5. Let f be a continuous positive definite function such that
f(0) ≤ 1, which is regular. Define

φ := − ln(1− f). (4.4.5)

Then φ fulfills (4.4.4), is superstable and regular. For any tempered Gibbs mea-
sure µ, corresponding to a pair potential φ and for all activities z > 0 the operator
H = −L, where L is the associated generator of the Glauber dynamics, fulfills
the coercivity inequality for c = 1.

Proof. Due to positive definiteness |f(x)| ≤ f(0) ≤ 1. Defining for x ∈ [−1, 1]
the function h(x) := − ln(1 − x) one can write φ = h ◦ f . By assumption on f
there exists an R̃ > 0 and a positive decreasing function ϕ on [0,+∞), which
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4.4 Sufficient condition for Gibbs measures

fulfills (2.2.8) and such that |f(x)| ≤ ϕ(|x|) for all |x| ≥ R̃, x ∈ Rd. Note that for
x ∈ [−1, 1/2] we have |h(x)| ≤ 2|x|. Choose R bigger than R̃ and so large that
ϕ(R) ≤ 1/2. Then for all |x| ≥ R, x ∈ Rd we have |f(x)| ≤ 1/2 and hence

|φ(x)| ≤ 2|f(x)| ≤ 2ϕ(|x|),

which implies that φ is regular.
Next, we show that φ is superstable. One easily sees that

h(x) ≥ x+ (− ln(1− x)− x)11[0,1](x).

Shorthanding g(x) := − ln(1− x)− x one gets φ(x) ≥ f(x) + g(f(x))11[c,1](f(x)),
where 0 < c < f(0). Hence, φ is bigger then the sum of a positive definite function
and a function, which is nonnegative, at 0 strictly bigger then 0, and continuous
at 0. Therefore due to Proposition 1.2 in [Rue70] φ is a superstable potential.

In the rest of the subsection we investigate which properties a potential nec-
essarily has which fulfills condition (4.4.4). First of all we recall the following
definition

Definition 4.4.6. A generalized function (distribution) u ∈ D(Rd) is called
positive definite if for all ϕ ∈ C0(Rd)

〈u, ϕ̃ ∗ ϕ〉 ≥ 0 (4.4.6)

holds, where ∗ denotes the convolution and f̃(x) := f(−x).

Proposition 4.4.7. Let φ be a potential which fulfills condition (4.4.4) and is
stable, regular, and continuous. Then it is of the form (4.4.5) and hence also
superstable. Furthermore, φ is integrable at 0, itself positive definite in the sense
of generalized functions, and

lim
x→0

φ(x)

−2 ln(x)
≤ 1. (4.4.7)

Proof. (4.4.4) implies that the function f := 1− e−φ is positive definite. As φ is
stable it is non-negative at 0 and hence f(x) ≤ 1. Due to the positive definiteness
of f one has |f(x)| ≤ f(0) ≤ 1. The representation (4.4.5) is obtained by inverting
the definition of f . So the function f is continuous and positive definite. To apply
Theorem 4.4.5 we check the regularity of f . Defining g(x) := 1−e−x one can write
f = g ◦ φ. By assumption on φ there exists an R̃ > 0 and a positive decreasing
function ϕ on [0,+∞) which fulfills (2.2.8) and such that |φ(x)| ≤ ϕ(|x|) for all
|x| ≥ R̃, x ∈ Rd. Choose R bigger than R̃ and so large that ϕ(R) ≤ ln 2. Note
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4 Spectral Gap for Glauber dynamics

that for x such that |x| ≤ ln 2 we have |g(x)| ≤ 2|x|. Then for all |x| ≥ R, x ∈ Rd

we have |φ(x)| ≤ ln 2 and hence

|f(x)| ≤ 2|φ(x)| ≤ 2ϕ(|x|),

which implies that f is regular. Applying Theorem 4.4.5 we get that φ is also
superstable.

Denote the limit in (4.4.7) by c. Assume that c > 1, then for an ε > 0 such
that c − ε > 1 there exists an R > 0 such that for x ∈ Rd, |x| < R we have
φ(x) ≥ −(c− ε)2 ln(x). As

0 ≤ 1− f(x)

x2
= e−φ(x)−2 ln(x) ≤ e((c−ε)−1)2 ln(x)

we get that lim
x→0

1−f(x)
x2 = 0. According to cf. [Jac01, Proposition 3.5.21] this yields

that f is constant.
In particular, from (4.4.7) follows that φ is integrable at 0.

Writing again φ = h ◦ f, where h(x) = − ln(1 − x) =
∞∑
n=1

xn

n
with radius

of convergence 1. Approximate φ by the functions φδ(x) := h ◦ ((1 − δ)f(x))
for 0 < δ < 1. Since |(1 − δ)f(x)| < 1 and h has a Taylor series with non-
negative coefficients, for all 0 < δ < 1 the function φδ is positive definite, cf. e.g.
[Jac01, Proposition 3.5.17]. As h is monotone increasing |φδ| ≤ |φ| and the latter
function is integrable. Hence φδ is also positive definite in the sense of generalized
functions. φδ converge pointwisely to φ for δ → 0, and are uniformly bounded by
φ. Therefore by Lebesgue’s dominated convergence φ is also positive definite in
the sense of generalized functions.

4.4.2 Parameter dependence

Motivated by statistical mechanics we introduce two parameters: the inverse
temperature β > 0 and the activity z > 0. One says that µ is a Gibbs measure for
φ, β, z if the corresponding Papangelou intensity is r(x, γ) = ze−βE(x,γ). Instead
of condition (4.4.4) one has to consider the following sufficient condition∫

Rd

∫
Rd

(1− e−βφ(x−y))ψ(y)ψ(x)dxdy ≥ 0 (4.4.8)

for all ψ ∈ C0(Rd). Note that this condition is independent of the activity z. If
(4.4.8) is fulfilled for all ψ ∈ C0(Rd) then we say that φ fulfills condition (4.4.8)
for β. In this case the generator of the Glauber dynamics corresponding to the
measure µ = µ(φ, β, z) has spectral gap at least 1.
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4.4 Sufficient condition for Gibbs measures

Proposition 4.4.8. Let φ be a potential which fulfills condition (4.4.8) for a
β̄ > 0 and is stable, regular, and lower semi-continuous at zero. Then φ fulfills
condition (4.4.8) for all β such that 0 < β ≤ β̄.

Proof. Denote by f = 1 − e−β̄φ the positive definite function given by condi-
tion (4.4.8). Then on the one hand, fβ(x) := 1 − e−βφ(x) is also continuous and
regular. On the other hand, fβ(x) = 1 − (1 − f(x))β/β̄ and therefore can be
written in the following way as a power series expansion

fβ(x) =
∞∑
n=1

(−1)n+1

n!
· β
β̄

(
β

β̄
− 1

)
. . .

(
β

β̄
− n+ 1

)
(f(x))n

with radius of convergence 1. All the coefficients of the series are nonnegative, if
β/β̄ ≤ 1. Proceeding as in Proposition 4.4.7 one proves that fβ is the pointwise
limit of positive definite functions. As fβ is bounded it is itself positive definite
in the sense of functions.

Corollary 4.4.9. Let f : R → [0, 1] be a two times differentiable even function,
which is decreasing and convex on R+. Denote φ(x) = − ln(1− f(x)). Then the
function fβ = 1− e−βφ(x) is also positive definite for all β such that 0 ≤ β ≤ 1.

Proof. Obviously fβ ≥ 0. Using the representation fβ(x) = 1 − (1 − f(x))β we
obtain

d

dx
fβ(x) = β(1− f(x))β−1f ′(x) ≤ 0,

d2

dx2
fβ(x) = −β(β − 1)(1− f(x))β−2(f ′(x))2 + β(1− f(x))β−1f ′′(x) ≥ 0.

By Polya’s theorem fβ is positive definite.

4.4.3 Examples

For concreteness we collect some examples of potentials which fulfill the condition
of Theorem 4.4.5. Especially interesting is that among them there are examples
of potentials, which take also negative values. All these examples are constructed
by choosing a regular positive definite function f and expressing φ(x) = − ln(1−
f(x)).
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4 Spectral Gap for Glauber dynamics

φ(x) f(x) Parameters

− ln(1− e−tx
2
cos(ax)) e−tx

2
cos(ax) t > 0, a ∈ R

− ln(1− e−t|x| cos(ax)) e−t|x| cos(ax) t > 0, a ∈ R

− ln

(
1− cos(ax)

1 + σ2x2

)
1

1 + σ2x2
cos(ax) σ > 0, a ∈ R

− ln
(
1− (1− |x|

a
)11[−a,a](x) cos(bx)

)
(1− |x|

a
)11[−a,a](x) cos(bx) a > 0, b ∈ R

In all examples above one can exchange cos(ax) by
sin(ax)

ax
.

Regularity of f(x) = e−tx
2
cos(ax) follows immediately from |e−tx2

cos(ax)| ≤
e−tx

2
, which is integrable. Analogously one checks the regularity of all the other

functions from the table above.

Figure 4.1: A sample of a potential which takes negative values

In the d-dimensional case we give the following examples:
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4.4 Sufficient condition for Gibbs measures

φ(x) f(x) Parameters

− ln(1− e−t|x|
2
cos(a · x)) e−t|x|

2
cos(a · x) x ∈ Rd, t > 0, a ∈ Rd

− ln

(
1− e−t|x|

2
d∏
j=1

sin(ajxj)

ajxj

)
e−t|x|

2
d∏
j=1

sin(ajxj)

ajxj
x ∈ Rd, t > 0

− ln

(
1−

(
r

|x|

)n/2
· Jn/2(r|x|)

) (
r

|x|

)n/2
· Jn/2(r|x|) r ≥ 0, n > 2d− 1

− ln

(
1−

2n/2tΓ(n+1
2

)
√
π(|x|2 + t2)

n+1
2

)
2n/2tΓ(n+1

2
)

√
π(|x|2 + t2)

n+1
2

t > 0, n > d− 1

where Jn/2 is the Bessel function of the first kind of order n/2.
Regularity of the examples in the first two lines is checked analogously to the

one-dimensional case.

Consider the third example f(x) =

(
r

|x|

)n/2
· Jn/2(r|x|). For x � |ν2 − 1

4
| we

have the following asymptotic expansion (see cf. [Bat53])

Jν(x) =

√
2
πx

[
cos
(
x− νπ

2
− π

4

)(M−1∑
m=0

(−1)m(ν, 2m)(2x)−2m +O(|x|−2M )

)

− sin
(
x− νπ

2
− π

4

)( M∑
m=0

(−1)m(ν, 2m+ 1)(2x)−2m−1 +O(|x|−2M−1)

)]

where (ν,m) is Hankel’s symbol defined by (ν,m) :=
Γ(1/2 + ν +m)

m!Γ(1/2 + ν −m)
.

Then

∣∣∣∣∣
(
r

|x|

)n/2
· Jn/2(r|x|)

∣∣∣∣∣ ≤ ϕ(x), where

ϕ(x) =

√
2

π
· r

n/2

x
n+1

2

[
M−1∑
m=0

(−1)m(n/2, 2m)(2r|x|)−2m +O(|x|−2M)

+
M∑
m=0

(−1)m(n/2, 2m+ 1)(2r|x|)−2m−1 +O(|x|−2M−1)

]
.

The condition (2.2.8) on ϕ is fulfilled if∫ ∞

R

td−1t−
n+1

2 <∞,
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4 Spectral Gap for Glauber dynamics

which is equivalent to n > 2d− 1.
Consider the last example

f(x) =
2n/2tΓ(n+1

2
)

√
π(|x|2 + t2)

n+1
2

.

For large x we have f(x) ∼ x−(n+1), therefore condition (2.2.8) on ϕ is fulfilled if

the integral

∫ ∞

R

td−1t−(n+1) is finite, which is equivalent to n > d− 1.
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5 Spatial Markov Processes in
Mutation-Selection Models

5.1 The model

Recall first some genetical concepts and notions, see e.g. [Bür00]. A gene repre-
sents a (contiguous) region of DNA coding. It may have different forms, called
alleles. Thus an allele is one of the variant forms of a gene that occupies a given
locus (position) on a chromosome, i.e. alleles are DNA sequences that code a
gene. An individual’s genotype for a certain gene is the collection of alleles it
consists of. A change of genetic material is called a mutation, and the affected
allele is called mutant allele. We call the ”null genotype” the one which has wild-
type alleles at every locus and carries none of mutant alleles. So a wild-type allele
is an allele which is considered to be ”normal” for the organism in question, as
opposed to a mutant allele which appears due to mutation. In this chapter we will
use the word ”genotype” in a sense which somewhat differs from the mentioned
above: a genotype represents a set of mutant alleles that an individual may carry.
So in contrast to the usual definition we are interested only in the set of mutant
alleles, but not in the whole information about all alleles.

In this section we describe a model introduced by [SEK05], which describes the
aging of a population. Let X be a Polish space, interpreted as the space of loci
(i.e. positions of possible mutations). Denote the Borel σ−algebra onX by B(X),
and fix a Borel σ-finite measure σ on (X,B(X)) – interpreted as mutation rate.
For simplicity, we assume that at each locus at most one mutation may occur.
A locally finite configuration of points in X (defined as usual) is interpreted as a
genotype. Then γ = ∅ plays the role of the null genotype (wild-type genotype).
The set of all genotypes γ is thus the configuration space Γ := Γ(X). We assume
that genotypes are influenced by a selection cost Φ, which is a continuous
function Φ : Γ −→ R, e.g. Φ(∅) = 0, Φ(γ) > 0, for γ 6= ∅.

The emergence of mutant alleles is described by a stochastic process, the state
of the population of genotypes at each fixed moment of time t is described
by a probability measure µt on Γ. The time development of the population is
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5 Markov Processes in Mutation-Selection Models

modelled by a Kimura-Maruyama type equation

d

dt
µt(F ) = µt

(∫
X

(F (· ∪ x)− F (·))dσ(x)

)
− µt(F · Φ) + µt(F )µt(Φ), (5.1.1)

where µt(F ) :=
∫

Γ
Fdµt, F : Γ −→ R is a bounded cylindric function. The

questions of interest for us are: existence of solution µt, convergence of µt → µ
for t → +∞ and properties of the obtained limiting state µ. A useful choice of
time parameterization is to start the process in the remote past, namely at time
t = −T < 0. Consequently, the initial state is denoted by µ−T . After the state
develops for the time T we arrive (at time t = 0) at a state which we denote by
µ0,T . The limiting state for a long time can be conveniently described by

lim
T→+∞

µ0,T = µ0.

Next, using the Feynman-Kac formula, we give another representation of the
model, an explicit solution of equation (5.1.1). Remind that Γ(X) is a Polish
space. Let L be a Markov generator, in the case studied in this subsection L is
given by

LF (γ) =

∫
X

(F (γ ∪ x)− F (γ))dσ(x)

for bounded cylindric functions F : Γ(X) −→ R. The continuous function Φ :
Γ(X) −→ R will play the role of potential in Feynman-Kac formula. Rewriting
(5.1.1) in terms of these notations we obtain

d

dt
µTt (F ) = µTt (LF )− µTt (F · Φ) + µTt (F )µTt (Φ). (5.1.2)

Denote by (µTt ,−T ≤ t ≤ 0) the measure-valued dynamical system which is the
solution of (5.1.2) for each bounded cylindric function F : Γ(X) −→ R, started
in µT−T = µ.

The solution µTt of (5.1.2) can be explicitly written as

µTt =
1

Zt(Φ)
e(t+T )(L−Φ)∗µ,

where Zt is the normalizing constant. Via Feynman-Kac formula we can represent
µTt as

µTt (f) =
E
[
f(ξTt )e−

R t
−T Φ(ξT

τ )dτ
]

E
[
1 · e−

R t
−T Φ(ξT

τ )dτ
] ,
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5.2 Pure Birth Process

where ξTτ denotes the Markov process corresponding to the generator L, started
in µT−T = µ. Performing the limit T −→ +∞ gives us heuristically

µ0(f) =

∫
Ω(R−→Γ(X))

f(ξ(0))dνΦ(ξ(·)), (5.1.3)

where

dνΦ(ξ(·)) =
1

Z
e−

R 0
−∞ Φ(ξ(τ))dτdν0(ξ(·)), (5.1.4)

Z is the normalizing constant.
The aim of the following sections is to give proper sense to νΦ, defining the

measure first in a bounded volume and for finite time and then going to the limit.
By means of νΦ we are able to derive the large time asymptotic for µT0 . In the
first section we consider the generator L as given above and in the subsequent
section the more general case of the birth-and-death Markov generator.

Finally, note that we can relate (5.1.2) to the equation

d

dt
ρTt (F ) = ρTt ((L− Φ)F ), (5.1.5)

describing the time development of the density of the population. From (5.1.5)

we obtain the equation (5.1.2) through normalization, namely µTt (F ) :=
ρTt (F )

ρTt (1)

Conversely if we have a solution µTt of (5.1.2) then ρTt := c0e
−

R t
0 µs(Φ)dsµTt solves

(5.1.5). Note that if the generator L and the potential Φ are bounded, then
(5.1.5) has a unique solution for a given initial condition. In other cases the
question of uniqueness is a more complicated problem, which beyond the aim of
our considerations.

5.2 Pure Birth Process

We define the pure birth Markov process ξTt , −T ≤ t ≤ 0, on Γ(X), starting from
an empty configuration at time t = −T , via the generator

LBF (γ) =

∫
X

(F (γ ∪ y)− F (γ))σ(dy) (5.2.1)

for bounded cylinder functions F (γ). In our interpretation this means that there
were no mutant alleles at the beginning, in other words we start from the null
genotype. As the time passes, the mutations gradually appear in some points
xi ∈ X at times ti, −T < ti ≤ 0, and then they stay there forever.

We can describe the paths of this process in the following way: the mutations
together with all their history in time can be considered as a collection of bars
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5 Markov Processes in Mutation-Selection Models

located in space-time X×R− and directed along the time axis t, where we denote
by (xi, ti) ∈ X × [−T, 0] the starting points of the bars. These bars extend till
the time t = 0, i.e. they end at the points (xi, 0) ∈ X × R−.

For each T > 0 define

ΓT := Γ(X × [−T, 0]) = {η = {(xi, ti)}|xi ∈ X, ti ∈ [−T, 0]}.

Then the space of starting points (xi, ti) of our process, described above, can be
identified with the so-called space of marked configurations ΩT ⊂ ΓT

ΩT = {η = {(xi, ti)} ∈ ΓT |{xi} ∈ Γ(X)}.

Denote the elements of ΩT by η = (γ, t(γ)) = {(x, tx)}x∈γ, t(γ) = {tx|x ∈ γ}. For
more details about marked configuration spaces see cf. [GZ93, Kin93, MM91,
Kun99, KKDS98].

Figure 5.1: A sample path of the pure birth process ξTt on ΩT , where ”◦” denotes
the points of the configuration ξTt (η).

To any η ∈ ΩT corresponds a path (ξTt (η), t ∈ [−T, 0]) of the process. Denote
by Ω(R− → Γ) the set of all such paths, i.e. the image of ΩT under ξTt . Note
that Ω(R− → Γ) ⊂ D(R−,Γ), where D(R−,Γ) is the Skorokhod space of right-
continuous functions f : R− → Γ with left limits. The space Ω(R− → Γ) is
isomorphic to ΩT , hence a distribution on ΩT can be regarded as a distribution
on Ω(R− → Γ). From now on when we speak of paths and path measures we have
in mind ΩT and measures on it.

We assume that the path measure of the process ξTt is the following: the starting
points of the bars – points (x, tx) – are distributed according to a marked Poisson
measure ν̃0

T on ΓT with intensity measure σ(dx)dt. It is well known that the
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5.2 Pure Birth Process

marked Poisson measure ν̃0
T can be characterized by its Laplace transform∫

ΓT

e〈f,η〉dν̃0
T (η) = exp

{∫
X

∫ 0

−T
(ef(x,t) − 1)dtdσ(x)

}
, f ∈ C0(X × [−T, 0]),

where 〈f, η〉 :=
∑

(x,tx)∈η
f(x, tx). The measure ν̃0

T is concentrated on the space of

marked configurations, i.e. ν̃0
T (ΩT ) = 1.

A process Xt indexed by time −T ≤ t ≤ 0, Xt : ΩT −→ Γ(X) fulfills the
Markov property if for −T ≤ r < τ ≤ 0

E(e〈ϕ,Xτ 〉e〈ψ,Xr〉) = E(EXr [e
〈ϕ,Xτ−r−T 〉]e〈ψ,Xr〉). (5.2.2)

According to a monotone class argument and the integrability of exponentials it
is sufficient to consider only exponential functions. In the following ∗ denotes
the convolution of measures.

Lemma 5.2.1. The process ((ξTt )−T≤t≤0,ΩT , Pγ0) on (ΩT , ν̃
0
T ), where Pγ0 = ν̃0

T∗ δγ0
and

ξTt : ΩT −→ Γ(X),

ΩT 3 η = (γ, t(γ)) 7→ ξTt (η) =

∫ t

−T
η(ds) :=

∑
(x,tx)∈η: tx≤t

δx = {x|x ∈ γ, tx ≤ t}.

is a Markov process with generator LB giben by (5.2.1).

Proof. To check that ξTt is a Markov process generated by LB first we need to
show for ϕ ∈ C0(X)

d

dt
Eγ0(e

〈ϕ, ξT
t 〉) = Eγ0 [(LBe

〈ϕ,·〉)(ξTt )]. (5.2.3)

(by monotone class arguments it is sufficient to consider exponential functions).
Due to the definition of Pγ0

Eγ0(e
〈ϕ, ξT

t 〉) = E(e〈ϕ, ξ
T
t 〉)e〈ϕ, γ0〉. (5.2.4)

Here Eγ0 denotes the expectation w.r.t. Pγ0 , and E the expectation with respect

to ν̃0
T . Calculating the expectation of e〈ϕ, ξ

T
t 〉 we get

E(e〈ϕ, ξ
T
t 〉) =

∫
e〈ϕ, ξ

T
t (η)〉dν̃0

T (η) = exp

{∫ t

−T

∫
X

(eϕ(x) − 1)dσ(x)ds

}
= exp

{
(T + t)

∫
X

(eϕ(x) − 1)dσ(x)

}
. (5.2.5)
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Then its derivative is

d

dt
Eγ0(e

〈ϕ, ξT
t 〉) = Eγ0(e

〈ϕ, ξT
t 〉)

∫
X

(eϕ(x) − 1)dσ(x).

The right-hand side of the equation (5.2.3) is given by

LBe
〈ϕ,·〉(ξTt (η)) =

∫
X

(eϕ(x) − 1)e〈ϕ, ξ
T
t (η)〉dσ(x) = e〈ϕ, ξ

T
t (η)〉

∫
X

(eϕ(x) − 1)dσ(x).

Eγ0(LBe
〈ϕ,·〉(ξTt )) = Eγ0(e

〈ϕ, ξT
t 〉)

∫
X

(eϕ(x) − 1)dσ(x).

Therefore ξTt corresponds to LB.
Second, we have to check the Markov property (5.2.2) for the process ξTt , i.e.

for −T ≤ r < τ ≤ 0

Eγ0(e
〈ϕ, ξT

τ 〉e〈ψ, ξ
T
r 〉) = Eγ0(EξT

r
[e〈ϕ,ξ

T
τ−r−T 〉]e〈ψ, ξ

T
r 〉). (5.2.6)

Hence for the right-hand side we obtain

EξT
r
[e〈ϕ,ξ

T
τ−r−T 〉] = E[e〈ϕ,ξ

T
τ−r−T 〉]e〈ϕ,ξ

T
r 〉.

Using (5.2.5) we get the following expression for the right-hand side:

Eγ0(EξT
r
[e〈ϕ,ξ

T
τ−r−T 〉]e〈ψ, ξ

T
r 〉) = E[e〈ϕ,ξ

T
τ−r−T 〉]Eγ0 [e〈ϕ+ψ,ξT

r 〉]

= exp
{

(τ − r)
∫
X

(eϕ(x) − 1)dσ(x)
}

exp
{

(r + T )
∫
X

(eϕ(x)+ψ(x) − 1)dσ(x)
}
e〈ϕ+ψ,γ0〉.

Using the definition of Poisson measure ν̃0
T we calculate the left-hand side of

(5.2.6)

E(e〈ϕ, ξ
T
τ 〉e〈ψ, ξ

T
r 〉)

= e〈ϕ+ψ,γ0〉
∫

exp

 ∑
(x,tx)∈η: tx≤τ

ϕ(x)

 · exp

 ∑
(x,tx)∈η: tx≤r

ψ(x)

 dν̃0
T (η)

= e〈ϕ+ψ,γ0〉
∫

exp
{
〈ϕ+ ψ11[−T,r], ξ

T
τ 〉
}
dν̃0

T (η)

= e〈ϕ+ψ,γ0〉 exp
{∫

X

∫ τ

−T
(eϕ(x)+ψ(x)11[−T,r](t) − 1)dtdσ(x)

}
= e〈ϕ+ψ,γ0〉 exp

{∫
X

∫ r

−T
(eϕ(x)+ψ(x) − 1)dtdσ(x) +

∫
X

∫ τ

r
(eϕ(x) − 1)dtdσ(x)

}
= e〈ϕ+ψ,γ0〉 exp

{
(r + T )

∫
X

(eϕ(x)+ψ(x) − 1)dσ(x)
}

exp
{

(τ − r)
∫
X

(eϕ(x) − 1)dσ(x)
}
.

Thus condition (5.2.6) is satisfied, what implies the lemma.
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5.2 Pure Birth Process

Notational convention: we prefer for readability reasons to consider in follow-
ing positive times. Nevertheless, we would like to consider 0 as the final time.
Therefore, we reflect the time w.r.t. to the origin. So we consider our pure birth
process on the space of marked configurations Γ̂(X,R+), which is defined by

Γ̂(X,R+) = {γ̂ = (γ, s(γ))| γ ∈ Γ(X), s(γ) = {sx|x ∈ γ}, sx ∈ R+}.

Analogously, we define the spaces Γ̂(Λ,R+) and Γ̂(Λ, [0, T ]). Denote the marked
Poisson measure on Γ̂(X, [0, T ]) by ν0

T . Its Laplace transform is given by∫
Γ̂(X,[0,T ])

e〈f,γ̂〉dν0
T (γ̂) = exp

{∫
X

∫ T

0

(ef(x,t) − 1)dtdσ(x)

}
, f ∈ C0(X × [0, T ]).

Denote our process on (Γ̂(X, [0, T ]), ν0
T ) by ξτ (γ̂). Lemma 5.2.1 yields that the

birth process ξτ (γ̂), 0 ≤ τ ≤ T (time is considered as going backwards, i.e. the
process starts at T and ends at 0) on (Γ̂(X, [0, T ]), ν0

T ) is realized by

ξτ : Γ̂(X, [0, T ]) → Γ(X), ξτ (γ̂) = {x ∈ γ| τ ≤ sx(γ)} =

∫ T

τ

γ̂(·, ds). (5.2.7)

Here γ ∈ Γ̂(X, [0, T ]), γ = γ̂(dx, ds) describes a collection of birth places

of mutations and corresponding birth times, whereas ξτ (γ̂)(dx) =
∫ T
τ
γ̂(dx, ds),

0 ≤ τ ≤ T is a path of the process starting in the empty configuration at time T
and developing backwards in time.

Figure 5.2: A sample path of the pure birth process ξτ on Γ̂(X, [0, T ]), where ”◦”
denotes the points of the configuration ξτ (γ̂).

Denote the restriction of ν0
T to Γ̂(Λ, [0, T ]) by ν0

Λ,T . The restriction of the process

ξτ (γ̂) to (Γ̂(Λ, [0, T ]), ν0
Λ,T ) describes the same kind of system but restricted to

the volume Λ ⊂ X.
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5 Markov Processes in Mutation-Selection Models

Furthermore it is important to take into account the influence of a selection
cost function Φ : Γ −→ R+. We split the cost function in two parts:

Φ(γ) = Φne(γ) + Φe(γ).

Φne(γ) is the nonepistatic part, which describes the life costs of a mutation, is
given by

Φne(γ) := 〈h, γ〉 =
∑
x∈γ

h(x), h(x) ≥ c > 0.

Φe(γ) is the epistatic part, which describes the coexistence costs of mutations.
Here we consider only pairwise suppression of mutations defined by

Φe(γ) :=
∑

{x,y}⊂γ

φ(x; y),

conditions on φ are specified later. More complicated epistatic cost functions
could be treated with the same technique.

As the configuration γ may contain, in general, an infinite number of points,
the above cost functions are well-defined only in a bounded region Λ ⊂ X.

The strategy is to construct the path measure in two steps: first we consider
only the influence of the nonepistatic part of the cost function. In this case the
model is still explicilty solvable. Then we take into consideration the influence of
the epistatic part, which is much more involved.

5.2.1 Influence of the nonepistatic part of the potential

First we construct the path space measure νh on the space Γ̂(X,R+), obtained
under the influence of Φne. The restriction of νh to Γ̂(Λ, [0, T ]) is denoted by νhΛ,T ,
and defined for bounded Λ ⊂ X as

dνhΛ,T (γ̂Λ) =
1

ZΛ,T

exp

{
−
∫ T

0

ΦT,Λ
ne (ξτ (γ̂Λ))dτ

}
dν0

Λ,T (γ̂Λ), (5.2.8)

where ZΛ,T is the normalizing constant

ZΛ,T =

∫
Γ̂(Λ,[0,T ])

exp

{
−
∫ T

0

ΦT,Λ
ne (ξτ (γ̂Λ))dτ

}
dν0

Λ,T (γ̂Λ). (5.2.9)

Then we construct the measure νh as the limit of the measures νhΛ,T , which are
defined in a bounded volume Λ and for finite time T , for T → +∞,Λ ↑ X. The
measure νhΛ,T is also called the Gibbs perturbation of marked Poisson measure ν0

T .
First we will show that νhΛ,T still remains a Poisson measure. For this we

calculate its intensity measure by computing the Laplace transform of νhΛ,T .
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5.2 Pure Birth Process

Lemma 5.2.2. Let F (γ̂) = e〈f,γ̂〉, f ∈ C0(X × [−T, 0]) where

〈f, γ̂〉 :=
∑

(x,tx)∈γ̂

f(x, tx) =

T∫
0

∫
X

f(x, s)γ̂(dx, ds), γ̂ ∈ Γ̂(X,R+).

Then we have∫
Γ̂(Λ,[0,T ])

F (γ̂Λ) exp

{
−
∫ T

0

ΦT,Λ
ne (ξτ (γ̂Λ))dτ

}
dν0

Λ,T (γ̂Λ)

= exp

{∫
Λ

∫ T

0

(exp {f(x, s)− sh(x)} − 1)dsdσ(x)

}
.

Proof. By definition of F , Φne and (5.2.7) we have that

ΦT,Λ
ne (ξτ (γ̂Λ)) =

∫ T

τ

∫
Λ

h(x)γ̂Λ(dx, ds)

and that∫
F (γ̂Λ) exp

{
−
∫ T

0

ΦT,Λ
ne (ξτ (γ̂Λ))dτ

}
dν0

Λ,T (γ̂Λ) (5.2.10)

=

∫
exp

{∫ T

0

∫
Λ

f(x, s)γ̂Λ(dx, ds)−
∫ T

0

∫ T

τ

∫
Λ

h(x)γ̂Λ(dx, ds)dτ

}
dν0

Λ,T (γ̂Λ).

Using ∫ T

0

∫ T

τ

γ̂Λ(·, ds)dτ =

∫ T

0

∫ T

0

11[τ,T ](s)γ̂Λ(·, ds)dτ

=

∫ T

0

γ̂Λ(·, ds)
∫ T

0

11[0,s](τ)dτ = s

∫ T

0

γ̂Λ(·, ds)

we get the required result using the Laplace transform of the marked Poisson
measure dν0

Λ,T .

Then the normalizing constant ZΛ,T is

ZΛ,T = exp

{∫
Λ

∫ T

0

(exp {−sh(x)} − 1)dsdσ(x)

}
. (5.2.11)

Calculating the integral of F = e〈f,γ̂〉 w.r.t the measure νhΛ,T we obtain

∫
F (γ̂Λ)dνhΛ,T (γ̂Λ) =

exp
{∫

Λ

∫ T
0

(exp {f(x, s)− sh(x)} − 1)dsdσ(x)
}

exp
{∫

Λ

∫ T
0

(exp {−sh(x)} − 1)dsdσ(x)
}

= exp

{∫
Λ

∫ T

0

(ef(x,s) − 1)e−sh(x)dsdσ(x)

}
.

83



5 Markov Processes in Mutation-Selection Models

Thus νhΛ,T is a marked Poisson measure on Γ̂(Λ, [0, T ]) with intensity measure

e−sh(x)dσ(x)ds.

Definition 5.2.3. We say that a sequence of measures (ρΛ)Λ converges “weakly”
to ρ for Λ ↑ X on Γ̂(X, [0, T ]) if∫

F (γ̂)dρΛ(γ̂) −−−→
Λ↗X

∫
F (γ̂)dρ(γ̂).

for all cylinder functions F ∈ FL0(Γ̂(X, [0, T ])). Recall that the set of cylinder
functions FL0(Γ̂(X, [0, T ])) is defined as the set of all measurable bounded F
such that there exists a Λ ∈ Bc(X) with

F (γ̂) = F (γ̂ �Λ×[0,T ]).

We are interested in the “weak” limit of νhΛ,T for Λ ↑ X, T → +∞. In the case
considered here the limit does not depend on the order in which the limits are
taken. As result we get the following statement:

Theorem 5.2.4. 1) There exists the “weak” limit

lim
Λ↑X

νhΛ,T = νhT ,

where νhT is a marked Poisson measure on Γ̂(X, [0, T ]) with intensity measure
e−sh(x)σ(dx)ds.

2) There exists the “weak” limit

lim
T→+∞

νhT = νh,

where νh is a marked Poisson measure on Γ̂(X,R+) with the same intensity
measure e−sh(x)σ(dx)ds.

3) There exists the “weak” limit

lim
T→+∞

νhΛ,T = νhΛ,

where νhΛ is a marked Poisson measure on Γ̂(Λ,R+) with intensity measure
e−sh(x)σ(dx)ds.

4) There exists the “weak” limit

lim
Λ↑X

νhΛ = νh,

where νh is a marked Poisson measure on Γ̂(X,R+) with intensity measure
e−sh(x)σ(dx)ds. The measure νh can alternatively also be described as a marked
point field γ̂ = (γ, sγ), where γ is distributed according to πσ/h – Poisson mea-
sure on Γ(X) – with marks sx ∈ R+ distributed independently with probability
p(ds) = h(x)e−h(x)sds.
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5.2 Pure Birth Process

The main object of our interest is the final distribution at the time infinity of
mutations µh, i.e. the distribution of end points of bars. Recall that we have
chosen the time range so that the final time is 0. We obtain µh, similar to
the construction above, as the limit of final distributions µ0

Λ,T given in bounded
volume and for finite time. The measure µ0

Λ,T on Γ(X) is defined for F (η) =

e〈f,η〉, η ∈ Γ(X) by∫
Γ(X)

F (γΛ)dµ0
Λ,T (γΛ) :=

∫
Γ̂(Λ,[0,T ])

F (ξ0(γ̂Λ))dνhΛ,T (γ̂Λ) (5.2.12)

=

∫
F (ξ0(γ̂Λ)) exp{−

∫ T
0

ΦT,Λ
ne (ξt(γ̂Λ))dt}dν0

Λ,T (γ̂Λ)∫
exp{−

∫ T
0

ΦT,Λ
ne (ξt(γ̂Λ))dt}dν0

Λ,T (γ̂Λ)
.

By definition of µhΛ,T and νhΛ,T we have∫
Γ̂(Λ,[0,T ])

F (γ̂)dµhΛ,T (γ̂) =

∫
Γ̂(Λ,[0,T ])

eT (LΛ−ΦT,Λ
ne )F (γ̂)dµ0

Λ,T (γ̂)∫
Γ̂(Λ,[0,T ])

eT (LΛ−ΦT,Λ
ne )1dµ0

Λ,T (γ̂)
, (5.2.13)

thus µhΛ,T is a solution of (5.1.1) in the bounded volume Λ for finite time T , where
Φ(γ) := 〈h, γ〉.

Note that for f ∈ C0(X), γ̂ ∈ Γ̂(X,R+) we have by (5.2.7) that

〈f, ξ0(γ̂)〉 =

∫
X

T∫
0

f(x)γ̂(dx, ds) = 〈g, γ̂〉,

where g(x, s) = f(x)11[0,T ](s). Therefore the following lemma is just a corollary of
Lemma 5.2.2.

Lemma 5.2.5. Let F (η) = e〈f,η〉, where η ∈ Γ(X), f ∈ C0(X). Then∫
F (ξ0(γ̂Λ)) exp

{
−
∫ T

0

ΦT,Λ
ne (ξt(γ̂Λ))dt

}
dν0

Λ,T (γ̂Λ)

= exp

{∫
Λ

∫ T

0

(exp {f(x)− sh(x)} − 1)dsdσ(x)

}
.

Thus the integral in (5.2.12) for F (η) = e〈f,η〉 is given by

∫
F (γΛ)dµ0

Λ,T (γΛ) =
exp

{∫
Λ

∫ T
0

(exp {f(x)− sh(x)} − 1)dsdσ(x)
}

exp
{∫

Λ

∫ T
0

(exp {−sh(x)} − 1)dsdσ(x)
}

= exp

{∫
Λ

(ef(x) − 1)
(1− exp {−Th(x)})

h(x)
dσ(x)

}
.
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5 Markov Processes in Mutation-Selection Models

Again, as before, we are interested in the “weak” limit of µ0
Λ,T for Λ ↑ X, T →

+∞. Note that under the “weak” limit of a sequence of measures (ρΛ)Λ on Γ(X)
for Λ ↑ X we understand that for all bounded cylinder functions F ∈ FL0(Γ(X))∫

F (γ̂)dµ0
Λ,T (γ̂) −−−→

Λ↗X

∫
F (γ̂)dµhT (γ̂).

The limit does also not depend on the order in which the limits are taken. As
result we get as corollary of Theorem 5.2.4. the following statement:

Theorem 5.2.6. (cf. [SEK05])
1) There exists the “weak” limit

lim
Λ↑X

µ0
Λ,T = µhT ,

where µhT is a Poisson measure on Γ(X) with intensity measure

(1− exp {−Th(x)})
h(x)

dσ(x).

2) According to Lebesgues dominated convergence theorem there exists the
“weak” limit

lim
T→+∞

µhT = µh,

where µh is a Poisson measure on Γ(X) with intensity measure 1
h(x)

dσ(x).

3) There exists the “weak” limit

lim
T→+∞

µ0
Λ,T = µhΛ,

where µhΛ is a Poisson measure on Γ(Λ) with intensity measure 1
h(x)

dσ(x).

4) There exists the “weak” limit

lim
Λ↑X

µhΛ = µh,

where µh is a Poisson measure on Γ(X) with intensity measure 1
h(x)

dσ(x).

5.2.2 Influence of the epistatic part of the potential

In this subsection we include the influence of the epistatic part of the potential,
namely Φe(γ). We do so by a Gibbs perturbation of the measure νh from Theorem
5.2.4 through Φe, i.e.

dνβ,φ(γ̂) =
1

Zβ
exp

{
−β
∫ +∞

0

Φe(ξτ (γ̂))dτ

}
dνh(γ̂), β > 0.
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5.2 Pure Birth Process

Again such a construction is well-defined only for a bounded region Λ ⊂ X and
we consider first the restriction of measures to the space Γ̂(Λ,R+) :

dνβ,φΛ (γ̂Λ) =
1

Zβ,Λ
exp

{
−β
∫ +∞

0

ΦΛ
e (ξτ (γ̂Λ))dτ

}
dνhΛ(γ̂Λ).

We will define the measure νβ,φ as the weak limit of νβ,φΛ . The main technique is
cluster expansion. Note that∫ +∞

0

Φe(ξτ (γ̂))dτ =
∑

{x,y}⊆γ

φ(x; y) min(sx, sy), γ̂ = (γ, s(γ)).

To check the convergence of the cluster expansion we have to make some assump-
tions on φ and ψ, where

ψ(x̂, ŷ) := φ(x; y) min(sx, sy), x̂ = (x, sx), ŷ = (y, sy).

(S) Stability of φ: ∃B ≥ 0 such that ∀γ ∈ Γ0(X)∑
{x,y}⊆γ

φ(x; y) ≥ −B|γ|. (5.2.14)

(Iψ) Integrability of ψ

C(β, h) := esssup
y∈X, t∈R+

∫
X

∫ +∞

0

|e−βψ((x,s),(y,t)) − 1|e2βBs−hsdsσ(dx) <∞. (5.2.15)

Let us state the following consequence of stability assumption before we start.

Lemma 5.2.7. Let φ fulfill (S). Then ∀γ̂ = (γ, s(γ)) ∈ Γ̂0(X,R+) there exists
x0 ∈ γ such that ∑

x∈γ\{x0}

φ(x;x0) min(sx, sx0) ≥ −2Bsx0 . (5.2.16)

5.2.3 Cluster expansion

By the definition of dνβ,φΛ

dνβ,φΛ (γ̂Λ) =
1

Zβ,Λ
exp

−β ∑
{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)

 dνhΛ(γ̂Λ). (5.2.17)
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Denote by σ̂(dx, ds) = e−sh(x)σ(dx)ds. Theorem 5.2.4 says that νhΛ is the Poisson
measure on Γ̂(Λ,R+) with intensity σ̂(dx, ds). By the definition of Poisson and
the Lebesgue-Poisson measure

dνhΛ = exp{−σ̂(Λ× [0,+∞))}dλσ̂.

Then (5.2.17) can be written as

dµβ,φΛ (γ̂Λ) =
1

Ẑβ,Λ
exp

−β ∑
{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)

 dλσ̂(γΛ),

where Ẑβ,Λ = Zβ,Λ · exp{σ̂(Λ× [0,+∞))}.
Cluster expansion is a tool which provides us with an effective perturbation

theory of the Gibbs factor e−βE(γ) for small parameters, see e.g. [MM91] and
references therein. We follow here the presentation given in [Kun99, KKDS98].
There the cluster expansion was generalized to a general metric space, i.e. no
translation invariant structure is present. In our case the factor which we are
going to expand is

pΛ,β(γ̂Λ) := exp

−β ∑
{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)

 . (5.2.18)

From [Kun99, KKDS98] we know that the cluster decomposition of (5.2.18) is
the following:

pΛ,β(γ̂Λ) =
∑

(γ̂1,γ̂2,...,γ̂m)

(γ̂Λ) k(γ̂1)k(γ̂2) . . . k(γ̂m),

pΛ,β(∅) = 1. Here
∑

(γ̂1,γ̂2,...,γ̂m)

(γ̂Λ) means the summation over all partitions of the

configuration γ̂Λ into non-empty subconfigurations γ̂i ⊆ γ̂Λ, i.e. over all non-
ordered sets {γ̂1, γ̂2, . . . , γ̂m}, m = 1, 2, . . . , |γ̂Λ| of subconfigurations γi ⊆ γΛ of
γ̂Λ which have mutually disjoint supports such that ∪mi=1γi = γΛ. k(γ̂) is defined
for a finite non-empty configuration γ̂ by

k(γ̂) =
∑

G∈G(γ̂)

∏
{x,y}∈G

(e−βφ(x;y)min{sx,sy} − 1),

k(γ̂) = 1 if |γ̂| = 1. By G(γ̂) we denote the set of all connected graphs with the
set of vertices γ, and the product

∏
{x,y}∈G

is taken over all edges of the graph G.

In order to estimate k we have to introduce a function k̄, which is related to k by
the formula

k̄({x̂}, γ̂ \ {x̂}) := k(γ̂). (5.2.19)
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The main idea of cluster expansion is to find some function Q dominating k̄.
This function Q is defined as the solution of the following iterative equation

Q(γ̂, ζ̂) = e2βBsx0(γ̂)

∑
η⊂ζ

eλ(e
−βψ(x0(γ̂),·) − 1, η̂)Q(η̂ ∪ γ̂ \ {x0(γ̂)}, ζ̂ \ η̂),

where x0(γ̂) is given by condition (5.2.16). Define

Q̃(γ̂, ζ̂) :=
∏
y∈γ∪ζ

e−2βBsyQ(γ̂, ζ̂). (5.2.20)

Then Q̃ fulfills an equation as (3.107) from [Kun99] for B = 0. The later
equation has a unique solution, cf. [Kun99, Proposition 3.3.10], given by

Q̃(γ̂, ζ̂) :=
∑

T∈T (γ̂∪ζ̂)

∏
{y,y′}∈T

|e−βφ(y,y′)min(sy ,sy′ ) − 1|.

Here T (γ̂) denotes the set of all trees with set of vertices γ; recall that a tree is
a connected graph without loops. Expressing Q via (5.2.20) we get

Q(γ̂, ζ̂) =
∏
y∈γ∪ζ

exp{2βBsy}
∑

T∈T (γ̂∪ζ̂)

∏
{y,y′}∈T

|e−βφ(y,y′)min(sy ,sy′ ) − 1|. (5.2.21)

Recall that Q gives an upper bound for k̄, thus we have

|k̄(x̂, η̂)| ≤ Q(x̂, η̂). (5.2.22)

To prove our main statement – the convergence of measures νβ,φΛ – we need
first to derive an upper bound on a certain integral of Q, which is a consequence
of the following analog of a standard estimate, c.f. e.g. [Kun99, Lemma 3.3.12].

Lemma 5.2.8. Let Y be in B(X), and n ≥ 1 fixed. Then for σ̂-a.a. x̂ ∈ X ×R+

we have∫
(Y×R+)n

Q(x̂, (ŷ)n1 )σ̂(dŷ)n1 (5.2.23)

≤ e2βBsxC(β, h)n−1(n+ 1)n−1

∫
Y×R+

|e−βφ(x,y)min{sx,sy} − 1|e2βBsy σ̂(dŷ),

where (ŷ)n1 is an abbreviation for (ŷ1, . . . , ŷn), and C(β, h) is given by (5.2.15).
Here σ̂(ŷ) = σ̂(dy, dsy) for ŷ = (y, sy).
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Proof. In the following we denote ŷn+1 := x̂, T ([n]) := T ((ŷ)n1 ). The equality
(5.2.21) implies that (5.2.23) is equal to

e2βBsx
∑

T∈T ([n+1])

∫
(Y×R+)n

n∏
k=1

e2βBsyk

∏
(i,j)∈T

|e−βφ(yi,yj)min(syi ,syj ) − 1|σ̂(dŷ)n1 . (5.2.24)

Now we estimate by induction in n the term∫
(Y×R+)n

n∏
k=1

e2βBsyk

∏
(i,j)∈T

|e−βφ(yi,yj)min(syi ,syj ) − 1|σ̂(dŷ)n1 . (5.2.25)

For n = 1 the only tree T is {{x̂}, {ŷ1}} and (5.2.25) is reduced to∫
Y×R+

e2βBsy1 |e−βφ(x,y1)min(sx,sy1 ) − 1|σ̂(dŷ1).

Let us assume that for n = N − 1 we have for all trees T ∈ T ([n+ 1])∫
(Y×R+)n

n∏
k=1

e2βBsyk

∏
(i,j)∈T

|e−βφ(yi,yj)min(syi ,syj ) − 1|σ̂(dŷ)n1

≤ C(β, h)n−1

∫
Y×R+

|e−βφ(x,y)min{sx,sy} − 1|e2βBsy σ̂(dy, dsy).

For the case n = N proceed as follows: fix a tree T ∈ T ([n + 1]) and choose
ŷn+1 as a root point of T. Then there exists a final pair {j1, j2} ∈ T where ŷj1 is
the final vertex and yj1 6= ŷn+1. This implies the following estimate∫

(Y×R+)n

n∏
k=1

e2βBsyk

∏
(i,j)∈T

|e−βφ(yi,yj)min(syi ,syj ) − 1|σ̂(dŷ)n1

=

∫
(Y×R+)n−1

n∏
k=1
k 6=j1

e2βBsyk

∏
(i,j)∈T\{j1,j2}

|e−βφ(yi,yj)min(syi ,syj ) − 1|

×
∫

Y×R+

e
2βBsyj1 |e−βφ(yj1

,yj2
)min(syj1

,syj2
) − 1|σ̂(dŷj1)

n∏
l=1
l6=j1

σ̂(dŷl)

≤ C(β, h)

∫
(Y×R+)n−1

n∏
k=1
k 6=j1

e2βBsyk

∏
(i,j)∈T\{j1,j2}

|e−βφ(yi,yj)min(syi ,syj ) − 1|
n∏

l=1
l6=j1

σ̂(dŷl)

≤ C(β, h)n−1

∫
Y×R+

e2βBsyn+1 |e−βφ(yjn+1
,y)min(syn+1 ,sy) − 1|σ̂(dŷ),
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where in the last inequality we used the induction step. Therefore (5.2.24) can
be bounded by

e2βBsxC(β, h)n−1

∫
Y×R+

e2βBsx|e−βφ(x,y)min(sx,sy) − 1|σ̂(dŷ)
∑

T∈T ([n+1])

1.

Using the fact that |T ([n + 1])| = (n + 1)n−1 we obtain the statement of the
lemma.

Now we prove the analog of [Kun99, Proposition 3.3.13].

Theorem 5.2.9. Let Λ ∈ Bc(Γ̂(X,R+)) be given. Then for any parameters β
and h such that 2βB − h < 0 and

C(β, h) <
1

2e
, (5.2.26)

where C(β, h) is given by the integrability condition (5.2.15), we have∫
Γ̂(Λ,R+)\{∅}

∫
Γ̂0(X,R+)

|k(γ̂ ∪ η̂)|λσ̂(dγ̂)λσ̂(dη̂) <∞. (5.2.27)

Proof. Using the definition of λσ̂ and the relation between k and k̄ given by
(5.2.19) we may write (5.2.27) as

∞∑
n=1

∞∑
m=0

1

n!m!

∫
(Λ×R+)n

∫
(X×R+)m

|k̄({x̂n}, {x̂}n−1
1 ∪ {ŷ}m1 )|σ̂(dx̂)n1 σ̂(dŷ)m1 .

According to (5.2.22) and Lemma 5.2.8 we can bound the above term by

∞∑
n=1

∞∑
m=0

1

n!m!
C(β, h)n+m−2(n+m)n+m−2

×
∫

Λ×R+

e2βBsx

∫
X×R+

e2βBsy |e−βφ(x,y)min(sx,sy) − 1|σ̂(dŷ)σ̂(dx̂).

The integral above can be bounded by

C(β, h)

∫
Λ

+∞∫
0

e2βBs−hsdsσ(dx).
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This expression is finite for 2βB − h < 0, and in this case equal to
C(β, h)σ(Λ)

h− 2βB
.

Using this and the fact that (n + m)n+m−2 ≤ en+m(n+m)! we can estimate
(5.2.27) by

σ(Λ)

C(β, h)(h− 2βB)

∞∑
n=1

∞∑
m=0

(n+m)!

n!m!
(eC(β, h))n+m

=
σ(Λ)

C(β, h)(h− 2βB)

∞∑
l=0

(
l∑

m=1

l!

m!(l −m)!

)
(eC(β, h))n+m

≤ σ(Λ)

C(β, h)(h− 2βB)

∞∑
l=0

(2eC(β, h))n+m.

This yields the result of the lemma.

From this theorem follows our main result, analogously of [Kun99, Theorem
3.3.23].

Theorem 5.2.10. Let conditions (S), (Iψ) be fulfilled, 2βB − h < 0, and

C(β, h) <
1

2e
.

Then the “weak” limit νβ,φΛ → νβ,φ, Λ ↑ X exists.

We intend to find some sufficient conditions on φ which implies the conditions
of Theorem 5.2.10. First, let us derive another expression for C(β, h). We start
with the part of which the esssup is taken. Denote for short by k := 2βB − h,
k < 0 and by {φ > 0} := {x ∈ X : φ(x, y) > 0} for a fixed y. Then∫
X

∫ +∞

0
|e−βφ(x,y)min{s,t} − 1|e2βBs−hsdsσ(dx)

=
∫

{φ>0}

∫ t

0
eks(1− e−βφ(x,y)s)dsσ(dx) +

∫
{φ>0}

∫ ∞

t
eks(1− e−βφ(x,y)t)dsσ(dx)

+
∫

{φ<0}

∫ t

0
eks(e−βφ(x,y)s − 1)dsσ(dx) +

∫
{φ<0}

∫ ∞

t
eks(e−βφ(x,y)t − 1)dsσ(dx)

=
∫

{φ>0}

βφ(x, y)
k(k − βφ)

(1− e(k−βφ(x,y))t)σ(dx) +
∫

{φ<0}

−βφ(x, y)
k(k − βφ)

(1− e(k−βφ(x,y))t)σ(dx).

Thus we obtain

C(β, h) = esssup
y∈X, t∈R+

∫
X

β|φ(x, y)|(1− exp{t[2βB − h(x)− βφ(x, y)]})
(2βB − h(x))(2βB − h(x)− βφ(x, y))

σ(dx).
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Having in mind the applications in genetics, it is reasonable to assume that

φ(x, y) ≥ 0, ∀x, y ∈ X.

In this case the stability condition (5.2.14) holds for B = 0 and

C(β, h) = esssup
y∈X, t∈R+

∫
X

βφ(x, y)

h(h+ βφ(x, y))
(1− e−(h+βφ(x,y))t)σ(dx).

From now on we assume for simplicity that h(x) ≡ const. The integrand g(t, x) is
nonnegative and monotone increasing in t. Therefore according to Beppo Levi’s
theorem we may interchange sup and the integral deriving

C(β, h) = esssup
y∈X

∫
X

βφ(x, y)

h(h+ βφ(x, y))
σ(dx) ≤ 1

h
esssup
y∈X

∫
X

(
β

h
φ(x, y) ∧ 1

)
σ(dx).

We may reformulate Theorem 5.2.10 for nonnegative φ(x, y).

Theorem 5.2.11. Let φ(x, y) be nonnegative, and

esssup
y∈X

∫
X

βφ(x, y)

h(h+ βφ(x, y))
σ(dx) ≤ 1

2e
.

Then the “weak” limit νβ,φΛ → νβ,φ, Λ ↑ X exist.

5.3 Birth-and-Death Process

We consider the birth-and-death Markov process Y T
t , −T ≤ t ≤ 0 on Γ(X),

starting from an empty configuration at time t = −T , corresponding to the
generator

LF (γ) =
∑
x∈γ

d(x)(F (γ \ x)− F (γ)) +

∫
b(y)(F (γ ∪ y)− F (γ))σ(dy) (5.3.1)

where F is a bounded cylinder function. The death part of the generator is

LD(γ) :=
∑
x∈γ

d(x)(F (γ \ x)− F (γ)),

and the birth part of the generator is

LB(γ) :=

∫
b(y)(F (γ ∪ y)− F (γ))σ(dy),
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where d(x) ≥ 0 is the death rate (intensity), b(x) ≥ 0 is the birth rate. In our
interpretation this means that there were no mutant alleles at the beginning. As
the time passes, the mutations gradually appear in points x ∈ X at times sx,
−T < sx ≤ 0, and exists for some time lx. A path of the process can be described
as a collection of bars located in space-time X × [−T, 0] and directed along the
time axis t, where the points (x, sx) ∈ X × [−T, 0] denote the starting points of
the bars, and the length of the bar is denoted by lx.

Figure 5.3: A path of birth-and-death process Y T
t on Ω(X̂T ), where ” ◦ ” denotes

the points of the configuration Y T
t (γ̂).

We introduce some further notations: denote by

XT := X × [−T, 0] = {y = (x, s), x ∈ X, s ∈ [−T, 0]}

and let

X̂T = {(y, l)|y = (x, s) ∈ X × [−T, 0], l ∈ R+}.

Then the path space of the process Y T
t , described above, can be identified with

the marked configuration space

Ω(X̂T ) = {γ̂ = (y, ly)y∈γ| γ ∈ Γ(XT ), ly ∈ R+}.

Assume that the path measure of the process Y T
t is the following: the starting

points of the bars – points (x, sx) – are distributed according to a marked Pois-
son measure on X × [−T, 0] with intensity measure b(x)σ(dx)ds, and for a given
point configuration ξ ∈ Γ(X × [−T, 0]) the conditional distribution of marks
l w.r.t. this configuration is conditionally independent and exponentially dis-
tributed with density d(x)e−d(x)l. Equivalently, it can be described as the marked
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Poisson measure πρ with intensity measure ρ, where the intensity measure ρ on

X̂T is given by
ρ(dx, ds, dl) = b(x)d(x)e−d(x)lσ(dx)dsdl.

It is well known that the marked Poisson measure πρ can be characterized by its
Laplace transform∫

Ω(X̂T )

e〈g,γ̂〉dπρ(γ̂) = exp

{∫ 0

−T

∫ ∞

0

∫
X

(eg(y,l,s) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

}
,

where 〈g, γ̂〉 :=
∑

(x,s,l)∈γ̂
g(x, s, l).

We define the distribution PD,γ0 by

ED,γ0(e
〈h,Ys〉) :=

∫
e〈h,Ys〉dPD,γ0(γ) = ED,γ0

(∏
x∈Ys

eh(x)

)
=
∏
x∈γ0

EX [11(0,s+T )(r) + 11(s+T,∞)(r)e
h(x)]

=
∏
x∈γ0

(∫ s+T

0

e−rd(x)d(x)dr +

∫ ∞

s+T

e−rd(x)d(x)dreh(x)
)

=
∏
x∈γ0

(1− e−(s+T )d(x) + e−(s+T )d(x)eh(x))

= exp{〈ln[1 + e−(s+T )d(x)(eh(x) − 1)], γ0〉}. (5.3.2)

Here X is an exponentially distributed random variable with density d(x)e−rd(x).

Lemma 5.3.1. The Markov birth-and-death process Y T
t ,−T ≤ t ≤ 0, starting

from an empty configuration, is realized on (Ω(X̂T ), Pγ), where Pγ0 = πρ ∗ PD,γ,
by

Y T
t : Ω(X̂T ) −→ Γ(X),

Ω(X̂T ) 3 γ̂ 7→ Y T
t (γ̂) = η(t) =

∑
(x,s,l)∈γ

δx11[s,s+l](t).

Proof. First we show that the expectation of g : X → R is

Eπρ [e〈g,Y
T
t 〉] = exp

{∫
X

b(y)

d(y)
(eg(y) − 1)(1− e−(T+t)d(y))σ(dy)

}
. (5.3.3)

By definition

Eπρ [e〈g,Y
T
t 〉] = Eπρ

[
exp

{∫
g(y)η(t, dy)

}]
.
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This is the Laplace transform of πρ, therefore the expression above is equal to

exp

{∫ t

−T

∫ ∞

0

∫
X

(eg(y)11[s,s+l](t) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

}
= exp

{∫ t

−T

∫ ∞

0

∫
X

(eg(y) − 1)11[s,s+l](t)b(y)d(y)e
−d(y)lσ(dy)dlds

}
.

Calculating the integrals w.r.t. dl and ds we obtain the required result.
Next, in order to check that the process Y T

t has the generator given by (5.3.1)
we should verify that for ϕ ∈ C0(X)

d

dt
Eπρ(e〈ϕ, Y

T
t 〉) = Eπρ [(Le〈ϕ,·〉)(Y T

t )] (5.3.4)

(by monotone class arguments it is sufficient to consider only exponential func-
tions). By (5.3.3) the left-hand side of (5.3.4) is

d

dt
Eπρ(e〈g,Y

T
t 〉) = Eπρ(e〈g,Y

T
t 〉)

∫
b(y)(eg(y) − 1)e−(T+t)d(y)σ(dy). (5.3.5)

Calculating the right-hand side of (5.3.4) we obtain for the birth part straight-
forward

Eπρ [(LBe
〈g,·〉)(Y T

t )] = Eπρ(e〈g,Y
T
t 〉)

∫
b(y)(eg(y) − 1)σ(dy). (5.3.6)

The action of the death part of the operator is equal to

(LDe
〈g,·〉)(Y T

t ) = 〈d(e−g − 1), Y T
t 〉e〈g,Y

T
t 〉. (5.3.7)

Using Mecke formula we get∫
〈f, γ̂〉e〈g,γ̂〉πρ(dγ̂) =

∫ ∑
x̂∈γ̂

f(x̂)eg(x̂)e〈g,γ̂\x̂〉πρ(dγ̂) =
∫
f(x̂)eg(x̂)dρ(x̂)

∫
e〈g,γ̂〉πρ(dγ̂).

and thus for the death part we get

Eπρ [(LDe
〈g,·〉)(Y T

t )] = Eπρ [〈d(e−g − 1), Y T
t 〉e〈g,Y

T
t 〉]

= Eπρ(e〈g,Y
T
t 〉) ·

∫ t

−T

∫ ∞

t−s

∫
X

d(x)(e−g(x) − 1)eg(x)e−d(x)ld(x)b(x)σ(dx)dlds

= Eπρ(e〈g,Y
T
t 〉)

∫
b(x)(1− eg(x))(1− e−(T+t)d(x))σ(dx). (5.3.8)

Adding (5.3.6) and (5.3.8) we see that (5.3.4) is fulfilled. Therefore Y T
t corre-

sponds to the generator L.
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Next, we will check the Markov property (5.2.2) for the process Y T
t , i.e. for

−T ≤ r < τ ≤ 0

Eπρ(e〈ϕ, Y
T
τ 〉e〈ψ, Y

T
r 〉) = Eπρ(EY T

r
[e〈ϕ,Y

T
τ−r−T 〉]e〈ψ, Y

T
r 〉). (5.3.9)

Using the definition of the process Y T
t and the properties of the marked Poisson

measure πρ we calculate the left-hand side of (5.3.9)

Eπρ(e〈ϕ, Y
T
τ 〉e〈ψ, Y

T
r 〉)

= exp

{∫ τ

−T

∫ ∞

0

∫
X

(eϕ(y)11[s,s+l](τ)+ψ(y)11[s,s+l](r) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

}
.

By definition of the indicator function we obtain∫ τ

−T

∫ ∞

0

∫
X

(eϕ(y)11[s,s+l](τ)+ψ(y)11[s,s+l](r) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

=

∫ r

−T

∫ t−s

r−s

∫
X

(eψ(y) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

+

∫ r

−T

∫ ∞

t−s

∫
X

(eϕ(y)+ψ(y) − 1)b(y)d(y)e−d(y)lσ(dy)dlds

+

∫ t

r

∫ ∞

t−s

∫
X

(eϕ(y) − 1)b(y)d(y)e−d(y)lσ(dy)dlds.

Calculating the integrals w.r.t. dl and ds we get∫
X

b(y)

d(y)

[
(eψ(y) − 1)(e−d(y)r − e−d(y)τ )(ed(y)r − e−d(y)T )

+ (eϕ(y)+ψ(y) − 1)e−d(y)τ (ed(y)r − e−d(y)T )

+ (eϕ(y) − 1)e−d(y)τ (e−d(y)τ − e−d(y)r)
]
σ(dy). (5.3.10)

Now calculate the right-hand side of (5.3.9). According to (5.3.2)

ED,Y T
r
e〈ϕ,Y

T
τ−r−T 〉 = exp{〈ln[1 + e−(τ−r)d(x)(eϕ(x) − 1)], Y T

r 〉}.

Then we get the following expression for the right-hand side of (5.3.9):

Eπρ(EY T
r

[e〈ϕ,Y
T
τ−r−T 〉]e〈ψ, Y

T
r 〉) = Eπρ [e〈ϕ,Y

T
τ−r−T 〉]Eπρ [e〈v+ψ,Y

T
r 〉], (5.3.11)

where

v = ln[1 + e−(τ−r)d(x)(eϕ(x) − 1)]. (5.3.12)
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Using (5.3.3) we obtain

E[e〈ϕ,Y
T
τ−r−T 〉] = exp

{∫
X

b(y)

d(y)
(eϕ(y) − 1)(1− e−(τ−r)d(y))σ(dy)

}
, (5.3.13)

E[e〈v+ψ,Y
T
r 〉] = exp

{∫
X

b(y)

d(y)
(ev(y)+ψ(y) − 1)(1− e−(T+r)d(y))σ(dy)

}
.

Inserting the expression for v, given by (5.3.12) in the last term can be rewritten as

exp
{∫

X

b(y)
d(y)

(eψ(y)[1 + e−(τ−r)d(x)(eϕ(x) − 1)]− 1)(1− e−(T+r)d(y))σ(dy)
}
. (5.3.14)

Inserting (5.3.13) and (5.3.14) in (5.3.11) we obtain

exp

{∫
X

b(y)

d(y)
[(eϕ(y) − 1)(1− e−(τ−r)d(y))

+ (eψ(y)[1 + e−(τ−r)d(x)(eϕ(x) − 1)]− 1)(1− e−(T+r)d(y))]σ(dy)

}
.

After elementary calculations we see that this expression coincides with (5.3.10),
what implies the lemma.

Now, analogously to the pure birth process, we will take into account the
influence of a (nonepistatic) selection cost function Φ : Γ −→ R+ given by

Φ(γ) := 〈h, γ〉 =
∑
x∈γ

h(x), h ≥ c > 0.

Because the configuration γ contains, in general, an infinite number of points,
the cost function Φ is well-defined only in a bounded region Λ ⊂ X.

We are interested in the measure νh on the space Γ̂(X × (−∞, 0],R+), the
so-called Gibbs perturbation of marked Poisson measure πρ. We denote by νhΛ,T
the restriction of νh to Γ̂(Λ× [−T, 0],R+), which is defined for Λ ⊂ X as

dνhΛ,T (γ̂) =
1

ZΛ,T

exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂))dt

}
dπT,Λρ (γ̂),

where ZΛ,T is the normalizing constant

ZΛ,T =

∫
Ω(Λ̂T )

exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂))dt

}
dπT,Λρ (γ̂).

First we will show that νhΛ,T still remains a Poisson measure. For this we
calculate its intensity measure by computing the Laplace transform of νhΛ,T .
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Lemma 5.3.2. For F (γ̂) = e〈f,γ̂〉, 〈f, γ̂〉 :=
∑

(x,s,l)∈γ̂
f(x, s, l), where γ̂ ∈ Ω(X̂T ),

we have∫
F (γ̂Λ) exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂Λ))dt

}
dπT,Λρ (γ̂Λ)

= exp

{∫∫∫ (
exp

{
f(x, s, l)− h(x)

∫ 0

−T
11[s,s+l](u)du

}
− 1

)
dρ

}
.

Proof. By definition of F and Φ∫
F (γ̂Λ) exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂Λ))dt

}
dπT,Λρ (γ̂Λ)

=

∫
exp

 ∑
(x,s,l)∈γΛ

(
f(x, s, l)− h(x)

∫ 0

−T
11[s,s+l](u)du

) dπρ.

From this we get the required result using the Laplace transform of πρ.

Hence the integral w.r.t. νhΛ,T is given by∫
F (γ̂Λ)dνhΛ,T (γ̂Λ) =

1

ZΛ,T

∫
exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂))dt

}
dπT,Λρ (γ̂)

= exp

{∫∫∫
exp

{
−h(x)

∫ 0

−T
11[s,s+l](u)du

}
(ef(x,s,l) − 1)dρ

}
.

Using the definition of the measure ρ and calculating the integral in u, we see
that the above expression can be represented as

exp
{∫ 0

−T

∫ ∞

0

∫
Λ
(ef(x,s,l) − 1) exp {−h(x)(0 ∧ (s+ l)− s)} b(x)d(x)e−d(x)ldσ(x)dlds

}
= exp

{∫ 0

−T

∫ ∞

0

∫
Λ
(ef(x,s,l) − 1) exp {−((−s) ∨ l)h(x)} b(x)d(x)e−d(x)ldσ(x)dlds

}
.

Thus νhΛ,T is a Poisson measure on Ω(Λ̂T ) with intensity measure

τ(dx, dl, ds) = exp {−((−s) ∨ l)h(x)} b(x)d(x)e−d(x)ldσ(x)dlds.

Again, as before, we are interested in the “weak” limit of νhΛ,T for Λ ↑ X,
T → +∞. The limit does also not depend on the order in which the limits are
taken.
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Theorem 5.3.3. 1) There exists the “weak” limit

lim
Λ↑X

νhΛ,T = νhT ,

where νhT is the marked Poisson measure on the space Ω(X̂T ) with the same
intensity measure τ , but now as a measure on X̂T .

2) There exists the “weak” limit

lim
T→+∞

νhT = νh,

where νh is the marked Poisson measure on the space Ω(X̂) with the same inten-
sity measure τ , but now as a measure on X̂.

3) There exists the “weak” limit

lim
T→+∞

νhΛ,T = νhΛ,

where νhT is the marked Poisson measure on the space Ω(Λ̂) with the same intensity
measure τ , but now as a measure on X̂Λ.

4) There exists the “weak” limit

lim
Λ↑X

νhΛ = νh,

where νh is the marked Poisson measure on the space Ω(X̂) with the same inten-
sity measure τ , but as a measure on X̂.

The main object of our interest is the final distribution of mutations µh, i.e. is
the distribution of end points of bars. Recall that we have chosen the time range
so that the final time is 0. We obtain µh, similar to the above construction, as the
limit of final distributions µ0

Λ,T for given bounded volume and finite time. The

measure µ0
Λ,T on Γ(Λ) is defined for F (η) = e〈f,η〉, η ∈ Γ(X) by∫

Γ(X)

F (ηΛ)dµ0
Λ,T (ηΛ) :=

∫
Ω(X̂T )

F (Y T
0 (γ̂Λ))dνhΛ,T (γ̂Λ) (5.3.15)

=

∫
F (Y T

0 (γ̂Λ)) exp{−
∫ 0

−T ΦΛ(Y T
t (γ̂Λ))dt}dπT,Λρ (γ̂Λ)∫

exp{−
∫ 0

−T ΦΛ(Y T
t (γ̂Λ))dt}dπT,Λρ (γ̂Λ)

.

Lemma 5.3.4. Let F (η) = exp{
∫
f(x)η(dx)}, where η ∈ Γ(X), f ∈ C0(X).

Then∫
F (Y T

0 (γ̂Λ)) exp

{
−
∫ 0

−T
ΦΛ(Y T

t (γ̂Λ))dt

}
dπT,Λρ (γ̂Λ)

= exp

{∫∫∫ (
exp

{
f(x)11[s,s+l](0)− h(x)

∫ 0

−T
11[s,s+l](u)du

}
− 1

)
dρ

}
.
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The statement is a corollar of Lemma 5.3.2. Using the observation that for
f ∈ C0(X), γ̂ ∈ Ω(X̂T ) we have that 〈f, Y T

0 (γ̂)〉 = 〈F, γ̂〉, where F (x, s, l) =
f(x)11[s,s+l](0).

Now we can calculate (5.3.15)∫
Γ(X)

F (ηΛ)dµ0
Λ,T (ηΛ)

= exp

{∫∫∫
exp

{
−h(x)

∫ 0

−T
11[s,s+l](u)du

}
(ef(x)11[s,s+l](0) − 1)ρ(dx, dl, ds)

}
.

By definition of ρ the expression above can be written as

exp

{∫ 0

−T

∫ ∞

0

∫
Λ

exp {−h(x)(0 ∧ (s+ l)− s)} (ef(x) − 1)11[s,s+l](0)ρ(dx, dl, ds)

}
= exp

{∫ 0

−T

∫ ∞

0

∫
Λ

exp {sh(x)} (ef(x) − 1)11[s,s+l](0)b(x)d(x)e−d(x)ldσ(x)dlds

}
.

Calculating the integrals w.r.t dl and ds we obtain∫
Γ(X)

F (ηΛ)dµ0
Λ,T (ηΛ) = exp

{∫
Λ

(ef(x) − 1)b(x)
1− e−T (h(x)+d(x))

h(x) + d(x)
dσ(x)

}
.

Again, as before, we are interested in the “weak” limit of µ0
Λ,T for Λ ↑ X,

T → +∞. The limit does also not depend on the ordern which the limits are
taken.

Theorem 5.3.5. 1) There exists the “weak” limit

lim
Λ↑X

µ0
Λ,T = µhT ,

where µhT is the Poisson measure on Γ(X) with intensity measure

b(x)
1− e−T (h(x)+d(x))

h(x) + d(x)
dσ(x).

2) By the dominated convergence theorem there exists the “weak” limit

lim
T→+∞

µhT = µh,

where µh is the Poisson measure on Γ(X) with intensity measure σ(dx)
h(x)+d(x)

.

3) There exists the “weak” limit

lim
T→+∞

µ0
Λ,T = µhΛ,
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5 Markov Processes in Mutation-Selection Models

where µhT is the Poisson measure on Γ(Λ) with intensity measure σ(dx)
h(x)+d(x)

.

4) By the dominated convergence theorem there exists the “weak” limit

lim
Λ↑X

µhΛ = µh,

where µh is the Poisson measure on Γ(X) with intensity measure σ(dx)
h(x)+d(x)

.

Remark 5.3.6. Obviously Theorem 5.2.6 of the previous section is a special case
of the theorem above for death rate d(x) ≡ 0.
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