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Introduction

The Euler scheme is a very powerful tool to solve differential equations approx-
imately in the ordinary but also in the stochastic case. It is well known for
ordinary one-dimensional differential equations with Lipschitz continuous coef-
ficients. In this case we can prove, that the Euler approximation converges to
the solution uniformly in time. A proof can be found in [KP92, chapter 8].

In the case of stochastic differential equations in d dimensions with a noise
given by a m-dimensional Wiener process, d, m ∈ N, we know by a fixed point
argument under Lipschitz assumptions on the coefficients that there exists a
pathwise unique strong solution. Even these equations can be solved approxi-
mately in the sense of Euler, namely by adding a time discrete realization of the
Wiener process to the Euler scheme. A proof can be found in [KP92, chapter
10].

But the Euler scheme is not only used to construct approximations for existing
solutions, but also to prove existence and uniqueness of solutions of equations
with weaker conditions. For example in [Kry98, Chapter 1, p.1], [GK96] and
[Gyö98] Gyöngy and Krylov proved convergence of the Euler scheme and es-
tablished, that the limit is a solution under monotonicity assumptions on the
coefficients.

In this thesis we will be concerned with stochastic differential equations on
Hilbert spaces. We consider the following type of stochastic differential equa-
tions on a seperable Hilbert space H:

dX(t) = [AX(t) + F (X(t))]dt + BdW (t), t ∈ [0, T ]

X(0) = x ∈ H
(1)

where W (t), t ∈ [0, T ], is a cylindrical Wiener process on a probability space
(Ω,F , P ) taking values in another Hilbert space U . A is the generator of a
C0-semigroup of contractions etA, t ∈ [0, T ].

If F : H → H is Lipschitz and B ∈ L2(U,H), then there exists a mild solution
of problem (1) that is a predictable process X(t), t ∈ [0, T ], such that

X(t) = etAx +
∫ t

0
e(t−s)AF (X(s))ds +

∫ t

0
e(t−s)ABdW (s) P-a.s.
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for all t ∈ [0, T ]. A proof can be found in [KF01, theorem 3.2, p.68].

Applying the Euler scheme to this type of differential equations has not be done
extensively up to now. This is owed to the fact that the mild solution is not a
martingale and therefore we can not apply any of the well-known inequalities for
martingales. One paper dealing with this type of equations is by Lord [Lor04],
where he considered the Hilbert space of all continuous periodic functions and
the Laplacian. He developed a modification of the classical Euler scheme, which
gives us convergence to the mild solution.

Here we will show that there exists a numerical scheme approximating the mild
solution of problem (1) in the sense of Euler.

In order to point out the specific properties of the Euler scheme, let us recall
the Euler scheme for ordinary differential equations in one dimension: If we are
concerned with the following type of differential equation on R

y′(t) = f(t, y(t)), t ∈ [0, T ]

y(0) = c ∈ R

where f : [0, T ]×R→ R is continuous and Lipschitz continuous in the second
variable, we know by Picard-Lindelöf, that there exists a unique solution of the
differential equation that is a differentiable function ϕ : [0, T ] → R such that

ϕ(t) = c +
∫ t

0
f(s, ϕ(s))ds, t ∈ [0, T ].

For the numerical approximation of ϕ we consider a subdivision of [0, T ] ∆ =
{u0, u1, ..., un}, 0 = u0 < u1 < ... < un = T . Then the Euler scheme provides
us a piecewise linear function ϕ∆ : [0, T ] → R.

ϕ∆ fulfills the following two properties, which are characteristical for the Euler
scheme:

First, that there exists a function g : R × [0, T ] × [0, T ] → R depending on c

and f with
ϕ∆(ui) = g(ϕ∆(ui−1), ui−1, ui)

for i ∈ {0, ..., n} and
ϕ∆(t) = g(ϕ∆(ui), ui, t)

for ui < t < ui+1, i ∈ {0, ..., n− 1}.

Secondly that the error |ϕ∆ − ϕ| converges to 0 uniformly on [0, T ] as ρ(∆)
converges to 0, where ρ(∆) is the maximum timestep of ∆.

In the case of our stochastic differential equation on a Hilbert space H we have
to modify these two properties appropriately. We will show that we can define
a process X∆(t), t ∈ [0, T ], fulfilling the following two properties:
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First that there exists a function g : H × [0, T ] × [0, T ] → H depending on
A, F, B, W with

X∆(ui) = g(X∆(ui−1), ui−1, ui)

for i ∈ {0, ..., n} and
X∆(t) = g(X∆(ui), ui, t)

for ui < t < ui+1, i ∈ {0, ..., n− 1}.

Secondly that
E( sup

0≤t≤τ
|X∆(t)−X(t)|p) → 0

as ρ(∆) → 0 for a stopping time τ and p = 1, 2.

The process, which fulfills these two properties, can be defined by

X∆(t) := etAx +
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1,

where

• ∆uν−1 = uν − uν−1,

• ∆Wν−1 = W (uν)−W (uν−1),

• in the last term differences ∆uν−1, ∆Wν−1 stand for t − uν−1, W (t) −
W (uν−1) respectively.

The first chapter is devoted to an introduction of terms and the notion of SDE
in Hilbert spaces and mild solution.

In chapter 2 we develop the Euler scheme for the mild solution in detail. In
section 2.1 we give an introduction to the Euler scheme for ordinary one-
dimensional differential equations. We show that the two properties presented
above are fulfilled in one dimension. In section 2.2 we state these two properties
in the modified version and present the numerical scheme for our Hilbert space
valued stochastic differential equation. Fulfilling the first property is proved
in this section, fulfilling the second property is proved in section 2.3. In sec-
tion 2.4 we consider the case of unbounded operator A. If we are obliged to
compute with bounded generators only, we can approximate the Euler approx-
imation by an Euler approximation relative to bounded generators, the Yosida
approximation of A.
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Chapter 1

SDE in Hilbert Spaces and

Mild Solution

In this chapter we give a brief introduction to stochastic differential equations
(SDEs) in Hilbert spaces and the notion of mild solution. Concerning the
coefficients of the differential equation we already state the conditions being
necessary for our later computations.

1.1 Preliminaries

Let (H, 〈 , 〉) and (U, 〈 , 〉U ) be separable Hilbert spaces and let L(U,H) be
the Banach space of all linear bounded operators from U into H endowed with
the norm

‖T‖L(U,H) := sup{‖Tx‖ : x ∈ U, ‖x‖U = 1}, T ∈ L(U,H).

Define L(H) := L(H,H).

Let L2 := L2(U,H) be the Hilbert space of all operators A from L(U,H) with

‖A‖2
L2

:=
∑
k∈N

〈Aek, Aek〉 < ∞

endowed with the inner product

〈A,B〉L2 :=
∑
k∈N

〈Aek, Bek〉,

where ek, k ∈ N, is an arbitrary orthonormal basis of U . This space is called
the space of all Hilbert-Schmidt operators from U to H. For more details see
[PR06, Chapter C, p.109]
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A function F : H → H is called Lipschitz continuous if there exists a con-
stant K > 0 such that

‖F (x)− F (y)‖ ≤ K‖x− y‖, x, y ∈ H.

A function F : H → H fulfills the linear growth condition if there exists a
constant L > 0 such that

‖F (x)‖ ≤ L(1 + ‖x‖), x ∈ H.

It comes out that the Lipschitz constant K of a Lipschitz continuous function
F can always be chosen in such a way that F fulfills also the linear growth
condition with constant K. C.f. [KF01, Remark 3.1(iii), p.66].

For a function f : [0, t] → R, t > 0 and p ≥ 1 we define ‖f‖p := (
∫ t
0 |f(s)|pds)

1
p

in the sense of Riemann if
∫ t
0 |f(s)|pds < ∞.

For (X, ‖ ‖) Banach space, (Ω,F , µ) measure space with finite measure µ and
f : Ω → X Bochner integrable we define

∫
Ω fdµ as the Bochner integral of f

with respect to µ. (C.f. [PR06, Chapter A, p.99]) In our case we will fix a
T > 0 and choose Ω = [0, T ], F the Borel-σ-algebra restricted to [0, T ] and µ

the Lebesgue measure restricted to [0, T ].

The following result is important for the theory of stochastic integrals.

Proposition 1.1 If Q ∈ L(U) is nonnegative and symmetric then there exists
exactly one element Q

1
2 ∈ L(U) nonnegativ and symmetric such that Q

1
2 ◦Q

1
2 =

Q.
If, in addition, Q is of finite trace we have ‖Q

1
2 ‖2

L2
= trQ and thus Q

1
2 ∈ L2(U)

and L ◦Q
1
2 ∈ L2(U,H) for all L ∈ L(U,H).

Proof
[RS72, Theorem VI.9, p.196] �

For T > 0, (Ω,F , P ) probability space and Q ∈ L(U) nonnegative, symmetric
and with finte trace we define W (t), t ∈ [0, T ], as the Q-Wiener process on
(Ω,F , P ) taking values in U . (C.f. [PR06, Definition 2.1.9, p.12])

For T > 0, (Ω,F , P ) probability space, Q ∈ L(U) nonnegative and sym-
metric, Q−

1
2 the pseudo inverse of Q

1
2 in the case that Q is not one to one,

λk ∈ (0,∞), k ∈ N, with
∑∞

k=1 λ2
k < ∞, ek, k ∈ N, orthonormal ba-

sis of Q
1
2 (U), J : Q

1
2 (U) → U , J(u) :=

∑∞
k=1 λk〈Q−

1
2 u, Q−

1
2 ek〉Uek and

Q1 := JJ∗ ∈ L(U) nonnegative, symmetric and with finite trace, we define
W (t), t ∈ [0, T ], as the Q1-Wiener process on (Ω,F , P ) taking values in U .
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This process is called cylindrical Q-Wiener process. (C.f. [PR06, Subsection
2.5.1, p.36])

For T > 0, (Ω,F , P ) probability space, Q ∈ L(U) nonnegative, symmetric
and with finite trace, W (t), t ∈ [0, T ], U -valued Q-Wiener process on (Ω,F , P )
and Φ : [0, T ]×Ω → L2(Q

1
2 (U),H) stochastically integrable with respect to W

we define
∫ T
0 Φ(s)dW (s) as the stochastic integral of Φ with respect to W . (C.f.

[PR06, Section 2.3, p.20])

For T > 0, (Ω,F , P ) probability space, Q ∈ L(U) nonnegative and symmet-
ric, W (t), t ∈ [0, T ], U -valued cylindrical Q-Wiener process on (Ω,F , P ) and
Φ : [0, T ]× Ω → L2(Q

1
2 (U),H) stochastically integrable with respect to W we

define
∫ T
0 Φ(s)dW (s) :=

∫ T
0 Φ(s) ◦ (J−1)dW (s). The right hand side is well-

defined, because it holds J is one-to-one,

Im(J) = J(Q
1
2 (U)) = Q

1
2
1 (U)

and
‖Φ ◦ (J−1)‖

L2(Q
1
2
1 (U),H)

= ‖Φ‖
L2(Q

1
2 (U),H)

. (1.1)

(C.f. [PR06, Subsection 2.5.2, p.38])

The following theorem deals with the Yosida approximation of the generator of
a semigroup. Let A : D(A) ⊂ H → H be the generator of a C0−semigroup of
contractions etA, t ∈ [0, T ], and Aα, α > 0, the Yosida approximation of A.

Theorem 1.2 Under these assumptions ‖(esA−esAα)h‖ converges to 0 as α →
∞ for all h ∈ H uniformly on bounded intervalls.

Proof
[Paz83, Proof of theorem 3.1, p.10] �

1.2 SDE in Hilbert spaces

For our consideration of stochastic differential equations we fix a T > 0 and a
cylindrical Q-Wiener process W (t), t ∈ [0, T ], on the probability space (Ω,F , P )
taking values in U . Therefore we choose Q = IU , λk ∈ (0,∞), k ∈ N, with∑∞

k=1 λ2
k < ∞ and ek, k ∈ N, orthonormal basis of Q

1
2 (U) = U .

We are here concerned with the following type of stochastic differential equa-
tions in H

dX(t) = [AX(t) + F (X(t))]dt + BdW (t), t ∈ [0, T ]

X(0) = x ∈ H
(1.2)

where
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• A : D(A) ⊂ H → H is the generator of a C0−semigroup of contractions
etA, t ∈ [0, T ],

• F : H → H is B(H)-B(H)-measurable, Lipschitz continuous,

• B ∈ L2(U,H).

Definition 1.3 A H-valued predictable process X(t), t ∈ [0, T ], is called a mild
solution of problem (1.2) if

X(t) = etAx +
∫ t

0
e(t−s)AF (X(s))ds +

∫ t

0
e(t−s)ABdW (s) P-a.s. (1.3)

for all t ∈ [0, T ].

In particular, the integrals have to be well defined, i.e. that e(t−s)AF (X(s)), s ∈
[0, t], is P -a.s. Bochner integrable and that e(t−s)AB, s ∈ [0, t], is stochastically
integrable.

Theorem 1.4 Under the given assumptions there exists a unique mild solution
X of problem (1.2) with sup

0≤t≤T
E(‖X(t)‖2) < ∞.

Proof
[KF01, Theorem 3.2, p.68] �

Proposition 1.5 Under the given assumptions the mild solution X of problem
(1.2) has a continuous version.

Proof
[KF01, Proposition 3.15, p.88] �
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Chapter 2

Approximation in the Sense of

Euler

Let us consider the stochastic differential equation given by (1.2) in section 1.2.
By theorem 1.4 we know, that there exists a unique mild solution X given by
the implicit formula (1.3). If we are concerned with a nonlinear equation, i.e.
F 6= 0 is nonlinear, it is not possible to state the solution explicitly.

In this chapter we show that we can approximate the mild solution in nearly
in the same way we approximate the solutions of ordinary one-dimensional
differential equations with the help of the Euler scheme.

In section 2.1 we give a brief introduction to the Euler scheme for ordinary
one-dimensional differential equations. We present the two properties, recur-
sive calculability and uniform convergence of the error, which we want to be
fulfilled by the numerical scheme. Then we state the Euler scheme and proof
the properties.

In section 2.2 we state these two properties in a modified version and present a
numerical scheme for our Hilbert space valued stochastic differential equation,
which fulfills these two properties. The modification is necessary, because we are
concerned with stochastic instead of ordinary differential equations and Hilbert
space valued instead of realvalued differential equations. Fulfilling the first
property (recursive calculability) is proved here, fulfilling the second property
(uniform convergence of the error) is proved in section 2.3.

In section 2.4 we consider the case of unbounded operator A. If we are obliged
to compute with bounded generators only, we can approximate the Euler ap-
proximation by an Euler approximation relative to bounded generators, the
Yosida approximation of A.

In section 2.5 we give some ideas for future research.
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2.1 The Euler scheme

Let us consider the following one-dimensional ordinary differential equation on
R

y′(t) = f(t, y(t)), t ∈ [0, T ]

y(0) = c ∈ R

where T > 0 and f : [0, T ] × R → R is continuous in the first variable and
fulfills the Lipschitz and linear growth condition concerning the second variable
with constant K > 0.

By Picard-Lindelöf there exists a unique solution of the differential equation
that is a differentiable function ϕ : [0, T ] → R such that

ϕ(t) = c +
∫ t

0
f(s, ϕ(s))ds, t ∈ [0, T ].

For the numerical approximation of ϕ let us consider a subdivision of [0, T ]
∆ = {u0, u1, ..., un}, 0 = u0 < u1 < ... < un = T . We want to have a
numerical scheme, which provides us a function ϕ∆ : [0, T ] → R fulfilling the
following two properties:

Fist that there exists a function g : R× [0, T ]× [0, T ] → R depending on c and
f with

ϕ∆(ui) = g(ϕ∆(ui−1), ui−1, ui) (2.1)

for i ∈ {0, ..., n} and
ϕ∆(t) = g(ϕ∆(ui), ui, t) (2.2)

for ui < t < ui+1, i ∈ {0, ..., n − 1}. Let us call this property recursive
calculability.

Secondly that we have for the error

sup
0≤t≤T

|ϕ∆(t)− ϕ(t)| → 0 as ρ(∆) → 0 (2.3)

where ρ(∆) is the maximal timestep of ∆. Let us call this property uniform
convergence of the error.

The Euler approximation of ϕ works in the following way: Let us choose a
timestep h > 0 and define ϕ∆(0) := c, tk := kh, k = 0, 1, .... Then compute
recursively

ϕ∆(tk+1) := ϕ∆(tk) + hf(tk, ϕ∆(tk))

for k = 0, 1, ..., with (k + 1)h ≤ T .

Then we have the following result concernig the error of the approximation:

sup
0≤k

kh≤T

|ϕ∆(tk)− ϕ(tk)| ≤ hTeTK . (2.4)
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This is proved e.g. in [KP92, Section 8.3, p.292].

In order to fulfill the two stated properties, we have to modify the Euler ap-
proximation, i.e. we have to define ϕ∆ on the whole intervall [0, T ]. Therefore
consider (more generally) a subdivision of [0, T ] ∆ = {u0, u1, ..., un}, 0 =
u0 < u1 < ... < un = T and define

ϕ∆(t) := c +
∫ t

0
f(u(s), ϕ∆(u(s)))ds, t ∈ [0, T ]

where u(s), s ∈ [0, T ], is defined by uν for uν ≤ s < uν+1.

Claim: ϕ∆ fulfills the two stated properties.

Proof: We have recursive calculability, because if we define g(r, s, t) := r + (t−
s)f(s, r) for r ∈ R, s, t ∈ [0, T ], we have

ϕ∆(ui) = c +
∫ ui

0
f(u(s), ϕ∆(u(s)))ds

= c +
∫ ui−1

0
f(u(s), ϕ∆(u(s)))ds

+
∫ ui

ui−1

f(u(s), ϕ∆(u(s)))ds

= ϕ∆(ui−1)

+ (ui − ui−1)f(ui−1, ϕ∆(ui−1))

= g(ϕ∆(ui−1), ui−1, ui)

for i ∈ {0, ..., n} and

ϕ∆(t) = c +
∫ t

0
f(u(s), ϕ∆(u(s)))ds

= c +
∫ ui

0
f(u(s), ϕ∆(u(s)))ds

+
∫ t

ui

f(u(s), ϕ∆(u(s)))ds

= ϕ∆(ui)

+ (t− ui)f(ui, ϕ∆(ui))

= g(ϕ∆(ui), ui, t)

for ui < t < ui+1, i ∈ {0, ..., n− 1}.

Let us consider the error of the approximation. By the linear growth condition
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we have for t ∈ [0, T ]

|ϕ(t)| =|c +
∫ t

0
f(s, ϕ(s))ds|

≤|c|+
∫ t

0
|f(s, ϕ(s))|ds

≤|c|+ K

∫ t

0
(1 + |ϕ(s)|)ds

≤|c|+ KT + K

∫ t

0
|ϕ(s)|ds.

With Gronwalls inequality (lemma 2.3) we get for t ∈ [0, T ]

|ϕ(t)| ≤ |c|+ KT (1 + KTeKT ).

Consequently ϕ is bounded on [0, T ].

For the error we get by (2.4)

sup
0≤t≤T

|ϕ∆(t)− ϕ(t)|

≤ sup
0≤t≤T

∫ t

0
|f(u(s), ϕ∆(u(s)))− f(s, ϕ(s))|ds

≤K

∫ T

0
|ϕ∆(u(s))− ϕ(s)|ds

≤K

∫ T

0
|ϕ∆(u(s))− ϕ(u(s))|ds + K

∫ T

0
|ϕ(u(s))− ϕ(s)|ds

≤K

∫ T

0
ρ(∆)TeTKds + K

∫ T

0
|ϕ(u(s))− ϕ(s)|ds

≤ρ(∆)KT 2eTK + K

∫ T

0
|ϕ(u(s))− ϕ(s)|ds.

The first term converges to 0 as ρ(∆) → 0. |ϕ(u(s)) − ϕ(s)| converges to 0 as
ρ(∆) → 0 for all s ∈ [0, T ], because ϕ is continuous and u(s) → s as ρ(∆) → 0.
Since ϕ is bounded on [0, T ] we get by the dominated convergence theorem that
the integral converges to 0 as ρ(∆) → 0. �

2.2 Numerical scheme and basic properties

Let us consider the stochastic differential equation given by (1.2) in section 1.2.
By theorem 1.4 we know, that there exists a unique mild solution X given by
the implicit formula (1.3). In order to approximate the mild solution in the
sense of Euler let us consider a subdivision of [0, T ] ∆ = {u0, u1, ..., un}, 0 =
u0 < u1 < ... < un = T . As our Euler approximation of the mild solution we
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define for t ∈ [0, T ]

X∆(t) := etAx +
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1

(2.5)
where

• ∆uν−1 = uν − uν−1,

• ∆Wν−1 = W (uν)−W (uν−1),

• in the last term differences ∆uν−1, ∆Wν−1 stand for t − uν−1, W (t) −
W (uν−1) respectively.

We show, that this process fulfills the following two properties, which are mod-
ifications of the properties (2.1), (2.2) and (2.3).

First we have recursive calculability, which means that there exists a function
g : H × [0, T ]× [0, T ] → H depending on A, F, B, W with

X∆(ui) = g(X∆(ui−1), ui−1, ui)

for i ∈ {0, ..., n} and
X∆(t) = g(X∆(ui), ui, t)

for ui < t < ui+1, i ∈ {0, ..., n− 1}.

Secondly we have uniform convergence of the error, which means that

E( sup
0≤t≤τ

|X∆(t)−X(t)|p) → 0

as ρ(∆) → 0 for a stopping time τ and p = 1, 2.

Indeed we show that

X∆(ui) = e(ui−ui−1)A
[
X∆(ui−1) + F (X∆(ui−1))∆ui−1 + B∆Wi−1

]
(2.6)

for i ∈ {0, ..., n},

X∆(t) = e(t−ui)A
[
X∆(ui) + F (X∆(ui))(t− ui) + B(W (t)−W (ui))

]
. (2.7)

for ui < t < ui+1, i ∈ {0, ..., n− 1} and that

E( sup
0≤t≤T

|X∆(t)−X(t)|p) → 0 (2.8)

as ρ(∆) → 0 for a stopping time τ and p = 1, 2.

In section 2.3 we will prove (2.8).

If A is not bounded we can split our approximation with the help of the Yosida
approximation in order to deal with bounded generators only (c.f. section 2.4).

14



In the following we prove (2.6) and (2.7) and that the process is continuous:

For t = 0 the scheme gives us simply the initial value of the SDE:

X∆(0) =e0Ax +
∑

1≤ν≤n
uν−1≤0

e(0−uν−1)AF (X∆(uν−1))∆uν−1 + e(0−uν−1)AB∆Wν−1

=x.

For t = u1 we have

X∆(u1) =eu1Ax

+
∑

1≤ν≤n
uν−1≤u1

e(u1−uν−1)AF (X∆(uν−1))∆uν−1

+ e(u1−uν−1)AB∆Wν−1

=eu1Ax + e(u1−u0)AF (X∆(u0))∆u0 + e(u1−u0)AB∆W0

=eu1Ax + eu1AF (X∆(0))∆u0 + eu1AB∆W0

=eu1A(x + F (x)∆u0 + B∆W0).

(2.9)

For t = u2 we have by equation (2.9)

X∆(u2) =eu2Ax +
∑

1≤ν≤n
uν−1≤u2

e(u2−uν−1)AF (X∆(uν−1))∆uν−1 + e(u2−uν−1)AB∆Wν−1

=eu2Ax

+ e(u2−u0)AF (X∆(u0))∆u0 + e(u2−u0)AB∆W0

+ e(u2−u1)AF (X∆(u1))∆u1 + e(u2−u1)AB∆W1

=eu2Ax

+ eu2AF (x)∆u0 + eu2AB∆W0

+ e(u2−u1)AF (X∆(u1))∆u1 + e(u2−u1)AB∆W1

=e(u2−u1)A(eu1Ax + eu1AF (x)∆u0 + eu1AB∆W0)

+ e(u2−u1)AF (X∆(u1))∆u1 + e(u2−u1)AB∆W1)

=e(u2−u1)AX∆(u1)

+ e(u2−u1)AF (X∆(u1))∆u1 + e(u2−u1)AB∆W1

=e(u2−u1)A
[
X∆(u1) + F (X∆(u1))∆u1 + B∆W1

]
.

In general we have for t = ui, i ∈ {0, ..., n}

X∆(ui) =euiAx +
∑

1≤ν≤n
uν−1≤ui

e(ui−uν−1)AF (X∆(uν−1))∆uν−1 + e(ui−uν−1)AB∆Wν−1
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=euiAx

+ e(ui−u0)AF (X∆(u0))∆u0 + e(ui−u0)AB∆W0

...

+ e(ui−ui−1)AF (X∆(ui−1))∆ui−1 + e(ui−ui−1)AB∆Wi−1

=e(ui−ui−1)A
[
eui−1Ax

+ e(ui−1−u0)AF (X∆(u0))∆u0 + e(ui−1−u0)AB∆W0

...

+ e(ui−1−ui−2)AF (X∆(ui−1))∆ui−2 + e(ui−1−ui−2)AB∆Wi−2

]
+ e(ui−ui−1)AF (X∆(ui−1))∆ui−1 + e(ui−ui−1)AB∆Wi−1

=e(ui−ui−1)AX∆(ui−1)

+ e(ui−ui−1)AF (X∆(ui−1))∆ui−1 + e(ui−ui−1)AB∆Wi−1

=e(ui−ui−1)A
[
X∆(ui−1) + F (X∆(ui−1))∆ui−1 + B∆Wi−1

]
which is equation (2.6).

For ui < t < ui+1, i ∈ {0, ..., n− 1} we have

X∆(t) =etAx +
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1

=etAx

+ e(t−u0)AF (X∆(u0))∆u0 + e(t−u0)AB∆W0

...

+ e(t−ui)AF (X∆(ui))∆ui + e(t−ui)AB∆Wi

=e(t−ui)A
[
euiAx

+ e(ui−u0)AF (X∆(u0))∆u0 + e(ui−u0)AB∆W0

...

+ e(ui−ui−1)AF (X∆(ui−1))∆ui−1 + e(ui−ui−1)AB∆Wi−1

]
+ e(t−ui)AF (X∆(ui))(t− ui) + e(t−ui)AB(W (t)−W (ui))

=e(t−ui)AX∆(ui)

+ e(t−ui)AF (X∆(ui))(t− ui) + e(t−ui)AB(W (t)−W (ui))

=e(t−ui)A[X∆(ui) + F (X∆(ui))(t− ui) + B(W (t)−W (ui))]

which is equation (2.7).

Why is X∆ continuous?

Claim: For any ω ∈ Ω X∆(ω) : [0, T ] → H is continuous.
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Proof: If ui < t < ui+1, i ∈ {0, ..., n− 1} the continuity of X∆(ω)(t) is obvious.
If t = ui, i ∈ {0, ..., n− 1} we have for s ↘ t

lim
s↘ui

X∆(s) = lim
s↘ui

e(s−ui)A[X∆(ui) + F (X∆(ui))(s− ui) + B(W (s)−W (ui))]

=X∆(ui).

and for s ↗ t

lim
s↗ui

X∆(s) = lim
s↗ui

e(s−ui−1)A[X∆(ui−1) + F (X∆(ui−1))(s− ui−1) + B(W (s)−W (ui−1))]

=e(ui−ui−1)A[X∆(ui−1) + F (X∆(ui−1))(ui − ui−1) + B(W (ui)−W (ui−1))]

=X∆(ui). �
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2.3 Uniform convergence

In this section we show that (2.8) is fulfilled.

In the proofs we will see why the conditions on the coefficients given in section
1.2 are necessary.

We have:

Theorem 2.1 If F = 0 and 1 ≤ p ≤ 2, then

E( sup
0≤t≤T

‖X∆(t)−X(t)‖p) → 0 as ρ(∆) →∞.

Theorem 2.2 If 1 ≤ p ≤ 2, then

E( sup
0≤t≤T

‖X∆(t)−X(t)‖p) → 0 as ρ(∆) → 0.

For the proofs we need some lemmas.

Lemma 2.3 The Gronwall Inequality

Let s, T ∈ R+ and let α, β : [s, T ] → R be integrable with

0 ≤ α(t) ≤ β(t) + L

∫ t

s
α(s)ds

for t ∈ [s, T ] where L > 0. Then

α(t) ≤ β(t) + L

∫ t

s
eL(t−s)β(s)ds

for t ∈ [s, T ].

Proof
[Pac06, Theorem 1.5.1., p.40] �

The next lemma is well-known in one dimension. If we consider a Gaussian
random variable with state space R, we can estimate the p-th moment by the
second moment for even p. If we are concerned with a Gaussian random variable
taking values in a Hilbert space (c.f. [KF01, Proposition 1.3, p.10]), we have
the same result:

Lemma 2.4 Let Y be a Gaussian random variable with state space H. If
m ∈ N then there exists a constant cm > 0 depending on m with

E‖Y ‖2m ≤ cm(E‖Y ‖2)m.
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Proof
We reduce it to the case of real valued Gaussian random variables. Let ek, k ∈
N, be an orthonormal basis of H. Since Y is Gaussian, 〈Y, ek〉 is Gaussian for
all k ∈ N (c.f. [KF01, Proposition 1.5, p.10]). By the Hölder inequality we get

E‖Y ‖2m

=E(
∞∑

j=1

〈Y, ej〉2)m

= lim
N→∞

E(
N∑

j=1

〈Y, ej〉2)m

= lim
N→∞

E(
∑

1≤j1≤...≤jm≤N

〈Y, ej1〉2...〈Y, ejm〉2)

= lim
N→∞

∑
1≤j1≤...≤jm≤N

E(〈Y, ej1〉2...〈Y, ejm〉2)

≤ lim
N→∞

∑
1≤j1≤...≤jm≤N

[
(E〈Y, ej1〉2m)

1
m ...(E〈Y, ejm〉2m)

1
m

]
.

Since 〈Y, ek〉 is Gaussian for all k ∈ N, we can apply the well-known equality
for moments of real valued Gaussian random variables. For all k, m ∈ N there
exists a constant cm > 0 with

E〈Y, ek〉2m

=cm(E〈Y, ek〉2)m.

So we get

lim
N→∞

∑
1≤j1≤...≤jm≤N

[
(E〈Y, ej1〉2m)

1
m ...(E〈Y, ejm〉2m)

1
m

]
= lim

N→∞

∑
1≤j1≤...≤jm≤N

[
c

1
m
m E〈Y, ej1〉2... c

1
m
m E〈Y, ejm〉2

]
=cm lim

N→∞

∑
1≤j1≤...≤jm≤N

[
E〈Y, ej1〉2... E〈Y, ejm〉2

]
=cm lim

N→∞
(

N∑
j=1

E〈Y, ej〉2)m

=cm lim
N→∞

(E
N∑

j=1

〈Y, ej〉2)m

=cm(E
∞∑

j=1

〈Y, ej〉2)m

=cm(E‖Y ‖2)m.

�
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Definition: For Q ∈ L(U) nonnegative, symmetric and with finite trace, W (t), t ∈
[0, T ], a Q-Wiener process on (Ω,F , P ), Φ : [0, T ] → L2(Q

1
2 (U),H) stochasti-

cally integrable with respect to W , A : D(A) ⊂ H → H the generator of a
C0−semigroup of contractions etA, t ∈ [0, T ], we call∫ t

0
e(t−s)AΦ(s)dW (s) (2.10)

the stochastic convolution.

Since B depends not on time, we will see in the next lemma that the difference
X∆(t)−X(t) is a stochastic convolution, where X is the mild solution of problem
(1.2) and X∆ is the Euler approxiation defined by (2.5).

Let us define u(s) by u(s) = 0 for s = 0 and u(s) = uν for uν < s ≤ uν+1, s ∈
(0, T ] and

X
R

∆(t) := etAx +
∫ t

0
e(t−u(s))AF (X∆(u(s)))ds +

∫ t

0
e(t−u(s))ABdW (s)

for t ∈ [0, T ].

Lemma 2.5 It holds X∆ = X
R

∆ P-a.s. Especially for F = 0 it holds

X∆(t)−X(t) =
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s) P-a.s.

Proof
All equations are true P-a.s. It holds

X∆(t)−X(t)

=X∆(t)−X
R

∆(t) + X
R

∆(t)−X(t)

where

X∆(t)−X
R

∆(t)

=etAx +
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1

− etAx−
∫ t

0
e(t−u(s))AF (X∆(u(s)))ds−

∫ t

0
e(t−u(s))ABdW (s)

=
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1

−
∫ t

0
e(t−u(s))AF (X∆(u(s)))ds−

∫ t

0
e(t−u(s))ABdW (s)
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=
∑

1≤ν≤n
uν−1≤t

e(t−uν−1)AF (X∆(uν−1))∆uν−1 + e(t−uν−1)AB∆Wν−1

−
∑

1≤ν≤n
uν−1≤t

[ ∫
(uν−1,uν−1+∆uν−1]

e(t−u(s))AF (X∆(u(s)))ds−
∫

(uν−1,uν−1+∆uν−1]
e(t−u(s))ABdW (s)

]

=
∑

1≤ν≤n
uν−1≤t

[
e(t−uν−1)AF (X∆(uν−1))∆uν−1 −

∫
(uν−1,uν−1+∆uν−1]

e(t−u(s))AF (X∆(u(s)))ds
]

+
∑

1≤ν≤n
uν−1≤t

[
e(t−uν−1)AB∆Wν−1 −

∫
(uν−1,uν−1+∆uν−1]

e(t−u(s))ABdW (s)
]

=
∑

1≤ν≤n
uν−1≤t

[
e(t−uν−1)AF (X∆(uν−1))∆uν−1 − e(t−uν−1)AF (X∆(uν−1))∆uν−1

]

+
∑

1≤ν≤n
uν−1≤t

[
e(t−uν−1)AB∆Wν−1 − e(t−uν−1)AB

∫
(uν−1,uν−1+∆uν−1]

dW (s)
]

=
∑

1≤ν≤n
uν−1≤t

[
e(t−uν−1)AB∆Wν−1 − e(t−uν−1)AB∆Wν−1

]
=0.

So we have for F = 0

X∆(t)−X(t)

=X
R

∆(t)−X(t)

=etAx +
∫ t

0
e(t−u(s))ABdW (s)− etAx−

∫ t

0
e(t−s)ABdW (s)

=
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s).

�

The next theorem gives us an estimate of the stochastic convolution.

Theorem 2.6 Let Q ∈ L(U) nonnegative, symmetric and with finite trace and
let W (t), t ∈ [0, T ], be the Q-Wiener process on (Ω,F , P ). Assume that A gen-
erates a contraction semigroup and Φ : [0, T ] → L2(Q

1
2 (U),H) is stochastically

integrable. Then there exists a constant c > 0 with

E( sup
0≤t≤T

‖
∫ t

0
e(t−s)AΦ(s)dW (s)‖2) ≤ c

∫ T

0
‖Φ(s)‖2

L2(Q
1
2 (U),H)

ds.

Proof
[DPZ92, Theorem 6.10, p.160] �
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Now we are prepared to prove theorem 2.1 and 2.2

Proof of Theorem 2.1
Since 1 ≤ p ≤ 2 there exists by the Hölder inequality a constant c1 > 0
depending on p with

E( sup
0≤t≤T

‖X∆(t)−X(t)‖p)

≤c1(E( sup
0≤t≤T

‖X∆(t)−X(t)‖2))
p
2 .

For the expectation we get by lemma 2.5

E( sup
0≤t≤T

‖X∆(t)−X(t)‖2)

=E( sup
0≤t≤T

‖
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s)‖2).

By theorem 2.6 there exists a constant c2 > 0 with

E( sup
0≤t≤T

‖
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s)‖2)

≤c2

∫ T

0
‖(e(s−u(s))A − 1)B(J−1)‖2

L2(Q
1
2
1 (U),H)

ds

=c2

∫ T

0
‖(e(s−u(s))A − 1)B‖2

L2(U,H)ds

=c2

∫ T

0

∑
k∈N

‖(e(s−u(s))A − 1)Bek‖2ds,

where ek, k ∈ N, is an arbitrary orthonormal basis of U . In order to show
convergence to 0 we have to show for the integrand

lim
ρ(∆)→0

∑
k∈N

‖(e(s−u(s))A − 1)Bek‖2 = 0

for all s ∈ [0, T ] and that there exists an integrable dominating function.

In order to show the convergence of the integrand we have to show for fixed
s ∈ [0, T ]

lim
ρ(∆)→0

‖(e(s−u(s))A − 1)Bek‖2 = 0 ∀k ∈ N

and that there exists a sequence yk, k ∈ N, independent of ρ(∆) such that

‖(e(s−u(s))A − 1)Bek‖2 ≤ yk

for all k ∈ N and
∑

k∈N yk < ∞.

The latter is true because by the contraction property of the semigroup we get

‖(e(s−u(s))A − 1)Bek‖2 ≤ 22‖Bek‖2 ∀k ∈ N
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and B ∈ L2(U,H).

It is true that

lim
ρ(∆)→0

‖(e(s−u(s))A − 1)Bek‖2 = 0 ∀k ∈ N

because of the continuity of the semigroup. The integrable dominating function
can be choosen by 22‖B‖2

L2(U,H). �

Proof of Theorem 2.2
By the definition of X∆ and X and lemma 2.5 we get

X∆(t)−X(t)

=etAx +
∫ t

0
e(t−u(s))AF (X∆(u(s)))ds +

∫ t

0
e(t−u(s))ABdW (s)

− etAx−
∫ t

0
e(t−s)AF (X(s))ds−

∫ t

0
e(t−s)ABdW (s)

=
∫ t

0
e(t−u(s))AF (X∆(u(s)))− e(t−s)AF (X(s))ds

+
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s) P-a.s.

Let S ∈ [0, T ]. Using the triangle inequality we get for c := 2p

E( sup
0≤t≤S

‖X∆(t)−X(t)‖p)

≤cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X∆(u(s)))− e(t−s)AF (X(s))ds‖p)

+ cE( sup
0≤t≤S

‖
∫ t

0
e(t−s)A(e(s−u(s))A − 1)BdW (s)‖p).

Since 1 ≤ p ≤ 2 the second term converges to 0 as ρ(∆) → 0 by theorem 2.1.
The first term can be divided into three parts, the constant c changes, but
depends still on p :

cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X∆(u(s)))− e(t−s)AF (X(s))ds‖p)

≤cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X∆(u(s)))− e(t−u(s))AF (X(u(s)))ds‖p)

+cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X(u(s)))− e(t−u(s))AF (X(s))ds‖p)

+cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X(s))− e(t−s)AF (X(s))ds‖p) =: A+ B + C.

Consider A:
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By the Hölder inequality, the semigroup property, the Lipschitz condition and
Fubini we get (constant c changes but depends still on p)

cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X∆(u(s)))− e(t−u(s))AF (X(u(s)))ds‖p)

≤cE( sup
0≤t≤S

∫ t

0
‖e(t−u(s))AF (X∆(u(s)))− e(t−u(s))AF (X(u(s)))‖pds)

≤cE(
∫ S

0
‖F (X∆(u(s)))− F (X(u(s)))‖pds)

≤cKpE(
∫ S

0
‖X∆(u(s))−X(u(s))‖p ds)

=cKp

∫ S

0
E(‖X∆(u(s))−X(u(s))‖p )ds

≤cKp

∫ S

0
E( sup

0≤t≤s
‖X∆(u(t))−X(u(t))‖p)ds

≤cKp

∫ S

0
E( sup

0≤t≤s
‖X∆(t)−X(t)‖p)ds

Consider B:
By the Hölder inequality, the semigroup property, the Lipschitz condition and
Fubini we get (constant c changes but depends still on p)

cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X(u(s)))− e(t−u(s))AF (X(s))ds‖p)

≤cE( sup
0≤t≤S

∫ t

0
‖e(t−u(s))AF (X(u(s)))− e(t−u(s))AF (X(s))‖pds)

≤cE(
∫ S

0
‖F (X(u(s)))− F (X(s))‖pds)

≤cKpE(
∫ S

0
‖X(u(s))−X(s)‖p ds)

=cKp

∫ S

0
E‖X(u(s))−X(s)‖p ds

≤cKp
( ∫ S

0
E‖X(u(s))−X(s)‖2 ds

) 1
2 .

By Propostion 1.5 we know, that there exists a continuous version of X. There-
fore we can assume that ‖X(ω)(u(s)) −X(ω)(s)‖ converges to 0 as ρ(∆) → 0
for all s ∈ [0, S], ω ∈ Ω. So the integrand converges to 0 as ρ(∆) → 0 for all
s ∈ [0, S], ω ∈ Ω.
For the integrand we have

‖X(u(s))−X(s)‖2

≤2‖X(u(s))‖2 + 2‖X(s)‖2.
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Since X is the mild solution it holds by definition that sup
0≤t≤T

E(‖X(t)‖2) < ∞

and therefore the integrand is integrable. Together with the dominated conver-
gence theorem we obtain convergence to 0.

Consider C:

By the Hölder inequality, the semigroup property and Fubini we get (constant
c changes but depends still on p)

cE( sup
0≤t≤S

‖
∫ t

0
e(t−u(s))AF (X(s))− e(t−s)AF (X(s))ds‖p)

=cE( sup
0≤t≤S

‖
∫ t

0
e(t−s)A(e(s−u(s))A − 1)F (X(s))ds‖p)

≤cE( sup
0≤t≤S

∫ t

0
‖e(t−s)A(e(s−u(s))A − 1)F (X(s))‖pds)

≤cE( sup
0≤t≤S

∫ t

0
‖(e(s−u(s))A − 1)F (X(s))‖pds)

≤cE(
∫ S

0
‖(e(s−u(s))A − 1)F (X(s))‖pds)

=c

∫ S

0
E‖(e(s−u(s))A − 1)F (X(s))‖pds

≤c
( ∫ S

0
E‖(e(s−u(s))A − 1)F (X(s))‖2ds

) p
2 .

The integrand converges to 0 as ρ(∆) → 0 for each s ∈ [0, S] and ω ∈ Ω.

By the linear growth condition we have for the integrand

‖(e(s−u(s))A − 1)F (X(s))‖2

≤22‖F (X(s))‖2

≤22K2(1 + ‖X(s)‖)2

=22K2(1 + 2‖X(s)‖+ ‖X(s)‖2).

This term is integrable: By the Hölder inequality there exists a constant d > 0
with ∫ S

0
E‖X(s)‖ds

≤d
( ∫ S

0
E‖X(s)‖2ds

) 1
2 .

Since X is the mild solution it holds by definition that sup
0≤t≤T

E(‖X(t)‖2) < ∞

and therefore 22K2(1 + 2‖X(s)‖ + ‖X(s)‖2) is integrable. Together with the
dominated convergence theorem we obtain convergence to 0.
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If we put A, B and C together we get for our error estimate

E( sup
0≤t≤S

‖X∆(t)−X(t)‖p)

≤cKp

∫ S

0
E( sup

0≤t≤s
‖X∆(t)−X(t)‖p)ds +D∆(S)

for S ∈ [0, T ], where D∆ : [0, T ] → R+ is an increasing function for each
approximation ∆ and D∆(T ) converges to 0 as ρ(∆) → 0. With Gronwalls
inequality (lemma 2.3) we get

E( sup
0≤t≤S

‖X∆(t)−X(t)‖p)

≤cKp

∫ S

0
ecKp(S−s)D∆(s)ds +D∆(S)

for S ∈ [0, T ], especially for S = T we get

E( sup
0≤t≤T

‖X∆(t)−X(t)‖p)

≤cKp

∫ T

0
ecKp(T−s)D∆(s)ds +D∆(T )

≤cKp

∫ T

0
ecKpTD∆(T )ds +D∆(T )

≤(cKpTecKpT + 1)D∆(T )

and the last term converges to 0 as ρ(∆) → 0. �

This proof is due to Kloeden, Platen [KP92, Theorem 10.2.2, p.342].
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2.4 Uniform convergence for unbounded generator

In this section we show how we can modify our approximation X∆ in the case
of unbounded generator A in order to deal with bounded generators only and
to fulfill (2.8).

We make use of the Yosida approximation of A, called Aα, α > 0. The most
important properties of the Yosida approximation are that it is bounded for
every α > 0 and that we have ‖(esA − esAα)h‖ → 0 as α → ∞ for all h ∈ H

uniformly on bounded intervalls (c.f. theorem 1.2).

Let us define

• Xα as the mild solution of problem (1.2) relative to Aα

• X∆,α as the Euler approximation of Xα.

By theorem 2.1 and 2.2 we know that X∆,α approximates Xα in the sense of
(2.6) (2.7) and (2.8).

Here we will show, that we can approximate X by Xα in the sense of (2.8).

Finally we have the possiblity to approximate X by X∆,α in the sense of (2.8).
This kind of double approximation is proved in corollary 2.12 and 2.13.

For ‖x‖ < c̄ < ∞ we define the stopping time τ := inf{t ≥ 0|‖X(t)‖ ≥ c̄}.
Then we have:

Theorem 2.7 If F = 0 and p > 2, then

E( sup
0≤t≤T

‖Xα(t)−X(t)‖p) → 0 for α →∞.

Theorem 2.8 If p > 2, then

E( sup
0≤t≤T∧τ

‖Xα(t)−X(t)‖p) → 0 for α →∞.

Remark: We can show with the Hölder inequality, that both theorems are also
true for 1 ≤ p ≤ 2.

The proof of theorem 2.7 is given by [DPZ92, Theorem 5.12, p.129] but is also
stated here in order to give more details. This would make it easier to compute
the rate of convergence in practice. The proof of theorem 2.8 works similar to
the proof of theorem 2.2.

For the proof of theorem 2.7 we need the following three lemmas, which are all
due to Da Prato, Zabczyk [DPZ92, p.128].

Assume that F = 0 and x = 0. Then we have for the mild solution X of
problem (1.2)

X(t) =
∫ t

0
e(t−s)ABdW (s) P-a.s.
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The next lemma gives us an alternative representation of the the right hand
side, which is a stochastic convolution (c.f. definition (2.10)). With the help of
this representation we obtain two helpfull estimates.

Lemma 2.9 Let β ∈ (0, 1). Then there is the following representation of the
stochastic convolution.∫ t

0
e(t−s)ABdW (s) =

sinπβ

π

∫ t

0
e(t−s)A(t− s)β−1Y (s)ds P-a.s.

where
Y (s) :=

∫ s

0
e(s−r)A(s− r)−βBdW (r).

Proof
The proof is based on the stochastic Fubini theorem and the formula∫ t

r
(t− s)β−1(s− r)−βds =

π

sinπβ

which holds for all 0 ≤ r ≤ t, 0 < β < 1. For a detailed proof see [KF01,
Theorem 3.12, p.84]. �

Lemma 2.10 Let X(t) :=
∫ t
0 e(t−s)A(t − s)β−1Y (s)ds with Y : [0, T ] → H,∫ T

0 ‖Y (s)‖2mds < ∞, 0 < β < 1 and m ∈ N, m > 1
2β . Then there exists a

constant c > 0 depending on β, m and T with

sup
0≤t≤T

‖X(t)‖2m ≤ c

∫ T

0
‖Y (s)‖2mds.

Proof
Define Z(s) := e(t−s)A(t − s)β−1 for t ∈ [0, T ], s ∈ [0, t] and q := 1

1− 1
2m

. Since

m > 1
2 , q is well defined. By the defintion of X and the Hölder inequality we

get

‖X(t)‖2m

=‖
∫ t

0
Z(s)Y (s)ds‖2m

≤(
∫ t

0
‖Z(s)Y (s)‖ds)2m

≤(
∫ t

0
‖Z(s)‖L(H)‖Y (s)‖ds)2m

≤
( ∫ t

0
‖Z(s)‖q

L(H)ds
) 2m

q

∫ t

0
‖Y (s)‖2mds.

Consider
∫ t
0 ‖Z(s)‖q

L(H)ds:

28



By the defintion of Z and the contraction property of the semigroup it holds∫ t

0
‖Z(s)‖q

L(H)ds

=
∫ t

0
‖e(t−s)A(t− s)β−1‖q

L(H)ds

=
∫ t

0
‖e(t−s)A‖q

L(H)(t− s)(β−1)qds

≤
∫ t

0
(t− s)(β−1)qds

=
∫ t

0
s(β−1)qds

≤
∫ T

0

1
sb

ds

for b := (1− β)q. Since m > 1
2β we have β > 1

2m ⇔ 1− β < 1− 1
2m ⇔ 1− β <

1
q ⇔ b = (1− β)q < 1 and thus

∫ T
0

1
sb ds ≤ ∞. So there exists a constant c1 > 0

depending on β, m, T with

‖X(t)‖2m ≤ c2

∫ t

0
‖Y (s)‖2mds

and finally

sup
0≤t≤T

‖X(t)‖2m ≤ c2

∫ T

0
‖Y (s)‖2mds.

�

Lemma 2.11 Let β ∈ (0, 1
2) and Y (s) be as in lemma 2.9 and m ∈ N. Then

there exists a constant c > 0 depending on m, β, T and B with

E

∫ T

0
‖Y (s)‖2mds ≤ c.

Proof
For fixed s ∈ [0, T ] Y (s) =

∫ s
0 e(s−r)A(s − r)−βBdW (r) is a Gaussian random

variable with state space H. Since m ∈ N there exists by lemma 2.4 a constant
cm > 0 depending on m with

E‖Y (s)‖2m

≤cm(E‖Y (s)‖2)m

By the definition of the stochastic integral, the Itô-isometry and the semigroup
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property we have

E‖Y (s)‖2

=E‖
∫ s

0
e(s−r)A(s− r)−βBdW (r)‖2

=E‖
∫ s

0
e(s−r)A(s− r)−βB(J−1) dW (r)‖2

=
∫ s

0
‖e(s−r)A(s− r)−βB(J−1)‖2

L2(Q
1
2
1 (U),H)

dr

=
∫ s

0
(s− r)−2β‖B‖2

L2(U,H)dr

=
∫ s

0
r−2β‖B‖2

L2(U,H)dr

≤
∫ T

0
r−2β‖B‖2

L2(U,H)dr.

Since β ∈ (0, 1
2) and B ∈ L2 there exists a constant c > 0 depending on β, T, B

with ∫ T

0
r−2β‖B‖2

L2(U,H)dr = c.

Consequently there exists a constant d > 0 depending on m, β, T, B with

E

∫ T

0
‖Y (s)‖2mds ≤ d.

�

Now we are prepared to prove theorem 2.7 and 2.8

Proof of Theorem 2.7
Since p > 2, (1

p , 1
2) 6= ∅. Thus let 1

p < β < 1
2 and m ∈ N, m > p

2 . Since

X(t) = etAx +
∫ t

0
e(t−s)ABdW (s)

and

Xα(t) = etAαx +
∫ t

0
e(t−s)AαBdW (s),

we have by the factorization method (c.f. lemma 2.9)

X(t) = etAx +
sin πβ

π

∫ t

0
e(t−s)A(t− s)β−1Y (s)ds

where
Y (s) :=

∫ s

0
e(s−r)A(s− r)−βBdW (r)

and

Xα(t) = etAαx +
sinπβ

π

∫ t

0
e(t−s)Aα(t− s)β−1Yα(s)ds,
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where
Yα(s) :=

∫ s

0
e(s−r)Aα(s− r)−βBdW (r)

respectively. Thus we can write

Xα(t)−X(t)

=etAαx− etAx

+
sinπβ

π

∫ t

0
(e(t−s)A − e(t−s)Aα)(t− s)β−1Y (s)ds

+
sinπβ

π

∫ t

0
e(t−s)Aα(t− s)β−1(Y (s)− Yα(s))ds =: Hα(t) + Iα(t) + Jα(t)

We have to show that E
(

sup
0≤t≤T

‖Hα(t)‖p
)
, E

(
sup

0≤t≤T
‖Iα(t)‖p

)
and E

(
sup

0≤t≤T
‖Jα(t)‖p

)
converge to 0 as α →∞.

Consider Hα(t):
Since Aα is the Yosida approximation of A, we get by theorem 1.2 that ‖esAαh−
esAh‖ converges to 0 for α →∞ for all h ∈ H uniformly on bounded intervalls.
Consequently we get

lim
α→∞

sup
0≤t≤T

‖etAαx− etAx‖p = 0.

Consider Iα(t):

There exists a constant c1 > 0 depending on p and β with

‖Iα(t)‖p

=‖sinπβ

π

∫ t

0
(e(t−s)A − e(t−s)Aα)(t− s)β−1Y (s)ds‖p

≤c1(
∫ t

0
‖(e(t−s)A − e(t−s)Aα)(t− s)β−1Y (s)‖ds)p

≤c1(
∫ t

0
|(t− s)β−1|‖(e(t−s)A − e(t−s)Aα)Y (s)‖ds)p

=c1‖fg‖p
1,

where f(s) := ‖(e(t−s)A−e(t−s)Aα)Y (s)‖ and g(s) := |(t−s)β−1|. We now want
to apply the Hölder inequality. Therefore define q by 1

p + 1
q = 1. Consider g: It

holds

‖g‖p
q

=(
∫ t

0
|(t− s)β−1|qds)

p
q

=(
∫ t

0
s(β−1)qds)

p
q

=(
∫ t

0

1
sb

ds)
p
q
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≤(
∫ T

0

1
sb

ds)
p
q =: h

for b := (1−β)q. Since β > 1
p ⇔ 1−β < 1− 1

p ⇔ 1−β < 1
q ⇔ b = (1−β)q < 1,

we have h < ∞. Thus there exists a constant c2 > 0 depending on p, β, T

with ‖g‖p
q ≤ c2. Hölder inequality gives us

E sup
0≤t≤T

‖fg‖p
1

≤c2E sup
0≤t≤T

‖f‖p
p

=c2E sup
0≤t≤T

∫ t

0
‖(e(t−s)A − e(t−s)Aα)Y (s)‖pds

≤c2E sup
0≤t≤T

∫ T

0
‖(e(t∨s−s)A − e(t∨s−s)Aα)Y (s)‖pds

≤c2E

∫ T

0
sup

0≤t≤T
‖(e(t∨s−s)A − e(t∨s−s)Aα)Y (s)‖pds

Since Aα is the Yosida approximation of A, we get by theorem 1.2 that ‖(esA−
esAα)h‖ converges to 0 as α →∞ for all h ∈ H uniformly on bounded intervalls.

By the semigroup property we have for the integrand

‖(e(t−s)A − e(t−s)Aα)Y (s)‖p ≤ 2p‖Y (s)‖p.

This term is integrable: Since m > p
2 , there exists by the Hölder inequality a

constant c3 > 0 depending on m, p with

E

∫ T

0
‖Y (s)‖pds ≤ c3(E

∫ T

0
‖Y (s)‖2mds)

p
2m .

Since β < 1
2 there exists by lemma 2.11 a constant c5 > 0 depending on

m, β, T, B, p with

(E
∫ T

0
‖Y (s)‖2mds)

p
2m ≤ c5.

So we get an integrable dominating function and from the dominated conver-
gence theorem follows

lim
α→∞

E sup
0≤t≤T

‖Iα(t)‖p = 0.

Consider Jα(t):
Before we have a detailed look at Jα(t), note the following inequality concerning
E‖Y (s)−Yα(s)‖2: By the definition of the stochastic integral, the Itô-isometry
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and equation (1.1) we get

E‖Y (s)− Yα(s)‖2

=E‖
∫ s

0
(e(s−r)A − e(s−r)Aα)(s− r)−βBdW (r)‖2

=
∫ s

0
‖(e(s−r)A − e(s−r)Aα)(s− r)−βB‖2

L2(U,H)dr

=
∫ s

0
(s− r)−2β‖(e(s−r)A − e(s−r)Aα)B‖2

L2(U,H)dr

=
∫ s

0
r−2β‖(erA − erAα)B‖2

L2(U,H)dr

≤
∫ T

0
r−2β‖(erA − erAα)B‖2

L2(U,H)dr

=
∫ T

0
r−2β

∞∑
k=1

‖(erA − erAα)B(ek)‖2dr

=
∞∑

k=1

∫ T

0
r−2β‖(erA − erAα)B(ek)‖2dr

(2.11)

Since m > p
2 , there exists by the Hölder inequality a constant c1 > 0 depending

on m, p with

E sup
0≤t≤T

‖Jα(t)‖p ≤ c1(E sup
0≤t≤T

‖Jα(t)‖2m)
p

2m .

Since β > 1
p ⇔ p > 1

β ⇔
p
2 > 1

2β , m > p
2 and p > 2, we have m > 1

2β and thus
there exists by lemma 2.10 a constant c2 > 0 depending on β, m, T with

E sup
0≤t≤T

‖Jα(t)‖2m

≤c2E

∫ T

0
‖Y (s)− Yα(s)‖2mds.

It remains to show, that the expectation converges to 0.

By Fubini we get

E

∫ T

0
‖Y (s)− Yα(s)‖2mds

=
∫ T

0
E‖Y (s)− Yα(s)‖2mds.

Since m ∈ N and Y (s)−Yα(s) is Gaussian there exists by lemma 2.4 a constant
c3 > 0 depending on m with∫ T

0
E‖Y (s)− Yα(s)‖2mds

≤c4

∫ T

0
(E‖Y (s)− Yα(s)‖2)mds.

33



By inequality (2.11) we get∫ T

0
(E‖Y (s)− Yα(s)‖2)mds

≤T
( ∞∑

k=1

∫ T

0
r−2β‖(erA − erAα)B(ek)‖2dr

)m
.

It remains to show, that the sum converges to 0. For this reason we have to
show, that

lim
α→∞

∫ T

0
r−2β‖(erA − erAα)B(ek)‖2dr = 0 for all k ∈ N. (2.12)

and that there exists a sequence yk, k ∈ N, such that∫ T

0
r−2β‖(erA − erAα)B(ek)‖2dr ≤ yk (2.13)

for all k ∈ N, α > 0 and
∑

k∈N yk < ∞.

Let us show (2.12). Since Aα is the Yosida approximation of A, we get by
theorem 1.2 that ‖(erA − erAα)h‖ converges to 0 for α → ∞ for all h ∈ H

uniformly on bounded intervalls.

By the semigroup property we have for the integrand

r−2β‖(erA − erAα)B(ek)‖2

≤r−2β22‖B‖2
L2(U,H).

Since β < 1
2 ⇔ 2β < 1, this term is Riemann integrable over [0, T ].

So we get an integrable dominating function and from the dominated conver-
gence theorem follows (2.12).

Let us show (2.13). For k ∈ N define

yk := 22‖B(ek)‖2

∫ T

0
r−2βdr.

Since β < 1
2 and B ∈ L2 it holds

∑
k∈N

yk = 22‖B‖2
L2(U,H)

∫ T

0
r−2βdr < ∞,

and thus the sequence yk, k ∈ N, fulfills (2.13). �

Proof of Theorem 2.8
By definition of Xα and X we get

Xα(t)−X(t)
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=etAαx +
∫ t

0
e(t−s)AαF (Xα(s))ds +

∫ t

0
e(t−s)AαBdW (s)

− etAx−
∫ t

0
e(t−s)AF (X(s))ds−

∫ t

0
e(t−s)ABdW (s)

=etAαx− etAx

+
∫ t

0
e(t−s)AαF (Xα(s))− e(t−s)AF (X(s))ds

+
∫ t

0
(e(t−s)Aα − e(t−s))A)BdW (s).

Let S ∈ [0, T ]. Using the triangle inequality we get for c = 2p

E( sup
0≤t≤S∧τ

‖Xα(t)−X(t)‖p)

≤cE( sup
0≤t≤S∧τ

‖etAαx− etAx +
∫ t

0
(e(t−s)Aα − e(t−s)A)BdW (s)‖p)

+cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (Xα(s))− e(t−s)AF (X(s))ds‖p).

Since p > 2, the first term converges to 0 as α →∞ by theorem 2.7. The second
term can be divided into two parts, the constant c changes, but depends still
on p :

cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (Xα(s))− e(t−s)AF (X(s))ds‖p)

≤cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (Xα(s))− e(t−s)AαF (X(s))ds‖p)

+cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (X(s))− e(t−s)AF (X(s))ds‖p) =: A+ B.

Consider A:

By the Hölder inequality, the semigroup property, the Lipschitz condition and
Fubini we get (constant c changes, but depends still on p)

cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (Xα(s))− e(t−s)AαF (X(s))ds‖p)

≤cE( sup
0≤t≤S∧τ

∫ t

0
‖e(t−s)Aα(F (Xα(s))− F (X(s)))‖pds)

≤cE(
∫ S∧τ

0
‖F (Xα(s))− F (X(s))‖pds)

≤cKpE(
∫ S

0
‖Xα(s)−X(s)‖p 1[0,τ ](s)ds)

=cKp

∫ S

0
E(‖Xα(s)−X(s)‖p 1[0,τ ](s))ds
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≤cKp

∫ S

0
E( sup

0≤t≤s∧τ
‖Xα(t)−X(t)‖p)ds.

Consider B:
By the Hölder inequality we get (constant c changes, but depends still on p)

cE( sup
0≤t≤S∧τ

‖
∫ t

0
e(t−s)AαF (X(s))− e(t−s)AF (X(s))ds‖p)

≤cE( sup
0≤t≤S∧τ

∫ t

0
‖(e(t−s)Aα − e(t−s)A)F (X(s))‖pds)

≤cE( sup
0≤t≤S∧τ

∫ T

0
‖(e(t∨s−s)Aα − e(t∨s−s)A)F (X(s))‖pds)

≤cE(
∫ T

0
sup

0≤t≤S∧τ
‖(e(t∨s−s)Aα − e(t∨s−s)A)F (X(s))‖pds).

Since Aα is the Yosida approximation of A, we know by theorem 1.2 that
‖(esA − esAα)h‖ converges to 0 as α →∞ for all h ∈ H uniformly on bounded
intervalls. By the linear growth condition we get for 0 ≤ t ≤ S ∧ τ

‖(e(t∨s−s)Aα − e(t∨s−s)A)F (X(s))‖p

≤Kp‖e(t∨s−s)Aα − e(t∨s−s)A‖p
L(H)(1 + ‖X(s)‖)p

≤Kp2p(1 + c̄)p.

So the dominated convergence theorem gives us convergence to 0 of B.
If we put A and B together we get for our error estimate

E( sup
0≤t≤S∧τ

‖Xα(t)−X(t)‖p)

≤cKp

∫ S

0
E( sup

0≤t≤s∧τ
‖Xα(t)−X(t)‖p)ds +Dα(S)

for S ∈ [0, T ], where Dα : [0, T ] → R+ is an increasing function for all α > 0
and Dα(T ) converges to 0 as α → ∞. With Gronwalls inequality (lemma 2.3)
we get

E( sup
0≤t≤S∧τ

‖Xα(t)−X(t)‖p)

≤cKp

∫ S

0
ecKp(S−s)Dα(s)ds +Dα(S)

for S ∈ [0, T ], especially for S = T we get

E( sup
0≤t≤T∧τ

‖Xα(t)−X(t)‖p)

≤cKp

∫ T

0
ecKp(T−s)Dα(s)ds +Dα(T )

≤cKp

∫ T

0
ecKpTDα(T )ds +Dα(T )

≤(cKpTecKpT + 1)Dα(T )

36



and the last term converges to 0 as α →∞. �

Now we can show how the approximation of the mild solution X relative to a
general operator A works. Therefore define X∆,α as the Euler approximation
of the mild solution relative to the Yosida approximation Aα. Then we have:

Corollary 2.12 If F = 0 and 1 ≤ p ≤ 2 then

E( sup
0≤t≤T

‖X∆,α(t)−X(t)‖p) → 0 as α →∞, ρ(∆) → 0.

Corollary 2.13 If 1 ≤ p ≤ 2 then

E( sup
0≤t≤T∧τ

‖X∆,α(t)−X(t)‖p) → 0 as α →∞, ρ(∆) → 0.

Proof of Corollary 2.12
Using the triangle inequality we get for c = 2p

E( sup
0≤t≤T

‖X∆,α(t)−X(t)‖p)

≤cE( sup
0≤t≤T

‖X∆,α(t)−Xα(t)‖p)

+cE( sup
0≤t≤T

‖Xα(t)−X(t)‖p).

For a fixed α and because of 1 ≤ p ≤ 2 the first term of the sum converges to
0 as ρ(∆) → 0 by theorem 2.1. For the second term we have by the Hölder
inequality for q > 2 (The constant c changes and depends on p, q.)

cE( sup
0≤t≤T

‖Xα(t)−X(t)‖p)

≤c(E( sup
0≤t≤T

‖Xα(t)−X(t)‖q))
p
q .

This term converges to 0 as α →∞ by theorem 2.7. �

Proof of Corollary 2.13
Using the triangle inequality we get for c = 2p

E( sup
0≤t≤T∧τ

‖X∆,α(t)−X(t)‖p)

≤cE( sup
0≤t≤T∧τ

‖X∆,α(t)−Xα(t)‖p)

+cE( sup
0≤t≤T∧τ

‖Xα(t)−X(t)‖p).

For a fixed α and because of 1 ≤ p ≤ 2 the first term of the sum converges to
0 as ρ(∆) → 0 by theorem 2.2. For the second term we have by the Hölder
inequality for q > 2 (The constant c changes and depends on p, q.)

cE( sup
0≤t≤T∧τ

‖Xα(t)−X(t)‖p)

≤c(E( sup
0≤t≤T∧τ

‖Xα(t)−X(t)‖q))
p
q .
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This term converges to 0 as α →∞ by theorem 2.8. �

As we see we have to choose a sufficient big α and depending on this a sufficient
small ρ(∆) in order to minimize the error.

2.5 Conclusion and future prospects

We have constructed a stochastic process, which approximates the mild solution
of a Hilbert space valued stochastic differential equation. We have proved the
existence of such a process for nonlinear equations with additive noise in the
sense that we have recursive calculability and uniform convergence of the error.
The latter means, that we have

E( sup
0≤t≤T

|Y (t)−X(t)|p) → 0

for a certain approximating process Y and 1 ≤ p ≤ 2. Therefore we have also
convergence in probability and convergence P-a.s. for a subsequence.

For future research we could think of the following questions, which are left
open here:

• What rate of convergence do we have?

• What are the optimal values for β and m in the proof of theorem 2.7?

• Is it possible to approximate our Euler approximation by a finite dimen-
sional process?

• Can we weaken the conditions concerning the coefficients, e.g. multiplica-
tive noise instead of additive noise?

• Can we weaken the conditions concerning the coefficients, e.g. monotoni-
city condition instead of Lipschitz continuity?

In the latter case we do not know up to now, if there exists a mild solution.
Therefore we would have to develop a numerical scheme, which has two proper-
ties: First, that it converges and secondly, that the limit is a mild solution. In
[Kry98, Chapter 1, p.1], [GK96] and [Gyö98] Gyöngy and Krylov established
these two properties for equations on Rd by using the Euler scheme.
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