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Introduction

Using methods of functional analysis, we present a transformation rule for signed
measures.

Let ν ∈ M(E,B(E)), I be an interval, E be a Banach space and H ⊂ E be a
continuously embedded Hilbert space. For certain maps F : I × E → E, which
are e.g. differentiable w.r.t. H and I and respect null sets, we gain a kind of
Maruyama-Girsanov-Cameron-Martin or Ramer formula for different measures
(cf. Theorem 5.4.1). We define the measure valued map

f νF : R → M(E,B(E))

s 7→ νs := F♦(s, ν) := F♦(s, ·)∗(ν),

where F♦(s, F (s, ·)) = idE, and obtain the following formula

dνt

dν0
= detF ′2(t, x) exp{

∫ t

0
C̃1
b
βνH(F ′1(s, x))(F (s, x))ds}, (0.1)

where
C̃1
b
βνH denotes the logarithmic gradient. This result is obtained using the

differentiation of signed measures. Namely (cf. Theorem 5.3.1), we prove and use
in the sequel that f νF is (τtv-)differentiable at t in H with logarithmic derivative

dνt
′(τtv)

dνt
(x) =

C̃1
b
βνH(F ′1(t, x))(F (t, x)) + tr(F ′′12(t, x) ◦ (F ′2(t, x))−1)

At the very end we notice that (0.1) is a generalization of the Maruyama-
Girsanov-Cameron-Martin formula, if F (t, ·) = id+ th, where h ∈ H.

The main aim of the presented thesis is to illustrate and motivate the idea of
the differentiation of a measure and to prove the theorems of [SvW95] rigorously,
where we weaken some of the assumptions. We try to do this in such a detailed
way, that it is suitable for everyone with a good knowledge in measure theory,
probability theory, basic stochastic analysis and Malliavin calculus, where the
latter two are only used for the examples. Beside that a profound functional
analytic background is quite helpful. We try to keep the presentation as self-
contained as possible.

iii
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Historic overview

Transformation rules for measures

A fundamental role plays the theorem of Girsanov and Cameron-Martin (cf.
[CM49]). For an absolutely continuous function h, with h(0) = 0, we define
T : C([0, 1])0 → C([0, 1])0, T (x) = x+ h. Let ν be the classical Wiener measure,
then

d(ν(id+ h(·))
dν

= exp

(∫ 1

0

ḣ(t)dWt −
1

2

∫ 1

0

(ḣ(s))2ds

)
.

If B is a Brownian motion under ν, then (by Girsanov) Bt −
∫ 1

0
h(s)ds is a

Brownian motion under ν(id+ h).
Many generalizations of this formula have been studied for the Gaussian mea-

sure, e.g. [Kue68, Gro60, Kus82, Ram74, Kus03]. [Ram74] is an essential result
for the generalization of the transformation of abstract Gaussian measures. A
condition, when the Ramer formula looks like the Girsanov formula is given
by [ZZ92]. Until the paper of [Bel90] most transformation rules for measure
on infinite dimensional Banach spaces E were stated for Gaussian measures. In
[Bel90] an arbitrary Borel measure and the translation Tt(x) := I(x)+tK(x), t ∈
[0, 1], x ∈ E, where K is e.g. a contraction, are considered. For νt := ν(Tt) this
is (cf. [Bel90, P.20, (10)])

dνt
dν

= exp

(∫ 1

0

L[K ◦ T−1
s ](Ts ◦ T−1(x))ds

)
,

where L denotes the integration by parts operator.
For a detailed overview we refer to e.g. [UZ00]. The modern theory of Gaus-

sian measures is presented in e.g. [Bog98].

Differentiation of measures

In 1966 the theory of differentiable measures on infinite dimensional spaces was
started by Fomin. In 1971 this theory was extended in [ASF71]. Its key idea
is similar to the concept of Gâuteaux-differentiation. The idea is to evaluate
the measure for every set permitted and varying it in one direction. In 1993 in
[SvW93] the differentiation of signed measures of finite total variation was stated
in a more general context.

Structure and results
In Chapter 1 we repeat basic definitions and outline general assertions needed
for the theory. After introducing the basic concepts of differentiation in Chap-
ter 2, we generalize them in Chapter 3 and define the general derivative of a
signed measure. In Chapter 4 we formulate some conditions, which insure that
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we can work with the theory presented so far. Chapter 5 is reserved for the key
results, which include a transformation rule for signed measures and finally we
give in Chapter 6 the Gaussian and Wiener measure as examples and derive the
Maruyama-Girsanov-Cameron-Martin formula. For the readers convenience an
index of the introduced notation is included.

After stating the general framework for the presented thesis at the beginning
of Chapter 2 we introduce the concept of Fomin-differentiability. We deduce a
few properties of the Fomin-derivative. These include that the Fomin-derivative
of a signed measure ν is absolutely continuous w.r.t. to this signed measure.
Thus we define the logarithmic derivative and motivate its name. Then the β-
differentiability is introduced. Using its transformation rule we show that each
Fomin-differentiable signed measure on Rn is absolutely continuous w.r.t. the
Lebesgue measure. The linearity and continuity of the Fomin-derivative are pre-
sented as well. At the end we introduce the logarithmic gradient and find out
that it is (ν-quasi) linear and continuous. Moreover, we give a definition for the
logarithmic gradient along a vector field and develop a condition such that it
exists.

Motivated by the formula of integrations by part we introduce the concept of
C-differentiability in Chapter 3. After having seen different concepts of differenti-
ation, we establish the general concept of differentiation of signed measures w.r.t.
a Hausdorff topology, give three examples of differentiation in this general con-
text and outline how the Fomin-, β- and C-derivative fit in the general picture. A
summary of their connections, which include a kind of main theorem of calculus,
is illustrated by a graphic. We remark that Sections 3.3 to 3.5 are independent
of the other parts (excluding Chapter 1). Though these parts can be understood
without reading the other parts, it is helpful to read the preceding parts carefully
as a motivation and for a better understanding of the general concept.

In Chapter 4 we present reasonable examples and conditions for the so far
introduced concepts. Thus we derive that Chapter 3 is applicable to an inter-
esting set of functions. Furthermore we prepare the proof of the key results.
We prove the existence of a norm-defining set, for which the key results will be
demonstrated (Theorems 5.3.1 and 5.4.1). We give explicit and sufficient condi-
tions for the existence of a local flow, which is used to define the differentiability
along a vector field. For this end we adapt methods of the theory of evolution-
ary equations to our needs. A further preparation it to adjust the well known
Lebesgue Theorem. At the end we prove a unique correspondence between C-
differentiability and τC-differentiability for a special set C̃1

b , which allows us to
exploit the results of Section 3.5 for the C-differentiability. Generally speaking
Chapter 4 is independent of the other parts.
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In Chapter 5 we present the key results. The Key Proposition divulges a for-
mula for the logarithmic gradient along a vector field in terms of the logarithmic
derivative. These results contribute heavily to the proof of the two main results,
namely the Main Theorem and the transformation rule for signed measures. The
results of Chapter 5 heavily depend on the results of Section 3.5 and Chapter 4.

Finally in Chapter 6 we expound as an example the Gaussian and Wiener mea-
sure. In the case of a Gaussian measure we deduct a Ramer type formula and
in the adapted Wiener case we rediscover the well known Maruyama-Girsanov-
Cameron-Martin formula. For this end we give explicit conditions and use the
theory about Carleman operators to deduce these assertions.

New aspects of the Thesis

We note that most of the results of Chapter 1 are essentially known. Chapter
2 is inspired by [ASF71] and most of the ideas of Chapter 3 can be found in
[SvW93]. The calculation and postulation of Chapter 4 are not done in the men-
tioned papers. In Chapter 5 the assertions and part of their proofs are indicated
in [SvW95]. For technical reasons we assume additional conditions. The postu-
lated smooth property is removed. If the smoothness should be kept, stronger
assumption would have to hold for the norm-defining set and the local flows.
Though the main assertions of Chapter 6 can be found in [SvW95], there is given
short shrift about how to obtain them.

In Chapter 2 we explicitly prove that the Fomin-derivative is a signed mea-
sure, which is of finite total variation (cf. Theorem 2.2.6). We point out that in

general ν
′F
h

+
and ν+

′F
h do not coincide (cf. Example 2.2.11). The definition of

‖ ‖β and Mβ (Definition 2.3.1) are not mentioned in [ASF71]. They are used to
show the continuity and linearity part in the definition of the β-differentiability
(Definition 2.3.3). We introduce the definition of being semi-β-differentiable to
gain a deeper insight of the transformation rule (Proposition 2.3.8). Furthermore
we altered the assumption to close a small gap in the prove of the transformation
rule. Introducing the (new) concept of being uniformly Fomin-differentiable (cf.
Definition 2.2.2) we close a little gap in the prove of [ASF71, Proposition 4.1.1]
(cf. Proposition 2.5.1). Although by the results of Chapter 3 we obtain that it
coincides with the concept of being Fomin-differentiable (cf. Remark 2.2.3), it
is helpful to understand the connection with the β-differentiability and to keep
Chapter 2 independent of Chapter 3. The definition of the logarithmic gradient
(cf. [SvW95]) is altered. The other definitions and assertions of Section 2.6 are
new and allow us to expose a condition, such that the logarithmic gradient exists.
Namely, we prove that it exists for finitely based vector fields (cf. Lemma 2.6.8).
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In Chapter 3 the motivation of the C-differentiability with the formula of
integration by parts is not revealed in [SvW95]. We altered the definition of
C-differentiability (cf. Definition 3.2.3 vs. [SvW95, P.105]). This allows us to
change the assumptions for the key results in Chapter 5. We changed the defini-
tion of being τ -differentiable along a vector field (cf. Definition 3.3.7 vs. [SvW93,
P.471]), because the original seems to be too harsh. Furthermore this allows us
to formulate a condition for the existence of a local flow in Theorem 4.2.11. The
connection of the different notations has not been visualized (cf. Section 3.4). In
Section 3.5 we explicitly write down the considered topologies in the proofs. That
τS- implies τC-differentiability (Lemma 3.5.1) is omitted in the mentioned papers.

The results of Sections 4.1 and 4.2 are new. The adaption of the Lebesgue
dominated convergence theorem (cf. Section 4.3) has not been mentioned before.
Furthermore only one direction of the assertion of Proposition 4.4.1 is proposed in
[SvW95, Propostion 1]. We extend and prove it, because the extension is needed
to apply the results of Chapter 3 for C-differentiability. Thus a gap in the proof
of 5.2.1 is closed.

In Chapter 5 we weaken the conditions for the key results (cf. Remark 5.1.2
and [SvW95]). Furthermore we explicitly reveal the dependence of the param-
eter in [SvW95, Lemma 1]. Writing down the details of the proof of [SvW93,
Proposition 8.2], we have to assume stronger conditions to gain the existence of
Bochner integrals and that we may apply Fubini. The same is true for the proofs
of Theorem 5.3.1 and Theorem 5.4.1. The last two assumptions of the latter
are used to check that Theorem 3.5.4 is applicable, which was not spelled out
in [SvW95]. The rest of the additional assumptions are used to explicitly write
down the details of rewriting the formula.

In [SvW95] there is no clue given how to prove the results of Chapter 6. For
the proofs the theory of Carleman operators is applied. The assumptions needed
are explicitly stated. We like to point out that we develop a new condition that
all eigenvalues of an integral operator are 0 (cf. Theorem 6.2.7).
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Chapter 1

Elemental concepts

Throughout the following chapters we will work with a lot of different derivatives
of signed measures. Thus we start with a few familiar definitions to bring to mind
the basic properties of taking derivative. We use this opportunity to establish
some notations. For the proofs or further remarks we refer to the lecture series
of Professor Röckner, [DS57, chapter II and III], [Wer05], [Bau01] and [Zei98].

In this paper R denotes the set of real numbers and N = {1, 2, . . . } is the set
of natural numbers. Furthermore the exclamation mark (!) indicate that a fact
is to be shown.

By a function we mean a map, which maps to R, and by a numerical function
we mean a map mapping to R := [−∞,∞]. We use [ for the left limit of the
interval to indicate, that the point is included in the interval and ], if it is not.
Viceversa this is meant for the right limit of the interval.

For any space E the map idE indicates the identity mapping on E, i.e id : E →
E, x 7→ x .

D1, respectively D2 denotes the derivative in the first, respectively second
component.

Moreover the plain symbol 4 points out that the triangle inequality is used.
The symbol ♣ indicates a sequence of signed measures.

Definition 1.0.1 (vector field).
Let (E, ‖ ‖E), (H, ‖ ‖H) be normed vector spaces and U ⊂ E. A vector field is a
mapping h : U → H. vect(U,H) denotes the vector space of all vector fields from
U to H. If E = H, then vect(U) := vect(U,E).

Definition 1.0.2 (Borel σ-algebra).
For every topological space (E, τ) we define the Borel σ-algebra B(E) as the σ-
algebra generated by all the open sets in E. If E ⊂ R, we assume that B(E) is
complete w.r.t. Lebesgue measure, i.e. ∀N ′ ⊂ R : ∃N ∈ B(E) : N ′ ⊂ N, ν(N) =
0 it follows that N ′ ∈ B(E).

1



2 CHAPTER 1. ELEMENTAL CONCEPTS

Definition 1.0.3 (invariant w.r.t. translations).
Let (E, ‖ ‖E) be a Banach space and (H, ‖ ‖H) a subspace of E. A Borel-σ-algebra
B(E) is said to be invariant w.r.t. translations of elements of H, iff for all sets
A ∈ B(E), h ∈ H : A+ th ∈ B(E).

Definition 1.0.4 (signed measure).
Let (E, ‖ ‖E) be a Banach space. ν : E → R is a signed measure if it is the
difference of two σ-additive measures on (E,B(E)). Let M(E) denote the vector
space of all signed measures.

Definition 1.0.5 (measure space).
By a measure space we mean a triple (E,B(E), ν), where E is a Banach space,
B(E) its Borel σ-algebra and ν ∈ M(E).

Definition 1.0.6 (ν-a.e., null-set).
Let (E, ‖ ‖E) be a Banach space and ν ∈ M(E) a signed measure. A property is
said to hold ν-a.e. if it holds |ν|-a.e., i.e. there exists a null-set N ∈ B(E) :
|ν|(N) = 0 and the property holds for all x ∈ NC := E\N .

Theorem 1.0.7 (Hahn decomposition, ν+, ν−,E+(ν)).
Let (E, ‖ ‖E) be a Banach space.
Every σ-additive function ν : B(E) → R is a signed measure and there exists a
measurable set E+ =: E+(ν) ∈ B(E): ν+ := 1E+ν and ν− := −(1 − 1E+)ν are
nonnegative and ν = ν+ − ν−.

Definition 1.0.8 (Lp(ν),L∞(ν)).
Let (E,B(E), ν) be a measure space.
By Lp(ν) we denote the set of all measurable function f : E→ R, for which

‖f‖Lp(ν) := ‖f‖Lp(|ν|) :=

∫
E
|f(x)|p|ν|(dx) <∞

By L∞(ν) we denote the set of all measurable function f : E→ R, that are ν-a.e.
bounded.

Definition 1.0.9 (total variation norm, ‖ ‖νtv).
Let (E,B(E), ν) be a measure space and S ∈ B(E). Then the total variation norm
of S w.r.t. ν is defined as

‖S‖νtv := sup
{∑
S′∈π

|ν(S ′)|
∣∣∣ π-partition of S into a finite

number of disjoint borel subsets
}

A set S is said to be of bounded variation w.r.t. ν, if ‖S‖νtv <∞. The measure
ν is of bounded variation (or finite total variation), if ‖ν‖tv := ‖E‖νtv <∞.
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Remark 1.0.10.
We notice using the Hahn decomposition that ‖S‖νtv = ‖S ∩ E+‖νtv + ‖S\E+‖νtv.

Definition 1.0.11 (M(E,B(E))).
Let E be a Banach space. By M(E,B(E)) we define the vector space of all signed
measures on E with finite total variation.

Definition 1.0.12 (absolutely continuous w.r.t.).
Let E be a Banach space and ν, ν ′ ∈ M(E). ν ′ is said to be absolutely continuous
w.r.t. ν (or said that ν dominates ν ′), if the following property holds for all sets
A ∈ B(E)

‖A‖νtv = 0⇒ ‖A‖ν′tv = 0.

If ν ′ is absolutely continuous w.r.t. ν, we denote this by ν ′ � ν. If ν ′ is absolutely
continuous w.r.t. to the Lebesgue measure, that is ν ′ � λ, we say that it is
absolute continuous.

Theorem 1.0.13 (Radon-Nikodym).
Let ν and µ be measures on a σ-algebra A of a set Ω. If µ is σ-finite, the following
two assertions are equivalent:

1. ν has a density with respect to ν, i.e. there exists a non-negative, A-
measurable, numerical function f on Ω such that

ν(A) =

∫
A

fdµ ∀A ∈ A.

2. ν is absolute continuous w.r.t. µ.

Theorem 1.0.14 (Radon-Nikodym(for signed measure)).
Let ν and µ be signed measures on a Borel σ-algebra B(E) in a Banach space E
with µ having finite total variation. The following two assertions are equivalent:

1. ν is absolute continuous w.r.t. µ.

2. There exists a non-negative, B(E)-measurable f : E→ R such that

ν(A) =

∫
A

fdµ ∀A ∈ B(E). (1.1)

Definition 1.0.15 (Radon-Nikodym density).
The numerical function f in (1.1) is called Radon-Nikodym density.

Remark 1.0.16.
If in Theorem 1.0.14 ‖ν‖tv <∞, then f ∈ L1(ν).
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The following lemma tells us how to obtain new signed measures.

Lemma 1.0.17.
Let (E,B(E), ν) be a measure space. If f ∈ L1(ν) then fν, i.e. (fν)(A) :=∫
A
f(x)ν(dx), is a signed measure.

Proof.
Let f = f+ − f− be the decomposition of f into the positive and negative part
and let ν = ν+− ν− be the Hahn decomposition of ν (c.f. Theorem 1.0.7). Then
we define

(fν)+ := f+ν+ + f−ν− and (fν)− := f+ν− + f−ν+,

which are positive finite measures (for (fν)− it follows similarly). Namely,

(fν)+(E) =

∫
E
f+(x)︸ ︷︷ ︸
≤|f(x)|

ν+(dx) +

∫
E
f−(x)︸ ︷︷ ︸
≤|f(x)|

ν−(dx)

≤
∫

E+

|f(x)|ν+(dx) +

∫
E−
|f(x)|ν−(dx) =

∫
E+∪E−

|f(x)||ν|(dx)
f ∈ L1(ν)
< ∞

It remains to show the σ-additivity of (fν)+. Since taking integral is additive,
w.l.o.g. f and ν are positive: Choosing disjoint sets An ∈ B(E) we observe

(fν)(
∞⋃
n=1

An) =

∫
1⋃∞

n=1 An
(x)f(x)ν(dx)

=

∫
lim
N→∞

1⋃N
n=1 An

(x)f(x)ν(dx)

f ∈ L1(ν),

Lebesgue
= lim

N→∞

∫
1⋃N

n=1 An
(x)f(x)ν(dx)

=
∞∑
n=1

∫
1An(x)f(x)ν(dx) =

∞∑
n=1

(fν)(An)

We obtain an useful connection of ‖ ‖tv and ‖ ‖L1 , namely

Lemma 1.0.18.
Let (E,B(E), ν) be a measure space. If f ∈ L1(ν), then ‖fν‖tv = ‖f‖L1(ν).

Proof.
Since fν is a signed measure (cf. Lemma 1.0.17), we can apply Theorem 1.0.7.
We set E+ := E+(ν), E− := E\E+, A+ := E+(fν), A− := E\A+ (for notation
cf. also Section 2.1), f+ = max(f, 0), f− = −min(f, 0), ν+ = ν(· ∩ E+) and
ν− = −ν(· ∩ E−). Since ν is a signed measure we note ∀Ai ∈ B(E)∣∣∣∣∫

Ai

fdν

∣∣∣∣ =
∣∣ ∫

Ai∩A+

fdν +

∫
Ai∩A−

fdν
∣∣ =

∫
Ai∩A+

fdν −
∫
Ai∩A−

fdν

=

∫
Ai∩A+∩E+

fdν +

∫
Ai∩A+∩E−

fdν −
∫
Ai∩A−∩E+

fdν −
∫
Ai∩A−∩E−

fdν
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=

∫
Ai∩A+∩E+

fdν+ −
∫
Ai∩A+∩E−

fdν− −
∫
Ai∩A−∩E+

fdν+ +

∫
Ai∩A−∩E−

fdν−

=

∫
Ai∩A+

f+dν+ +

∫
Ai∩A+

f−dν− +

∫
Ai∩A−

f−dν+ +

∫
Ai∩A−

f+dν−

=

∫
Ai

|f |dν+ +

∫
Ai

|f |dν− =

∫
Ai

|f |d|ν| (1.2)

|f ||ν| is a measure on E and thus we have

‖fν‖tv = sup

{
n∑
i=1

∣∣∣∣∫
Ai

fdν

∣∣∣∣
∣∣∣∣∣Ai ∈ B(E) disjoint subsets

}
(1.2)
= sup

{
n∑
i=1

∫
Ai

|f |d|ν|

∣∣∣∣∣Ai ∈ B(E) disjoint subsets

}
=

∫
E
|f |d|ν| = ‖f‖L1(ν)

Definition 1.0.19 (L(E, F )).
Let (E, ‖ ‖E), (F, ‖ ‖F ) be normed vector spaces, then

L(E, F ) :=
{
f : E→ F

∣∣f linear and continuous
}
. (1.3)

If F = R, we have E′ := L(E,R).

Definition 1.0.20 (Gâuteaux-differentiable).
Let (E, ‖ ‖E), (F, ‖ ‖F ) be normed vector spaces, U ⊂ E open and f : U 7→ F be
a mapping. f is Gâuteaux-differentiable at x0 ∈ U , if there exists a continuous
linear operator Tx0 ∈ L(E, F ) such that

‖ ‖F − lim
ε→0

f(x0 + εh)− f(x0)

ε
= Tx0h ∀h ∈ E

is satisfied. If f is Gâuteaux-differentiable at every point x ∈ U , it is said to be
Gâuteaux-differentiable. Its derivate is denoted by f ′h.

Theorem 1.0.21 (Mean Value Theorem).
Let (E, ‖ ‖E), (F, ‖ ‖F ) be normed vector spaces, U ⊂ E open and f : U 7→ F
Gâuteaux-differentiable. Define the ’interval’ I = {x0 + λh : 0 ≤ λ ≤ 1} ⊂ U .
Then

‖f(x0) + f(x0 + h)‖F ≤ sup
x∈I
‖f ′(x)‖ ‖h‖E

Definition 1.0.22 (Frèchet-differentiable).
Let (E, ‖ ‖E) and (F, ‖ ‖F ) be normed vector spaces. Let U be an open set in E,
and f : U → F . Then f is Fréchet differentiable at the point x0 ∈ U , if there
exists a linear operator f ′· (x0) ∈ L(E, F ), such that:

lim
‖h‖E→0

‖f(x0 + h)− f(x0)− f ′h(x0)‖F
‖h‖E

= 0
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Remark 1.0.23.
If a mapping is Gâuteaux-differentiable and if f ′ : U → L(E, F ), x0 7→ f ′· (x0) is
continuous with respect to x0, then it is Frèchet differentiable.

Definition 1.0.24 (Cα(U, F )).
Let (E, ‖ ‖E), (F, ‖ ‖F ) be normed vector spaces, U ⊂ E open and α ∈ N. Then

Cα(U, F ) :=

{
f : U → F

∣∣∣∣f is α times continuously Gâuteaux-differentiable

}
Cα
b (U, F ) :=

{
φ ∈ Cα(U, F )

∣∣∣∣ each derivative is bounded in its operator norm

}
C∞(U, F ) :=

⋂
α∈N

Cα(U, F )

C∞b (U, F ) :=
⋂
α∈N

Cα
b (U, F )

If U, F are obvious, we may omit them, i.e. Cα, Cα
b , C

∞ and C∞b .

Definition 1.0.25.
Let (F, ‖ ‖F ) be a normed vector space and C denote any set of functions from
F to R. Then we define

FC := {f ∈ C | f(u) = f(l1(u), . . . , ln(u)),

n ∈ N, f : Rn → R, li ∈ F ′ ∀1 ≤ i ≤ n, u ∈ F},

The elements of FC are called finitely based functions.

Definition 1.0.26 (νh).
Let (E, ‖ ‖E) be a Banach space. For any signed measure ν ∈ M(E,B(E)) and
any h ∈ E we define νh := ν(·+ h).

Remark 1.0.27.
Of course, the above notation can occur for elements h or th′ of a normed vector
space (E, ‖ ‖E) and a measure denoted ν

′F
h ∈ M(E,B(E)) (in 2.2 we define ν

′F
h

as the Fomin-derivative), i.e.

ν
′F
h th′ , ν

′F
h h th′ = ν

′F
h h+th′ , . . . ,

which means

ν
′F
h th′

Def. 1.0.26
= ν

′F
h (·+ th′),

ν
′F
h h th′

Def. 1.0.26
= ν

′F
h (·+ h)th′ = ν

′F
h (·+ h+ th′), . . .

Sometimes we may write for clarification
(
(ν
′F
h )h

)
th′
.



Chapter 2

Differentiation of measures

In chapter 1 we have repeated known concepts to motivate the idea of Fomin-
differentiability. In this chapter we introduce the idea of differentiation of a
measure on a Banach space, namely the Fomin-differentiation. Later on we ex-
amine conditions under which two signed measures are absolutely continuous to
each other. In Chapter 3 this concept is generalized.

In Section 2.1 we outline the general framework, in which we will work. Fur-
thermore we introduce some notations which will be used in the proceeding chap-
ters. Throughout the following sections and chapters a lot of new notations will
be introduced. For the convenience of the reader these can be found in the index.

In Section 2.2 the (uniform) Fomin-derivative and its basic properties are in-
troduced and illustrated within an example. By results of Chapter 3 the uniform
Fomin- and Fomin-differentiability are the same. Furthermore we state a Mean-
Value-Theorem. By showing that the derivative of a measure can be a signed
measure, we see that defining the concept of differentiation without signed mea-
sures would be a wild goose chase. Thus the use of signed measures in the general
framework is motivated.

In Section 2.3 we present the β-differentiation, which is similar to the idea of
Fomin-differentiation. We give details about the connections of these concepts of
differentiation. For the β-differentiation we obtain a transformation rule.

In Section 2.4 it is used to show that each Fomin-differentiable signed measure
on Rn is absolutely continuous. Furthermore we show that a linear combination
of directions, in which a signed measure is Fomin-differentiable, gives a new
direction, in which it is differentiable and that being Fomin-differentiable implies
that the ‖ ‖tv − lim exists on bounded sets (cf. Theorem 2.4.2).

In Section 2.5 we observe, using the transformation rule for β-differentiation,
that taking (uniform) Formin-derivative is linear and continuous.

Finally in Section 2.6 we derive that the logarithmic gradient Fβ
ν
H is ν-quasi-

linear, continuous and even ν-a.e linear and define the logarithmic gradient along
a vector field. For finitely based vector fields we present a condition, such that

7
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the logarithmic gradient exists and is well defined, i.e. independent of the chosen
orthonormal base (cf. Lemma 2.6.8).

We basically follow [ASF71] for Sections 2.2 to 2.5 and explicitly write down
the omitted details, i.e. that the Fomin derivative of a finite signed measure is
finite. The examples of Section 2.2 and the details of the dependence on null sets
(e.g. Lemma 2.6.4 and Corollary ??) in Section 2.6 are new. Using the basic
idea of [ASF71, Theorem 3.2.1] we formulate in Theorem 2.4.2 a few more con-
nections than there were stated in [ASF71, Theorem 3.2.1]. The definition of the
logarithmic gradient for functions, i.e. Definition 2.6.6, was stated in [SvW95],
but there were no comments made or references given about the existence.

2.1 General Framework

From now on, we will work on a fixed measure space (E,B(E), ν).

We assume that (E, ‖ ‖E) is a separable Banach space.
Furthermore we fix a Hilbert subspace H ⊂ E, i.e. H is a vector subspace

equipped with the structure of a Hilbert space such that the canonical embedding

i : (H, ‖ ‖H) → (E, ‖ ‖E)

h 7→ h

is continuous and ‖ ‖E ≤ ‖ ‖H ∀h ∈ H.
Let B(E) be the Borel-σ-algebra of E. We suppose that B(E) is complete

w.r.t. ν and that B(E) is invariant w.r.t. translations of elements of H.
The signed measure ν ∈M(E,B(E)) has in particular a finite total variation,

i.e. ‖ν‖tv <∞. Furthermore ν+ and ν− denote the positive and negative part of
the decomposition of ν, i.e. ν = ν+ − ν− and ν− = |ν−|, ν+ = |ν+| (cf. Theorem
1.0.7). In the sequel the signed measure ν will be fixed.

For any signed measure ν̃ ∈ M(E,B(E)) we denote by E+
ν̃ =: E+(ν̃) ∈ B(E)

the set of the Hahn-Banach decomposition, i.e. ν̃+(E+
ν̃ ) ≥ 0. Of course, this set is

unique except for a ν̃ null-set. Moreover we define E−(ν̃) := E−ν̃ := E\E+
ν̃ ∈ B(E)

and obtain

ν̃+(A) = ν̃(A ∩ E+
ν̃ ) and ν̃−(A) = −ν̃(A\E+

ν̃ ) ∀A ∈ B(E).

If ν̃ = ν, we write E+ := E+
ν and E− := E−ν .

2.2 Fomin-Differentiable
We now treat the Fomin-derivative, which was first introduced by Fomin in 1966.
Its key idea is similar to the concept of Gâuteaux-differentiation. The idea is



2.2. FOMIN-DIFFERENTIABLE 9

to evaluate the measure for every set permitted and varying it in one direction.
Furthermore we state a few properties of the Fomin-derivative and prove them
in detail to get familiar to the concept. At the end of this section we give a basic
example to see what the derivative looks like and to understand why it is natural
to work with signed measures in this context.

In [ASF71, P.142] or [SvW95, P.105] we find:

Definition 2.2.1 (Fomin-differentiable).
The signed measure ν ∈ M(E,B(E)) is said to be Fomin-differentiable along a
vector h ∈ H ⊂ E if for every Borel set A ∈ B(E) the function

R 3 t 7→ ν(A+ th) ∈ R

is differentiable at t=0. This expression is well-defined, because B(E) is invariant
w.r.t. translations of h ∈ H.
If ν is Fomin-differentiable, its derivative ν

′F
h is called the Fomin-derivative, i.e

ν
′F
h (A) = lim

t→0

ν(A+ th)− ν(A)

t
(2.1)

Definition 2.2.2 (uniformly Fomin-differentiable).
The signed measure ν is called uniformly Fomin-differentiable along a vector h ∈
H, if the limit in (2.1) exists uniformly for all A ∈ B(E).

Remark 2.2.3.
By the results of chapter 3 we see that ν being Fomin-differentiable is equivalent
with ν being uniformly Fomin-differentiable. In detail we use Example 3.3.9 and
Theorem 3.5.5 in connection with Lemma 3.5.1 (and Remark 3.3.10) for C =
{1B|B ∈ B(E)}, Theorem 2.2.6 (γt := ·+ th, t ∈ I, h ∈ H, B(E) invariant w.r.t.
translations of H (cf. Section 2.1)) and Example 3.3.9. We notice that the used
results of 3 are independent of the results about the Fomin-differentiability.

Remark 2.2.4.

1. The Fomin-differentiability relies on the differentiation of a function in R.
Later on we will see that taking Fomin-differentiability is continuous and
linear (cf. Section 2.5).

2. The symbol
′F indicates that the Fomin derivative is taken. Later we in-

troduce different notions of taking derivative of a measure. Thus in order
to avoid confusion, the letter ”F” in the notation of the derivative should
remind us that we consider the Fomin-derivative. Getting to know further
concepts of differentiation we will extend this notation.

Naturally the signed measure has not to be denoted by ν. Assume h, h′ ∈
H, φ : H→ H and t ∈ R. If the derivative ν

′F
th is again Fomin differentiable
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along φ(h′), we see that ν
′F
th

′F

φ(h′) is as well a suitable use of this notation.

Other notations could be ψ(ν)
′F
h or νB2

′F
h , where νB2 , ψ(ν) ∈ M(E,B(E))

and will be defined later (cf. Proposition 2.3.8 and Proposition 2.5.1).

Example 2.2.5.
Suppose that a measure µ ∈ M(Rd,B(Rd)) is absolute continuous w.r.t. to
Lebesgue measure λ. Thus, by Radon-Nikodym (cf. Theorem 1.0.14), it is of
the form ρλ, where ρ ∈ L1(λ) is a density. We suppose furthermore that ρ is
positive, ρ′h ∈ L1(λ) exists and that there exists g ∈ L1(λ) and δ > 0 : ∀t : |t| <
δ : |ρ(x+th)−ρ(x)

t
| ≤ g(x). We calculate the Fomin-derivative of ρλ in direction

h ∈ Rd for each A ∈ B(Rd):

(ρλ)
′F
h (A) = lim

t→0

(ρλ)(A+ th)− (ρλ)(A)

t

= lim
t→0

∫
A+th

ρ(x)dx−
∫
A
ρ(x)dx

t

= lim
t→0

∫
A

ρ(x+ th)− ρ(x)

t
dx

Lebesgue
=

∫
A

ρ′h(x)dx = (ρ′hλ)(A).

Theorem 2.2.6 (Properties of the Fomin-derivative).
Let ν

′F
h be the Fomin derivative of ν = ν+ − ν− in the direction h ∈ H, that is

ν
′F
h : A 7→ d

dt
ν(A+ th)

∣∣∣∣
t=0

Then

1. ν
′F
h defines a signed measure,

2. ‖ν ′Fh ‖tv <∞,

3. the positive and negative part of ν are Fomin-differentiable,

4. the positive and negative part of ν
′F
h are absolutely continuous w.r.t. to the

positive and negative part of ν, i.e.

ν+
′F
h � ν+ and ν−

′F
h � ν−.

5. ν
′F
h � ν .

Definition 2.2.7 (logarithmic derivative).
By Radon-Nikodym (cf. Theorem 1.0.14) there exists a density, denoted by

Fβ
ν (h, ·) , such that ν

′F
h = Fβ

ν (h, ·) ν. In our context we will call Fβ
ν (h, ·)

the logarithmic derivative of ν.
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Remark 2.2.8.

1. The name ”logarithmic” derivative is motivated by the following: We con-
sider a measure µ = ρλ as in Example 2.2.5. Then the Fomin-derivative of
µ in direction h ∈ Rd can be written as

µ
′F
h = ρ′hλ = (ln ρ)′hρλ = (ln ρ)′hµ

and thus the logarithmic derivative is of the form (ln ρ)′h, which motivates
the name logarithmic derivative.

2. The subindex ”F” should remind us that we talk about the logarithmic
derivative in the context of the Fomin-differentiability.

3. The notation of the logarithmic derivative will be extended later, when we get
to know different notions of differentiability. Whenever we see a function
named β with indices throughout this paper, it will denote a logarithmic
derivative (or gradient). However, the letter F might be replaced by other
symbols, who indicate different contexts of differentiation. For now this
motivation should be sufficient.

Proof of Theorem 2.2.6.

1. We define

νn(A) :=
ν(A+ 1

n
h)− ν(A)
1
n

∀A ∈ B(E).

Then each νn is a signed measure on the Borel σ-algebra B(E) and by the
Fomin-differentiability of ν its limit exists pointwise for all sets A. Thus
we gain by a Nikodym corollary of Vitali-Hahn-Saks (cf. [DS57, Corollary
III.7.4, p.160]) that the limit of the νn is σ-additive. The limit of the νn is
by definition the derivative ν

′F
h of ν. Thus ν

′F
h is a signed measure.

The Hahn decomposition Theorem (cf. Theorem 1.0.7) tells us that for ν
′F
h

there exists a set E+(ν
′F
h ) ∈ B(E):

ν
′F
h

+
:= 1E+(ν

′F
h )ν

′F
h

2. By the Fomin-differentiability we know that for any set A ∈ B(E) ∃ t0 ∈ R:

|ν ′Fh (A)| ≤ 1 + |ν(A+ t0h)− ν(A)

|t0|
|

≤ 1 +
2 ‖ν‖tv
|t0|

=: N(A) <∞, (2.2)

where we used that ‖ν‖tv is finite. Then the Theorem of Nikodýn ([DS57,
Theorem IV.9.8, p.309f]) states that it is even uniformly bounded, and
hence we obtain that ∃N <∞ :

|ν ′Fh (A)| < N ∀A ∈ B(E).
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Thus we conclude

‖ν ′Fh ‖tv =
∣∣∣ν ′Fh (E+(ν

′F
h )
)∣∣∣+

∣∣∣ν ′Fh (E−(ν
′F
h )
)∣∣∣ ≤ 2N.

3. We conduct the proof following [ASF71, Theorem 2.6.1]. We know that the
function R 3 t 7→ ν(E+ + th) ∈ R is differentiable at 0 and that it has a
local maximum at 0, because ∀A ∈ B(E) :

ν(A) ≤ ν+(A) = ν(A ∩ E+) ≤ ν(E+).

Using this fact we will prove the claim:

ν((A+ th) ∩ E+)− ν(A ∩ E+)

t
!

=
ν((A+ th) ∩ (E+ + th))− ν(A ∩ E+)

t

+
ν((A+ th) ∩ (E+\(E+ + th)))− ν((A+ th) ∩ ((E+ + th)\(E+)))

t

=
ν((A ∩ E+) + th)− ν(A ∩ E+)

t

+
ν((A+ th) ∩ (E+\(E+ + th)))− ν((A+ th) ∩ ((E+ + th)\(E+)))

t
(2.3)

where we applied

E+ = ((E+ + th) ∪ E+) ∩ ((E+ + th)C ∪ E+)

= ((E+ + th) ∪ (E+ ∩ (E+ + th)C)) ∩ ((E+ + th) ∩ E+C)
C

= ((E+ + th)
·
∪ (E+\(E+ + th)))\((E+ + th)\E+).

We notice that (A+ th) ∩ (E+\(E+ + th)) ⊂ E+ and that
(A + th) ∩ ((E+ + th)\(E+)) ⊂ E−. Thus, since ν+ and ν− are measures,
we would possibly only enlarge the fraction by considering it without the
A+ th intersection. Thus we replace the fraction in (2.3) by

ν(E+\(E+ + th))

t
− ν((E+ + th)\(E+))

t

We prove that the limit of both summands is zero, thus the estimate without
the A+th intersection was not to harsh and the limit of the original fraction
is 0 as well. We justify our estimate by proving the following claim:

lim
t→0

ν((E+ + th)\E+)

t
= 0, lim

t→0

ν(E+\(E+ + th))

t
= 0 (2.4)
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Using the above fact about the maximum, i.e. ν
′F
h (E+) = 0, we obtain

0 = −ν ′Fh (E+) = − lim
t→0

ν(E+ + th)− ν(E+)

t

= − lim
t→0

ν((E+ + th)\E+)

t
+ lim

t→0

ν(E+\(E+ + th))

t

= lim
t→0

ν−(E+ + th)

t
+ lim

t→0

ν+(E+\(E+ + th))

t

Since each of the summands is positive, we gain that each summand con-
verges to zero and thus the claim is proved. Therefore, envisioning that ν
is Fomin differentiable for A ∩ E+, we get

ν+
′F
h (A) = lim

t→0

ν+(A+ th)− ν+(A)

t

(2.3),(2.4)
= ν

′F
h (A ∩ E+) (2.5)

By similar arguments (0 is a local minimum for R 3 t 7→ ν(E− + th) ∈ R)
we have

ν−
′F
h (A) = lim

t→0

ν−(A+ th)− ν−(A)

t
= ν

′F
h (A\E+) (2.6)

By applying the first part of this theorem to ν+ and ν− we conclude that

ν+
′F
h and ν−

′F
h are signed σ-additive measure. An alternative proof is to

use Lemma 1.0.17 for 1E+ and 1E− .

4. It is enough to show it for ν+(ν− follows analogously). Let A ∈ B(E) such
that ‖A‖ν+

tv = 0. Using the idea of the proof of [SvW93, Proposition 3.1,
p.461] we obtain

0 = ν+(A) ≤ ν+(A+ th) ≥ 0.

Moreover t = 0 is a local minimum and the Fomin derivative of ν+ at A is
0. Thus ν+

′F
h (A) = 0. Repeating this for A ∩ E+(ν+

′F
h ) and A ∩ E−(ν+

′F
h )

we have ‖A‖ν
+
′F
h

tv = 0. Hence (cf. Definition 1.0.12), ν+
′F
h � ν+.

5. By the last two assertions the claim follows:

ν
′F
h = ν

′F
h (· ∩ E+) + ν

′F
h (·\E+)

(2.5),(2.6)
= ν+

′F
h + ν−

′F
h � ν+ + ν− = ν

Remark 2.2.9.

1. The key point of the third statement of the Theorem is that the function
t 7→ ν(E+ + th) has a local maximum at t = 0. The key idea of the fourth
statement of the Theorem is to use that for all null-sets A the function
t 7→ ν+(A+ th) has a local minimum.
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2. We have proved that ν+
′F
h (·) = ν

′F
h (· ∩ E+).

In Example 2.2.10 we show that in general ν+
′F
h and ν

′F
h

+
do not coincide and

in Example 2.2.11 that the derivative of a measure is not in general a measure.

Example 2.2.10.
Define for a ≤ b ∈ R

ν([a, b]) :=

∫ b

a

x31]−10,10[(x)dx.

Then ν can be extended uniquely to B(R). This extension is a signed measure,
which is Fomin-differentiable along each h ∈ R. We will see that its derivative is
absolutely continuous.

Proof.
Let a, b, c ∈ R. We define a ∨ b := min(a, b), a ∧ b := max(a, b).

ν+([a, b]) :=

∫ b∧0

a∧0

x31]−10,10[(x)dx and ν−([a, b]) := −
∫ b∨0

a∨0

x31]−10,10[(x)dx

This definition is independent of the representation of the interval, i.e.

ν+([a, b]∪̇[b, c]) :=

∫ b∧0

a∧0

x31]−10,10[(x)dx+

∫ c∧0

b∧0

x31]−10,10[(x)dx

=

∫ c∧0

a∧0

x31]−10,10[(x)dx = ν+([a, c])

ν+ is a measure on R =

{⋃n
i=1[ai, bi[

∣∣∣∣ai, bi ∈ R
}

, because

ν+(∅) = 0, ν+([a, b[) =
[

1
4
x4
]b∧0

a∧0
≥ 0 and by definition

ν+

(⋃̇
n

[an, bn[

)
by def.

=
∑
n

∫ bn∧0

an∧0

x31]−10,10[(x)dx
by def

=
∑
n

ν+([an, bn[).

Since ν+ is σ-finite on R we gain by Carathéodory (cp. [Röc05a, Theorem 3.3,
p.21] or [Bau01, Theorem 5.3]) applied to R a unique extension ν+of the measure
ν+on σ(R). The same is true for ν−and thus we obtain ν− as the unique extension
of ν−.
We know

ν
′F
h ([−1, 1]) =

d

dt

∫ 1+th

−1+th

x31]−10,10[(x)dx
∣∣
t=0

= 2h (2.7)
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ν([−1, 1]) =

∫ 1

−1

x31]−10,10[(x)dx =

[
1

4
x4

]1

−1

= 0

Thus we see that we have found an example, where ν([−1, 1]) = 0 and for h ∈
R\{0} ν ′Fh ([−1, 1]) 6= 0. Here we see the importance of using the ‖ ‖tv in
the definition of absolute continuity of a measure w.r.t. another measure (cf.
Definition 1.0.12). We will prove that ν is Fomin-differentiable.

Let P ∈ σ(R), then ν(P ) := ν+(P ) − ν−(P ) is unique by Carathéodory. We
calculate the derivative of the uniquely extended measure ν along h ∈ R. To this
end we have to show that the following limit exists.

∃ ν ′Fh (P )
!

= lim
t→0

ν(P + th)− ν(P )

t

= lim
t→0

ν+(P + th)− ν−(P + th)− (ν+(P )− ν−(P ))

t

= lim
t→0

ν+(P + th)− ν+(P )− (ν−(P + th)− ν−(P ))

t

We calculate the value of the associated outer measure of ν+

ν+(P + th) = inf

{
∞∑
n=1

ν+(An)

∣∣∣∣An ∈ R and P + th ⊂
⋃̇
n

An

}

We may assume w.l.o.g. An = [an, bn[, where an, bn ∈ R, and define
ãn := an + th, b̃n := bn + th.

= inf

{
∞∑
n=1

ν+([ãn, b̃n[)

∣∣∣∣[ãn, b̃n[∈ R and P + th ⊂
⋃̇
n

[ãn, b̃n[

}
def
= inf

{
∞∑
n=1

∫ 10∨(an+th)∧0

10∨(bn+th)∧0

x3dx

∣∣∣∣[an, bn[∈ R and P + th ⊂
⋃̇
n

[an + th, bn + th[

}

Using the definition of Lebesgue measure (cp. [Röc05a] or [Bau01]) we obtain
that the latter expression is equal to∫

1P (x)(x+ th)31]−th,10−th[(x)dx

Analogously we gain ν−(P + th) = −
∫
1P (x)(x + th)31]−10−th,−th[(x)dx. If we
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plug this in, we receive

ν
′F
h (P ) = lim

t→0

ν(P + th)− ν(P )

t

= lim
t→0

ν+(P + th)− ν−(P + th)− (ν+(P )− ν−(P ))

t

= lim
t→0

∫
1P (x)(x+ th)31]−10−th,10−th[(x)dx−

∫
1P (x)x31]−10,10[(x)dx

t
dom. conv.
Lebesgue

=

∫
1P (x)3x2h1]−10,10[(x)dx

Therefore ν is Fomin-differentiable. Using Remark 2.2.9 we see

ν+
′F

h (P ) = ν
′F
h (P ∩ R+) =

∫ 10

0

1P (x)3x2h dx

ν−
′F

h (P ) = ν
′F
h (P ∩ R−) =

∫ 0

−10

1P (x)3x2h dx

Example 2.2.11.
If we define ν([a, b]) =

∫ b
a
x21]−10,10[(x)dx for a, b ∈ R, we obtain by the same

construction via Carathéodory a measure on B(R).
For this measure ν+ = ν and

ν
′F
1 ([a, b]) =

∫ a

b

2x1]−10,10[(x)dx.

Here we see that the derivative of the measure ν along 1 is a signed measure.
Moreover

ν
′F
1

+
= ν

′F
1 (· ∩ R+) 6= ν+

′F
1 = ν

′F
1 .

By [ASF71, Theorem 1.3.2] we have

Theorem 2.2.12 (Mean-Value-Theorem).
If ν is Fomin-differentiable in the direction h ∈ H, then we obtain t ∈ R:

‖νth − ν − tν
′F
h ‖tv ≤ |t| sup

0<τ<t
‖ν ′Fh τh − ν

′F
h ‖tv

= |t| sup
0<τ<t

‖ν ′Fh (·+ τh)− ν ′Fh (·)‖tv (2.8)

2.3 β-differentiable
In this section we introduce a new type of differentiability, which is analogue to
the Fomin-differentiability and state a condition such that they are equal. For



2.3. β-DIFFERENTIABLE 17

this β-differentiability we obtain a transformation rule, which we will use later to
prove the linearity and continuity of taking Fomin-derivative. In [ASF71] not all
of the details were shown, at heart only the first assertion of the transformation
rule (Proposition 2.3.8) was demonstrated. First of all we define

Definition 2.3.1 ( ‖ ‖β, Mβ).
Let β ⊂ B(E). Let µ : β → R be such that µ(∅) = 0 if ∅ ∈ β and for any collection
of disjoint sets Ai ∈ β with

⋃
i∈NAi ∈ β: µ(

⋃
i∈NAi) =

∑
i∈N µ(Ai). We define

‖µ‖β := sup

{∑
i∈N

µ(Ai)
∣∣Ai ∈ β disjoint

}
and

Mβ :=
{
µ : β → R

∣∣ ‖µ‖β <∞} .
Remark 2.3.2.
‖ ‖β is a norm on Mβ and the inclusion mapping i : M(E,B(E))→Mβ, ν 7→ ν|β
is continuous.

Following the idea of [ASF71, p.143], we define

Definition 2.3.3 (β-differentiable w.r.t. subspace).
Let β ⊂ B(E) be a class of measurable sets. ν is β-differentiable w.r.t. H iff

1. ∀h ∈ H:

∃ lim
t→0

ν(A+ th)− ν(A)

t
uniformely for all A ∈ β (2.9)

If the limit exists, it is denoted by ν
′β
h and called the β-derivative of ν (w.r.t.

H).

2. and taking β-derivative is linear and continuous, i.e.

ν
′β : (H, ‖ ‖H) → (Mβ, ‖ ‖β)

h 7→ ν
′β
h

is linear and continuous.

Definition 2.3.4 (semi-β-differentiable).
If the first condition in Definition 2.3.3 is fulfilled, we call ν semi-β-differentiable.

Remark 2.3.5.

1. In [ASF71] the definition was restricted to a class of subsets of H, we
changed this definition to measurable subsets of E. This will enable us
to draw a few connection to the concept of Fomin-differentiability.
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2. Note that again ′ indicates that we take a derivative and β that it is the β-
derivative. Of course, we can consider different classes of subsets. In order
to recognize this concept more easily, we will denote all of these classes by
β with an index, i.e. β1, β2, βb, βA, βE, βf , . . . .

3. We note that if ν is Fomin-differentiable along h ∈ H, then the above limit
coincides pointwisely with the Fomin-derivative along h ∈ H. That is

ν
′β
h (A) = ν

′F
h (A) ∀A ∈ β ⊂ B(E).

4. Comparing the definitions of Fomin- and β-differentiability we notice that:
ν is Fomin-differentiable along all h ∈ H, iff ∀A ∈ B(E) ν is βA(-semi)-
differentiable w.r.t. H, where βA := {A}.
If βf ⊂ B(E) finite, i.e. |βf | < ∞, then Fomin-differentiability along all
h ∈ H implies βf -differentiability.

5. If we chose βE = B(E), then a signed measure µ ∈M(E,B(E)) is semi-βE-
differentiable w.r.t. H iff it is (uniformly) Fomin-differentiable along each
h ∈ H.

Definition 2.3.6 (bounded differentiable).
Let βb ⊂ B(E) be the class of all bounded subsets of H. A signed measure ν is
bounded differentiable w.r.t. H, if it is βb-differentiable w.r.t. H.

For the transformation rule we need to introduce the following definition (cf.
e.g. [Wer05, Definition VIII.1.3, p.392]):

Definition 2.3.7 (linear topological subspace).
A linear topological subspace is a linear subspace of a topological space, where
additivity and multiplication with scalars are continuous .

Similar to [ASF71, Proposition 2.4.1] we have

Proposition 2.3.8 (transformation rule for β-differentiable).
For i=1,2 let Ei be a linear space, Hi a linear topological subspace of Ei, and σ(Ei)
a σ-algebra of subsets of Ei that is invariant under translations by elements of
Hi. In addition, let ψ : (E1, σ(E1))→ (E2, σ(E2)) be a measurable linear mapping
such that

1. H2 = ψ(H1)

2. ψ |H1 is an open map, i.e. the image of an open set under ψ is an open set.

Moreover we assume that β1 is a class of subsets of H1, which is invariant w.r.t.
translations by elements of H1 and β2 = ψ(β1).
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1. If a measure µ ∈ M(E1, σ(E1)) is semi-β1-differentiable w.r.t. a subspace
H1, then the measure ψ(µ) is semi-β2-differentiable w.r.t. H2, and

ψ
(
µ
′β1

h

)
= ψ(µ)

′β2

ψ(h)

for all h ∈ H1

2. If µ is even β1-differentiable, then ψ(µ) is β2-differentiable.

Proof.
For a better readability we use the already introduced notation:

µth(·) := µ(·+ th) (2.10)

1. In order to prove the first assertion, we show that the following limit exists
for all h ∈ H uniformly in β2. That is choosing A ∈ β2 arbitrary

lim
tn→0

ψ(µ)tnψ(h)(A)− ψ(µ)(A)

tn
− ψ(µ)

′β2

ψ(h)(A)
!

= 0 (2.11)

We calculate the parts of the fraction separately and then plug in the semi-
β1-differentiability of µ. By β2 = ψ(β1) we know that ∀A ∈ β2 ∃A1 ∈ β1 :
A = ψ(A1). Thus ∀t ∈ R, h ∈ H1

A+ tψ(h) = ψ(A1) + tψ(h)
linearity

= ψ(A1 + th) ∈ β2,

because β1 is invariant w.r.t. translations of H1. This implies that

∅ 6= ψ−1(A+ tψ(h)) = {y | ψ(y) ∈ A+ tψ(h)}
linearity

=
ψ−1A 6=∅

{y | ψ(y − th) ∈ A} = {x+ th | ψ(x) ∈ A} = ψ−1(A) + th 6= ∅

For all measures µ and t ∈ R we have

(ψ(µth))(A)
def.
= µth(ψ

−1(A))
def. µth= µ(ψ−1(A) + th)

linearity
= µ(ψ−1(A+ tψ(h)))

def
= ψ(µ)(A+ tψ(h)) = ψ(µ)tψ(h)(A) (2.12)

Thus

µth(ψ
−1(A))− µ(ψ−1(A))

t

by (2.12)
=

ψ(µ)tψ(h)(A)− ψ(µ)(A)

t

Using these identities we obtain:

lim
tn→0

ψ(µ)tnψ(h)(A)− ψ(µ)(A)

tn

(2.12)
= lim

tn→0

µtnh(ψ
−1(A))− µ(ψ−1(A))

t
semi-
β1-diff

= µ
′β1

h (ψ−1(A)) = ψ(µ
′β1

h )(A) =: ψ(µ)
′β2

ψ(h)(A), (2.13)

where the semi-β1-differentiability implies the uniform convergence in β2

and is well-defined by (2.12).
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2. Having β1-differentiability, we even obtain β2-differentiability. It remains
to show that ψ(ν)

′β2

· : (H2, ‖ ‖E2
) → (Mβ2 , ‖ ‖β2)is linear and continuous.

The linearity follows by the linearity of ψ and µ
′β1
· (A) (which is linear by β1-

differentiability), because µ is β1-differentiable, i.e. (well-defined by (2.12))

ψ(µ)
′β2

λh+h′(A)
H2 = ψ(H1)

= ψ(µ)
′β2

λψ(h1)+ψ(h′1)(A)
ψ linear

= ψ(µ)
′β2

ψ(λh1+h′1)(A)

(2.13)
= ψ(µ

′β1

λh1+h′1
)(A)

µ
′β1
· (A)

linear
= ψ(λµ

′β1

h1
+ µ

′β1

h′1
)(A)

= λµ
′β1

h1
(ψ−1(A)) + µ

′β1

h′1
(ψ−1(A))

(2.13)
= (λψ(µ)

′β2

h + ψ(µ)
′β2

h′ )(A)

The continuity follows by ψ(ν)
′β2

· : (H1, ‖ ‖E1
) → (Mβ1 , ‖ ‖β1) being con-

tinuous and ψ |H1 being open. In detail we have to show that ∀ψ(h) ∈
H2,∀ε > 0, ∃δ2 > 0 : supA∈β2

∣∣∣ψ(µ)
′β2

ψ(h)(A)− ψ(µ)
′β2

h̃
(A)
∣∣∣ !
< ε ∀h̃ ∈

H2,
∥∥∥ψ(h)− h̃

∥∥∥
H2

< δ2. By the continuity of µ
′β1
· we gain ∃δ1 > 0 : ∀h̃1 ∈

H1,
∥∥∥h− h̃1

∥∥∥
H1

< δ1 : supB∈β1

∣∣∣µ′β1

h (B)− µ
′β1

h̃1
(B)
∣∣∣ < ε.

Since ψ
∣∣
H1

is open, we know that there exists an open set Ã such that

ψ({h̃1 ∈ H1

∣∣ ∥∥∥h− h̃1

∥∥∥
H1

< δ1}) = Ã 3 ψ(h). Thus (Ã being open) ∃δ2 :

{h̃ ∈ H2

∣∣ ∥∥∥ψ(h)− h̃
∥∥∥

H2

< δ2} ⊂ Ã. Finally ∀h̃ ∈ H2,
∥∥∥ψ(h)− h̃

∥∥∥
H2

< δ2 :

sup
A∈β2

∣∣∣ψ(µ)
′β2

ψ(h) − ψ(µ)
′β2

h̃

∣∣∣ = sup
A∈β2

|µ
′β2

h (ψ−1(A)︸ ︷︷ ︸
∈β1

)− µ
′β2

ψ−1(h̃)
(ψ−1(A))|

≤ sup
B∈β2

|µ
′β2

h (ψ−1(A)︸ ︷︷ ︸
∈β1

)− µ
′β2

ψ−1(h̃)
(ψ−1(A))| < ε.

2.4 Properties on a finite dimensional space

For this section we fix E = Rn and we derive a few properties of the Fomin-
differentiation on finite dimensional spaces and state a connection to the β-
differentiability.

In [ASF71, Propositon 3.1.1] we find the following:

Proposition 2.4.1.
Let h1, . . . , hn be a basis for Rn and ν ∈ M(Rn,B(Rn)), i.e. a signed measure
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with finite total variation. If ν is Fomin-differentiable in each of the directions
h1, . . . , hn, then it is absolutely continuous w.r.t. Lebesgue measure λ on Rn, i.e.

ν � λ.

Proof.
For every Borel set A ⊂ Rn we define a function ΨA : Rn → R, x 7→ ν(A+ x).
By the Fomin-differentiability the function ΨA is differentiable in the directions
h1, . . . , hn at every point x ∈ Rn, and

Ψ·(x)
′F
hi

(A) =
d

dt
ν(A+ x+ thi)

∣∣∣
t=0

= ν
′F
hi

(A+ x) = ν
′F
hi x

(A).

Since ν
′F
hi

is of bounded variation on Rn (cf. Theorem 2.2.6),

supB⊂Rn |ν
′F
hi

(B)| <∞. Therefore ΨA
′
hi

:= ν
′F
hi ·(A) is bounded:

sup
x⊂Rn

|ν ′Fhi x(A)| = sup
x⊂Rn

|(ν ′Fhi (A+ x))| ≤ sup
B⊂Rn

|ν ′Fhi (B)| <∞ ∀A ∈ B(Rn),

ΨA has bounded derivatives in the basis directions and hence is continuous on
Rn, i.e. choosing h :=

∑n
i=1 λihi ∈ H we obtain that ∃ (ξi)1≤i≤n ⊂ Rn :

ΨA(x+ h) = ΨA(x+
n−1∑
i=1

λihi + λnhn)

part. diff
= ΨA

(
x+

n−1∑
i=1

λihi

)
+
dΨA

dhn
(ξn)λnhn

induction
= ΨA(x) +

n∑
i=1

dΨA

dhn
(ξi)λihi

Thus, since we have bounded derivatives, we see

|ΨA(x+ h)−ΨA(x)| ≤
n∑
i=1

‖λihi‖Rn |max
1≤i≤n

dΨA

dhn
(ξi)︸ ︷︷ ︸

=:M

| ≤Mh→
h→0

0

In other words, νx(A) := ν(A+x)→ ν(A) uniformly for all A ∈ B(Rn), as x→ 0.
By a theorem of Saks(cf. [Sak64, Theorem 11.2, p.91]), this implies that ν is
absolutely continuous w.r.t. Lebesgue measure.

We attain (the third statement is the assertion of [ASF71, Theorem 3.2.1]):

Theorem 2.4.2.
Let h1, . . . , hn be a basis for Rn. Let ν ∈ M(Rn,B(Rn)) be Fomin-differentiable
in each of the directions hi.

1. If ν is Fomin-differentiable in the direction h ∈ H, then

lim
t→0
‖νth − ν

t
− ν ′Fh ‖tv = lim

t→0
sup

0≤τ≤t
‖ν ′Fh τh − ν

′F
h ‖tv = 0 (2.14)
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2. Each linear combination of directions, in which ν is Fomin-differentiable,
gives a new direction, in which ν is Fomin-differentiable and the linearity
holds.

3. The measure ν is boundedly differentiable w.r.t. Rn. In other words, the
following translation mapping is boundedly differentiable

T : Rn → (M(Rn,B(Rn)), ‖ ‖tv)
x 7→ νx.

Proof.

1. Let h ∈ H. The assumptions and Proposition 2.4.1 imply that ν is abso-
lutely continuous (w.r.t. Lebesgue measure). Thus the measure ν

′F
h is also

absolutely continuous, because ν
′F
h � ν (cf. Theorem 2.2.6). Therefore, by

the theorem of Saks ([Sak64, Theorem 11.2, p.91] (and Remark 2.2.3)),

Dh : (R, | |) → (M(Rn,B(Rn)), ‖ ‖tv)
τ 7→ ν

′F
h τh (2.15)

is continuous and

Tν : (R, | |) → (M(Rn,B(Rn)), ‖ ‖tv)
τ 7→ (νh)τh (2.16)

has continuous partial derivatives w.r.t. every argument (by assumption
they exist): Since ν is Fomin-differentiable along h, we have for all sets
B ∈ B(Rn) and x ∈ Rn :∣∣∣∣ν(B + x+ th)− ν(B + x)

t
− ν ′Fh (B + x)

∣∣∣∣
≤ 1

|t|
‖νth − ν − tν

′F
h ‖tv

Thm 2.2.12

≤ sup
0<τ<t

‖ν ′Fh τh − ν
′F
h ‖tv (2.17)

Since Dh is continuous, ∀ε > 0 ∃δ > 0 : ∀τ < δ : ‖ν ′Fh τh − ν
′F
h ‖tv < ε. Thus

choosing t = δ, we gain that the supremum in (2.17) is less than ε.

2. Let h, h1, h2 ∈ H, λ ∈ R. We prove the multiplication with scalars

ν
′F
λh

t′ = λt
= lim

t′
λ
→0

νt′λ−1λh − ν
t′λ−1

= λ lim
t′
λ
→0

νt′h − ν
t′

limit
unique

= λν
′F
h (2.18)

and the additivity

lim
t→0
‖νth1+th2 − ν

t
− ν ′Fh1

− ν ′Fh2
‖tv

≤ lim
r→0

lim
s→0

lim
t→0
‖νth1+th2 − ν

t
− νsh1 − ν

s
− νrh2 − ν

r
‖tv

+ lim
s→0
‖νsh1 − ν

s
− ν ′Fh1

‖tv + lim
r→0
‖νrh2 − ν

r
− ν ′Fh2

‖tv
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Using (2.14) and that ‖ν−th2‖tv = ‖ν‖tv we have

= lim
r→0

lim
s→0

lim
t→0
‖νth1 − ν−th2

t
− νsh1−th2 − ν−th2

s
− νrh2−th2 − ν−th2

r
‖tv

= lim
r→0

lim
s→0

lim
t→0
‖νth1 − ν

t
+
ν − ν−th2

t
− νsh1−th2 − ν−th2

s

−νrh2−th2 − ν−th2

r
‖tv,

4
≤ lim

s→0
lim
t→0
‖νth1 − ν

t
− νsh1−th2 − ν−th2

s
‖tv

+ lim
r→0

lim
t→0
‖ν − ν−th2

t
− νrh2−th2 − ν−th2

r
‖tv

4
≤ lim

t→0
‖νth1 − ν

t
− ν ′Fh1

‖tv + lim
t→0
‖ν ′Fh1

− ν ′Fh1−th2
‖tv

+ lim
s→0
‖ν ′Fh1

− νsh1 − ν
s

‖tv + lim
t→0
‖−ν−th2 − ν

t
− ν ′Fh2

‖tv

+ lim
t→0
‖ν ′Fh2

− ν ′Fh2−th2
‖tv + lim

r→0
‖ν ′Fh2

− νrh2 − ν
r

‖tv
(2.14)
= 0 (2.19)

3. We know by the second part that ν is Fomin-differentiable along Rn and
linear on Rn, therefore the continuity remains to show in order to gain that
it is boundedly differentiable w.r.t. Rn(cf. Definition 2.3.6).

W.l.o.g. h1, . . . , hn is an orthonormal base. If this wasn’t the case, we would
just choose one and gain by the second statement of this theorem that ν is
as well Fomin-differentiable along these new directions.
Since Tν is linear (cf. (2.16)), it is enough to show continuity at 0: For

ε > 0 choose h, h̃ ∈ H :
∥∥∥h− h̃∥∥∥

H
< ε

Mn
, where M := max1≤i≤n ‖ν

′F
hi
‖tv.

Fixing h− h̃ =:
∑n

i=1 λihi and analyzing∥∥∥h− h̃∥∥∥
H

Pythagoras
=

hi ONB

( n∑
i=1

|λi|2‖hi‖2
H︸ ︷︷ ︸

=1

) 1
2

=

( n∑
i=1

|λi|2
) 1

2

≥
(
|λi|2

) 1
2 = |λi| ∀i

we gain the continuity

‖ν ′F
h̃−h‖tv

4
≤

n∑
i=1

|λi| ‖ν
′F
hi
‖tv︸ ︷︷ ︸

≤M

≤ nM
∥∥∥h− h̃∥∥∥

H
< ε.

Remark 2.4.3.

1. We have shown that ν is even βRn-differentiable, where βRn = B(Rn).

2. We note that the assertion of [Sak64, Theorem 11.2, p.91] is only stated for
finite dimensional spaces. Thus we cannot use this method for the infinite
dimensional case without further considerations.
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2.5 Taking Fomin-derivative is linear and con-

tinuous

We return to E being an arbitrary separable Banach space (cf. Section 2.1) and
prove (cmp. [ASF71, Proposition 4.1.1, p.167]):

Proposition 2.5.1 (ν
′F
· linear).

Suppose that ν is uniformly Fomin-differentiable in every direction h ∈ H. Then

ν
′F
· : H → M(E,B(E))

h 7→ ν
′F
h

is linear.

Proof.
We know that σ(E′) = B(E). Let h ∈ H. The cylindrical sets are generated by
the elements of E′. Since ν

′F
h is a signed measure we know (Ai ∈ B(E) ∀i ∈ N):

ν
′F
h (
⋃̇
i∈N

Ai) =
∞∑
i=1

ν
′F
h (Ai).

Thus it is sufficient to verify the following equation for cylindrical sets A only.

ν
′F
λ1h1+λ2h2

(A)
!

= λ1ν
′F
h1

(A) + λ2ν
′F
h2

(A) (2.20)

We choose f1, . . . , fn ∈ E′. Let Ψ =
⋂n
i=1 ker fi, Ef1···fn be the factor space E/Ψ,

ψ := ψf1···fn : E → Ef1···fn

x 7→ x+ Ψ,

B ∈ B(Ef1,...fn) be a Borel subset of the finite dimensional space Ef1···fn and
A = {x : x ∈ E, ψ(x) ∈ B}. Thus we will simplify our task: Using Remark
2.3.5 we have that ν is uniformly Fomin-differentiable along each h ∈ H implies
semi-βE-differentiability, where βE = B(E). Furthermore, choosing β2 := ψ(βE) =
B(Ef1···fn), we obtain using Proposition 2.3.8 for h1, h2 ∈ H, λ1, λ2 ∈ R:

(ψ(ν))
′F
λ1ψ(h1)+λ2ψ(h2)(B)

H linear subset
and ψ(x) = x+ Ψ

= (ψ(ν))
′F
ψ(λ1h1+λ2h2)(B)

Prop 2.3.8
= ν

′F
λ1h1+λ2h2

(ψ−1(B))
def. A

= ν
′F
λ1h1+λ2h2

(A)

and for i = 1, 2

λiψ(ν)
′F
ψ(hi)

(B)
Prop 2.3.8

= λiν
′F
hi

(ψ−1(B))
def. of A

= λiν
′F
hi

(A)
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Thus equation (2.20) is implied by

ψ(ν)
′F
λ1ψ(h1)+λ2ψ(h2)(B)

!
= λ1ψ(ν)

′F
ψ(h1)(B) + λ2ψ(ν)

′F
ψ(h2)(B) ∀B ∈ B(Ef1,···fn ,) (2.21)

Since we work on the finite dimensional space Ef1,...,fn
∼= Rm, each Borel set B is

of the form B1×B2, where B1 is a Borel subset of the space M1 generated by the
vector ψ(h1) and ψ(h2) and B2 is a Borel subset of the subspace M2 such that
M1 ⊕M2 = Ef1...fn . With B2 we associate the measure νB2 :

νB2 : B(M1) → R
B1 7→ (ψ(ν))(B1 ×B2)

νB2 is differentiable in every direction of M1(because ν is differentiable in every
direction): h̃ ∈ B1 ↪→ B1 ×B2

νB2(B1 + th̃)
def.
= ν(ψ−1((B1 + th̃)×B2))

M1 ⊕M2= ν( ψ−1(B + th̃)︸ ︷︷ ︸
= {x ∈ A|ψ(x) ∈ B + th̃}

= {x ∈ A|ψ(x− tψ−1(h̃)) ∈ B}
= {x + tψ−1(h̃)|ψ(x) ∈ B}

) = ν(A+ tψ−1(h̃))

Thus we gain

νB2

′F
h1

(B1) = lim
t→0

νB2(B1 + th1)− νB2(B1)

t

= lim
t→0

ν(A+ tψ−1(h1))− ν(A)

t
ν is Fomin-

differentiable
= ν

′F
ψ−1(h1)(A) (2.22)

Hence we are in the case of Theorem 2.4.2 and statement 2 shows the linearity.

The next Proposition is only cited from [ASF71, Propositon 4.13]:

Proposition 2.5.2 (Continuity).
If ν is Fomin differentiable w.r.t. to all h ∈ H′, then ν is continuous w.r.t.
H′ ⊂ H, i.e. we have that

ν
′F
· : (H′, ‖ ‖H) → (M(E,B(E)), ‖ ‖tv)

h 7→ ν
′F
h

is continuous.
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2.6 Logarithmic gradient

Definition 2.6.1 ( Fβ
ν
H).

We suppose that ν is Fomin-differentiable along every h ∈ H and define

Fβ
ν
H : H → L1(ν)

h 7→ Fβ
ν (h, ·)

Fβ
ν
H is called the logarithmic gradient of ν w.r.t. H and is unique except for a

ν-null set N(h) ∈ B(E).

Corollary 2.6.2.
Let (H̃, ‖ ‖H̃) be a Banach space, where H̃ ⊂ E. If ν is Fomin-differentiable along

h for all h ∈ H̃ and

ν
′F
· : (H̃, ‖ ‖H̃) → (M(E,B(E)), ‖ ‖tv)

h 7→ ν
′F
h

is continuous, then the logarithmic gradient

Fβ
ν
H̃ : (H̃, ‖ ‖H̃) → (L1(ν), ‖ ‖L1(ν))

h 7→ Fβ
ν (h, ·)

is continuous, where
dν
′F
h

dν
= Fβ

ν (h, ·).

Proof.
By the continuity of ν

′F
· (cf. Proposition 2.5.2)we know that ∀ε > 0,∀h ∈ H̃

exists δ > 0 such that for all h′ ∈ H̃ with ‖h− h′‖H̃ < δ we have

ε > ‖ν ′Fh − ν
′F
h′ ‖tv

ν
′F
· � ν

= ‖ Fβν (h, ·) ν − Fβ
ν (h′, ·) ν‖tv

Lemma 1.0.18
= ‖ Fβν (h, ·)− Fβ

ν (h′, ·)‖L1(ν)

Thus the claim is proved.

Definition 2.6.3 ( ν-quasi-linear, N(λ, h1, h2)).
A function f : H → L1(ν) is ν-quasi-linear, iff ∀ h1, h2 ∈ H and ∀λ ∈ R ∃N =
N(λ, h1, h2) : ν(N) = 0 and

f(λh1 + h2)(x) = λf(h1)(x) + f(h2)(x), ∀x ∈ NC .

A function f̃ : H×E→ R is ν-quasi-linear in the first component, if the function

f : H → L1(ν)

h 7→ f̃(h, ·)

is ν-quasi-linear ∀h ∈ H.
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Lemma 2.6.4.
The logarithmic gradient Fβ

ν
H is ν-quasi-linear.

Proof.
This follows by the linearity of taking Fomin-derivative (cf. Proposition 2.5.1):

Fβ
ν
H(λh+ h′)(·)ν

by def.
of F β

ν
H= ν

′F
λh+h′

Prop 2.5.1
= λν

′F
h + ν

′F
h′

def. F β
ν
H= λ Fβ

ν
H(h)(·)ν + Fβ

ν
H(h′)(·)ν, (2.23)

where the first holds ∀x ∈ NC(λh+h′) and the last ∀x ∈ NC(h)∩NC(h′). Thus we
gain that Fβ

ν
H(·) is ν-quasi-linear, where N(h, h′, λ) := N(λh+h′)∪N(h)∪N(h′).

Following [SvW95] we define the logarithmic gradient for vector fields. In
[SvW95] there were no conditions or further clues given to show that the loga-
rithmic gradient for vector fields exists. We will give a condition, under which
the logarithmic gradient exists for a vector field. Furthermore we change the
definition, such that it will be independent of the choice of the orthonormal base.

Definition 2.6.5 (respects null sets).
A vector field g : E 7→ E is said to respect null sets (or g(ν)� ν), iff

∀N ∈ B(E) : ν(N) = 0 ∃N0 ∈ B(E) : g−1(N) ⊂ N0 ∧ ν(N0) = 0.

Definition 2.6.6 (logarithmic gradient of ν w.r.t a vector field h).
Let g : E 7→ E respect null sets. Assume that the functions Fβ

ν
H(h)(g(·)) with

h ∈ H are in L2(ν) and depend continuously on h ∈ H. Furthermore we assume
that it is bounded, i.e. ‖ FβνH(h)(g(·))‖L2 ≤M2(g(·)) ‖h‖H .
If for a vector field h : E 7→ H with

∫
‖h(x)‖2

Hν(dx) < ∞ the limit of the
L2(ν)−convergent series

∑
(h(·), ei)H Fβ

ν
H(ei)(g(·)) exists independently of any

orthogonal base {ei}i∈N of H, we define the function

Fβ
ν
H(h(·))(g(·)) (2.24)

ν-a.e. as this limit. It is called the (g-)logarithmic gradient of ν w.r.t. to a vector
field h.

From now on till the end we assume that the logarithmic gradient for vector
fields exists for the vector fields, with which we will work. As announced, we give
a condition to see that this object exists for finitely based vector fields:

Definition 2.6.7 (finitely based vector field).
Let h : H → E be a vector field. If there exist N ∈ N: for 1 ≤ i ≤ N ∃hi ∈ H
orthogonal, fi ∈ L2(ν) such that

h(x) =
N∑
i=1

fi(x)hi

then h is called finitely based.
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Lemma 2.6.8.
Let h : H→ E be a finitely based vector field. If g : E→ E respects null sets, then
there exists Fβ

ν
H(h(·))(g(·)) and it is independent of the choice of the orthonormal

base.

Proof.
First of all we have∫

E
‖h(·)‖2

Hd|ν| =
∫

E
‖
N∑
i=1

fi(x)hi‖2
Hd|ν| =

∫
E

N∑
i,j=1

fifj < hi, hj > d|ν|

=

∫
E

N∑
i=1

|fi(x)|2‖hi‖2
H|ν|(dx) =

N∑
i=1

‖hi‖H ‖fi‖
2
L2(ν) <∞,

Let {ek}k∈N be any orthogonal base, then by Fβ
ν
H being ν-quasi linear (Lemma

2.6.4) and continuous (Corollary 2.6.2) and g respecting null sets we gain∫
E

∣∣∣∣∣∑
ek

(
N∑
i=1

fi(x)hi, ek

)
Fβ

ν
H(ek)(g(·))

∣∣∣∣∣ d|ν|
=

∫
E

∣∣∣∣∣
N∑
i=1

fi(·) FβνH(hi)(g(·))

∣∣∣∣∣ d|ν| (2.25)

≤
N∑
i=1

∫
E
|fi(·) FβνH(hi)(g(·))| d|ν| (2.26)

Cauchy
Schwartz

≤
N∑
i=1

‖fi‖L2(ν) ‖ Fβ
ν
H(hi)(g(·))‖L2(ν)

Cor 2.6.2

≤ M(g)
N∑
i=1

‖fi‖L2(ν) ‖hi‖H

finitely
based
< ∞

In the first equation, we have seen that the series is independent of the orthogonal
basis. Furthermore it is independent of the representation of h(·), because Fβ

ν
H

is ν-quasi linear in the first component.

Remark 2.6.9.
If one justifies that the sums in (2.25) can be interchanged, the same calculation
can be done for h(x) =

∑∞
i=1 fi(x)hi. Fubini can be applied in (2.26) if one

assumes that
∑∞

i=1 ‖fi‖L2(ν) ‖hi‖H <∞.



Chapter 3

Different derivative notations

The main idea of this chapter is to generalize the notion of Fomin-differentiability
(introduced in Section 2.2) to C-differentiability and general differentiability and
to state some connection between C-, ‖ ‖tv− and Fomin-differentiability.

In Section 3.1 we state the definition of stably ν-integrable function and a
kind of integration by parts formula for the Fomin-derivative.

Motivated by the idea of the integration by parts formula, we introduce in
Section 3.2 the C-differentiability and prove that it is well defined. Furthermore
we define the logarithmic gradient for C-differentiability and show that it is well
defined.

In Section 3.3 we outline the general definition of a derivative (w.r.t. a topol-
ogy) of a sequence of measures, of a measure w.r.t. a subspace and along a vector
field. The τS-, τC- and τtv-topology are presented as examples.

In Section 3.4 we illustrate a few connections between the τS-, τC- and τtv-
derivative and state further properties, including a kind of main theorem of cal-
culus and a formula for the logarithmic gradient of a certain family of measures.
The main connections are summarized in a graphic.

Though most of the ideas can be found in [SvW95], we find it helpful to mo-
tivate them. The Lemma 3.5.1 has not been stated there and a few details of
Proposition 3.5.2 and Proposition 3.5.3 of the proofs were omitted.

3.1 Formula for integration by parts

We need the following definition (cf. [ASF71, p.150] ):

Definition 3.1.1 (stably ν-integrable w.r.t. h).
A function f : E → R is stably ν-integrable with respect to translations in the
direction h ∈ H if there exist δ > 0 and g ∈ L1(ν) : ∀t ∈ R, |t| < δ we obtain

|f(x+ th)| ≤ g(x) ∀x ∈ E.

29
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Example 3.1.2.
For example every bounded function is stably ν-integrable w.r.t. translations in
any direction.

We only repeat the assertion of [ASF71, Corollary 2.2.2], its proof can be
found in [ASF71, p. 150 ff]:

Theorem 3.1.3 (integration by parts).
Let ν be Fomin-differentiable in the direction h ∈ H and f be a B(E)-measurable
function, which is Gâuteaux-differentiable in the direction h at every point. If
f is stably ν

′F
h -integrable and f ′h is stably ν-integrable w.r.t. translation in the

direction h, then ∫
E

f ′h(x)ν(dx) = −
∫
E

f(x)ν
′F
h (dx).

3.2 C-differentiable
Inspired by the formula for integration by parts we define a new concept of
differentiability, which is not calculated setwise. A further motivation is to gain
a concept for the derivative of a measure along a vector field. The concept of
C-differentiability that we introduce following [SvW95] slightly differs from the
concept of an integration by parts operator introduced in [Bel90].

Similar to [SvW95, p.105] we define

Definition 3.2.1 (norm-defining).
Let C̃ denote any (arbitrary) set, which consists of bounded functions φ : E 7→ R,
i.e. C̃ ⊂ Bb(E). The set C̃ is called norm-defining, if for all ν ∈M(E,B(E)):

‖ν‖tv = sup

{∫
E
φdν, ‖φ‖∞ ≤ 1, φ ∈ C̃

}
(3.1)

Remark 3.2.2.

1. Of course, in (3.1) the l.h.s is always bigger than or equal to the r.h.s..

2. If we add more bounded measurable functions to a norm-defining set, it will
remain norm-defining.

3. For the β-differentiability we have chosen a set (or class) of subsets of E.
Now we choose a set consisting of functions φ : E→ R.

4. In Theorem 4.1.15 we show that C1
b := C1

b (E,R) is norm-defining.
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Slightly differing from [SvW95], where the elements of the following norm-
defining set are assumed to be smooth, we define

Definition 3.2.3 (C-differentiable along a vector field).
Let C be a norm-defining set, which elements φ are at least once Gâuteaux-
differentiable in each direction h′ ∈ H.
A measure ν is called C-differentiable along a vector field h : E → H with loga-
rithmic derivative Cβ

ν
h ∈ L1(ν) and derivative ν

′C
h := Cβ

ν
h ν, if for every φ ∈ C

one has

−
∫
φ′h(x)(x)ν(dx) =

∫
φ(x) Cβ

ν
h(x)ν(dx) (3.2)

Remark 3.2.4.
Let h : E→ R be a vector field and C be a norm-defining set.

1. As for the notation of the β-differentiability, we remark that if we use the
symbol C with indices, we mean the concept of C-differentiability, i.e. ν

′C.

The same is true for the logarithmic derivative, i.e. Cβ
ν
h .

Note that the right lower index is meant as a vector field h : E→ H. If h is
constant, we mean the vector field h : E→ H, such that ∀x ∈ E h(x) = h.

2. If h is constant, each Fomin-differentiable measure ν is C-differentiable
along h by the integration by parts formula (Theorem 3.1.3) and the deriva-
tives (and Cβ

ν
h = Fβ

ν(h, ·)) coincide.

3. Being familiar with [Bel90] one notices that this definition slightly differs
form the definition of an integration by parts operator (IPO) (cf. [Bel90,
p.17]), i.e. the IPO is the negative of the logarithmic derivative Cβ

ν
h.

4. We notice that

‖ν ′Ch ‖tv
Def. 3.2.1

= | sup
‖φ‖∞ ≤ 1

φ∈C

∫
E
φdν

′C
h | ≤

∫
E
| Cβνh |d|ν|

Cβ
ν
h ∈ L1(ν)
< ∞

Lemma 3.2.5 ( Cβ
ν
h is well defined).

The logarithmic derivative Cβ
ν
h is ν-a.e. unique, and hence well defined.

Proof.
Assume there existed Cβ

ν
h and C β̃

ν
h such that definition (3.2) were fulfilled. By

Lemma 1.0.17 ( Cβ
ν
h− C β̃

ν
h)ν is a signed measure, because Cβ

ν
h− C β̃

ν
h ∈ L1(ν).
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Thus using (3.2) and Definition 3.2.1 we get:∫
| Cβνh− C β̃

ν
h|d|ν|

Lemma 1.0.18
= ‖( Cβνh− C β̃

ν
h)ν‖tv

= sup
φ ∈ C
‖φ‖∞ ≤ 1

∫
φ( Cβ

ν
h− C β̃

ν
h)dν

(3.2)
= sup

φ ∈ C
‖φ‖∞ ≤ 1

∫
E
φ′h(x)(x)ν(dx)−

∫
E
φ′h(x)(x)ν(dx)︸ ︷︷ ︸

finite, by (3.2)

and Cβ
ν
h ∈ L

1(ν)

= 0

Thus Cβ
ν
h = C β̃

ν
h ν-a.e..

Remark 3.2.6.
Analogously to Fβ

ν
H we define for h ∈ H Cβ

ν
H by Cβ

ν
H(h)(·) = Cβ

ν(h, ·) := Cβ
ν
h

and obtain that it is also ν-quasi-linear:∫
E
φ Cβ

ν(h+ λh′, ·)dν =

∫
E
φ′h+λh′dν

Def. 1.0.20
=

∫
E

φ′hdν + λ

∫
E

φ′h′dν =

∫
E

φ ( Cβ
ν(h, ·) + λ Cβ

ν(h′, ·)) dν

Noticing that it is continuous in the first component we conclude as in Corollary
?? that it is even ν-a.e. linear. Moreover, one can easily define the logarith-
mic gradient Cβ

ν
H(h)(g) for h : E → H and g a vector field with the properties

mentioned in Definition 2.6.6.

The next graphic summarizes the connections of the so far introduced notations.
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3.3 General definition of the derivative
After having introduced several different notions for the derivative of a measure,
we present the general concept to differentiate a family of measures.

Throughout this section τ denotes a (Hausdorff) topology on M(E,B(E)),
which is compatible with the vector space structure.

Before we state the general defintion of a measures, we introduce (cmp. [Sie00,
P.72]):

Definition 3.3.1 (τ -limit).
An infinite sequence µ1, µ2, . . . of elements of any topological space (T, τ) is said
to have the τ -limit ν ∈ T , if for every neighborhood V of µ there exists a natural
number N ∈ N:

µn ∈ V ∀n > N

In symbols,

τ − lim
n→∞

µn = µ

If the sequence is indexed by h ∈ R, we define that ν is the τ -limit, iff it is the
τ -limit for every countable subsequence.

Definition 3.3.2 (τ -differentiable at t).
Let I ⊂ R be an interval. A family (νt)t∈I of signed measures νt ∈ M(E,B(E))
is τ -differentiable at t iff there exists the τ -limit

τ − lim
ε→0

νt+εh − νt

ε
∈M(E,B(E)).

If it exists, it is called τ -derivative of ν and is denoted by νt
′τ

.

If in addition νt
′τ � νt, then there exists the Radon-Nikodỳn derivative denoted

by t
τβ

ν♣. In this case we call it the logarithmic derivative of (νt)t∈I w.r.t. to the

topology τ at t, denoted by t
τβ

ν♣, and have νt
′τ

= t
τβ

ν♣ νt.

Remark 3.3.3.

1. Note that, whenever the symbol ♣ occurs in the notation of the logarithmic
derivative, we treat a sequence of signed measures. Thus this is an extension
of the notation for the logarithmic derivative, which we used so far.

2. In full detail the logarithmic derivative t
τβ

ν♣ would have to be denoted by

t
τβ

(νt)
t∈I .

But for a better readability we omit the range of definition of the sequence.



34 CHAPTER 3. DIFFERENT DERIVATIVE NOTATIONS

Definition 3.3.4 (τ -differentiable along h).
A measure ν ∈M(E,B(E)) is τ -differentiable along h ∈ H, if

νt := νth := ν(·+ th)

is τ -differentiable at 0. The τ -derivative is denoted by ν
′τ
h .

In [SvW93, p.473] we spot

Definition 3.3.5 (τ -differentiable along H).
A measure ν ∈M(E) is τ -differentiable along H, if

1. H ⊂ E is a Hilbert subspace

2. For each h ∈ H the τ -derivative of ν along h exists.

3. The following function is continuous: ν
′τ
· : H→M(E,B(E)), h 7→ ν

′τ
h .

If ν
′τ
h � ν for all h we denote, as before, the logarithmic derivative of ν along H

by τβ
ν(h)(·).

Remark 3.3.6.
As before (cf. Definition 2.6.1)we define the logarithmic derivative τβ

ν
H(h)(·) :=

τβ
ν(h)(·) and for functions h : E → H, whenever it exists in the sense of Def-

inition 2.6.6. Though we do not assume any linearity, it will be given for the
standard examples.

Differing from [SvW93, p.471f] we assume in the following definition that there
exists a unique solution on [−ε, ε], such that the derivative is well defined. Later
(Theorem 4.2.11) we state a condition under which such a unique solution exists.

Definition 3.3.7 (τ -differentiable along a vector field h).
A measure ν ∈ M(E,B(E)) is said to be differentiable along the vector field
h : E→ H with derivative ν ′τh, if and only if

1. There exists ε > 0 and an unique, in both components differentiable mapping
a : [0− ε, 0 + ε]× E→ E such that

(a) a(t1 + t2, x) = a(t1, a(t2, x))

(b) a(0, x) = x

(c) D1a(t, x) = h(a(t, x))

2.
{

hνt
}
t∈[−e,e] is τ -differentiable at t=0, where hνt(B) := ν(a(t, B)) ∀B ∈

B(E). If the τ -derivative exists, it is denoted by ν ′τh.

If ν ′τh � ν, then we denote the logarithmic derivative of ν along the vector field
h by τβ

ν
h.
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Remark 3.3.8.
This is a generalization of Definition 3.3.4, because for constant h the unique
solution on R with properties (1a) to (1c) is a(t, x) = x+ th. Thus the notation
is justified.

Example 3.3.9 (τS, τC , τtv). Following [SvW93, p.456] we have

1. Let us turn to the topology of setwise convergence on M(E,B(E)), denoted
by τS. Then we have by definition that a measure ν ∈M(E,B(E)) is Fomin-
differentiable along h ∈ H, iff it is τS-differentiable along h.

2. Let C be a norm-defining set. We consider the weak topology on M(E,B(E))
defined by the duality between M(E,B(E)) and C, which is denoted by τC.
Then a measure ν ∈ M(E,B(E)) is C-differentiable along h ∈ H, iff it
is τC-differentiable along h. A connection for vector fields is established
in Proposition 4.4.1. For details of this example we refer to the proof of
Proposition 4.4.1.

3. The topology τtv denotes the topology generated by the ‖ ‖tv-norm of the
Banach space (M(E,B(E)), ‖ ‖tv). Thus ν is τtv-differentiable iff ν is uni-
formly Fomin differentiable (cf. Definition 2.2.2):

τtv − lim
t→0

νth − ν
t

= ν
′tv
h , iff ‖νth − ν

t
− ν ′tvh ‖tv→

t→0
0

From now on τS, τC and τtv denote the above defined topologies, where C can
be replaced by C1

b , C̃
1
b , etc. and a derivative w.r.t. to them can be denoted by

ν
′τS , ν

′τC , ν
′τ
C1
b , νt

′τC etc., where ν, νt ∈M(E,B(E)).

Remark 3.3.10.
Let τs, τw be topologies and τs be stronger or finer than τw (i.e. τs-convergence
implies τw-convergence). If the τs-derivative exists, then the τw-derivative exists
as well.

Therefore we may use the same notation for all limits and logarithmic deriva-
tives, if the topologies can be compared in the above way. Mainly we will consider
the topologies mentioned in the last example. These topologies are comparable in
the above sense (cf. [SvW93, Remark 2.2]), i.e. τtv finer than τS, τS finer than
τC. We note that for h ∈ H, where the equations hold ν-a.e,

tvβ
ν
H(h)(·) = Fβ

ν
H(h)(·) = Cβ

ν
H(h)(·), if all exist.

τtvβ
ν
H(h)(·) = τS

βνH(h)(·) = τC
βνH(h)(·), if all exist.

Thus we do not need to distinguish within the notation, if all of them exist.
However we will use different notations to express the topology we are considering.
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3.4 Overview of the introduced notations

Now we observe, how the definition mentioned so far fit in the general picture.

In Proposition 4.4.1 we show a connection between the τC-differentiability and
the C-differentiability for a special topology and a special norm-defining set. But
to prove and to understand this relation, there is still some work to do. Since this
connection is not as obvious as the others, we omit it in this graphic (cf. Remark
4.4.2 for details).
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3.5 Connections
Within this section, we outline some connections between the different notions of
differentiability (i.e. τS, τC , τtv, cf. Example 3.3.9). At the end we summarize
them in a grafic. For this section let I ⊂ R be an open interval and C be a
norm-defining set.

Lemma 3.5.1 (τS-τC-Lemma).
Let t0 ∈ I, then (νt)t∈I being τS-differentiable at t0 implies that (νt)t∈I is τC-
differentiable at t0.

Proof.

Let γt0s : B(E)→ R, A 7→ νt0+s(A)−νt0 (A)
s

be a sequence. By the τS-differentiability
of νt it is bounded for every set A. This is the assumption of [DS57, Theorem
IV.9.8, p.309f] and hence we gain the boundedness of γt0s . In addition we use the
τS-differentiability and obtain by [DS57, Theorem IV.9.5, p.308] that it converges
weakly. But in our case this is exactly the τC-differentiability.

In [SvW93, Proposition 2.5] we have

Proposition 3.5.2.
Let (νt)t∈I be τC-differentiable and suppose that either C is complete under the

sup-norm or that the map t 7→ ‖νt
′τC‖tv is bounded from above by a locally

integrable function on I. Then

1. (νt)t∈I is τtv-continuous.

2. There exists a probability measure ν? ∈ M(E,B(E)) such that νt � ν? for
all t ∈ I. For every such ν? one can choose the derivatives ft = dνt/dν?

such that ft(x) is a B(I)⊗ B-measurable function of (t, x).

3. If (νt)t∈I is τS-differentiable, then the measure ν? in part 2 dominates even
ν
′F
t for all t.

Proof.
Succeeding the proof of [SvW93, Proposition 2.5] we have

1. Suppose first that C is complete under the sup-norm. Fix t and ε > 0 such
that (t − ε, t + ε) ⊂ I. We show that the τC-differentiability at t implies
that the set A = {(νt+h − νt)/h : 0 < h < ε} is bounded for τC and then
use Banach Steinhaus([Wer05, p.141]) to obtain the continuity:
We know that by the τC-differentiability at t there exists h0 : ∀h < h0 :∣∣∣∣∫ φ(x)νt

′τC (dx)−
(

1

h

∫
φ(x)(νt+h(dx)− νt(dx))

)∣∣∣∣ < 1,
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which implies ∣∣∣∣(1

h
(νt+h − νt)

)
(φ)

∣∣∣∣ < ∣∣∣∣∫ φ(x)νt
′τC (dx)

∣∣∣∣+ 1

C norm-def.

≤
Def. 3.2.1

‖φ‖∞ ‖ν
t
′τC‖tv + 1 <∞.

And ∀h ≥ h0:∣∣∣∣1h(νt+h − νt)(φ)

∣∣∣∣ ≤ 1

h0

(
‖νt+h − νt‖tv

)
‖φ‖∞︸ ︷︷ ︸

finite,∈ C,
by Def. 3.2.1

<∞

Therefore we have proved that for all φ ∈ C

sup
h∈]0,ε[

∣∣∣∣(1

h
(νt+h − νt)

)
(φ)

∣∣∣∣ <∞ (3.3)

Since (C, ‖·‖∞) is a Banach space and (R, | · |) is a normed space, the
equation (3.3) implies (by Banach-Steinhaus) that

∞ > sup
h∈]0,ε[

∥∥∥∥1

h
(νt+h − νt)

∥∥∥∥ := sup
h∈]0,ε[

sup
φ∈C,‖φ‖∞≤1

∣∣∣∣( 1

h
(νt+h − νt))(φ)

∣∣∣∣
C norm-def.

= sup
h∈]0,ε[

‖1

h
(νt+h − νt)‖tv (3.4)

Reformulating (3.4) we get

‖νt+h − νt‖tv ≤Mh (3.5)

Thus ‖νt+h − νt‖tv → 0 as h→ 0.

Suppose now that ‖νt
′τC‖tv ≤ g(t) for some locally integrable function g.

Then

‖νt+h − νt‖tv
C norm-def.

= sup

{∫
φd(νt+h − νt) : φ ∈ C, ‖φ‖∞ ≤ 1

}
= sup

{∫ t+h

t

∫
φdνs

′τC︸ ︷︷ ︸
≤ ‖νs′τC ‖tv

ds : φ ∈ C, ‖φ‖∞ ≤ 1

}

≤
∫ t+h

t

g(s)ds,

which converges to 0 as h→ 0. This proves part 1.



3.5. CONNECTIONS 39

2. Choose any positive probability measure ν? which dominates νt for all ra-
tional t, e.g. ν? =

∑∞
i=1 ci|νti|, where (ti)i∈N is an enumeration of the

rational elements of I and ci is chosen so that
∑∞

i=1 ci ‖νti‖tv = 1, that is
ci := 1

2i ‖νti‖tv .

Since νt is τtv-continuous (cf. part 1), ν? then dominates even every νt,
because by the τtv-continuity of νt in t, there exists tn ∈ Q such that
‖νt‖tv ≤ ‖νtn‖tv + 1

n
. Since νtn � ν? for every rational tn, this becomes

arbitrary small if ‖ν?‖tv → 0.

Then every choice of the densities ft (they exist, because νt � ν?) defines
a stochastic process on the probability space (E,B(E), ν?) (e.g. cf. [PZ92,
3.1, p.70], ft is B-measurable).

Claim: This process is stochastically continuous in measure.

Proof.
We have to show (stochastically continuous): ∀ε > 0 ∀δ > 0 ∃n ∈ N:
∀h ∈ [− 1

n
, 1
n
]

δ
!

≥ ν?({|ft+h − ft| ≥ ε})

=

∫
E
1{|ft+h−ft|≥ε}(x)ν?(dx)

Tschebychef

≤ 1

ε

∫
E
|ft+h − ft|d|ν?|

Lemma 1.0.18
=

1

ε
‖ft+hν? − ftν?‖tv

=
1

ε
‖νt+h − νt‖tv →

h→0
0 (3.6)

Thus the last term tends to zero, because νt is τtv-continuous in t.

From the claim we deduce that the process has a jointly measurable modifi-
cation (cf. [Nev65, Theorem III.4.4., p.91] or [PZ92, Proposition 3.2, p.72]),
which proves the second assertion.

3. Let ν? dominate νt for all t and let N be a ν?-nullset. Then

νt
′F

(N) = lim
h→0

1

h
(νt+h(N)− νt(N))

ν· � ν?
= 0.

3.5.1 Kind of main theorem of calculus

In [SvW93, Theorem 2.7] a kind of main theorem of calculus is postulated, i.e.
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Proposition 3.5.3.
Suppose that one of the following assumptions is fulfilled

1. The family (νt)t∈I is τS-differentiable.

2. The family (νt)t∈I is τC-differentiable and νt
′τC � νt for λ-a.a. t ∈ I.

Assume further that ‖νt
′τC‖tv ≤ g(t) on [a, b] for some a,b in I and some

g ∈ L1([a, b], λ). Then

1. For Lebesgue a.e. t ∈ [a, b] the family (νt)t∈I is τtv-differentiable at t and

νt
′τtv � νt. The logarithmic derivative is t

τtvβ
ν♣ := dνt

′τtv

dνt
.

2. There exist a probability measure ν? and two B([a, b]) ⊗ B(E)-measurable

functions f, f ′ such that ft = dνt

dν?
, f ′t = dνt

′τC

dν?
for a.e. t, and

ft(x)− fa(x) =

∫ t

a

f ′s(x)ds. (3.7)

holds for all x ∈ E and all t ∈ [a, b].

3. For all t ∈ [a, b]

νt − νa =

∫ t

a

νs
′τtvds (3.8)

as a (M(E,B(E)), ‖·‖tv)-valued Bochner integral. (For the definition see
e.g. [PR07, Appendix A] or [DJU77, II.2, p. 44 ff] )

In the first assertion the absolute continuity is already assumed in the case of
the τC-differentiability.

Proof of Proposition 3.5.3.
We carry out the proof as in [SvW93, Theorem 2.7]. W.l.o.g. ν is τC-differentiable
(eventually using in addition Lemma 3.5.1). Choose a measure ν? according to
Proposition 3.5.2 and denote by λ the Lebesgue measure on [a, b]. Define a

measure m′ on B(I)⊗ B(E) by m′(dt, dx) = νt
′τC (dx)dt.

Then ‖m′‖ :=
∫ b
a
‖νt

′τC‖tvdt ≤
∫ b
a
g(t)dt <∞.

Claim: m′ � λ⊗ ν?
Proof. Let A = I ′ × A′ ∈ B(I)× B(E)

m′(A) =

∫
[a,b]×E

1A(t, x)m′(dt, dx)

Fubini
=

∫ b

a

1I′(t)

∫
A′
νt
′τC (dx)︸ ︷︷ ︸
≤‖νt′τC ‖

dt =

∫ b

a

νt
′τC (A′)dt (3.9)
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where Fubini is justified, because ‖ν ·′τC‖tv is locally integrable over [a, b].
Let t ∈ [a, b]. In the case of τS-differentiability by Proposition 3.5.2 part 3 we

have νt
′F � ν? and in the other one by assumption νt

′τC � νt(� ν?). Thus
m′ � λ⊗ ν?. Let f ′ ∈ L1(λ⊗ ν?) be a version of dm′

dλ⊗ν? , which is of course jointly
measurable. Furthermore as in the proof of Proposition 3.5.2 part 2 there exists
ft, a jointly measurable version of dνt

dν?
.

Now we prove the first assertion:
Choose φ ∈ C in the case of τC-differentiability or φ = 1B, B ∈ B(E), in the case
of τS-differentiability. Then by the definition of differentiability t 7→

∫
φdνt is a

differentiable function with a (by assumption) integrable derivative over [a, b].
Since f ′ ∈ L1(λ⊗ ν?) and φ is bounded, we may apply Fubini∫

E
φ(x)

∫ t

a

f ′s(x)ds ν?(dx)
Fubini

=

∫
[a,t]×E

φ(x)f ′s(x)λ⊗ ν?(ds, dx)

def. f ′
=

∫
[a,t]×E

φ(x)m′(ds, dx)

def. m′
=

∫ t

a

∫
E
φ(x)νs

′τC (dx)ds (3.10)

Using in addition the fundamental theorem of calculus for Bochner integrals (cf.
[PR07, A.2.3]) we gain that (3.10) equals∫

E
φ(x)νt(dx)−

∫
E
φ(x)νa(dx) =

∫
E
φ(x)d( νt − νa︸ ︷︷ ︸∫ t

a ν
s′τC ds

)

=

∫
E
φ(x)(ft(x)− fa(x))ν?(dx), (3.11)

where we used in the last equation the assumptions and the 2. statement of
Propositioin 3.5.2. Hence (3.7) holds ν?-a.e., because C is norm-defining.

We redefine f by ft(x) =
∫ t
a
f ′s(x)ds. This changes each ft only on a ν?-nullset

and hence still ft = dνt

dν?
. But with this new f , (3.7) holds everywhere.

The Banach space L1(λ ⊗ ν?) can be identified with L1
L1(ν?)([a, b]), the space of

equivalence classes of L1(ν?)-valued Bochner integrable function on [a, b], because

∞ >

∫
[a,b]×E

|f ′t(x)|(λ⊗ ν?)d(t, x)

Fubini

f ′t ∈ L1(λ⊗ ν?)
=

∫
[a,b]

∫
E
|f ′t(x)|ν?(dx)λ(dt)

and thus (3.11) implies

ft − fa =

∫ t

a

f ′sds (3.12)
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where the r.h.s. is a Bochner integral, which exists by Fubini and the construction.

The Lebesgue differentiation theorem for Bochner integrals (cf. e.g. [DJU77,
Theorem 9, p.49]) yields: Since f ′ is Bochner integrable over [a, b], for Lebesgue
almost all t ∈ [a, b],

lim
h→0

(ft+h − ft)/h = lim
h→0

1

h

∫ t+h

t

f ′sds

Lebesgue
for Bochner

= f ′t

in the L1(ν?)-norm.

This implies that limh→0
νt+h−νt

h
exists in τtv and is given by the measure with

ν?-density f ′t :

0 ≤ lim
h→0
‖ft+hν

? − ftν?

h
− f ′tν?‖tv

Lemma 1.0.18
= lim

h→0

∥∥∥∥ft+h − fth
− f ′t

∥∥∥∥
L1(ν?)

Lebesgue
=

Bochner
0

Thus
τtv − lim

h→0
(νt+h − νt)/h = f ′tν

?.

On the other hand by the weaker differentiability (τS or τC) of our assumption

this measure must be νt
′τC (cf. Remark 3.3.10). Thus f ′t = dνt

′τtv

dν?
for almost all

t and (3.12) implies (3.8).

It remains to prove νt
′F � νt in the case of τS-differentiability. For this we

compare the zero sets of f and f ′. For each x the set J := {t : ft(x) = 0} is
contained in the set {t : f ′t(x) = 0} up to a Lebesgue nullset:
Chose t′ such that ft′(x) = 0

0 =

∫
E

∫
I

1{t:ft(x)=0}(t)ft(x)︸ ︷︷ ︸
=1{x:ft(x)=0}(x)ft(x)

− ft′(x)dtν?(dx)

f·(x) diff

Fubini
=

∫
I

∫
E
1{x:ft(x)=0}(x)︸ ︷︷ ︸

=:A

∫ t

t′
f ′s(x)ds︸ ︷︷ ︸
=:B

ν?(dx)dt

If A = 1, this implies for Lebesgue-a.e. t ∈ R that B is 0 ν?-a.e.. Thus for
every density point t0 (where ft0(x) is differentiable) and every sequence (tn)n∈N
in J={t : ft(x) = 0} towards it, we know that

ft0(x)− ftn(x) =

∫ t0

tn

f ′s(x)ds

Bochner
Thm. Integral⇒ f ′t0 = lim

tn→t0

ft0(x)− ftn(x)

t0 − tn
= 0 (3.13)
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Let 1
0

denote the length of I, i.e. 1
0

:= sup{a− b|a, b ∈ I}. We have

J =
·⋃

n∈N

{
t

∣∣∣∣ 1

n− 1
≥ ‖t− y‖ > 1

n
∀y ∈ J

}
∪̇{t|t density point}

The sets in the first union are finite, because I ⊂ J is finite, i.e. 1
0
< ∞. Thus

there exist only countably many non density points in the set I ⊂ R. Hence we
have the property (3.13) for Lebesgue-a.e. t. Therefore

{t0 : ft0(x) = 0} ⊂ {t0 : f ′t0(x) = 0} λ-a.e. ν?-a.e

This just means that νt
′F � νt for a.e. t.

The following theorem can be found in [SvW93, Theorem 3.3]:

Theorem 3.5.4.
Suppose that

1. (νt)t∈I is differentiable for τS or τC.

2.
∫ b
a
‖νt

′τC‖tvdt <∞ for some a, b in I

3. the map (t, x) 7→ t
τC
βν
♣

(x) is B(I)⊗B(E)-measurable and for Lebesgue-a.e.

t: t
τC
βν
♣

(·) = dνt
′τC

dνt

4.
∫ b
a
| tτCβ

ν♣(x)|dt <∞ holds |νa|+ |νb|-a.e.

then all measures νt, a ≤ t ≤ b, are equivalent and

dνt

dνa
(x) = exp

(∫ t

a

s
τtvβ

ν♣(x)ds

)
. (3.14)

Proof.
Instead of a differential equation we consider the corresponding integral equation
and apply Gronwall:

Because of assumptions 1 to 3 we may apply Proposition 3.5.3 and gain a
dominating probability measure ν? and two B([a, b])⊗B(E)-measurable functions
f and f ′ such that for ν?-a.e x ∈ E the following holds λ-a.e.:

ft(·) tτtvβ
ν♣(·) =

dνt

dν?
dνt

′τtv

dνt
=
dνt

′τtv

dν?
= f ′t(·) λ-a.e, (3.15)
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where ft = dνt

dν?
and f ′t = dνt

′τtv

dν?
.

Using this in the integral of (3.7) in Proposition 3.5.3 we get for ν?-a.e. x ∈ E
and all t ∈ I the relation

ft(x)− fa(x) =

∫ t

a

fs(x) sτtvβ
ν♣(x)ds (3.16)

Moreover, assumption 4 and Remark 3.3.10 imply that for ν?-a.e. x ∈ E

fa(x) = fb(x) = 0 or

∫ b

a

| sτCβ
ν♣(x)|ds <∞.

Together with Gronwall (cf. [Ama90, p.89]) and the last formula this shows that

ft(x) = fa(x) exp

(∫ t

a

s
τtvβ

ν♣(x)ds

)
∀t ∈ [a, b]. (3.17)

for ν?-a.e. x for which either fa(x) 6= 0 or fb(x) 6= 0. Since
∫ b
a
| tτCβ

ν♣(x)|dt <∞
equation (3.17) implies that fa and ft vanish on ν?-almost the same points. Thus
the measure νa and νt are equivalent and

dνt

dνa
(x) =

ft
fa

(x) = exp

(∫ t

a

s
τtvβ

ν♣(x)ds

)
(3.18)

This theorem can be found in [SvW93, Theorem 6.2].

Theorem 3.5.5.
Let ({γt : t ∈ R}, ◦) be a group of bimeasurable bijections of (E,B(E)). Define
∀t ∈ R : νt(A) = ν(γt

−1(A)) ∀A ∈ B(E). Suppose that for some point s, the
family {νt}t∈R is

1. τC-differentiable at s with νs
′τC � νs and

2. φ ◦ γt ∈ C for all t ∈ R and all φ ∈ C, C being norm-defining

Then

1. the family itself is τtv-differentiable on I = R,

2. νt
′τtv � νt and

3. t
τtvβ

ν♣(x) = 0
τtvβ

ν♣(γ−t(x)) ν-a.e. for all t.
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Remark 3.5.6.
Of course, we can formulate the above theorem for I ⊂ R open, 0 ∈ I and the
proof still holds. One just has to take care that all expressions are well-defined.
E.g. the group condition is replaced by ∀s, t ∈ I : s+ t ∈ I we have γt+s = γt ◦ γs.
For the sake of clarity we prove it for I = R.

Proof of Theorem 3.5.5.
First of all we show the following

Claim: for all t ∈ R the derivative νt
′τC exists in any of the topologies τC , τS, τtv

and equals νs
′τC ◦ γt−s−1, whenever νs

′τC exists for some s in the topologies.
Proof.
First we prove the claim for τC and τS: Choose φ ∈ C or φ = 1B, where B ∈ B(E).
Using the group property of the flow it follows that∫

φdνt
′τC = lim

h→0

1

h

∫
φd(νt+h − νt)

group
property

= lim
h→0

1

h

∫
φ ◦ γt−sd(νs+h − νs)

=

∫
φ ◦ γt−sd(νs

′τC ) =

∫
φd(νs

′τC ◦ γt−s−1), (3.19)

where we used the τS respectivly τC-differentiability and that φ ◦ γt−s ∈ C. Thus
(3.19) implies the claim for τS and τC .

Thus it remains to prove the claim for τtv. By (3.19) the norm ‖νt
′τC‖tv is

constant for all t. As in Remark 3.2.4 we see that ‖νs′τC‖tv is finite:

‖νs′τC‖tv = | sup
‖φ‖∞≤1

∫
E
φdνs

′τC | = | sup
‖φ‖∞≤1

∫
E
φ(x) sτCβ

ν♣(x)νs(dx)|

≤
∫

E
| sτCβ

ν♣(x)||νs|(dx)
s
τC
βν
♣
∈ L1(νs)

<
cf. Def. 3.3.2

∞

Thus we even gain that ‖νt
′τC‖tv is locally integrable.

Furthermore νs
′τC � νs for some s implies νs+t

′τC � νs+t for all t: We have

sup{A|A ∈ B(E)} = sup{γ−1
t−s(A)|A ∈ B(E)}, (3.20)

because γt is a bijection, which is bimeasurable. Thus we have

‖νt
′τC ‖tv

(3.19)
= ‖νs′τC ◦ γt−s−1‖tv

(3.20)
= ‖νs′τC ‖tv

� ‖νs‖tv
(3.20)
= ‖νs ◦ γt−s‖tv = ‖νt‖tv (3.21)

Hence the assumptions of Proposition 3.5.3 are fulfilled and the family is τtv-

differentiable at Lebesgue-a.e. t. Using (3.20) for νt
′τtv this is even true for all

t.
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3.5.2 Connections of τ-, τtv-, τC- and τS-differentiable

We summarize some of the proven relations in the following graphic.

τ -differentiable

τ=τtv
��

τ = τS

��

τ = τC





τtv-differentiableRemark 3.3.10





Remark 3.3.10

��
τS-differentiable

Thm. 3.5.3∥∥∥νt′ ∥∥∥
integrable

;;

Lemma 3.5.1

77
τC-differentiable

Thm. 3.5.3∥∥∥νt′ ∥∥∥
integrable, �

cc

Thm. 3.5.5
group of bimea-
surable bijection

PP



Chapter 4

Applicability of concepts

This chapter is a key step to obtain properties, with which we will prove the key
properties. In Chapter 3 we postulated that the set C1

b is norm-defining. In this
chapter this is proved. Moreover we give a condition, such that the existence
of the derivative along a vector field h : E → H can be checked, i.e. we give a
condition for the existence of the local flow.

In Section 4.1 we present the proof for the existence of a norm-defining set
with the postulated properties.

In Section 4.2 we derive a condition for mappings such that the existence of
the derivative along this mapping of a measure can be checked. If a mapping has
this property and if the derivative along this mapping exists, it is well defined.
For this end we apply methods of the theory of evolutionary equations.

In Section 4.3 we prove an adaption of the Lebesgue Dominated Convergence
Theorem. We deduct a corollary, which we will use to prove the Key Proposition.
Furthermore we derive a nice integration property of a local flow and an element
of the norm-defining set C̃1

b .

In Section 4.4 the correspondence between C1
b -differentiability and the τC1

b
-

differentiability is established.

In [SvW95] only one direction of Proposition 4.4.1 was stated, though both
are needed for the proof of the results. Neither the ideas of the proofs nor the
conditions mentioned in this chapter have been indicated in [SvW95].

4.1 C1
b is norm-defining

Now we will show that C1
b is indeed a norm-defining set. First of all, we will

summarize a few properties of C1
b . The following assertions are used to prove

that C1
b is norm-defining (cf. Theorem 4.1.15). The set C̃1

b is heavily used in
Chapter 5.

47
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Definition 4.1.1 (C̃1,C̃1(F,G;Fh, GH)).
Let (F, ‖ ‖F ) and (G, ‖ ‖G) be Banach spaces and FH ⊂ F and GH ⊂ G be lin-
ear subspaces, such that (FH , ‖ ‖FH ) respectively (GH , ‖ ‖GH ) are Banach spaces,
where ‖ ‖F ≤ ‖ ‖FH and ‖ ‖G ≤ ‖ ‖GH . We define

C̃1(F,G;FH , GH) :=
{
φ : F → G

∣∣ φ is continuously Gâuteaux-differentiable

w.r.t. (FH , ‖ ‖F )
(
→ (GH , ‖ ‖G)

)
, i.e. Dφ(x) : (FH , ‖ ‖F )→ (GH , ‖ ‖G)

}
If G = GH = R, we abbreviate C̃1(F ) := C̃1(F ;FH) := C̃1(F,R;FH ,R). More-
over we set C̃1 := C̃1(E,H).

Definition 4.1.2 (C̃1
b ).

We define

C̃1
b (F,G;FH , GH) := {φ ∈ C̃1(F,G;FH , GH)

∣∣ φ is bounded and

∃M̃φ <∞ : ∀x ∈ F, ∀h ∈ FH : ‖φ′h(x)‖GH ≤ M̃φ ‖h‖FH}

If G = GH = R, we abbreviate C̃1
b (F ) := C̃1

b (F ;FH) := C̃1
b (F,R;FH ,R). More-

over we set C̃1
b := C̃1

b (E,H).

Remark 4.1.3.
We note that that C1

b (F ) ⊂ C̃1
b (F ;FH) and if FH = F , then C̃1

b (F ) = C1
b (F ). In

chapter 5 FH will be the Hilbert subspace H (cf. Definition 4.1.1).

Definition 4.1.4.
Abbreviating ‖φ‖∞ := supx∈F ‖φ(x)‖ for φ ∈ C̃1

b (F,G;FH , GH), we know that
there exist Mφ <∞ and M̃φ <∞ : ∀h ∈ FH

‖φ‖∞ = ‖φ‖∞, G ≤ Mφ

‖φ′h‖∞ = ‖φ‖∞, GH ≤ M̃φ ‖h‖F

For this subsection, we fix this notation for any function φ ∈ C̃1
b (F,G;FH , GH).

Lemma 4.1.5.
The set C̃1

b (F, FH) is closed under multiplication.

Proof.
Let f, g ∈ C̃1

b (F ). We obtain ‖fg‖∞ ≤MfMg

and
∥∥(fg)′h

∥∥
∞ = ‖f ′hg + fg′h‖∞ ≤ M̃f ‖h‖FH Mg +MfM̃g ‖h‖FH ∀h ∈ FH .

Proposition 4.1.6.
Let φ ∈ C̃1

b (G;GH) and f ∈ C̃1
b (F,G;FH , GH), then φ ◦ f ∈ C̃1

b (F ;FH).
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Remark 4.1.7.
Note, that it is not necessary that f is bounded.

Proof of Proposition 4.1.6.
‖φ ◦ f‖∞ < Mφ and ∀h ∈ FH∥∥(φ ◦ f)′h

∥∥
∞ =

∥∥∥φ′f ′h(f)
∥∥∥
∞
≤ M̃φ ‖f ′h‖∞ ≤ M̃φM̃f ‖h‖FH .

Remark 4.1.8.
We notice that the last two assertions hold for FC̃1

b (F ) as well: For f, g ∈ FC̃1
b (F )

we have f = f̃(lf1 , . . . , l
f
nf

), where f̃ ∈ C̃1
b (Rnf ) and lfi ∈ F ′ ∀1 ≤ i ≤ nf , and

g = g̃(lg1, . . . , l
g
ng), where g̃ ∈ C̃1

b (Rng) and lgi ∈ F ′ ∀1 ≤ i ≤ ng. We define

C̃1
b (Rnf+ng) 3 f ′ := f(lf1 , . . . , l

f
nf
, 0, . . . , 0) and

C̃1
b (Rnf+ng) 3 g′ := g(0, . . . , 0, lg1, . . . , l

g
ng).

Thus we may apply the results for f ′, g′ ∈ C̃1
b (Rnf+ng).

Lemma 4.1.9.
There exists χn ∈ C1

b (R), χn : R→ R, with
χn|[−1,1] = id,

∣∣χn|[−1− 1
n
,1+ 1

n
]

∣∣ ≤ 1 + 1
n

and
∣∣χn|[−1− 1

n
,1+ 1

n
]C

∣∣ = 1 + 1
n
.

Proof.
We know that for

g : R → R

x 7→ 1R−(x)x+ 1[0, 1
n

](x)
(
x+ nx2 − n2x3

)
+ 1] 1

n
,∞[(x)

1

n

we have g(0) = 0, g′ (0) = 1, g( 1
n
) = 1

n
, and g′ ( 1

n
) = 0. We define

χn(x) := 1R+(x)
1

3
(1 + g(x− 1))− 1R−(x)

1

3
(1 + g(−x− 1)) (4.1)

and show that χn ∈ C1
b (F ). We have g ≤ 3

n
⇒ ‖χn‖∞ ≤ 1 + 3

3n
and ‖g′h‖∞ ≤

(5n2 +1) |h| ⇒ ‖χn′h‖∞ ≤ (5n2 +1) |h| . The other properties of χn are clear.

4.1.1 C1
b is norm defining

The main idea of the proof that C1
b is norm-defining is to consider a bigger set of

functions and then show that the supremum remains the same. For this end we
show that FC1

b is dense w.r.t. L1(ν) in L∞(ν) by a monotone class argument.
We use Parthasarathy (Theorem 4.1.13) for this proof. In order to understand

it, we will have to introduce some definitions, which can be found in [Pat67,
Definiton I.1.2, p.6; Definition V.2.1, p.132].
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Definition 4.1.10 (Borel space).
A Borel space (X,B) is a pair, where X is an abstract set and B is a σ-algebra
of subsets of X.

We remind ourselves of

Definition 4.1.11 (denumerable).
A set or a class of sets D is called denumerable, if there exists a surjective map
j : N→ D.

Definition 4.1.12 (countably generated, separable).
A Borel space (X,B) is said to be countably generated if there exists a denumerable
class D ⊂ B such that D generates B. (X,B) is called separable if it is countably
generated and for each x ∈ X, the single point set {x} ∈ B.

By [Pat67, Theorem V.2.4, p.135] we have:

Theorem 4.1.13 (Parthasarathy).
Let X and Y be separable metric spaces. Let X be complete and (X,BX), (Y,A)
be separable Borel spaces. Moreover suppose that φ is a one-to-one map of X into
Y, which is measurable.
Then Y ′ := φ(X) is a Borel subset of Y and φ is an isomorphism between the
spaces (X,BX) and (Y ′,AY ′), where AY ′ := {A ∩ Y ′ | A ∈ A}.

By [Sie00, p.115] we have

Proposition 4.1.14 (Lindelöf property).
Let (E, d) be a metric space, then E possesses the Lindelöf property iff E is
separable. This means that every set A ⊂ E has the Lindelöf property, i.e. for
every aggregate of open sets whose sum contains A there exists a countable (or
even finite) aggregate of these sets whose union contains E.

Theorem 4.1.15.
The set FC1

b ⊂ C1
b is norm-defining.

Remark 4.1.16.
We note that C1

b ⊂ C̃1
b ⊂ Cb and thus Theorem 4.1.15 implies that C̃1

b is norm-
defining (cf. Remark 3.2.2).

Proof of Theorem 4.1.15.
To prove

‖ν‖tv =

∫
E
1E+dν +

∫
E
1E−dν = sup

{∫
E
φdν, ‖φ‖∞ ≤ 1, φ ∈ FC1

b

}
we use
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1. Claim: Let ν be a positive, finite measure. Then any function in L∞(ν)
can be approximated by functions from FC1

b in ‖ ‖L1(ν). I.e. FC1
b is dense

(w.r.t. ‖ ‖L1(ν)) in L∞(ν).
Proof:
We use a monotone class argument(cf. [Röc05b, Definition 1.11.7, Satz
1.11.11, p.54f] or [Pro04, I Theorem 8]):

On the one hand H := FC1
b

L1(ν)
⊂ L1(ν) is a monotone vector space, i.e.

(a) 1 ∈ H

(b) Let fn, n ∈ N be a sequence in H such that 0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ↗ f
and f bounded. We have to prove that f ∈ H. We show that by the
Lebesgue dominated convergence theorem and a diagonal argument
there exists a sequence gn ∈ FC1

b such that f = L1(ν)−limn→∞ gn ∈ H:

Since fn(∈ L1(ν)) converges pointwisely monotone increasing to f and
are bounded by f ∈ L∞(ν) ⊂ L1(ν), the Lebesgue dominated conver-
gence theorem gives us that

L1(ν)− lim
n→∞

fn = f

and thus w.l.o.g (eventually we have to consider a subsequence) we
know that ‖fn − f‖L1(ν) ≤

1
n
. For each fn ∈ H there exists a sequence

gn,m ∈ FC1
b such that fn = L1(ν)− limm→∞ gn,m. Furthermore w.l.o.g

for all m ∈ N : m ≥ n we have ‖fn − gn,m‖L1(ν) ≤
1
n
.

Defining gn := gn,n we obtain

‖gn − f‖L1(ν) ≤ ‖gn,n − fn‖L1(ν) + ‖fn − f‖L1(ν) ≤
2

n

and hence f ∈ H.

On the other hand we know by Lemma 4.1.5 and Remark 4.1.8 that M :=
FC1

b is a set of bounded functions, which is closed under multiplication.
Then (by monotone classes, e.g. [Röc05b, Satz 11.1.11] or [Pro04, I The-
orem 8]) σ(FC1

b )b ⊂ H. σ(FC1
b )b denotes the set of all bounded, σ(FC1

b )-
measurable functions.

We will prove that

σ(FC1
b ) = B(E) (4.2)

Thus

FC1
b ⊂ L∞(ν)

(4.2)
= σ(FC1

b )b

monoton
classes
⊂ H = FC1

b

L1(ν)
(4.3)
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and hence we are done, because the indicator functions are measurable.

Proof of (4.2).

(a) Claim: There exists {fm}m∈N ⊂ FC∞b ⊂ FC1
b ⊂ C1

b , which separates
the points of E.
Proof.
Choose l ∈ E′ and define: (sin l, sin l), (cos πl, cos πl) : E → R2. Then
the union of open sets⋃

l∈E′
(sin l, sin l)−1(R2\4R) ∪ (cos πl, cos πl)−1(R2\4R)

!
= E× E\4E (4.4)

is an open set, where 4R := {(x, x)|x ∈ R} and 4E := {(u, u)|u ∈ E}.
⊂ : We have for u = v ∈ E that (sin lu, sin lu) ∈ 4R and
(cos lu, cos lu) ∈ 4R. Thus (u, u) is not an element of the l.h.s.. There-
fore (by counter proposition) the l.h.s. is a subset of the r.h.s..
⊃: If u 6= v ∈ E, then we know by Hahn Banach (cf. [Wer05, Theorem
III.2.4, P.103]), that there exists an l, which separates u and v, i.e.
l(u) 6= l(v). Thus

sin(l(u)) = sin(l(v)) iff l(u)− l(v) ∈ 2πZ
cos(πl(u)) = cos(πl(v)) iff l(u)− l(v) ∈ 2Z

Hence sin l(u) 6= sin l(v) or cos l(u) 6= cos l(v) and thus the superset
property is proved.

We use that E × E is separable and thus by the Lindelöf property
(cf. Proposition 4.1.14) the l.h.s. of (4.4) can be represented by a
countable union. Furthermore sin, cos(π·) ∈ FC∞b (E) and the (1a)
Claim is proved.

(b) Claim: σ(FC∞b ) = B(E)
Proof.
A := σ({fn | n ∈ N}) is countable generated, where the fn are as in
(1a). Consider

id : (E,B(E)) → (E,A)

A 7→ A

On the one side, the function id is one-to-one and measurable, because
the fn are continuous. On the other side, we know that (E,A) is even
a separable Borel space (cf. Definition 4.1.12), because

∀x ∈ E: {x} !
=
⋂
n

{fn = fn(x)} ∈ A
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The subset inclusion is obvious. x is the only element in the intersec-
tion, because the set {fn | n ∈ N} is point separating (cf. Claim
1a), and thus for every y 6= x there exists a n′ ∈ N, such that
fn′(y) 6= fn′(x).

Thus by Theorem 4.1.13 id−1 is an isomorphism and hence B(E) = A.
Therefore we obtain B(E) = A ⊂ σ{FC∞b } ⊂ B(E).

2. Claim:

sup
φ̃n∈FC1

b ,‖φ̃n‖∞≤1

∫
φ̃ndν = sup

f∈L∞(|ν|),‖f‖∞≤1

∫
fdν

Proof:
The l.h.s. is less or equal to the r.h.s., because FC1

b ⊂ L∞(|ν|) (cf. (4.3)) and
thus the supremum is taken over more functions. Let f ∈ L∞(|ν|), ‖f‖∞ ≤
1 and ε > 0, then by the 1. Claim there exists φ1 ∈ FC1

b :∫
|f − φ1| d|ν| <

ε

2

Thus

|
∫
f − φ1dν|

4
≤
∫
|f − φ1|1E+dν −

∫
|f − φ1|1E−dν

≤
∫
|f − φ1| d|ν| <

ε

2

In addition by Lemma 4.1.9 we have a function χn ∈ FC1
b (R), with

χn|[−1,1] = id, |χn
∣∣∣[−1− 1

n
,1+ 1

n
] | ≤ 1 + 1

n
and χn|[−1− 1

n
,1+ 1

n
]C = 1 + 1

n
. Hence,

using Proposition 4.1.6, we obtain φn := χn(φ1) ∈ FC1
b . We consider

φ̃n := φn
1+ 1

n

and have

∫
|f − φ̃n|d|ν|

4
≤

∫
|f − φn|d|ν|︸ ︷︷ ︸
→

n→∞
ε
2

+

∫
(1− 1

1 + 1
n

)

≤1+ 1
n︷︸︸︷

|φn| d|ν|︸ ︷︷ ︸
≤ 1
n
‖ν‖tv

→
n→∞

ε

2

Thus w.l.o.g there exists φ̃n ∈ FC1
b :
∥∥∥φ̃n∥∥∥

∞
≤ 1 and

∫
|f − φ̃n|d|ν| ≤ ε

2
.

Therefore the claim is proved (Using that there exist sup approximating
sequences in L∞(|ν|)).
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With the last claim we see:

‖ν‖tv =

∫
1E+ − 1E−dν ≤ sup

f∈L∞(|ν|),‖f‖∞≤1

∫
fdν

2. claim
= sup

φ∈FC1
b ,‖φ‖∞≤1

∫
φdν ≤

∫
1d|ν| = ‖ν‖tv

Remark 4.1.17.
We have not included that FC∞b is norm-defining, because it is not needed to prove
the key results, in fact, if we restrict the norm defining set C, we would have to
restrict the functions, for which the key results are applicable (cf. Chapter 5 and
Definition 5.1.1) and we did not find a good reference of a nice representation for
χn ∈ FC∞b .

4.2 A condition to check τ-differentiability

In this section we give a condition, under which exactly one local flow a (as used
in Definition 3.3.7) exists (compare the properties 1 to 3 and 5 of Definition
4.2.1).

First of all we define the set Sol, which is motivated by a condition for func-
tions, for which we like to apply our Main Theorem. Then we state the known
assertions in Proposition 4.2.4. After doing a few preparations like a general-
ization of the Inverse Mapping and Implicit Mapping Theorem we demand a
stronger condition, which is sufficent for a vector field h being an element of Sol
(cf. Theorem 4.2.11).

Compare Proposition 5.2.1, where we use the following:

Definition 4.2.1 (Sol , local flow).
Let Sol denote the set of all f : E→ H continuous such that there exists exactly
one local flow a, i.e. ∃ε > 0, a :]0− ε, 0 + ε[×E→ E : ∀t ∈]− ε, ε[,∀x̃ ∈ E :

1. a(t1 + t2, x̃) = a(t1, a(t2, x̃))

2. a(0, x̃) = x̃

3. a(t, x̃) is differentiable in t and D1a(t, x̃) = f(a(t, x̃))

4. ∃M̃ <∞ : f(x) ≤ M̃ ∀x ∈ E

5. The derivative of a(t, x̃) in x̃ exists and is bounded, i.e. defining γt(x̃) :=
a(t, x̃) we have γt ∈ C̃1 and ∃Mt <∞ :

‖γt′h(x̃)‖H ≤Mt ‖h‖H ∀h ∈ H.
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Example 4.2.2.
If h ∈ H is constant, all the conditions are fulfilled by choosing the unique solution

a : R× E → E
(t, x̃) 7→ x̃+ th

Definition 4.2.3 (Lipschitz).
A continuous function f : E → E is called (globally) Lipschitz continuous with
Lipschitz constant L <∞, if

‖f(x+ h)− f(x)‖E ≤ L ‖h‖E ∀x, h ∈ E

By [Lan93, chapter XIV] we conclude

Proposition 4.2.4.
If f : E → E is Lipschitz with Lipschitz constant L < ∞, bounded and continu-
ously differentiable, then there exists exactly one solution

a :]− 1

2L
,

1

2L
[×E→ E,

which fulfills the conditions 1 to 4 of Definition 4.2.1 and for which a(t, ·) is
continuously differentiable for all t ∈]− 1

2L
, 1

2L
[.

Proof.
We abbriviate J :=] − 1

2L
, 1

2L
[. By [Lan93, Theorem XIV.3.1, p.367] we obtain

a : J × E→ E such that

a(0, x̃) = x̃ and D1a(t, x̃) = f(a(t, x̃)) ∀t ∈ J, x̃ ∈ E.

Taking a closer look at the proof (which is the standard one using the integral
representation and finding a fixed point by the shrinking lemma or Banach fixed
point theorem) we find using ∃M̃ ∈ R : supx∈E |f(x)| < M̃

1

s
(a(s, x)− a(0, x)) =

1

s

(
x+

∫ s

0

f(a(τ))dτ − x−
∫ 0

0

f(a(τ))dτ

)
=

1

s

∫ s

0

f(a(τ))︸ ︷︷ ︸
≤M̃

dτ ≤ M̃ ∀s ∈ J,∀x ∈ E

Furthermore, by [Lan93, Theorem XIV.5.1, p.377] we conclude

a(t1 + t2, x̃) = a(t1, a(t2, x̃)) ∀x ∈ E, t1, t2, t1 + t2 ∈ J

In addition [Lan93, Theorem XIV.5.2, p.377] tells us that a(t, x̃) is continuously
differentiable in x̃ for t ∈ J .
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By Proposition 4.2.4 we gain almost all desired conditions. We demand more
to gain a condition, under which a function f : E → H ⊂ E belongs to the set
Sol. Following the proof of [Lan93, Theorem XIV.4.3, p.373] and transforming it
appropriately we will obtain this result. As a preparation for finding the desired
condition, we adapt the Inverse Mapping Theorem to our needs. We introduce

Definition 4.2.5 (toplinear).
A map is called toplinear, if it is invertible as a continuous linear map.

Proposition 4.2.6 (Inverse Mapping Theorem).
Let φ ∈ C̃1(E,F ;EH , FH), φ(EH) ⊂ FH , φ be continuously differentiable w.r.t.
(EH , ‖ ‖EH )→ (FH , ‖ ‖FH ),

φ′(x) : (EH , ‖ ‖EH )→ (FH , ‖ ‖FH ) be toplinear (4.5)

φ′(x) : (EH , ‖ ‖E)→ (FH , ‖ ‖F ) be toplinear, (4.6)

and φ′(x)(EH) = FH for all x ∈ E. If for any x0 ∈ E∥∥∥idEH − φ′(x0)
−1 ◦ φ′(x)

∥∥∥
L
(

(EH ,‖ ‖EH )
) ≤ α < 1 ∀x ∈ EH and (4.7)∥∥∥idEH − φ′(x0)

−1 ◦ φ′(x)
∥∥∥
L
(

(EH ,‖ ‖E)
) ≤ α < 1 ∀x ∈ EH (4.8)

then φ is a global C1(E,F ;EH , FH)-isomorphism and (φ−1)
′
(·) = φ′ (φ−1(·))−1.

Proof.
Let λ := φ′(x0) and g : EH → EH , x 7→ x− λ−1φ(x), which is well-defined by
φ(EH) ⊂ FH and φ′(x0)(EH) = FH . By assumption ∀x ∈ EH

‖g′(x)‖
L
(

(EH ,‖ ‖EH )
) (4.5)

=
∥∥id− λ−1 ◦ φ′(x)

∥∥
L
(

(EH ,‖ ‖EH )
) (4.7)

≤ α < 1

‖g′(x)‖
L
(

(EH ,‖ ‖E)
) (4.6)

=
∥∥id− λ−1 ◦ φ′(x)

∥∥
L
(

(EH ,‖ ‖E)
) (4.8) ≤ α < 1

By the Mean Value Theorem (cf. Theorem 1.0.21) we see that ∀x1, x2 ∈ EH

‖g(x1)− g(x2)‖EH
Thm 1.0.21

≤ α ‖x1 − x2‖EH , (4.9)

‖g(x1)− g(x2)‖E
Thm 1.0.21

≤ α ‖x1 − x2‖E . (4.10)

Claim: For each y ∈ F there exists an unique element x ∈ E such that φ(x) = y.
Proof.
We prove this by considering for all ỹ ∈ FH the map
gỹ : EH → EH , x 7→ λ−1ỹ + g(x) and have for all x̃1, x̃2 ∈ EH

‖gỹ(x̃1)− gỹ(x̃2)‖EH = ‖g(x̃1)− g(x̃2)‖EH
(4.9)

≤ α ‖x̃1 − x̃2‖EH (4.11)
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Thus by the shrinking lemma [Lan93, p.361, Lemma 1.1] or the Banach Fixed
Point Theorem ( (EH , ‖ ‖EH ) is a Banach space), it follows that gỹ has a unique fix
point x̃, i.e. x̃ = λ−1ỹ+x̃−λ−1φ(x̃). It is precisely the solution of λ−1φ(x̃) = λ−1ỹ,
respectively (by the linearity of λ−1) of φ(x̃) = ỹ. Hence we have received a
(global) inverse for φ|EH , which we denote by φ−1|FH .
We write x̃ = x̃ − λ−1 ◦ φ(x̃) + λ−1 ◦ φ(x̃) = λ−1 ◦ φ(x̃) + g(x̃) ∀x̃ ∈ EH . Using
EH ⊂ E dense (w.r.t. ‖ ‖E), φ continuous and FH ⊂ F dense w.r.t. ‖ ‖F we
conclude that for i ∈ {1, 2} ∀ε > 0 ∀xi ∈ E

∃x̃i ∈ EH : ‖x̃i − xi‖E < ε, ‖φ(xi)− φ(x̃i)‖E < ε, φ(x̃1)− φ(x̃2) ∈ FH(4.12)

Thus

‖x1 − x2‖E
4
≤

(4.12)
2ε+ ‖x̃1 − x̃2‖E

(4.12)

≤
4

2ε+
∥∥λ−1 ◦ (φ(x̃1)− φ(x̃2))

∥∥
E

+ ‖g(x̃1)− g(x̃2)‖E︸ ︷︷ ︸
(4.10)

≤ α‖x̃1−x̃2‖E≤2αε+α‖x1−x2‖E

Defining y := φ(xi) and ỹi := φ(x̃i) for i ∈ {1, 2}, we see

‖x1 − x2‖E ≤
2ε(1 + α)

1− α
+

1

1− α
∥∥λ−1 ◦ (φ(x̃1)− φ(x̃2))

∥∥
E

(4.6)

≤ 2ε(1 + α)

1− α
+

1

1− α
∥∥φ′(x0)−1

∥∥
L
(

(FH ,‖ ‖F ),(EH ,‖ ‖E)
)︸ ︷︷ ︸

<∞

‖ỹ1 − ỹ2‖F

(4.12)

≤ 2ε(1 + α)

1− α
+

1

1− α
∥∥φ′(x0)−1

∥∥
L
(

(FH ,‖ ‖F ),(EH ,‖ ‖E)
) (2ε+ ‖y1 − y2‖F ) ,

Letting ε → 0 and y1 → y2 the r.h.s. tends to 0 for and thus for y ∈ F exists
x ∈ E : φ−1(y) = {x}. φ−1(y1) = {x1} is well-defined (on φ(E)). Hence the
continuity and the claim are proved.
Furthermore it is differentiable at y1 ∈ F : We choose y ∈ F such that y−y1 ∈ FH
and set x := φ−1(y) and x1 := φ−1(y1). Then we choose for ε > 0 x̃ ∈ E :
‖φ(x̃)− φ(x)‖FH ≤ ε, x̃− x1 ∈ EH and ‖x̃− x‖E ≤ ε2 ≤ ε. We have∥∥∥φ−1(y)− φ−1(y1)− φ′(x1)

−1
(y − y1)

∥∥∥
E

=
∥∥∥x− x1 − φ′(x1)

−1
(φ(x)− φ(x1))

∥∥∥
E

(4.13)

From the differentiability of φ, we can write (x̃− x1 ∈ EH)

φ(x̃) = φ(x1) + φ′(x1)(x̃− x1) + o(x̃− x1)
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If we substitute this in (4.13), (4.13) equals∥∥∥x− x1 − φ′(x1)
−1(

φ(x)− φ(x̃) + φ′(x1)(x̃− x1) + o(x̃− x1)
)∥∥∥

E

(4.6)

≤ ‖x− x̃‖E +
∥∥∥φ′(x1)

−1
(φ(x)− φ(x̃))

∥∥∥
E

+
∥∥∥φ′(x1)

−1
o(x̃− x1)

∥∥∥
E

(4.6)

≤
(4.12)

ε+Mε+
∥∥∥φ′(x1)

−1
o((x̃− x) + x− x1)

∥∥∥
E
,

Let ε→ 0 and y → y1. Using the continuity of φ−1, that for ‖x‖E → 0
∥∥∥ o(x)
‖x‖E

∥∥∥
F
→

0 and (4.6) we obtain that φ−1 is differentiable at y1 (w.r.t. (FH , ‖ ‖F ) by the
definition of differentiability (of φ w.r.t. (E, ‖ ‖E). Its derivative is given by

(φ−1)′(y1) = φ′(φ−1(y1))
−1
.

Since φ−1 is continuous, φ continuously differentiable w.r.t. (EH , ‖ ‖E) and φ′ is
toplinear, (φ−1)

′
is continuous and φ−1 : (F, ‖ ‖F ) → (E, ‖ ‖E) is continuously

differentiable w.r.t. (FH , ‖ ‖F ).

We define

Definition 4.2.7 (D(E,F, ‖ ‖1 , ‖ ‖2 ;EH , FH , ‖ ‖3 , ‖ ‖4)).
Let (F, ‖ ‖1), (G, ‖ ‖2), (FH , ‖ ‖3), (G, ‖ ‖4) be normed spaces and FH ⊂ F and
GH ⊂ G be linear subspaces (Then (FH , ‖ ‖1) and (GH , ‖ ‖2) are normed spaces).

φ : (F, ‖ ‖1)→ (G, ‖ ‖2) ∈ D(E,F, ‖ ‖1 , ‖ ‖2 ;EH , FH , ‖ ‖3 , ‖ ‖4),

iff for all x ∈ E holds

φ is continuously differentiable w.r.t. (EH , ‖ ‖1)→ (FH , ‖ ‖2),

φ is continuously differentiable w.r.t. (EH , ‖ ‖3)→ (FH , ‖ ‖4),

φ′(x)(EH) = FH ,

φ′(x) : (EH , ‖ ‖1)→ (FH , ‖ ‖2) is toplinear and

φ′(x) : (EH , ‖ ‖3)→ (FH , ‖ ‖4) is toplinear.

If the norms and subspaces are clear, we abbreviate
D(E,F ) := D(E,F, ‖ ‖1 , ‖ ‖2 ;EH , FH , ‖ ‖3 , ‖ ‖4).

The next preparation is to state an adequate version of the Implicit Mapping
Theorem.

Proposition 4.2.8 (Implicit Mapping Theorem).
Let T (EH × FH) ⊂ GH , where

T ∈ C1(E × F,G;EH × FH , GH).

Let (x̃, σ̃) ∈ E × F with T (x̃, σ̃) = 0 and assume that
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1. ∀x̃ ∈ EH T (x̃, FH) ⊂ GH , ∀x ∈ E
T (x, ·) ∈ D(F,G, ‖ ‖F , ‖ ‖G ;FH , GH , ‖ ‖FH , ‖ ‖GH ) and ∀σ ∈ F T (·, σ) is
differentiable w.r.t. (EH , ‖ ‖E) → (FH , ‖ ‖F ) and w.r.t. (EH , ‖ ‖EH ) →
(FH , ‖ ‖FH ).

2. ∃M <∞ : ∀w ∈ EH sup(x,σ)∈E×F ‖D1T (x, σ)w‖GH ≤M ‖w‖FH

3. ∃M̃ <∞ : ∀w ∈ GH sup(x,σ)∈E×F
∥∥D2T (x, σ)−1w

∥∥
F
≤ M̃ ‖w‖GH

4. ∃α > 0 : sup(x,σ)∈E×F
∥∥D2T (x̃, σ̃)−1(−D1T (x̃, σ̃) +D1T (x, σ))

∥∥
+
∥∥D2T (x̃, σ̃)−1D2T (x, σ)− IFH

∥∥ ≤ α < 1, where the norm is the

L
(
(EH , ‖ ‖EH ), (FH , ‖ ‖FH )

)
, respectively L

(
(EH , ‖ ‖EH )

)
and

L
(
(EH , ‖ ‖E), (FH , ‖ ‖F )

)
, respectively L

(
(EH , ‖ ‖E)

)
.

Then there exists exactly one continuous map g : E → F such that

1. g(x̃) = σ̃ and T (x, g(x)) = 0 for all x ∈ E,

2. g ∈ C1(E,F ;EH , F ) is uniquely determined and

3. ∀h ∈ EH : supx∈E ‖Dg(x)h‖FH ≤MM̃ ‖h‖EH

Proof.
Consider the map

φ : E × F → E ×G
(x, σ) 7→ (x, T (x, σ))

Then Dφ(x̃, σ̃) : EH × FH → EH ×GH and

Dφ(x̃, σ̃) =

(
IEH 0
D1T (x̃, σ̃) D2T (x̃, σ̃)

)
,

the inverse of Dφ(x, σ) exists and is

(Dφ(x̃, σ̃))−1 =

(
IEH 0

−D2T (x̃, σ̃)−1 ◦D1T (x̃, σ̃) D2T (x̃, σ̃)−1

)
(4.14)

Furthermore φ(EH×FH) = EH×T (EH×FH) ⊂ EH×GH , for any (x, σ) ∈ E×F

Dφ(x, σ)(EH × FH) = {(x̃, D1T (x, σ)(x̃) +D2T (x, σ)(FH)) : x̃ ∈ EH}
= EH ×GH

and
φ ∈ D

(
E×F,E×G, ‖ ‖E×F , ‖ ‖E×G ;EH×FH , EH×GH , ‖ ‖EH×FH , ‖ ‖EH×GH

)
.
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Abbreviating B := (D2T (x̃, σ̃))−1 we find∥∥idEH×FH −Dφ(x̃, σ̃)−1 ◦Dφ(x, σ)
∥∥

B
toplinear

=
isomorphism

∥∥∥∥idE×F −
(
IEH 0
B(D1T (x, σ)−D1T (x̃, σ̃)) B ◦D2T (x, σ)

)∥∥∥∥
= ‖B(D1T (x, σ)−D1T (x̃, σ̃))‖ + ‖B ◦D2T (x, σ)− IFH‖

assump

≤ α < 1. (4.15)

Thus the global inverse exists (cf. Proposition 4.2.6) and is denoted by ψ. We
write

ψ(x, z) = (x, h(x, z)) ∀z ∈ T (E × F ),

where h ∈ C̃1(E × T (E,F ), F ;EH ×GH , FH), and define

g : E → F

x 7→ h(x, 0)

Thus ∀x ∈ E

(x, T (x, g(x)))
def.
= φ(x, g(x)) = φ(x, h(x, 0)) = φ(ψ(x, 0)) = (x, 0)

Furthermore, denoting by A21 the value a21 if A = (aij)1≤i≤n,1≤j≤n, we know

Dg(x) = D1h(x, 0) = (Dψ(x, 0))21 = ((Dφ(ψ(x, 0)))−1)21

= ((Dφ(x, h(x, 0)))−1)21 = −D2T (x, g(x))−1 ◦D1T (x, g(x))

and hence ∀h ∈ EH

‖Dg(x)h‖FH =
∥∥−D2T (x, g(x))−1 ◦D1T (x, g(x))h

∥∥
FH

assump.

≤ M̃M ‖h‖EH

4.2.1 Deriving the desired condition

After having adapted the well know theorems to our needs, we state the frame-
work to obtain the desired condition:

Let H be dense in a Banach space (E, ‖ ‖E),(H, ‖ ‖H) be a Banach space with
‖ ‖E ≤ ‖ ‖H and f ∈ C̃1(E,H; H,H). We abbreviate Ib := [−b, b] ∀b ∈ R and
define

Vb := Vb(E) := {σ : Ib → E
∣∣σ is continuous}, ‖ ‖Vb(E) := sup

t∈Ib
‖σ(t)‖E

Vb(H) := {σ : Ib → H | σ is a continuous curve} ‖ ‖Vb(H) := sup
t∈Ib
‖σ(t)‖H .
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We note that ‖ ‖Vb(E) ≤ ‖ ‖Vb(H) and that (Vb(H), ‖ ‖Vb(H)) is complete (analogue
to [Wer05, Satz II.1.4]). Furthermore

T : E× Vb → Vb

(x, σ) 7→ x+

∫ ·
0

f(σ(u))du+ σ(·)

DT (x, σ) : H× Vb(H)→ Vb(H) ∀x ∈ E, σ ∈ Vb.

We note that T (x̃, σ̃) = 0 iff −σ̃ is a solution for the following differential equation{
a′(t) = f(a(t))
a(0) = x̃

Using the proof of [Lan93, p.371, Lemma 4.1] for elements of Vb(H) we receive

Lemma 4.2.9.
T ∈ C̃1(E×Vb, Vb; H×Vb(H), Vb(H)) and its second partial derivative w.r.t. Vb(H)
is given by the formula

D2T (x, σ) =

∫ ·
0

Df ◦ σ − idVb(H)

In terms of t ∈ Ib, this reads:

D2T (x, σ)h(t) =

∫ t

0

Df(σ(u))h(u)du− h(t) ∀h ∈ Vb(H). (4.16)

Taking a closer look at the proof of [Lan93, Lemma 4.2, p.373] we attain

Lemma 4.2.10.
Suppose that Df(x)(H) ⊂ H ∀x ∈ E and ∃C1 : 0 < C1 <∞ :

sup
x∈E
‖Df(x)h‖E ≤ C1 ‖h‖E ∀h ∈ H

and sup
x∈E
‖Df(x)h‖H ≤ C1 ‖h‖H ∀h ∈ H,

then ∀x ∈ E
T (x, ·) ∈ D(Vb, Vb, ‖ ‖Vb , ‖ ‖Vb ;Vb(H), Vb(H), ‖ ‖Vb(H) , ‖ ‖Vb(H)), where b < 1

C1
and∥∥D2T (x, σ)−1

∥∥ ≤ 1
1−bC1

.

Proof.
Using these conditions we observe applying the estimate for h ∈ Vb(H), t ∈ Ib∥∥∥∥∫ ·

0

Df(σ(u))h(u)du

∥∥∥∥ ≤ ∫ b

0

C1 ‖h(u)‖ du ≤ bC1 ‖h‖ (4.17)
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in Lemma 4.2.9 that ‖D2T (x, σ) + id‖L(Vb)
< 1, and hence that D2T (x, σ) is

invertible as a continuous linear map (cf. Neumann in [Wer05, Satz II.1.11,
p.56]). We have ∀w ∈ Vb(H) :

(D2T (x, σ))−1w
Neumann

=
∞∑
n=1

(id+D2T (x, σ̃))nw and

∥∥(D2T (x, σ))−1w
∥∥ (4.17)

≤
∞∑
n=1

(bC1)n ‖w‖ ≤ 1

1− bC1

‖w‖ (4.18)

After having done the preparations we state the desired condition:

Theorem 4.2.11.
Let f ∈ C1

b (E,H; H,H), Df(x)(H) ⊂ H ∀x ∈ E and exists C1 <∞ :

sup
x∈E
‖Df(x)h‖E ≤ C1 ‖h‖E , ∀h ∈ H

and sup
x∈E
‖Df(x)h‖H ≤ C1 ‖h‖H , ∀h ∈ H (4.19)

If C1 = 0, then f(x) = x0 and a : R× E → E, (t, x) 7→ x0 + tx is the unique
solution. Otherwise let b < 1

3C1
. Then there exists exactly one solution a :

Ib × E→ E, which is continuously differentiable and we have ∀t ∈ Ib, x ∈ E :

‖D2a(t, x)h‖H ≤
1

1− bC1

‖h‖H <
3

2
‖h‖H ∀h ∈ H.

Proof.

We have ‖f(x+ h)− f(x)‖E
Thm. 1.0.21

≤ supx∈E ‖Df(x)‖ ‖h‖E . The first part we
have shown in Proposition 4.2.4. In order to prove the rest, we will check the
assumptions of Proposition 4.2.8:
By Proposition 4.2.4 there exists a solution a : Ib × E → E, a(·, x̃) = −σ̃, such
that T (x̃, σ̃) = 0. We know T (H× Vb(H)) ⊂ Vb(H).

1. We obtain by Lemma 4.2.10 that ∀x ∈ E
T (x, ·) ∈ D(Vb, Vb, ‖ ‖Vb , ‖ ‖Vb ;Vb(H), Vb(H), ‖ ‖Vb(H) , ‖ ‖Vb(H)). We have
that D1T (•, •) = id and ∀h ∈ H T (h, Vb(H)) ⊂ Vb(H).

2. ‖D1T (·, •)w‖ D1T = id
= ‖w‖H ∀w ∈ H

3. This is given by Lemma 4.2.10.
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4. The following ‖ ‖ is again meant for the norm of the space and the con-
tained Banach subspace.

sup(x,σ)∈H×V
∥∥D2T (x̃, σ̃)−1(−D1T (x̃, σ̃) +D1T (x, σ))

∥∥
+
∥∥D2T (x̃, σ̃)−1D2T (x, σ)− IVb

∥∥
assump. 1

=
D1T=id

0 +
∥∥D2T (x̃, σ̃)−1(D2T (x, σ)−D2T (x̃, σ̃))

∥∥ !

≤ α < 1

By considering (4.18) and (4.16) it is sufficient to show that

2bC1

1− bC1

≤ α < 1
bC1 < 1⇔ b <

1

3C1

Thus by Proposition 4.2.8 we obtain that there exists a uniquely determined g
such that

supx∈E ‖Dg(x)h‖H ≤
1

1−bC1
‖h‖H ∀h ∈ H and T (x, g(x)) = 0 ∀x ∈

E.
Thus g(x) ∈ Vb is a solution and having a(t, x) = g(x)(t) the assertion is shown.

4.3 Lebesgue Dominated Convergence
We state a Lebesgue Dominated Convergence Theorem for signed measures and
then deduct a corollary, which will be applied to prove the main result.

Proposition 4.3.1 (Lebesgue dominated convergence for signed measure).
Fix t ∈ I and let f : I → (L1(ν), ‖ ‖L1) be bounded, i.e. ∀x ∈ E |f(s)(x)| ≤
M(x) ∈ L1(ν) ∀s ∈ I, and pointwise differentiable in t with f ′(t)(·) ∈ L1(ν) and
suppose that there exists a function M̃t ∈ L1(ν) and δt > 0 such that [t−δt, t+δt] ⊂
I, for all s ∈ R: |s| ≤ δt and for all x ∈ E:∣∣∣∣f(t+ s)(x)− f(t)(x)

s

∣∣∣∣ ≤ M̃t(x).

Then we obtain

lim
s→0

∫
f(t+ s)(x)− f(t)(x)

s
ν(dx) =

∫
lim
s→0

f(t+ s)(x)− f(t)(x)

s︸ ︷︷ ︸
=f ′(t)(x)

ν(dx)

Proof.
For any |s| > δt we derive∣∣∣∣f(t+ s)(x)− f(t)(x)

s

∣∣∣∣ ≤ 2M(x)

δt
∈ L1(ν)
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and using in addition the second assumption we gain∣∣∣∣f(t+ s)(x)− f(t)(x)

s

∣∣∣∣ ≤ 2

δt
M(x) + M̃t(x) ∈ L1(ν) (4.20)

We may apply Lebesgue (e.g. [Bau01, Thm 15.6]) to each summand in the
following calculation, because ν+ and ν− are finite positive measures and because

there exists an integrable dominating function for
∣∣∣f(t+s)(x)−f(t)(x)

s

∣∣∣ and obtain

lim
s→0

∫
f(t+ s)− f(t)

s
dν

= lim
s→0

∫
f(t+ s)− f(t)

s
dν+ − lim

s→0

∫
f(t+ s)− f(t)

s
dν−

Lebesgue
=

(4.20)

∫
lim
s→0

f(t+ s)− f(t)

s
dν+ −

∫
lim
s→0

f(t+ s)− f(t)

s
dν−

=

∫
lim
s→0

f(t+ s)− f(t)

s
dν

We state a theorem, which we will use for the proof of the Key Proposition
and the Main Theorem:

Theorem 4.3.2.
Let t ∈ I fixed, φ̃ ∈ C̃1

b (F,R;FH ,R) and γ̃ ∈ C̃1(R × E, F ; R × H, FH), where
γ̃(τ, x) =: γ̃τ (x). We assume (p ≥ 1) that φ̃ ◦ γ̃τ is differentiable in τ = t and
∃δt > 0 ∃Mt ∈ Lp(ν) :

sup
ξ∈[−δt,δt]

∥∥∥∥ ddτ γ̃τ (x)
∣∣∣
τ=t+ξ

∥∥∥∥
FH

≤Mt(x)

then ∀x ∈ F : ∣∣∣∣∣ φ̃ ◦ γ̃t+s(x)− φ̃ ◦ γ̃t(x)

s

∣∣∣∣∣ ≤M2Mt(x)

and

lim
s→0

∫
φ̃ ◦ γ̃t+s − φ̃ ◦ γ̃t

s
dν =

∫
φ̃′

d
dτ
γ̃τ (x)

∣∣∣
τ=t

(γ̃t(x))ν(dx) (4.21)

Proof.
We check the assumptions of Proposition 4.3.1. First of all there exists M̃ ∈
L1(ν) : ∀x ∈ E we have

∣∣∣φ̃ ◦ γ̃t+s∣∣∣ (x) ≤ M̃ , because φ̃ is bounded, and, let x ∈ E,∣∣∣∣∣∣φ̃′ddτ γ̃τ (x)

∣∣∣
τ=t

(γ̃t(x))

∣∣∣∣∣∣ ≤ M̃φ

∥∥∥∥ ddτ γ̃τ (x)
∣∣∣
τ=t

∥∥∥∥
FH

≤ M̃φMt(x).
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Abbreviating gx := γ̃t+s(x)− γ̃t(x) ∈ FH and I = {γ̃t(x) + ψgx : 0 ≤ ψ ≤ 1}, we
obtain for |s| ≤ δt ∥∥∥φ̃ ◦ γ̃t+s(x)− φ̃ ◦ γ̃t(x)

∥∥∥
G

Thm. 1.0.21

≤ sup
ψ∈I

∥∥∥φ̃′ (ψ)
∥∥∥ ‖gx‖F ≤ M̃φ ‖gx‖F

Thm. 1.0.21

≤ M̃φ sup
ξ∈[t−δt,t+δt]

∥∥∥∥ ddτ ∣∣∣τ=ξ
γ̃τ (x)

∥∥∥∥ |s| ≤ M̃φMt(x) |s|

and thus ∣∣∣∣∣ φ̃ ◦ γ̃t+s(x)− φ̃ ◦ γ̃t(x)

s

∣∣∣∣∣ ≤ M̃φMt(x) ∈ L1(ν).

Thus we may apply Proposition 4.3.1 for t 7→ f(t) = φ̃ ◦ γ̃t and obtain the
result.

Corollary 4.3.3.
Let h ∈ Sol, a : I × E→ E its local flow and φ ∈ C̃1

b . Then

lim
s→0

∫
E

φ ◦ a(s, x)− φ ◦ a(0, x)

s
ν(dx) =

∫
E

lim
s→0

φ ◦ a(s, x)− φ ◦ a(0, x)

s
ν(dx)

Proof.
We prove the assumption of Theorem 4.3.2 for φ and a(t, ·): φ ◦ a(t, ·) is differ-
entiable and by Definition 4.2.1 no. 5 ∃M̃ <∞ :

sup
ξ∈I

∥∥∥∥ ddτ a(τ, x)
∣∣
τ=ξ

∥∥∥∥
E

= sup
ξ∈I
‖h(a(ξ, x))‖E < M̃

4.4 Connection
C̃1

b
βνk ↔ τ

C̃1
b

βνk

In Example 3.3.9 we claimed a connection of C- and τC-differentiability. Choosing
the norm defining set C̃1

b we show that they correspond. This result permits us
to apply the results gained for general τC-differentiability in Chapter 3 for C̃1

b -
differentiability. We will use these results to prove the Main Theorem.

We extend the claim of [SvW95, Propositon 1]:

Proposition 4.4.1 ( τ
C̃1
b

βνk =
C̃1
b
βνk ↔ 0

τ
C̃1
b

βf
ν
F ).

Let k ∈ Sol and denote its local flow (cf. Definition 4.2.1) by a :]− b, b[×E→ E,
which satisfies D1a(0, x) = k(x) ∀x ∈ E. We define

f νa (t) := ν(a(t, ·)) = a(−t, ν) ∀t : |t| < b.

Then
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1. ν is C̃1
b -differentiable along the vector field k,

iff (f νa (t))t∈]−b,b[ is τC̃1
b
-differentiable at t = 0 (i.e. ν is τC̃1

b
-differentiable

along k) and f νa (0)
′τ
C̃1
b � f νa (0),

2. there exists the logarithmic derivative
C̃1
b
βνk, iff 0

τ
C̃1
b

βf
ν
a exists.

In this case we have

C̃1
b
βνk = 0

τ
C̃1
b

βf
ν
a

def
=
df νa (0)

′τ
C̃1
b

df νa (0)

(
Def. 3.3.7

= τ
C̃1
b

βνk

)
.

Proof.
First of all we recall the setting in which we are working now (cf. Example 3.3.9):
The topology τC̃1

b
is generated by the bilinear product

pφ(µ) :=< µ, φ >:=

∫
E
φdµ, where φ ∈ C̃1

b and µ ∈M(E,B(E))

Now we prove that (M(E,B(E)), C̃1
b , <,>) is a dual pair, i.e.

1. ∀µ ∈M(E,B(E))\{0} ∃φ ∈ C̃1
b :
∫

E φdµ 6= 0, because C̃1
b is norm defining.

2. ∀φ ∈ C̃1
b \{0} ∃µ ∈ M(E,B(E)) :

∫
E φdµ 6= 0, because ∃y ∈ E : φ(y) 6= 0

and we choose µ(A) = 1A(y) for all A ∈ B(E).

We prove: If ν is C̃1
b -differentiable, then f νa (t) is τC̃1

b
-differentiable at t = 0. This

means in our situation that

τC̃1
b
− lim

s→0

f νa (0 + s)− f νa (0)

s
= f νa (0)

′τ
C̃1
b ∈M(E,B(E))

exists. For this end it is sufficient to show ∀n ∈ N, ∀φ1, . . . , φn ∈ C̃1
b ,∀ε > 0 ∃s0 ∈

R : ∀s < s0 :

ε > pφi

(
f νa (s)− f νa (0)

s
− f νa (0)

′τ
C̃1
b

)
(4.22)

We define f νa (0)
′τ
C̃1
b :=

C̃1
b
βνk ν, which is by Lemma 1.0.17 a signed measure, and
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show that pφ(f νa (0)
′τ
C̃1
b ) = lims→0 pφ(f

ν
a (s)−fνa (0)

s
):

pφ(f νa (0)
′τ
C̃1
b )

Def.
=

∫
E
φ(x)f νa (0)

′τ
C̃1
b (dx)

=

∫
E
φ(x)

(
C̃1
b
βνk ν

)
(dx)

Def. 3.2.3
= −

∫
E
φ′k(x)︸︷︷︸

=a′
1
(0,x)

(x)ν(dx)

x = a(0, x)
= −

∫
E

lim
−s′→0

φ ◦ a(−s′, x)− φ ◦ a(0, x)

−s′
ν(dx)

[Bau01, Thm 19.1]

Cor. 4.3.3
=

limit unique
lim
s→0

∫
E
φ(x)

f νa (s)− f νa (0)

s
(dx)

= lim
s→0

pφ

(
f νa (s)− f νa (0)

s

)
(4.23)

Furthermore we have f νa (0)
′τ
C̃1
b � ν = f νa (0). Therefore 0

τ
C̃1
b

βf
ν
a (0) exists and

equals
C̃1
b
βνk.

For the converse we define

C̃1
b
βνk := 0

τ
C̃1
b

βf
ν
a ,

and obtain by pφ(f νa (0)
′τ
C̃1
b ) = lims→0 pφ(f

ν
a (s)−fνa (0)

s
) and equation (4.23) the as-

sertion.

Remark 4.4.2.
By Definition 3.2.3 (and Definition 3.2.1) we have that each φ ∈ C̃1∩Cb. There-
fore we have proved Proposition 4.4.1 for a smaller set (C̃1

b ) than the biggest
possible set (C̃1 ∩ Cb). We note that the assertion holds for every norm-defining
subset of C̃1

b (cf. proof and Corollary 4.3.3). We formulated the assertion only
for C̃1

b , because we will only apply it for C̃1
b .

With this remark the omitted connection of the graphic in Section 3.4 is ob-
viously true for all norm-defining set C ⊂ C̃1

b .



68 CHAPTER 4. APPLICABILITY OF CONCEPTS



Chapter 5

A transformation rule for
measures

The aim of this chapter is to present the key results, which include the Main
Theorem and a transformation rule for measures.

In Section 5.1 we present the set of functions, for which the main theorem
can be applied. Furthermore we derive a few properties of this set, which we use
proving the Main Theorem.

Section 5.2 is reserved for the Key Proposition, which gives a formula for Cβ
ν
h.

In Section 5.3 we prove the Main Theorem. The core arguments of its proof
are the Key Proposition, the adapted Lebesgue Dominated Convergence Theorem
and Proposition 4.4.1.

Finally in Section 5.4 the transformation rule is presented.

We mainly follow the ideas of [SvW95], whereas we have weakened the condi-
tions given there, changed some of the notation to state clearly the dependence of
some parameters, given more details and state further conditions under which the
calculations hold. E.G. the proof of the Key Proposition is more detailed than
the one given in [SvW93, Proposition 8.2]and for technical reasons we assume
further assumptions, which were not postulated in [SvW95].

In this chapter we fix b1 ∈ R−, b2 ∈ R+ and I :=]b1, b2[3 0 an open intervall.

5.1 Preparations

First of all, in order to introduce a few abbreviations and to get familiar to the
notation, we state and prove properties, which we will use for the proof of the
Main Theorem.

69
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The next definition summarizes conditions needed to apply the main theorem.

Definition 5.1.1 (FSol(E,H)).
Denote by FSol(E,H) the set of mappings F : I × E→ E such that

1. F (0, x) = x, F (t, ·) : E → E is bijective and F♦(t, ·) denotes the inverse
w.r.t. the second component.

2. F and F♦ : I × E→ E and the D1, D2, D1D2, D2D1 derivative of F and
F♦ exist and are continuous, where (in this context) D1 means differen-
tiable w.r.t. I and D2 means differentiable w.r.t. (H, ‖ ‖E) and (H, ‖ ‖H).
Furthermore ∀t ∈ I, x ∈ E DF (t, x) : R × H → H, where D denotes the
derivative w.r.t. I ×H. Moreover ∀t ∈ I D2F (t, x)(H) = H ∀x ∈ E and

∃M2 <∞ : ‖D2F (t, x)h‖H ≤M2 ‖h‖H ∀x ∈ E ∀h ∈ H
∃δt > 0,Mt ∈ L1(ν) : sup

ξ∈[−δt,δt]

∥∥D1F
♦(t+ ξ, x)

∥∥
H ≤Mt(x) ∀x ∈ E.

∃Mt <∞ :
∥∥D2F

♦(t, x)h
∥∥

H ≤Mt ‖h‖H ∀x ∈ E ∀h ∈ H

The first and second partial derivatives are denoted by F ′1, F ′2, F ′′12.

3. F ′1(t, ·) ∈ Sol ∀t ∈ I

Remark 5.1.2.
Let F, F♦ be twice continuously Frèchet differentiable w.r.t. (R × H, ‖ ‖R×E)
and (R × H, ‖ ‖R×E) with bounded derivative. Assume that ∀t ∈ R, x ∈ E
D2F (t, x)(H) ⊂ H and ∃M <∞ : ∀h ∈ H ‖D2F (t, x)h‖H < M ‖h‖H ,
‖D2F (t, x)h‖E < M ‖h‖E ,

∥∥D2F
♦(t, x)h

∥∥ ≤ M ‖h‖ and ‖D1F (t, x)‖ < M .
Then assumption 3 holds, because Theorem 4.2.11 is applicable.

For this chapter fix F ∈ FSol(E,H) (cf. Definition 5.1.1) and define γtτ (x) :=
F (t, F−1(τ, x)) ∀t, τ ∈ I, x ∈ E.

Similar to [SvW95, Lemma 1] we postulate that

Lemma 5.1.3.
Fix t ∈ I. Define a vector field kt : E→ H by the implicit equation kt(F (t, x)) =
F ′1(t, x) and write γtτ (x) := F (t, F♦(τ, x)) . Then for every x ∈ E we obtain

lim
τ→t

γtτ (x)− x
τ − t

= −kt(x).

Remark 5.1.4.
The lemma postulates that we define for every t ∈ I a vector field kt : E → H,
which is well defined, because F ∈ FSol(E,H) is bijective. Differing from [SvW95]
we write kt instead of k. If kt = k ∀t ∈ I and F (t1 + t2, ·) = F (t1, F (t2, ·))
∀t1, t2 ∈ I : t1 + t2 ∈ I, then F (t, x) is a local flow for k (cf. Definition 4.2.1).
In general (e.g. F (t, x) = x+ th(x), h(x) ∈ C2

b ) kt is not independent of t.
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Proof of Lemma 5.1.3.
The proof is done by the chain rule: For x ∈ E, τ ∈ I we have

lim
τ→t

γtτ (x)− x
τ − t

=
d

dτ
F (t, F♦(τ, x))

∣∣∣∣
τ=t

= D2F (t, F♦(τ, x))D1F
♦(τ, x)

∣∣∣∣
τ=t

= D2F (t, F♦(t, x))D1F
♦(t, x) (5.1)

Now we will calculate the last derivative:

Taking the derivative of F (t, F♦(t, x))
F (t, ·) bijective

= x w.r.t. t we obtain by the
chain rule, which is applicable, because F♦(t, ·) ⊂ E = domF (t, ·):

D1F (t, F♦(t, x)) +D2F (t, F♦(t, x))D1F
♦(t, x) = 0

Thus we gain (F ′2(t, x)(H) = H ⊃ F ′1(t, x) ∀x ∈ E, cf. Definition 5.1.1 no. 2):

D1F
♦(t, x) = −(D2F (t, F♦(t, x)))−1D1F (t, F♦(t, x))

Therefore using this result in (5.1) yields:

lim
t→s

γtτ (x)− x
τ − t

= D2F (t, F♦(t, x))(−(D2F (t, F♦(t, x)))−1D1F (t, F♦(t, x)))

= −D1F (t, F♦(t, x)))
by Def. of kt

= −kt(x)

The following Lemma summarizes a few properties of γtτ .

Lemma 5.1.5.
We have ∀t, t+ s ∈ I, x ∈ E :

1. kt
′
·(F (t, x)) = F ′′12(t, x) ◦ (F ′2(t, x))−1

2. F (t, x) = γt0(x) and F♦(t, x) = γ0
t (x)

3. γt+s0 = γt+st γt0 and γ0
t+s = γ0

t γ
t
t+s

Proof.
First of all, we know kt(F (t, x)) = F ′1(t, x). Thus applying the chain rule we
obtain kt

′
·(F (t, x)) ◦ (F ′2(t, x)) = F ′′12(t, x). Secondly, F (t, x) = F (t, F♦(0, x)) =

γt0(x) and γ0
t (x) = F (0, F♦(t, x)) = F♦(t, x). Last, but not least γt+s0 (x)

Def
=

F (t+ s, F♦(0, x))
F♦(t, ·) ◦ F (t, ·) = id

= F (t+ s, F♦(t, F (t, x)))
F (0, ·) = id

= γt+st (F (t, F♦(0, x)))
Def
= γt+st γt0(x) and γ0

t+s
Def
= F (0, F♦(t + s, x)) =

F (0, F♦(t, F (t, F♦(t, x)))) = γ0
t γ

t
t+s.
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Corollary 5.1.6.
Let φ ∈ C̃1

b . We have ∃ δ > 0 and ∃M ∈ L1(ν), such that ∀ |s| < δ and ∀x ∈ E:∣∣∣∣φ ◦ γ0
t+s(x)− φ ◦ γ0

t (x)

s

∣∣∣∣ ≤M(x)

Proof.
We use Theorem 4.3.2 for φ and γ0

t = F♦(t, ·):
φ ◦ γ0

t is differentiable in t. By Definition 5.1.1 no. 2 δt > 0,Mt ∈ L1(ν) such
that for |ξ| < δt, ∀x ∈ E∥∥∥∥ ddτ ∣∣∣τ=t+ξ

F♦(τ, x)

∥∥∥∥
H

= sup
ξ∈[−δt,δt]

∥∥D1F
♦(t+ ξ, x)

∥∥
H ≤Mt(x)

5.2 Key Proposition

After having familiarized with the properties of FSol(E,H) we state and prove the
Key Proposition. For this section we fix h : E → H. Since we cannot guarantee
the existence of the logarithmic gradient for arbitrary vector fields h, i.e. the
existence of Cβ

ν
H(h(·))(·), we assume its existence (cf. Definition 2.6.6).

Similar to the core idea of [SvW95, Proposition 2] we have

Proposition 5.2.1 (Key Proposition).
Suppose that

1. h ∈ Sol

2. the linear operator C1
b
βνH : H→ L2(ν) is continuous and

C̃1
b
βνH(h, id) exists

(cf. Definition 2.6.6),

3. for every x ∈ E the restriction of the operator h′(x) to H exists and is a
trace class operator in H.

4. there exists an orthonormal basis {ei}i∈N of H such that ∀ei ‖h‖H is ν
′C1
b

ei -
integrable , ‖h′ei(·)‖H, ‖h(·)‖H and ‖h′•(·)‖tr are ν-integrable
and ∃M1 <∞ :

∫
E
∑

ei
|(h(x), ei)H|ν(dx) ≤M1.

Then ν is (τtv-)differentiable along h and

C̃1
b
βνh(x) =

C̃1
b
βν(h(x), x) + trh′·(x) (5.2)
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Proof.
Since h ∈ Sol (cf. assumption 1) we know that there exists γt(x) := a(t, x) ,
which is the unique differentiable mapping from the definition of differentiable
along h (cf. Definition 3.3.7). We define for any l ∈ Sol with associated flow al :
Ib×E→ E such that lνt := al(−t, ν), i.e. lνt(B) := ν(al(t, ·)(B)) = ν(al(t, B)).
If we prove that hνt is τtv-differentiable, we obtain (by Definition 3.3.7) that ν
is τtv-differentiable along h.
We may apply Theorem 3.5.5, i.e. if the assumptions

1. hνt is τC-differentiable at 0 and hν0
′τ
C̃1
b � hν0 = ν

2. φ ◦ γt ∈ C̃1
b ∀t ∈ Ib, ∀φ ∈ C̃1

b and C̃1
b is norm defining

are fulfilled we gain that hνt is τtv-differentiable on Ib. The second assumption
is given by Proposition 4.1.6, Definition 4.2.1 no. 5 and Theorem 4.1.15. Thus it
remains to prove the first assumption.

∃τC̃1
b
− lim

h→0

hνs − hν0

s
= hν0

′τ
C̃1
b

which means that the following limit exists for each φ ∈ C̃1
b∫

φ hν0
′τ
C̃1
b = lim

s→0

∫
φd

(
hνs − hν0

s

)
= lim

s→0

1

s
(

∫
φd hνs −

∫
φd hν0)

that is in our case

= lim
s→0

1

s
(

∫
φ(x)(a(−s, ν(dx)))−

∫
φ(x)(a(−0, ν(dx))))

Cor. 4.3.3
=

∫
lim
s→0

φ ◦ a(−s, x)− φ ◦ a(−0, x)

s
ν(dx)

chain rule
=

∫
φ′(a(0, x)) (D1a(0, x))︸ ︷︷ ︸

Def. 4.2.1
=

no. 3
h(a(0,x))∈H

(−1)ν(dx)

h ∈ Sol
= −

∫
φ′h(x)(x)ν(dx) = −

∫
φ′hdν (5.3)

The last integral exists, because for the fixed φ ∈ C̃1
b exists Mφ < ∞, H ⊂ E

continuous (cf. Section 2.1) and by assumption 4 ∃Mh ∈ L1(ν) : ∀x ∈ E :∣∣φ′h(x)(x)
∣∣ ≤Mφ ‖h(x)‖E ≤MφMh(x) ∈ L1(ν) (5.4)

Thus we know

hνs = a(−s, ν) is τC̃1
b
-differentiable at 0

⇔ ∃ hν0
′τ
C̃1
b :

∫
φd hν0

′τ
C̃1
b = −

∫
φ′h(x)(x)ν(dx) (5.5)
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We denote:

φ⊗ h := φ(·)h(·) and φ′· ⊗ h := φ′·()h()

In the last equation the derivative is meant w.r.t. to H.
By the definition of C-differentiability (Definition 3.2.3) suitable by assumption 2
(∃

C̃1
b
βνH(h, id), and cf. Remark 3.2.4 and Definition 2.6.1) the following functions

are pointwise, i.e. for every h̃ ∈ H, equal (use Theorem 4.4.1):∫
E

(φ⊗ h)′·ν(dx)︸ ︷︷ ︸
=:φ⊗h′·⊗ν()

= −
∫

(φ⊗ h) ·ν0
′τ
C̃1
b (dx) (5.6)

Furthermore Leibnitz’ formula (e.g. [Wer05, p.239]), which is here indeed just
the formula for differentiation of a product of two Fréchet-differentiable functions
and is proved by adding a 0 (having in mind that R⊗R R ∼= R),

(φ⊗ h)′· = φ′· ⊗ h+ φ⊗ h′· (5.7)

yield∫
E
φ′· ⊗ h⊗ ν(dx)

(5.6)
=

(5.7)
−
∫

E
φ⊗ h′· ⊗ ν(dx)−

∫
E
φ⊗ h⊗ ·ν0

′τ
C̃1
b (dx) (5.8)

We know
tr(φ′·(x)⊗ h(x)) = (φ′·(x), h(x))

because for the orthogonal basis {ei}i∈N ⊂ H we obtain

tr (φ′·(x)⊗ h(x))
[Lax02, 10.2, Thm 3]

=
∑
ei

((φ′·(x)⊗ h(x))(ei), ei)H

(·, ei) lin.
=

∃:(5.11)

∑
ei

φ′ei(x)︸ ︷︷ ︸
∈R

(h(x), ei)H︸ ︷︷ ︸
∈R

Def. 1.0.20
= φ′∑

ei
(h(x),ei)ei

(x)

[Wer05, Satz V.4.9]
= φ′h(x)(x)

well-defined!
bilin. and cont

=: (φ′·(x), h(x)) (5.9)

Using (5.9) in (5.5) we gain∫
E
φ(x) hν0

′τ
C̃1
b (dx)

(5.5)
=

if ∃ hν0
′τ
C̃1
b

−
∫

E
φ′h(x)(x)ν(dx)

lin.
=

(5.9)
−
∫

E

∑
ei

((h⊗ φ′·)(ei), ei) dν
lin.
= −

∫
E

∑
ei

(h(x), ei)φ
′
ei

(x)ν(dx) (5.10)

We can apply Fubini, because∫
E

∑
ei

|(h(x), ei)Hφ
′
ei

(x)|ν(dx)
(5.4)

≤
∫

E

∑
ei

|(h(x), ei)H|M‖ei‖H︸ ︷︷ ︸
=1

ν(dx)
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≤ M

∫
E

∑
ei

|(h(x), ei)H|ν(dx)
by 4

≤ MM1 <∞. (5.11)

Using ∫
E

∣∣φ′ei(x)
∣∣ ‖h(x)‖H ν(dx)

(5.4)

≤ Mφ

∫
E
Mhd|ν|

assumption
4
< ∞

in [PR07, A.2.1] the Bochner integral exists and can be interchanged with (·, ei),
because we use [Coh80, Proposition E.11, p.256] or [PR07, A.2.2] and that (·, ei)
is linear and continuous. Thus (5.10) equals

−
∑
ei

(∫
E
φ′ei(x)h(x)ν(dx), ei

)
Def. ⊗

= −
∑
ei

((∫
E
φ′· ⊗ h⊗ dν

)
(ei), ei

)
Def. tr

= −tr
∫

E
φ′· ⊗ h⊗ dν

(5.8)
= tr

∫
φ(x)⊗ h′·(x)⊗ ν(dx)︸ ︷︷ ︸
!
=

(5.13)

∫
E φ(x)trh′(x)dν(dx)

+ tr

∫
E
φ(x)h(x)⊗ hν ·

′τ
C̃1
b (dx)︸ ︷︷ ︸

!
=

(5.14)

∫
E φ(x) τ

C̃1
b

βν (h(x),x)ν(dx)

(5.12)

Thus it remains to prove the indicated equalities:

tr

∫
E
φ(x)⊗ h′·(x)⊗ ν(dx) =

∑
ei

((∫
E
φ(x)⊗ h′·(x)⊗ ν(dx)

)
(ei), ei

)
Def. ⊗

=
!1.

∑
ei

∫
E
φ(x)h′ei(x)︸ ︷︷ ︸

∈H

ν(dx), ei

=
!2.

∫
E
φ(x)

∑
ei

(h′ei(x), ei)︸ ︷︷ ︸
=trh′·(x)

ν(dx) (5.13)

where

1. the Bochner integral exists, because using [PR07, A.2.1]∫
E
|φ(x)|

∥∥h′ei(x)
∥∥

H ν(dx)
φ ∈ C̃1

b

≤ Mφ

∫
E

∥∥h′ei(·)∥∥H d|ν|
assump.

4
< ∞

2. and, by [PR07, A.2.2] and (·, ei) being linear and continuous, we may in-
terchange the Bochner integral with the inner product and justify Fubini∫

E

∑
ei

|φ(x)|
∣∣(h′ei(x), ei)

∣∣ ν(dx)

φ ∈ C̃1
b

≤ Mφ

∫
E

sup
{fn},{gn} ONBs

∑
n

|(h′fn(x), gn)|︸ ︷︷ ︸
[Lax02, p.332 (6)]

= ‖h′·(x)‖tr ∈ L1(ν)

ν(dx)
4
<∞
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We obtain for the last summand in (5.12)

tr

∫
φ(x)h(x)⊗ ·ν0

′τ
C̃1
b (dx) =

∑
ei

(

∫
E
φ(x)h(x) eiν0

′τ
C̃1
b (dx)︸ ︷︷ ︸

∃ Bochner integral by 4

, ei)

[PR07, A.2.2]
=

∑
ei

∫
E
φ(x)(h(x), ei)

eiν0
′τ
C̃1
b (dx)

=

∫
E
φ(x)

(∑
ei

(h(x), ei)
eiν0

′τ
C̃1
b (dx)︸ ︷︷ ︸

τ
C̃1
b

βνH(ei)(x)ν(dx)

)

2, Rem 3.3.6
=

Prop 4.4.1

∫
φ(x)

C̃1
b
βνH(h(x))(x)ν(dx) (5.14)

Hence the r.h.s. of (5.12) gives a measure hν0
′τ
C̃1
b :

hν0
′τ
C̃1
b =

(
trh′• +

C̃1
b
βν(h(·), ·)

)
ν

Here the trace is meant w.r.t. H and is taken in the argument marked by •.
Therefore

τ
C̃1
b

βνh(x) = trh′·(x) + τ
C̃1
b

βν(h(x), x)

All in all we gain that hνt is τC̃1
b
-differentiable at 0 (cf. Definition 3.3.7), iff

∃ τ
C̃1
b

βνh(x) = trh′·(x) +
C̃1
b
βν(h(x), x) a.e. ∀x ∈ E

But this exists, because h′(x) exists and its restriction on H is of trace class (cf.
assumption 3).

C̃1
b
βν(h(x), x) exists by assumption (cf. assumption 2 and Remark

3.3.6). Thus we have shown the first assumption, because hν0
′τ
C̃1
b = τ

C̃1
b

βνh
hν0.

Hence we may apply Theorem 3.5.5 (respectively Remark 3.5.6) and hν0 is τtv-
differentiable on Ib and we are done (using Proposition 4.4.1).

In the last theorem the assumption ‖φ(x)‖ ≤ M |x| would not be sufficient,
as the following example shows:

Example 5.2.2.
The assumptions φ : R → R, |φ(x)| ≤ M |x| and φ′(x) ≤ M are not sufficient.
(The same is true for h(x)!). We have that the following measure ν is finite∫

R
1ν(dx) :=

∫
R
1[−1,1]C (x)

1

x2
λ(dx) = 2
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and φ(x) = id is bounded by |x| and its derivative by 1 in the above sense. But
choosing h(x) = id, then h′·(x) = id and we obtain∫

R
|φ(x)||h′ei(x)|Rν(dx) ≥

∫ ∞
1

x
1

x2
dx =∞.

Thus the two conditions mentioned above are not sufficient to show the existence
of the Bochner integral in the last theorem (cf.(5.13)).

5.3 Main Theorem

So far we have prepared a lot of technical details and therefore it is high time
that we treat the Main Theorem (similar to [SvW95, Theorem 1]).

Theorem 5.3.1 (First Main Theorem).
Let ν ∈ M(E,B(E)) (cf. Section 2.1). For t ∈ I we set kt(x) := F ′1(t, F♦(t, x))
∀x ∈ E. Then kt

′
·(x) = F

′′
12(t, F♦(t, x)) ◦ (F ′2(t, F♦(t, x)))−1(·), where kt

′
· is the

Gâuteaux-derivative in direction ·. Suppose that

1. the logarithmic gradient (cf. Definition 2.6.1)
C̃1
b
βνH : H→ L2(ν) is contin-

uous and
C̃1
b
βνH
(
F ′1(t, F♦(t, ·))

)
(·) exists.

2. F : I × E 7→ E belongs to the class FSol(E,H).

3. ∀x ∈ E the restriction of the operator kt
′
·(x) : E → H to H exists and is of

trace class in H and ‖kt′·(x)‖tr ∈ L1(ν).

4. F ′1(t, ·) : E→ H ⊂ E

5. kt(x) ∈ Sol and there exists an orthonormal base {ei}i∈N : ∀ei ‖kt‖H ∈
L1(ν

′C1
b

ei ), ‖kt‖H ∈ L1(ν), ‖kt′•(·)‖tr ∈ L1(ν), ∀ei : ‖kt′ei(·)‖H ∈ L1(ν) and
∃Mt <∞ :

∫
E
∑

ei
|(kt(x), ei)H|ν(dx) ≤Mt <∞.

Then the measure valued map

f νF : R → M(E,B(E))

s 7→ νs := F♦(s, ν) := ν ◦ F (s, ·)

is τtv-differentiable at t in H with logarithmic derivative

t
τtvβ

fνF (x) =
dνt

′τtv

dνt
(x)

=
C̃1
b
βνH(F ′1(t, x))(F (t, x)) + tr(F

′′

12(t, x) ◦ (F ′2(t, x))−1) (5.15)
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Proof.

In Lemma 5.1.3 we set kt(x) := F ′1(t, F♦(t, x)). νt
′τ
C̃1
b exists as a τC̃1

b
-derivative

iff (by Definition 3.3.2) ∀φ ∈ C̃1
b ρφ(νt

′τ
C̃1
b ) = lims→0 ρφ(ν

t+s−νt
s

) exists, which is

lim
s→0

1

s

∫
φd( νt+s − νt︸ ︷︷ ︸

ν◦(γ0
t+s)

−1−ν◦(γ0
t )
−1

)

def.
= lim

s→0

∫
φ ◦ γ0

t ◦ (γtt+s − id)

s
dν

! Lebesgue
=

Thm. 4.3.2

∫
lim
s→0

φ ◦ γ0
t ◦ (γtt+s − γtt)

s
dν (5.16)

chain rule
for R
=

∫
(φ ◦ γ0

t ◦ γtt)′ ◦ (lim
s→0

γtt+s − γtt
s

)dν

Lemma 5.1.3
=

∫
( φ ◦ γ0

t (x)︸ ︷︷ ︸
∈ C̃1

b by Def. 5.1.1 no. 2 and Prop 4.1.6

)′(−kt(x))ν(dx)

∃ Prop 5.2.1
Def. 3.2.3

=
assump. 1

∫
(φ ◦ γ0

t ) C̃1
b
βνkt(·)︸ ︷︷ ︸

∈L1(ν) Def. 3.2.3

dν

Prop 5.2.1
=

∫
(φ ◦ γ0

t )(x)(
C̃1
b
βνH(kt(x))(x) + tr kt

′
·(x))ν(dx) (5.17)

Applying the Key Proposition(Proposition 5.2.1) is justified by assumptions 1, 2,
3, 4 and 5. This yields

Lemma 5.1.5
=
def.

∫
φ(F♦(t, x))(

C̃1
b
βνH(F ′1(t, F♦(t, x)), x)

+ trF ′′12(t, F♦(t, x)) ◦ (F ′2(t, F♦(t, x)))−1)ν(dx)

def. νt
=

∫
φ(z)

(
βν (F ′1(t, z), F (t, z)) + trF

′′

12(t, z) ◦ (F ′2(t, z))−1
)
dνt(dz)

It remains to prove that we can apply Theorem 4.3.2 in (5.16): φ ◦ γ0
t ⊂ C̃1

b (cf.
Proposition 4.1.6, Definition 5.1.1 no. 2), φ◦γ0

t+s is differentiable (cf. Proposition

5.1.6), and by Definition 5.1.1 no. 2 there exist δ̃(t) > 0 and M̃1(t) < L1(ν), such
that ∀x ∈ E:

sup
ξ∈[−δ̃,δ̃]

∥∥∥∥ ddτ γtτ ∣∣∣τ=t+ξ
(x)

∥∥∥∥
H

= sup
ξ∈[−δ̃,δ̃]

∥∥D2F (t, F♦(t+ ξ, x))D1F
♦(t+ ξ, x)

∥∥
H

≤ sup
ξ∈[−δ̃,δ̃]

M2(t)
∥∥D1F

♦(t+ ξ, x)
∥∥

H ≤M2(t)M1(t)(x) =: M̃1(t)(x) (5.18)
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5.4 A transformation rule for measures

After having shown a condition for a measure to be C̃1
b -differentiable in the last

section, we derive a ”nice” representation for the transformation from one mea-
sure to another one. The idea of the measure transformation has been done in
[Bel90].

Differing from [SvW95], we assume more conditions:

Theorem 5.4.1 (Transformation rule for measures).
Let ν ∈ M(E,B(E)) (cf. Section 2.1) and F ∈ FSol(E,H). In addition to the
assumptions of Theorem 5.3.1 being fulfilled for all t ∈ I, we assume ∀x ∈ E

1. For each t ∈ I F ′2(t, x) is positive, i.e. (F ′2(t, x)h, h)H ≥ 0 ∀h ∈ H, t 7→
lnF ′2(t, x) |H is a continuously differentiable map from I into the Banach
space of trace class operators on H equipped with the trace norm,

2. detF ′2(t, x) exists ∀t ∈ I,

3. there exist an orthonormal base {ei}i∈N of eigenvectors of F ′2(t, x) such that

detF ′2(t, x) =
∞∏
i=1

(F ′2(t, x)(ei), ei),

4. Choose 0 < T ∈ I:∫ T

0
C̃1
b
βνH(F ′1(s, x), F (s, x))ds <∞ νT + ν-a.e. and

5. [0, T ]× E 3 (t, x) 7→ ‖kt′·(x)‖tr ∈ L1(λ× ν) and∫ T

0

∥∥∥ C̃1
b
βνH(kt(·), ·)

∥∥∥
L1(ν)

dt <∞.

Then for each t ∈ [0, T ] the measure νt = f νF (t) is equivalent to ν and the
Radon-Nikodym density is given by

dνt

dν0
(x) = detF ′2(t, x) exp{

∫ t

0
C̃1
b
βν(F ′1(s, x), F (s, x))ds} (5.19)

Remark 5.4.2.

1. If F ′2(t, x) − id is of trace class, detF ′2(t, x) is defined (cf. [Lax02, 30.4,
p.342] or [Sim05, p.33]).

2. If F ′2(t, x) is compact and selfadjoint, then there exists an orthonormal base
of eigenvectors (cf. Spectral Theorem [Wer05, p.265]).
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3. If kt
′
· is independent of t, then the first part of assumption 5 is fulfilled by

assumption 3 of Theorem 5.3.1. If kt is independent of t, then assumption
5 is fulfilled by Definition 2.6.6, i.e.∫ T

0

∥∥∥ C̃1
b
βνH(k(·), ·)

∥∥∥
L1(ν)

dt

C.S.

≤ ‖ν‖
1
2
tv

∫ T

0

∥∥∥∥∥ ∑
eiONB

(k(·), ei) C̃1
b
βνH(ei)(g)

∥∥∥∥∥
L2(ν)

dt
Def. 2.6.6
< ∞

This is e.g. the case if F (t, x) = x+ th (cf. Chapter 6).

Proof of Theorem 5.4.1.
First we apply Theorem 3.5.4 and then use Theorem 5.3.1 and other properties
to rewrite the exponential factor to obtain (5.19).

We will check its assumptions: ∃a, b ∈ I :

1. (νt)t∈I is differentiable for τC̃1
b

2.
∫ b
a
‖νt

′τ
C̃1
b ‖tvdt <∞

3.

(t, x) 7→ t
τ
C̃1
b

βν
♣

(x) is B(I)⊗ B-measurable where t
τ
C̃1
b

βν
♣

=
dνt

′τ
C̃1
b

dνt

4. ∫ b

a

| tτ
C̃1
b

βν
♣

(x)|dt <∞ |νa|+ |νb| − a.e.

in order to gain

νt, a ≤ t ≤ b, are equivalent and
dνt

dνa
= exp

(∫ t

a

s
τtvβ

ν♣(x)ds

)
.

We prove the assumptions:

1. By Theorem 5.3.1 (νt)t∈I is differentiable for τtv and thus (cf. Remark
3.3.10) for τC̃1

b
.

2. ∫ T

0

‖νt
′τ
C̃1
b ‖tvdt

Def. 3.3.2
=

∫ T

0

‖ tτ
C̃1
b

βf
ν
F νt‖tvdt

Lemma 1.0.18
=

Thm. 5.3.1

∫ T

0

∫
E

∣∣
C̃1
b
βνH(F ′1(t, x), F (t, x))

+ tr(F
′′

12(t, x) ◦ (F ′2(t, x))−1)
∣∣d ∣∣νt∣∣ dt
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4
≤

[Bau01, Thm 19.1]

∫ T

0

∫
E

∣∣
C̃1
b
βνH(F ′1(t, F♦(t, x))︸ ︷︷ ︸

=kt(x)

, x)
∣∣

+
∣∣ tr(F ′′12(t, F♦(t, x)) ◦ (F ′2(t, F♦(t, x)))−1︸ ︷︷ ︸

=kt
′
·(x)

)
∣∣d |ν| dt

4
≤
∫ T

0

∫
E
| βνH(kt(x), x)| d |ν| dt+

∫ T

0

∫
E
‖kt′·(x)‖tr d |ν| dt

assu. 5
< ∞

3. We know by Theorem 5.3.1 that

t
τ
C̃1
b

βν
♣

(·) =
dνt

′τ
C̃1
b

dνt

=
C̃1
b
βνH(F ′1(t, x), F (t, x)) + tr(F

′′

12(t, x) ◦ (F ′2(t, x))−1) (5.20)

Since D1D2F (t, x) exists and is continuous (cf. Definition 5.1.1 no. 2) we
have that F itself, D2F (t, x) and D1D2F (t, x) are continuous w.r.t. t and
x. Thus they are B(I × E)-measurable, where

B(I × E) := {AI × AE | ∀ AI ∈ B(I), AE ∈ B(E)} .

We know that for a linear operator T being continuous is equivalent to
|Tx| ≤M ‖x‖ (cf. [Lax02, Theorem 1, p.160]). Hence we obtain that tr is
a continuous operator, because by definition (cf. [Wer05, Definition VI.5.7,
p.289]) it is linear and by [Lax02, Theorem 4, p.333] it is bounded. Thus
tr(F

′′
12(t, x) ◦ (F ′2(t, x))−1) ∈ R is continuous w.r.t. (t, x) ∈ I × E and thus

B(I × E) measurable.

We know

(a) I × E is separable, because E and I are separable (cf. Section 2.1).

(b) (t, x) 7→
C̃1
b
βνH(F ′1(t, x), ·) is continuous, because

I × E → H → L1(ν)

(t, x) 7→ F ′1(t, x) 7→
C̃1
b
βνH(F ′1(t, x))(·)

and by assumption 1 of Theorem 5.3.1, we know that

C̃1
b
βνH : (H, ‖ ‖H)→ (L2(ν), ‖ ‖L2(ν)) is continuous and ‖ν‖tv <∞.

(c) (t′, x′) 7→
C̃1
b
βνH(F ′1(t, x), F (t′, x′)) is B(I × E) measurable.

Claim: Then (t, x) 7→
C̃1
b
βνH(F ′1(t, x), F (t, x)) is B(I × E) measurable

Proof.
A sequence of measurable function will be constructed, whose pointwise
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limit is the function above and thus the Claim will be proved (cf. [Röc05a,
Satz 5.9, p.34] or [Mal95, 2.5.1 Theorem]). Let (tr)r∈N ⊂ I, (xr̃)r̃∈N ⊂ E be
countable sequences, which are separating. Choose

C̃1
b
βνn : I × E → R

(t, x) 7→
C̃1
b
βνH(F ′1(t

1
n , x

1
n ), F (t, x))

where

t
1
n := tp : |tp − t| <

1

n
and |tl − t| >

1

n
∀l < p, tp, tl ∈ (tr̃)r̃∈N

x
1
n := xp : ‖xp − x‖E <

1

n
and ‖xl − x‖E >

1

n
∀l < p, xp, xl ∈ (xr̃)r̃∈N

These functions converge in L2(ν) for n → ∞ to
C̃1
b
βνH by the continuity

in the first argument, and thus (by Riesz-Fisher) ν-a.e for a subsequence.
W.l.o.g. we choose this subsequence and define for the points (t, x) ∈ N ∈
B(I × E), where it does not converge,

C̃1
b
βνn(t, x) :=

C̃1
b
βν(F ′1(t, x), F (t, x)).

Thus the sequence converges pointwise everywhere.

The next step is to show the measurability of the functions. Let A be an
arbitrary element of the generator of B(E). We abbreviate for t′ ∈ I, x′ ∈ E

B
1
n (t′) :=

{
t ∈ I

∣∣ |t− t′| < 1

n

}
∈ B(I)

B
1
n (x′) :=

{
x ∈ E

∣∣ ‖x− x′‖E <
1

n

}
∈ B(E)

A(t′, x′) :=
{

(t, x) ∈ I × E
∣∣
C̃1
b
βνH(F ′1(t′, x′), F (t, x)) ∈ A

} (3c)
∈ B(I × E)

N(t′, x′) :=
{

(t, x) ∈ N
∣∣
C̃1
b
βνH(F ′1(t′, x′), F (t, x)) ∈ A

}
!
∈ B(I × E)

The last set is a subset of the nullset N and thus measurable, because we
assumed B(I) and B(E) to be complete w.r.t. Lebesgue measure respec-
tively ν (cf. Definition 1.0.2 respectively Section 2.1). By the separability
of I × E we obtain

( Cβ
ν
n)−1(A) =

⋃
p′

⋃
p

B
1
n (tp)×B

1
n (xp′) ∩ A(tp, xp′) ∪N(tp, xp′)

Hence the whole set is in B(I × E). Moreover this is true for any set A
of the generator and therefore (adding a theorem of measure theory (cf.
[Röc05a, Theorem 4.3, p.25] or [Mal95, 2.3.4 Proposition])) each

C̃1
b
βνn is

measurable.
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4. The fourth assumption is fulfilled by the assumption 4 and the fact that
[0, T ] ∈ t 7→ tr(F

′′
12(t, x) ◦ (F ′2(t, x))−1) ∈ R is a continuous map from a

compact set and thus bounded.

Therefore Theorem 3.5.4 implies the equivalence of the measures νt and ν with
Radon-Nikodym derivative

dνt

dν0
= exp{

∫ t

0

s
τ
C̃1
b

βf
ν
F (x)ds}

Thm. 5.3.1
= exp{

∫ t

0

tr(F ′′12(s, x) ◦ (F ′2(s, x))−1)ds}

× exp{
∫ t

0
C̃1
b
βνH(F ′1(s, x), F (s, x))ds}

The second step is to justify that we can rewrite the first factor

exp{
∫ t

0

tr(F ′′12(s, x) ◦ (F ′2(s, x))−1(·)ds}

! 1.
= exp{

∫ t

0

tr(
d

ds
F ′2(s, x))(F ′2(s, x))−1(·)ds}

! 2.
= exp{

∫ t

0

tr(
d

ds
ln(F ′2(s, x))(·))ds}

! 3.
= exp{tr ln(F ′2(t, x)(·))}
! 4.
= detF ′2(t, x)(·). (5.21)

to finally obtain

dνt

dν0
= detF ′2(t, x)(·) exp{

∫ t

0
Cβ

ν(F ′1(s, x), F (s, x))ds}.

We conclude

1. By the continuity of the derivative F
′′
12(s, x) = F

′′
21(s, x).

2. By Definition 5.1.1 no. 2 ∃M ∈ L1(ν) :

∀h ∈ H : ‖F ′2(t, x)h‖H ≤M(x) ‖h‖H ∀x ∈ E.

By assumption 1 the following is well-defined and holds ν-a.e.

d

ds
ln(F ′2(s, x)) :=

d

ds

∞∑
n=1

Dnln(M(x) id)

n!
(F ′2(s, x)−M(x) id)n

=
d

ds

∞∑
n=1

(n− 1)!(−1)n−1(M(x) id)−n

n!
(F ′2(s, x)−M(x) id)n

= F
′′

21(s, x)
∞∑
n=1

(−1)n−1(M(x) id)−n

n
n(F ′2(s, x)−M(x) id)n−1
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= F
′′

21(s, x)
∞∑
n=1

(−1)n−1(M(x) id)n(F ′2(s, x)−M(x) id)n−1

= F
′′

21(s, x)(F ′2(s, x))−1

and we identify the radius of convergence

1

lim sup n

√
‖(M(x) id)−n‖

n

=
1
1

M(x)

= M(x)

Therefore the ln exists for all positive bounded operators.

3. For any orthonormal base (abbr. ONB) {li}i∈N we have (cf. [Lax02, Theo-
rem 3, p.333])∫ t

0

tr
d

ds
lnF ′2(s, x)ds

def. tr
=

∫ t

0

∑
ei

((
d

ds
lnF ′2(s, x)

)
(ei), ei

)
ds

! Fubini
=

(3a)

∑
ei

∫ t

0

((
d

ds
lnF ′2(s, x)

)
(ei), ei

)
ds

!,(·, ei) linear

and cont.
=

(3b)

∑
ei

∫ t

0

d

ds
((lnF ′2(s, x))(ei), ei)︸ ︷︷ ︸

:R→R

ds

=
∑
ei

(lnF ′2(t, x)(ei), ei)
def. tr

= tr lnF ′2(t, x)

where we used

(a) the boundedness for Fubini

∞
!
>

∫ t

0

∑
ei

∣∣∣∣((
d

ds
lnF ′2(s, x))(ei), ei

)∣∣∣∣ ds
≤

∫ t

0

sup
{ei},{fi}ONB

∑
ei,fi

|(( d
ds

lnF ′2(s, x))(ei), fi)|︸ ︷︷ ︸
[Lax02, p.332 (6)]

= ‖ d
ds

lnF ′2(s,x)‖tr

ds

Since the argument is continuous (cf. assumption 1), we know by an
compactness argument that the last term is even uniformly bounded.
Thus we obtain ∫ t

0

‖ d
ds

lnF ′2(s, x)‖trds ≤ tM(x) <∞
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(b) for every differentiable function f : E→ R, we have(
d

ds
f(s), ei

)
=

(
lim
h→0

f(s+ h)− f(s)

h
, ei

)
∃ lim
= lim

h→0

(
f(s+ h)− f(s)

h
, ei

)
lin
= lim

h→0

(f(s+ h), ei)− (f(s), ei)

h
def
=

d

ds
(f(s), ei)

4. For a better readability we abbreviate f = lnF ′2(t, x). Using that ei being an
eigenvector of F ′2(t, x) implies that it is as well an eigenvector of lnF ′2(t, x)
and that lnF ′2(t, x) is of trace class (assumption 1), we obtain

exp(tr f)
exp cont.

= lim
N→∞

N∏
i=1

exp ((f(ei), ei))︸ ︷︷ ︸
∈R

def. exp
=

∞∏
i=1

∞∑
n=1

(f(ei), ei)
n

n!

f(ei) = λiei
=

∞∏
i=1

∞∑
n=1

(fn(ei), ei)

n!

cont. of
(·, ei)
=

∞∏
i=1

( ∞∑
n=1

fn(ei)

n!︸ ︷︷ ︸
=exp f

, ei

)

=
∞∏
i=1

(
(exp ◦ ln︸ ︷︷ ︸

=id

(F ′2(t, x)))(ei), ei
)

=
∞∏
i=1

(F ′2(t, x)(ei), ei)

assu. 3
= detF ′2(t, x)
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Chapter 6

Examples

In this chapter we calculate as an example the case of the Gaussian (Section
6.1) and Wiener measure (Section 6.2). We examine the assertion of Theorem
5.4.1(Transformation rule for measures) for these measures and we recover in
the first case Ramer’s formula and in the second for an adapted integrand the
Maruyama-Girsanov-Cameron-Martin formula.

Along the calculations we give explicit conditions for the existence of the
mentioned operators. In order to calculate the Volterra operator, we use the
theory of Carleman operators to obtain an integral representation.

Then we consider the adapted case. Inspired by a claim in [SvW95] and the
structure of the Carleman operators we give a condition, under which the Carle-
man operator turns out to have only the eigenvalue zero and in particular trace
0 (Theorem 6.2.7). Using this property we recognize that Theorem 5.4.1 is the
Maruyama-Girsanov-Cameron-Martin-formula(Remark 6.2.11).

In [SvW95] neither the explicit conditions for the existence of the operators,
nor a remark about how to obtain the different representations were given.

Suppose that [0, 1] ⊂ I and h : E→ H is a vector field, such that the function

F : I × E→ E, (t, x) 7→ x+ th(x)

fulfills all assumptions needed to apply Theorem 5.4.1. Then F ′2(1, x) = id+h′(x)
and F ′1(t, x) = h(x) for all t ∈ I.

6.1 Gaussian measure

In particular, let (E,H, ν) be an abstract Wiener space, i.e. (cf. [MR92, p.57])
E a separable real Banach space, H a separable real Hilbert space continuously
and densely embedded into E, i.e.

E′ ⊂ H′ ≡ H ⊂ E continuously and densely

87
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and ν a Gaussian measure on B(E) with covariance <,>H.

Lemma 6.1.1.

Cβ
ν(h, y) is ν-a.s. linear in y and

C̃1
b
βν(h(x), h(x)) = −‖h(x)‖2

H

Proof.
By [MR92, Example II.3 c), p.57] we know that l 7→ E′ < l, · >E, l ∈ E′ is an
isometry, which extends uniquely to an isometry h 7→ Xh, h ∈ H. From [MR92,
Theorem II.3.11, p.58] we deduce that this is exactly −

C̃1
b
βν(h, ·). They are

ν-a.e. pointwise the same, thus
β(h(x), h(x)) = −

∑
ei

(h(x), ei)HXei(h(x)) = −(h(x), h(x))H.

Applying Lemma 6.1.1 and choosing t = 1, we deduct

∫ 1

0

βν(F ′1(τ, x), F (τ, x))dτ

Lemma 6.1.1
a.s. linear

= βν(h(x), x) +

∫ 1

0

τβν(h(x), h(x))dτ

= βν(h(x), x)− 1

2
‖h(x)‖2

H

Thus Theorem 5.4.1 yields Ramer’s formula (cf. [Ram74, p.167] or [Bel90]):

dνt

dν0
(x)

Theorem
5.4.1
= detF ′2(t, x) exp{

∫ t

0

βν(F ′1(τ, x), F (τ, x))dτ}

= det(id +h′(x)) exp(−1

2
‖h(x)‖2

H + βν(h(x), x))

6.2 Wiener measure

We remind ourselves of (cf. e.g. [DiB02, p.179])

Definition 6.2.1 (f absolutely continuous).
A function f : [a, b]→ R is absolutely continuous if for every ε > 0, there exists
δ > 0 such that for every finite collection of disjoint intervals (aj, bj) ⊂ [a, b], j =
1, . . . n of total length not exceeding δ,

n∑
j=1

|f(bj)− f(aj)| < ε

(
n∑
j=1

bj − aj

)
. (6.1)

The Cameron-Martin space is defined as

H := {f | f absolutely continuous, f(0) = 0, ḟ ∈ L2([0, 1], λ)},



6.2. WIENER MEASURE 89

where λ denotes the Lebesgue measure, and is densely and continuously embed-
ded in E = {f ∈ C[0, 1]|f(0) = 0}. Now let ν be the Wiener measure and h be
given by

h(x) =

∫ ·
0

g(x, t)dt. (6.2)

where g ∈ L2(E× [0, 1], ν × λ) and

∃D1g(x, ·) : H→ L2([0, 1], λ) : ∃M <∞ : ‖D1g(x, ·)f‖L2 ≤M ‖f‖L2 (6.3)

The operator h′(x) on the Cameron-Martin space H induces an integral
operator Kx on L2([0, 1], λ):
This we show in three steps:

1. We calculate h′(x) : H→ H:

(h′(x)(f)) := H− lim
t→0

h(x+ tf)− h(x)

t

= H− lim
t→0

∫ ·
0

g(x+ tf, τ)− g(x, τ)

t
dτ

!
=

∫ ·
0

D1g(x, τ)fdτ, (6.4)

where

lim
t→0

∥∥∥∥∫ ·
0

g(x+ tf, τ)− g(x, τ)

t
dτ

∥∥∥∥
H

def.
= lim

t→0

(∫ 1

0

∣∣∣∣g(x+ tf, τ)− g(x, τ)

t

∣∣∣∣2 dτ
) 1

2

= lim
t→0

∥∥∥∥g(x+ tf, ·)− g(x, ·)
t

∥∥∥∥
L2

(6.3)
= ‖D1g(x, ·)f‖L2 =

∥∥∥∥∫ ·
0

D1g(x, τ)fdτ

∥∥∥∥
H

Clearly, h′(x)(f) ∈ H, because (h′ (x)(f))· = D1g(x, ·)f ∈ L2([0, 1], λ). Further-
more

‖h′(x)(f)‖H =

∥∥∥∥∫ ·
0

D1g(x, τ)fdτ

∥∥∥∥
H

= ‖D1g(x, ·)f‖L2

assump.

≤ M ‖f‖L2

and we calculate that for f ∈ H using Cauchy-Schwarz (C.S.)

‖f‖L2 ≤ ‖f‖∞
4
≤ sup

t∈[0,1]

∫ t

0

|f ′(τ)| dτ = ‖f ′‖L1

C.S

≤ 1
1
2 ‖f ′‖L2 = ‖f‖H (6.5)

Therefore ‖h′(x)(f)‖H ≤M ‖f‖H.
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2. We define Kx : L2([0, 1], λ)→ L2([0, 1], λ):

Let f ∈ L2([0, 1]), then f is integrable, because λ |[0,1] is finite. Therefore

F (x) :=

∫ x

0

f(τ)dτ + 0

is well defined and we have

F ∈ H ⊂ C([0, 1])0 :=
{
f ∈ C([0, 1])

∣∣f(0) = 0
}
,

because checking the definition of absolutely continuous with δ =
(

ε
‖F‖H

)2

we

obtain for ai ≤ bi,
∑n

i=1 |bi − ai| < δ and
⋃̇

1≤i≤n]ai, bi[⊂ [a, b] that

n∑
j=1

|
∫ bj

aj

f(x)dx| ≤
∫ 1

0

1⋃n
j=1[aj ,bj ](x)|f(x)|dx

C.S.

≤
(∫ 1

0

1⋃n
j=1[aj ,bj ](x)dx

) 1
2

‖f‖L2

=

(
n∑
j=1

bj − aj

) 1
2

‖F‖H <
ε

‖F‖H
‖F‖H = ε.

We have:

Kx(f)(·) :=
d

dτ
(h′(x)(F ))(τ)︸ ︷︷ ︸

∈H

∣∣∣
τ=·

(6.4)
=

d

dτ

∫ τ

0

D1g(x, r)Fdr
∣∣∣
τ=·

= D1g(x, ·)F (6.6)

3. Finally we show that Kx is an integral operator:

We show that it is a Carleman operator (cf. [Wei80, p.141,(6.5)]). Then we use
that each Carleman Operator starting in L2 has an integral representation.

Definition 6.2.2 (Carleman operator).
A Carleman operator is a linear operator T from a Hilbert space H into L2(M,λ),
where M ⊂ R, measurable and for which exists a function k : M → H such that
for all f ∈ D(T ) :=

{
f ∈ H

∣∣T f is defined
}

Tf(x) =< k(x), f >H a.e. in M.

A condition to check that an operator is Carleman (cf. [Wei80, Theorem 6.16,
p.144]) is
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Theorem 6.2.3.
An operator K from a separable Hilbert space H into L2([0, T ], λ) is a Carleman
operator iff Kfm(s) → 0 λ-a.e. in [0, T ] for every null-sequence (fm)m∈N from
D(K).

Since (L2([0, 1], λ), <,>L2) is a separable Hilbert space, we check the assump-
tion: For any fm of a null-sequence (fm)m∈N in L2([0, 1]), defining Fm(t) :=∫ ·

0
fm(τ)dτ ∈ H ∀t ∈ [0, 1], we have∣∣∣∣∫ 1

0

(Kx(fm))(s)ds

∣∣∣∣ C.S.

≤ 1
1
2

(∫ 1

0

|(Kx(fm))(s)|2ds
) 1

2

(6.6)
= ‖D1g(x, ·)Fm‖L2[0,1]

(6.3)

≤ M ‖Fm‖L2

(6.5)

≤ M ‖Fm‖H = M ‖fm‖L2 →
m→∞

0

whence Kx is a Carleman operator from L2([0, 1], λ) to L2([0, 1], λ).

By [Wei80, Theorem 6.17, p.146] we gain the integral representation of Kx:

Theorem 6.2.4.
An operator Kx from L2([0, T̃ ], λ) into L2([0, T ], λ) is a Carleman operator iff
there exists a measurable function kx : [0, T̃ ]× [0, T ]→ C such that
kx(s, ·) ∈ L2([0, T̃ ], λ) λ-a.e. in [0, T ] and

Kxf(s) =

∫ T̃

0

kx(s, τ)f(τ)dτ

λ-a.e. in [0, T ], f ∈ D(Kx).

6.2.1 Wiener measure with an adapted integrand

From now on we assume that the integrand g is adapted (or non-anticipating) to
a filtration (Ft)t≥0, i.e. g(·, t) is Ft-measurable, where F0 is complete, i.e.

F0 = σ (F0 ∪ {N ⊂ E | ∃N ′ ∈ B(E) : N ⊂ N ′, ν(N ′) = 0})

and denoting by Xt : E→ R, ω 7→ ω(t) we consider the usual filtration
Ft := σ({Xs : 0 ≤ s ≤ t}).
We show that Kx is a Volterra operator.

Definition 6.2.5 (Volterra operator).

(Kx(f))(T ) =

∫ 1

0

k(T, τ)f(τ)dτ , where k(T, τ) = 0 for T < τ.
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If we assume a further condition (cf. Theorem 6.2.7), we derive that all powers
of Kx have only the zero eigenvalue and in particular trace 0.

Lemma 6.2.6.
If g is adapted, then the operator Kx is a Volterra operator in the above sense.

Proof.
Let T ∈ [0, 1]. First of all we know that then D1g(x, T )· is FT -measurable, i.e.

D1g(x, T )(Fn(·)) = D1g(x, T )(Fn(· ∧ T )),

because the L2-lim exists and thus the pointwise limit exists for ν-a.e. point.
For the pointwise derivative we know by the construction and properties of mea-
sure theory (i.e. that the limit of measurable functions is measurable) that

D1g(x, T )f = lim
t→0

g(x+ tf, T )− g(x, T )

t

is FT -measurable. But of course, this property holds for the L2-limit, because it
is equal the pointwise ν-a.e. and all subsets of null sets are already contained in
F0. Therefore, if we consider Kx(f)(· ∧ T ) instead of Kx(f)(·) whenever t ≤ T ,
we obtain

Kx : L2([0, T ], λ)→ L2([0, T ], λ).

We restrict Kx(f) to the interval [0, T ] and, denoting this operator by Kx

∣∣∣
[0,T ]

(f)

we obtain by the following calculation that it is even a Carleman operator from
[0, T ] to [0, T ]: Since L2([0, 1], λ) is a separable Hilbert space, we check the as-
sumption of Theorem 6.2.3: For any fm of a null-sequence (fm)m∈N in L2([0, 1])
and Fm(t) :=

∫ t
0
fm(τ)dτ ∀t ∈ [0, 1] we have:

∣∣∣∣∫ T

0

(Kx(fm))(s)ds

∣∣∣∣
Cauchy

Schwartz

≤ T
1
2

(∫ T

0

|(Kx(fm))(s)|2ds
) 1

2

def. Kx=
(6.6)

T
1
2

(∫ T

0

|D1g(x, τ)Fm|2dτ
) 1

2

D1g(x, T )·
is FT -measurable

= T
1
2

(∫ T

0

|D1g(x, τ)Fm(· ∧ T )|2dτ
) 1

2

(6.3),

≤
like (6.5)

T
1
2M ‖fm‖L2[0,T ] →m→∞0

whence Kx

∣∣∣
[0,T ]

is a Carleman operator from L2([0, T ], λ) to L2([0, T ], λ).
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By Theorem 6.2.4 we know that there exists a measurable function kTx :
[0, T ]× [0, T ]→ C such that kTx (s, ·) ∈ L2([0, T ], λ) λ-a.e. in [0, T ] and ∀s ∈ [0, T ]∫ 1

0

kx(s, τ)f(τ)dτ = Kx(f)(s) = Kx

∣∣∣
[0,T ]

(f)(s) =

∫ T

0

kTx (s, τ)f(τ)dτ (6.7)

λ-a.e. in [0, T ], ∀f ∈ D(Kx) = L2([0, 1], λ). Hence, taking any linear functional
L and using (6.7) we have by the properties of the Lebesgue integral∫ 1

0

L
(
kx(s, τ)f(τ)

)
dτ =

∫ T

0

L
(
kTx (s, τ)f(τ)

)
dτ.

Since the set of all linear functionals is point separating and L2([0, T ], λ) as well,
we obtain

kTx (s, τ) = kx(s, τ) λ− a.e.∀s, τ ≤ T ∀T ∈ [0, 1].

Thus kx(T, τ) = 0, if T < τ.

Theorem 6.2.7.
Let there exist a measurable function kx : [0, T ]× [0, T ]→ C such that kx(x, ·) ∈
L2([0, T ], λ) a.e. in [0, T ] and

Kx(f)(T ) =

∫ 1

0

kx(T, τ)f(τ)dτ

a.e. in [0, T ], f ∈ D(Kx), where kx(T, s) = 0, if T < s.
If we assume in addition(∫ 1

0

∣∣∣∣∫ t

0

|kx(t, τ)|2dτ
∣∣∣∣2 dt

) 1
2

≤ C <∞, (6.8)

then all powers of Kx have only the zero eigenvalue and in particular trace 0.

Remark 6.2.8.
In the example of an Volterra operator given in [Wer05] the kernel was assumed
to be continuous.

Thus the given condition is a reasonable one, because under the mentioned as-
sumption about the kernel (of the Volterra operator), the condition for the kernel
(of the Carleman operator) is satisfied.

Proof of Theorem 6.2.7.
We will show that

lim
n→∞

‖Kx
n(f)‖

1
n

L2

!
= 0. (6.9)
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Once deducted this equation we know, using the Gelfand Theorem (cf. [Lax02,
Theorem 4, p.195]), that the spectral radius is 0 and, because the spectrum is
nonempty, it only has the 0 eigenvalue.
Using the inequality of Cauchy-Schwartz for t ∈ [0, 1] (a,A ∈ L2(λ))∣∣∣∣∫ t

0

a(s)A(s)ds

∣∣∣∣2 ≤ (∫ t

0

a(s)2ds

)(∫ t

0

A(s)2ds

)
(6.10)

we prepare the induction, which we will apply to prove (6.9). Let n ∈ N, tn+1 ∈
[0, 1] fixed:

‖Kx
n(f)‖2

L2([0,tn+1]) =

(∫ tn+1

0

| Kx
n(f)(tn)|2 dtn

)
=

(∫ tn+1

0

∣∣∣∣ ∫ tn

0

kx(tn, tn−1)Kx
n−1(f)(tn−1)dtn−1

∣∣∣∣2 dtn
)

(6.10)

≤
∫ tn+1

0

(∫ tn

0

| kx(tn, tn−1)|2 dtn−1

)(∫ tn

0

∣∣ Kx
n−1(f)(tn−1)

∣∣2 dtn−1

)
dtn

(6.10)

≤
(6.8)

C

(∫ tn+1

0

∣∣∣∣ (∫ tn

0

∣∣ Kx
n−1(f)(tn−1)

∣∣2 dtn−1

)∣∣∣∣2 dtn
) 1

2

= C

(∫ tn+1

0

∣∣∣ ‖Kx
n−1(f)‖2

L2([0,tn])

∣∣∣2 dtn) 1
2

= C

(∫ tn+1

0

‖Kx
n−1(f)‖4

L2([0,tn])dtn

) 1
2

(6.11)

Repeating this procedure we obtain

‖Kx
n(f)‖4

L2([0,tn+1]) ≤ C2

(∫ tn+1

0

‖Kx
n−1(f)‖4

L2([0,tn])dtn

)
≤ (C2)n

(∫ tn+1

0

(∫ tn

0

. . .

∫ t1

0

‖K0
x(f)‖4

L2([0,t1])dt0 . . .dtn−1

)
dtn

)
≤ C2n‖f‖4

L2([0,1])

(∫ tn+1

0

. . .

∫ t1

0

1dt0 . . .dtn

)
≤ C2n‖f‖4

L2([0,1])

1

(n+ 1)!
(tn+1)n+1

tn+1 ∈ [0, 1]

≤ C2n‖f‖4
L2([0,1])

1

(n+ 1)!
(6.12)

and from this we obtain (6.9).

Corollary 6.2.9.
If all powers of Kx have only the eigenvalue 0, then so have all powers of h′(x)·
and their traces are 0 as well.
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Proof.
Let f ∈ H be an eigenvector of (h′(x))n, such that (h′(x))n(f) = λf , then

(Kx)
n(ḟ) =

(
d

dτ

(
h′(x)(

∫ ·
0

•dt)
)

(τ)

∣∣∣∣
τ=·

)n−1

◦
(
d

dτ

(
h′(x)(

∫ ·
0

ḟds)

)
(τ)

∣∣∣∣
τ=·

)
Main

Thm. of
=

Calculus

d

dτ
((h′(x))nf) (τ)

∣∣∣∣
τ=·

= λ
d

dτ
f(τ)

∣∣∣∣
τ=·

= λḟ

which using in addition that trh′(x)

Lidski
[Lax02, p.334, 30.3]

=
∑
λj(h

′(x)), where λj are the
eigenvalues of h′(x), implies the first part.

Lemma 6.2.10.
The logarithmic derivative along the vector field h : E→ H is the (Skorokhod or
Ito) stochastic integral

(∫
gdW

)
(x)

Proof.
We know by [Nua06, Proposition 1.3.4] that if g is adapted that then the Ito- and
Skorokhod-integral coincide. By [NZ86, p.266] and [GT82, Theorem 2, p.236] or
Bismut’s integration by parts formula ([Nua06, p.35, (1.41)]) we deduce that for
every g ∈ L2(E× I, ν × λ), φ ∈ C̃1

b we have, denoting the Malliavin derivative by
D,

E(φ

∫ 1

0

g(·, t)dWt) = E(< Dφ, g >L2([0,1],ds))

[Nua06, p.25]

= E(φ′∫ 1
0 g(·,s)ds

) (6.13)

Using this fact and trh′(x) = 0, we conclude with Proposition 5.2.1(∫
gdW

)
(x) =

C̃1
b
βνh(x)

=
C̃1
b
βν(h(x), x) + trh′(x) =

C̃1
b
βν(h(x), x) (6.14)

Furthermore, choosing any eigenvector fm of h′(x) we have

(lnF ′2(t, x)) (fm) = (ln(id+ h′(x))) (fm)

Taylor

=

(
∞∑
n=1

(−1)n+1

n
(h′(x))n+1

)
(fm)
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=
∞∑
n=1

=0︷ ︸︸ ︷
(−h′(x))n+1(fm)

n
= 0

Thus by Lidski we obtain tr lnF ′2(t, x) = 0, and that the determinant in equation
(5.19) in Theorem 5.4.1 is 1.

Since trh′(x) = 0 and since there exists an orthonormal base of eigenvectors of
h′(x) (implied by the assumption that exists an orthonormal base of eigenvectors
of F ′2(t, x), i.e. in this case each orthonormal base is an orthonormal base of
eigenvectors of h′(x) = 0), we know that h(x) = h ∈ H constant. Furthermore

h = h(x) =

(∫
gdW

)
(x) =

(∫
gdW

)
=

(∫ 1

0

ḣ(t)dWt

)
Therefore (5.19) in Theorem 5.4.1 is the classical formula of Maruyama-Girsanov-
Cameron-Martin (e.g. [Röc07, Theorem 4.3.6, p.74] or [Mal97, VII 8.3 Theorem]):

d(ν(id+ h(·))
dν

= exp

(∫ 1

0

ḣ(t)dWt −
1

2

∫ 1

0

(ḣ(s))2ds

)
Remark 6.2.11.
In general, for the Maruyama-Girsanov-Cameron-Martin formula one only as-
sumes that g is measurable, adapted and square integrable.

Throughout this paper we have demanded a lot of conditions for F (t, x) in
order to apply the transformation rule (Theorem 5.4.1). But then this formula is
only a special case of Theorem 5.4.1 for the Wiener measure and our assumptions
seem to be stronger.

We take a closer look at the assumptions in the case that the vector field
is constant. By Lemma 6.1.1 we know that the measure is differentiable along
the constant vector field. We see that all other additional assumptions of the
used theorems (Theorem 5.3.1, Theorem 5.4.1 and Theorem 6.2.7) are obviously
fulfilled, e.g. we use that (by definition) Kx = 0 and find that the constant in
Theorem 6.2.7 equals 0. Thus the proposed assumptions are the same as the usual
ones.
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[MR92] Zhi-Ming Ma and Michael Röckner. Introduction to the Theory of (Non-
Symmetric) Dirichlet Forms. Springer, 1992.

[Nev65] Jacques Neveu. Mathematical Foundations of The Calculus of Proba-
bility. Holden-Daz, Inc., San Francisco, London, Amsterdam, 1965.

[Nua06] David Nualart. The Malliavin Calculus and Related Topics. Springer,
2006.

[NZ86] David Nualart and Moshe Zakai. Generalized stochastic integrals and
the malliavin calculus. Probability Theory and Related Fields, 73:255–
280, 1986.

[Pat67] K.R. Pathasarathy. Probalistic measures on metric spaces. New York-
London: Academic Press, 1967.

[PR07] Claudia Claudia Prévôt and Michael Röckner. A concise course on
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