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Introduction

In this master’s thesis we would like to explore a deeper connection of gen-
eralized Dirichlet forms and associated Markov processes. We are motivated
by the results in [MRZ98], where processes associated to sectorial Dirichlet
forms are approximated in a canonical way using the Yosida approximation.
We wish to extend these methods and results for generalized Dirichlet forms,
as developed in [Sta99b]. In the following we have two aims.

The first one is to approximate a given Hunt process associated with a
generalized Dirichlet form in a canonical way. We have to assume our gener-
alized Dirichlet form to be strictly quasi-regular, since this property charac-
terizes all forms which are associated with a Hunt process (cf. [Tru05]). We
give here a short approximation scheme, which is taken from [MRZ98] and
[EKS86l IV.2]: Consider a Markov chain Y# with some transition kernel, and
a Poisson process (Ht’g )i>0 with parameter §. Then the compound process
X7 := YP(II7) is a strong Markov process, and the corresponding transition
semigroup can be calculated explicitely. If the transistion kernel of Y7 is
given by BRg, then (ng )i>0 is associated to the approximate forms £7 for €.
Furthermore, we will prove that the laws of (Xtﬁ ) are relatively compact and
hence, there exists a weak limit along a subsequence which can be shown to
be unique. This means, that the processes converge in distribution. Finally,
we will prove that the so constructed limit process is a Hunt process.

The second aim is to give a new existence proof of a Hunt process asso-
ciated to a strictly quasi-regular generalized Dirichlet form. Since we start
our construction with a strictly quasi-regular generalized Dirichlet form, by
the approximation above we obtain the existence of a Hunt process.

In chapter 1 we introduce all the necessary notions used in this text, in
particular the notion of strict quasi-regularity. Also we give some examples
for strictly quasi-regular generalized Dirichlet forms.

In chapter 2 we introduce the approximation scheme and the process (X7).
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Furthermore, we make use of a compactification method, which makes things
easier to handle. In particular, we prove that the laws of (X?) are relatively
compact. The proof of Theorem has been modificated.

In chapter 3 we will prove our key theorem which will then be used in chapter
4. This will be done with the help of nice excessive functions. The proof of
Lemma [3.4] is new and the one of Lemma 3.8 has been modificated.

In chapter 4 we prove our main result, namely that there exists a Hunt pro-
cess associated to a generalized Dirichlet form. Furthermore, if we are already
given a Hunt process, we can approximate this process in distribution in a
canonical way.

Finally, I would like to thank Prof. Dr. M. Rockner, who led me to the
interesting field of Dirichlet forms. I also want to thank him for his encour-
agement during my whole mathematical education. Furthermore, I would
like to thank Dr. G. Trutnau for several discussions and helpful comments
during the preperation of this master’s thesis.



Chapter 1

Dirichlet Forms and Potential
Theory

In this chapter we introduce the basic notions from Dirichlet form theory.
We also present some results concerning the potential theory of generalized
Dirichlet forms. Furthermore, we introduce a new capacity. As we will see,
the strict quasi-regularity plays an important role in our considerations. We
also present some examples. For details we refer to [Sta99b] and [Tru05].

1.1 Generalized Dirichlet Forms

Let H be a real separable Hilbert space and let (.4,V) be a coercive closed
form on H, i.e. V is a dense linear subspace of H and A: V xV — Ris a
positive definite bilinear form such that V is complete w.r.t. the norm given

by (A(-, ) + (-, -)H)% and (A, V) satisfies the weak sector condition, i.e. there
exists a constant K > 0 such that

| Ai(u,v)] < K - A%(u,u)A%(U,v) YV ou,ve V.

A coercive closed form on L?*(E;m) is called a Dirichlet form if for all v € V
one has v* A1 €V and

Aw+vTAlLv—vt A1) > 0and
Alv—vtALv+ovT AL > 0.
We stress that A needs not to be symmetric. Since in applications the weak

sector condition turns out to be very restrictive, it is natural to consider
forms without this property.
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Since V C H continuously and densely and by identifying H with its dual
H' we obtain an embedding V < H = H' < V' which again is continuously
and densely. For a linear operator A defined on a linear subspace D of one
of the Hilbert spaces V, H, V' we will use the notation (A, D).
Let A be a linear operator with domain D(A,H) on ‘H with the following
properties:

D1 (i) (A,D(A,H)) generates a Cy — semigroup of contractions (Uy)i>o.

(1) Vis A — admissible, i.e. (U;);>0 can be restricted to a

Co — semigroup on V.

We obtain that D(A,H) NV is a dense subset of V. And by [Sta99bl 1.2.3]
A:D(AH)NY — V' is closable. So we denote its closure by (A, F). Then
F itself is a real Hilbert space with corresponding norm

lallF == [lull + | Aull,

and we have F C V. Furthermore, by [Sta99bl, 1.2.4] we have that the adjoint
semigroup (Ut)tZO of (U)o can be extended to a Cy-semigroup on V'. The
corresponding generator (A, D(A, V")) is the dual operator of (A, D(A,V)).
Then F := D(A,V’) NV is again a real Hilbert space with corresponding
norm A

full2 = el + [Aul.

Definition 1.1. Let

E(u,v) = A(u,v) = w(Au,v)yy if ueF, uey
T A(u,v)— v'(AU,u>v ifuey, ve]:"

and Ey(u,v) := E(u,v) + alu,v)y for a > 0, where 1 (-,-)y denotes the
dualization between V and V'. We call € the bilinear form associated with

(A, V) and (A, D(A, H)).
Note that, in general, £ does not satisfy the weak sector condition.

Proposition 1.2. There exists a unique Co-resolvent (Gy)as0 and a unique

A

Co-coresolvent (Gy)as0 on H such that for alla >0, f € H andu € V
Go(H) CF, Gu(H)C F,

En(Gof,u) = En(u, Gof) = (f, u)n.
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G, is the adjoint of G and aG,, aG,, are contraction operators on H. Also,
we have for u € V that
lim oG u =u
strongly in V.
Proof. See [Sta99b), section 1.3] O

The Cp-semigroup of contractions (7});>¢ corresponding to (Gg)aso0 is
called the semigroup associated with €. The corresponding generator (L, D(L))
is called the generator associated with £.

Definition 1.3.

(i) A bounded linear operator G : H — H is called positivity preserving
(resp. sub-Markovian) if Gf > 0 (resp. 0 < Gf < 1) for all f € H
with f >0 (resp. 0 < f <1).

(ii) A Cy-resolvent (Gy,)a>o s called positivity preserving (resp. sub-Markovian)
if oG, is positivity preserving (resp. sub-Markovian) for all o > 0.

(i1i) A Co-semigroup (T})i>o is called positivity preserving (resp. sub-Markovian)
if Ty is positivity preserving (resp. sub-Markovian) for all t > 0.

(iv) A linear operator (L, D(L)) is called a Dirichlet operator if
(Lu, (u—1)")3 <0 for all u € D(L).

Proposition 1.4. The resolvent (Gy)aso associated with € is sub-Markovian
iof and only if

D2 veF=u"AleVand E(u,u—ut A1) >0.

Proof. [Sta99bl 1.4.5] O

A criterion for D2 to be satisfied gives us the next proposition, which is
an analogue of [MR92| 1.4.4].

Proposition 1.5. If (A, V) is a Dirichlet form and (A, D(A,H)) is a Dirich-
let operator then D2 is satisfied.

Proof. [Sta99b, 1.4.7] O
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Definition 1.6. The bilinear form & associated with (A, V) and (A, D(A, H))
15 called a generalized Dirichlet form if D2 is satisfied.

We now give some examples of generalized Dirichlet forms, which include
the case of non-symmetric sectorial Dirichlet forms.

Example 1.7.

(i) Let (A, V) be a Dirichlet form and A = 0. Then with F =V = F and
E = A, it follows that € is a generalized Dirichlet form.

(i1) Let A=0 onV =H and (A, D(A,H)) be a Dirichlet operator generat-
ing a Co-semigroup of contractions on H. In this case, F = D(A), F =
D(A) and the corresponding bilinear form &(u,v) = —(Au,v)y if u €
D(A), v € H, and E(u,v) = —(u,Av)y if u € H, v € D(A), is a
generalized Dirichlet form.

1.2 Analytic Potential Theory

Let E be a Hausdorff topological space such that the Borel o-algebra B(FE)
is generated by the set C(E) of all continuous functions on E. We stress that
no other assumptions will be made on E. Let m be a o-finite measure on
(E,B(E)) and let (£,F) be a generalized Dirichlet form on H := L?(FE;m)
with inner product (-, -)y and coercive part (A, V).

We recall some facts from analytic potential theory of generalized Dirich-
let forms as developed in [Sta99b, ch. III] and [Tru05]. For a > 0 we call
an element u € 'H a-excessive if 3Gpi,u < u for all > 0. This definition
is equivalent with e **T,u < u for all t > 0, and if v € V this is equivalent
with &, (u,v) > 0 for v € F, v > 0. Denote by P, the set of all a-excessive
elements in V. For an element h € H let £, = {v | v € H, v > h}. Sup-
pose that £, N F # () then we denote by e, the smallest 1-excessive function
greater or equal than h. We have e;, € L, NPy and ey, is called the 1-reduced
function of h.

For U C E open and f € H with Ly1, N F # 0 let fy = e, be the
1-reduced function of f - 1y. Now an increasing sequence of closed subsets
(Fy)k>1 is called an E-nest if for every element u € F NPy it follows that
limy oo upe = 0 in ‘H. A subset N C E is called E-exceptional if there exists
an E-nest (Fy)r>1 such that N C (-, F§. Finally, we say that a property
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of points in E holds £-quasi everwhere (£-q.e.) if the property holds for all
points outside some E-exceptional set. For an E-nest (Fj)r>1 we define

C{Fy}) = {f:A—>R| UFkCACE,f‘Fk is cont. Vk‘}.
k>1

An &-q.e. defined function f is called £-quasi-continuous (€-q.c.) if f €
C({Fy}) for some E-nest (Fi)p>1-

Definition 1.8. The generalized Dirichlet form & is called quasi-reqular if:

(i) There exists an E-nest (Ey)g>1 such that Ey, k > 1, is compact in E.
(ii) There exists a dense subset of F whose elements have €-q.c. m-versions.

(iii) There exist u, € F, n € N, having £-q.c. m-versions U,, n € N, and
an E-exceptional set N C E such that {1, | n € N} separates the points
of E\ N.

The quasi-regularity is the analytic characterization of those generalized
Dirichlet forms which are associated to an m-tight special standard process,
if in addition & satisfies the following (cf. [Sta99bl chap. IV]):

D3 There exists a linear subspace Y C ‘H N L*(E;m) such that Y N F is
(iense in F, limy 00 €aguu—u = 0 in H for all u € y and_for the closure
Y of Yin L*®(E;m) it follows that u Aa € Y for u € Y and o > 0.

We give an example of a quasi-regular generalized Dirichlet form, which is
taken from [Sta99bl I1.1].

Example 1.9 (Time dependent potentials). Let d > 1, and V : R x R4 —
R, Ve LL.(R x RY dt ® dz), V > 0, be a time dependent potential. Let
(€,C5° (R4 be the bilinear form

E(u,v) ::// (Vu, Vv) dx dt—i—// woV dx dt
R JRd R JRd
—// %v dr dt; u,v € CP(R¥Y), (1.1)
R JR4 315



6 CHAPTER 1. DIRICHLET FORMS AND POTENTIAL THEORY

where Vu means gradient w.r.t. x. Our aim is to construct a generalized
Dirichlet form on H := L*(R x RY,dx ® dt) extending the bilinear form &.
To this end define

A’ (u,v) = // (Vu, Vo) dz dt; u,v € Cg° (R
R JRd

and

A(u,v) ::// (Vu, Vv) dx dt—i—// wV dx dt; u,v € C°(RT).
R JRd R JRd

It is easy to see that (A°, C°(RITY)) is closable in H, but by [Sta99b, I11.1.1]
we obtain that (A, Ce(RY)) is also closable in H and the closure (A, V) is
a symmetric Dirichlet form. Now, we assume the following on V :

/ %UV dr dt < c- Ay(u,u) for all u € C°(R*) (1.2)
R JRA 815

Then by [Sta99b, I11.1.2] V is %—admissible, if V' satisfies . In this case
the bilinear form associated with (A, V) and (2, D(Z,H)) extends the bilin-
ear form &, and £ is a generalized Dirichlet form. Furthermore, this form
is quasi-reqular. Indeed, let (U;)i>o denote the semigroup corresponding to

(2,D(2,H)). Since Uy(C(R¥)) € CR(RHM), ¢ > 0, and C(R*) C

D(Z.V) it follows from [RS80, Theorem X.49] that C*(R**') C D(Z,V)
dense w.r.t. the graph norm. In particular, C°(R**') C F dense. Hence if

(Ky)n>1 is an increasing sequence of compact subsets with RT™! = U1 Kn

and K, C K1, n > 1, it follows that C°(RHY) U,s1 Fr,. and conse-
quently, (K,)n>1 is an E-nest. Hence £ is a quasi-reqular generalized Dirich-
let form. Moreover, D3 is satisfied for Y = C3°(R*1).

In the following we adjoin an extra point A to our state space E and we
denote by Fa the set FU{A}. The point A serves as a cemetery for our
Markov process. If the space F is locally compact then there are two ways
of defining a topology on Fa. Either we consider A as an isolated point of
EA, or we consider EA with the one point compactification. We fix one of
the two topologies. Of course, if E is not locally compact then we consider
A as an isolated point of Ea. So our framework can be easily extended to
EA : We extend any function on E to Ea by setting f(A) = 0. In the same
way our measure m is extended to (Ea,B(Ea)) by putting m(A) = 0. For
an E-nest (Fi)reny we define

Co({Fy}) = {f A—-R| U C ACE, fipu{ay is continuous for every k € N

k>1

} |



1.2. ANALYTIC POTENTIAL THEORY 7

Of course, if we consider A as an isolated point then C({F}}) coincides with

C({F}).

We now introduce strict notions, which already have been considered in
[MR92], ch. V] and in [Tru05], and therefore we need a new capacity. From
now on fix ¢ € L'(E, m) N B(E) with 0 < ¢(2) < 1 for every 2 € F and set
g = Gie.

Definition 1.10. For U C E, U open, set

Cap4(U) = / ey dm,
E
where ey = limy_,o(kG1p A 1)y exists in L>®(E;m). If A C E arbitrary
then Capy 4(A) = inf{Cap, ,(U) | U D A, Uopen}.

Note that ey is not necessarily in H.
By [Tru05, Thm.1] Cap, 4 is a finite Choquet capacity, i.e. Cap; 4 has the
following properties:

(i) If (A,)nen is an increasing sequence of subsets of E then

Capy g <U An) = sup Capy 4 (4,).

neN nzl

(i) If (K, )nen is a decreasing sequence of compact subsets of E then

Capy g (ﬂ Kn> = ;Lr;fl Cap, 4 (K,).

neN

A subset N C E is called strictly £-exceptional if Cap; 4,(N) = 0. An
increasing sequence (Fy)gen of closed subsets of E is called a strict E-nest
if Capy,(F¢) | 0 as k — oo. A property of points in E holds strictly &-
quasi-everywhere (s. &-q.e.) if the property holds outside some strictly &-
exceptional set. A function f defined up to some strictly £-exceptional set
N C E is called strictly £-quasi-continuous (s. £-q.c.) if there exists a strict
E-nest (F},)pen such that f € Coo({F;}). For a subset D C H denote by D"
all s. £-q.c. m-versions of elements in D. After all these preparations we are
able to give the essential definition for our purposes.
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Definition 1.11. The generalized Dirichlet form & is called strictly quasi-
reqular if:

(1) There exists a strict E-nest (Ey)g>1 such that Ey U{A}, k> 1, is com-
pact in Ea.

(i) There exists a dense subset of F whose elements have s. E-q.c. m-
VErsions.

(i1i) There ezist u, € F, n € N, having s. £-q.c. m-versions t,, n € N,
and a strictly €-exceptional set N C E such that {t,, | n € N} separates
the points of En \ N.

Although the next two propositions will not be used in the sequel, we
include them for completeness.

Proposition 1.12. Let E be a locally compact separable metric space. Let
the generalized Dirichlet form (€, F) be reqular, i.e. Co(E) N F is dense in
F w.r.t. |||z as well as in Co(E) w.r.t the uniform norm. Then it is strictly
quasi-regular.

Proof. See [Tru05l, Prop. 1] O

Proposition 1.13. Assume that (€, F) is a quasi-regular generalized Dirich-
let form on H such that 1 € F and A is adjoined to E as an isolated point
of En. Then (€, F) is strictly quasi-reqular.

Proof. See [Tru05, Prop. 3] ]
We now give a condition, which is sufficient for our purposes:

SD3 There exists an algebra of functions G C ‘H, such that G N F is dense
in F and limg, 00 €4—agou + €agou—u = 0 for every u € G.

If SD3 is satisfied then the strict quasi-regularity of a generalized Dirichlet
form characterizes all m-tight Hunt processes which are associated with &
(cf. [Tru03]).

Having introduced all necessary notions and results, we now turn to the
preparation for the next chapter. Also the next three lemmas will be impor-
tant for the rest of this work.
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Define

Y= UEk;»

k>1

where (Ej)g>1 is such as in Definition [1.11] By the arguments in [MR92)
IV.3, Remark 3.2(iii)] Y} can always be assumed as a Lusin topological space.

From now on the generalized Dirichlet form (£, F) will be as-
sumed to be strictly quasi-regular.

Proposition 1.14. Let £ be a strictly quasi-reqular. Then every u € F
admits a s.E-q.c. m-version u. In particular we have for any e > 0

Capyg({la] > e}) < e Hlew + e—ullnlleln.

Let € satisfy SD3 in addition. Then every element in G admits a s. £-q.c.
M-VETSION.

Proof. See [Tru05l, Prop. 2] O

Lemma 1.15. [Tru(5, Lemma 2]Let £ be strictly quasi-regular. Let a > 0.
There exists a kernel R, from (E,B(E)) to (Y1,B(Y1)) such that

(i) Rof is a s. £-q.c. m-version of Gaf for all f € H,

(ii) aRa(2,Y1) <1 forall z € E.

The kernel R, is unique in the sense that, if K is another kernel from

(E,B(E)) to (Y1,B(Y1)) satisfying (i) and (ii), it follows that K(z,-) =

R.(z,-) s. £€—q.e.

Proof. Fix a > 0. Let sqC(E) denote the set of s. £-q.c. functions defined
s. &-qe. on E. Let T : H — sqC(E), f +— Gaof, where G f is a's. E-q.c.
m-version of G, f. By Proposition G, f exists and we will show that T
is quasi-linear. Indeed, let c¢1,co € R, f1, fo € H. By Proposition [1.14] we
have for any ¢ > 0

Cap g <{|éa(01f1 +eafa) — e1Gafi — 2Gafol > 5}> < e Yeote—ollnlllln = 0.

Hence éa(clfl + cofy) = 1Gofi + 3Gofo s. E-qe. If f, 1 0, f, € H
then f, — 0 in H. Hence eq, ¢, + e—q,f, — 0 in H and therefore again by
Proposition .

Capyy({|Gafn| > €}) — 0
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for all e > 0 as n — oo. Finally, if f > 0 m-a.e., f € H then Gof > 0
s. &-qe. Indeed, since Gof > 0 m-a.e. and Gof = Gof m-a.e. we have
by Lemma that Gof > 0's. &-q.e. This completes the proof that T
is quasi-linear. By [AM91, Thm. 4.2] there exists a unique kernel K from
(E,B(FE)) to (Y1,B(Y;)) such that Kf = Tf s. £-q.e. for all f € H. Since
m is o-finite it follows in particular

aKly, =aTly, = oz(jaly1 <1 s.&—q.e.,

and hence there exists a s. £-exceptional set N € B(E) such that oK (z,-) <
1 for all z€ E\ N. Now let

Ro(z,) = 1p\nK(z,).
]

Let & satisfy SD3. The condition SD3 implies the condition D3. Hence,
we can adapt the arguments in [Sta99bl IV.2] to the strictly quasi-regular
case to get the following results.

Lemma 1.16. There exists a countable family Jy of bounded strictly & -quasi-
continuous 1-excessive functions and a Borel set' Y C Yy satisfying:

(i) Ifu,v € Jy, a,cr,c € QY then Rou, uAv, uAl, (u+1)Av, ciu+cov
are all in Jy.

(ii)) N := E\'Y is strictly E-exceptional and Ra(x,N) =0, for all x €
Y, a € Q1.

(111) Jo separates the points of Ya.

() If u € Jy, © €Y, then ﬁfngu(x) < u(z) for all 5 € Q7
Rou(z) — Rgu(z) = (B — a)RaRau(z) for all a, 3 € QF,

limg oo aRyu(z) = u(z).

We now want to extend our kernel R, to the point A. So define for
o€ @i, Ae B(YA) = B(EA) NYa

«

Ro(z, A) = Ra<x>AﬂY>+<l—ﬁa(x,Y)) 14(4), ifrey
T L, ifr=A
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and set
J:={u+cly, |ué€Jy,ceQy}.

Since Jy separates the points of YA, so does J.

Lemma 1.17. Let (Ra)acqy and J be as above. Then the statements of

Lemma remain true with Jy, Y and Ra replaced by J, Yan and R,
respectively.

We close this chapter with two important examples.

1.3 Examples of s. Quasi-Regular Dirichlet
Forms

These examples are taken from [Tru05]. The first one shows that the gener-
alized Dirichlet form defined in [Sta99a] is actually strictly quasi-regular.

Example 1.18 (Non-symmetric perturbations through divergence free vec-
tor fields). Let U € RY be open and let Hy*(U) be the closure of C°(U) in
LY (U;dz) w.r.t. the norm given by [,|Vul?+u? dv. Let H2(U) be the space
of all elements u such that u, € Hy*(U) for all x € C(U). Let p € HY2(U)
such that the measure m = p*dx on U has full support. Similarly to the
above H2(U,m) and Hy*(U,m) are defined.

Let A = (aij)1<ij<a with a;; € Hllo’f(U, m) be a symmetric matriz and locally
uniformly elliptic, i.e. for any V relatively compact in U there exists vy > 0

such that
vt |h|? < (A(z)h, h) < vy|h|? for all h € R z € V. (1.3)

Consider the closure of
1
E%u,v) = 3 /(AVu,Vv> dm, wu,veC?(U)

on L*(U,m) which we denote by (E°, D(EY)). Let (LY, D(L°)) be the associ-
ated generator. By construction we have that C5°(U) C D(L°) and

d d
1 1
LO = 5 E awazaju + § E 6A,iaiu7 (IS CSO(U)7
=1

1,j=1

where
d 2aij @p

ﬁA,i - Z((’?jaij + T)

j=1
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Let B = (by,...by) € L} (U R m . Jy(B,B) dm < oo for all V

relatively compact in U, and such that
/(B, Vu)y dm =0 for all u € Cg°(U). (1.4)

For a subset W € L*(U;m) let Wy denote the space of all w € W such that
supp |u|lm is compact in U and let Wy, = Wy N W,. Define

d
Lu:= L’u+ Z b;Oju, u e D<LO)0,b

i.j=1

By [Sta99d, Thm. 1.5] there exists a closed extension (L, D(L)) of (L, D(LO)D b)
on LY(U,m) generating a strongly continuous resolvent (G )a>0 on L*(U,m)
which is sub-Markovian. Furthermore, we have D(L), C D(E°) and

E%u,v) — /(B, Vu)v dm = — /Euv dm, u € D(L)y, v € D(E%qy

(1.5)
Now, let (L, D(L)) be the part of (L, D(L)) in L*>(U,m), i.e

D(L) ={f € D(L)NL*(E;m) | Lf € L*(E;m)},

Lf:=Lf, feD(L).
Let (L', D(L")) be the adjoint operator of (L, D(L)) in L*(U;m). Let (G4)as0
(resp. (G.,)a>0) be the associated resolvent to (L, D(L)) (resp. (L', D(L'))).
(G)aso and (Gy)aso coincide on LY (U; m)NL2(U;m). According to our basic
example (L, D(L)) is associated to a generalized Dirichlet form on D(L) X
L*(U;m) U L3(U;m) x D(L') given by

Euv) = (—Lu,v)y for we D(L), v e L*(U;m)
= (u,—L'v)y if we L*(U;m), ve D(L).

In this case F = D(L). Then by [Tru05, Thm. 6] it follows that £ is strichtly
quasi-reqular.

Example 1.19 (Time inhomogeneous diffusions on infinite dimensional space).
Let E be a separable real Banach space with norm ||-||g and let E' equipped
with the operator norm ||-||g be its dual. In particular, we have B(E) =
o(E"). Let (H,(-,-)x) be a separable real Hilbert space such that H C E
densely and continuously. Identifying H with its dual H' we obtain E' C
H C E densely and continuously. The corresponding dualization g/(-,)p :
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E' x E — R restricted to E' x H coincides with (-, ).

Let C&b(R x R™) denote the one times continuously differentiable functions
on R x R™ with all partial derivatives in space bounded and compact support
in time. Let Cj,([0,00) x R™) denote the restrictions to [0,00) x R™ of func-
tions in C&b(R x R™). Let us now define the finitely based time-dependent
functions as

fTC(l)Vb ={f(t,lh, - ,ln) | mEN, fe Céjb([O, 00) X R™), Ly, 1, € E'}.
Foru e fTC(l),b, ke E, let

ou d
denote the Gateauz-derivative of u in the direction k.
If u(t,z) = f(t,li(2),. .. ,l (2)), then

ou af
%(t, )— 9 —L(t,14(2), ... 1 (2)) Bl k) E.

u(t, z + sk)|,_, € [0,00) x E

Hence, if k € H, then there exists by the Riesz representation theorem a
unique element Vyu(t, z) € H such that

ou

o (t, 2).

Let ds denote the Lebesque measure on [0,00). Let p be a finite positive
measure with full support on (E,B(E)). Let p: [0,00)xE — R be B([0, 00))®
B(E)-measurable, p > 0 duds-a.e., and [, [, p(s, z)u(dz)ds < oo for any
compact set K C [0,00). Let C3([0,00)) consist of restrictions to [0,00) of
the one times continuously differentiable functions with compact support on
R. Note that ]—"TC(l),b contains functions of the form fg, f € C}([0,00)), g €
FCrr = {f(lh,--- ,lm) | me N, feCR™), lh,---1l, € E'}, the finitely
based smooth functions. Since FC,° separates the points of E by the Hahn-
Banach theorem, it is clear that fTC(lxb separates the points of [0,00) X E.
Furthermore ]-TC(I),b 1s an algebra of functions. Thus, by monotone class
arguments

(VHu(tv Z)a k)H =

FTCh, CH:=L*[0,00) x E, pduds) densely.

Let c € L*([0,00) X E, pduds), ¢ > 0, and assume that the following densely
defined positive-definite symmetric bilinear form

A(u,v) / / Vru(s, z), Vyu(s, 2))np(s, 2)u(dz)ds
/ / c(s, 2)u(s, 2)v(s, 2)p(s, 2)u(dz)ds; u,v € FTCq, (1.6)
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is closable on H. The closure (A,V) is then a symmetric Dirichlet form.
Let us now define the semigroup corresponding to the perturbation of A. Let
d > 0 be a constant. For u(s,z) = f(s,11(2),...,ln(2)) let first either

Uwu(s, z) := f(se™ 11(2),...,lm(2)); t>0

or
Uwu(s,z) =u(s +t,2); t>0.

It is clear that (U)o has the semigroup property on ]:TCé’b and this space
1s invariant under Uy, t > 0. Furthermore Uy is sub-Markovian for all t > 0.
Let us assume the following:

p(s,) < plt,) p—ae. ¥ s <t

and
c(s,)p(s,-) <c(t, )p(t,:) p—a.e. ¥V s <t.

In case of the first semigroup we have the following contraction property for

ue FTCy,
/ / Uu(s, 2)*p(s, 2)u(dz)ds

-»/ /f (=), ln(2))20(s, 2)pu(d2)ds
_ /0 /E u(s, 2)%e " p(se= 2)u(dz)ds
< Améu@a%@aMMMa

by our assumptions on p. In the second case the contraction property is even
easier to see. Hence we proved |Uul|3, < ||ull3,. Since ]-"TC%)J, C 'H densely,
(Up)e>0 above induces a sub-Markovian semigroup of contractions on H which
we also denote by (Up)io. This is a Cy-semigroup on H. Indeed, in the first
case we have

\Uu(s, 2) —u(s, 2)| = [f(se®, 11(2), ..., lm(2) — f(5,11(2), ..., Ln(2))]

and |Ugu(s, z) —u(s, )| converges pointwise to zero ast — 0. Let the support
of [ be contained in K x E with K C [0,00), K compact. For anyt > 0,
the support of f(se® 11(2),...,ln(2)) is also contained in K x E since d is
a positive constant. Therefore |Uyu — u| is bounded by the integrable function
2| fllolrxe. Hence, (Up)iso is strongly continuous on H. In the second case
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this is again even easier to see. The corresponding generator (A, D(A, H))
on 'H is an extension of

Au(t, z) = tdowu(t, z)
on ]-"TC(I)’b in the first case and of
Au(t, z) = Owu(t, z)

in the second case. Furthermore, (U;)i>o can be restricted to a Cy-semigroup
on V. The last clearly follows from

1Tl < el
which again follows from our assumptions on p. Now we have the following

Theorem 1.20. Let A = 0, and 1 € F. Then (€, F) is strictly quasi-regular.

Proof. See [Tru05l, Prop. 5] O
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Chapter 2

Processes Associated with £(0)

Let (€,F) be a strictly quasi-regular generalized Dirichlet form satisfying
SD3. Let J, Ya and (Ra)acgs be as in Lemma . The aim of this chapter
is to construct a family of processes (X#), 3 > 0, which is a compostion of a
Poisson process and a Markov chain and which is associated to the approx-
imate forms £ for £. The process (X?), 8 > 0 will serve to approximate
a Hunt process that is associated to £ and therefore leads to a new proof of
existence (cf. chapter 4).

2.1 Basic Definitions

In the following we will deal with a special class of Markov processses, namely
Hunt processes, so we give a precise definition:

Definition 2.1. M = (Q, M, (X})>0, (Py)zery, ) s called a Hunt process with
state space E, lifetime ¢ and corresponding filtration (My)i>o, if

(M.1) X; : Q — Ea is M;/B(Ea)-measurable for all t > 0 and Xy(w) =
A&t > ((w) for allw e Q, where ¢ : Q@ — [0, 00].

(M.2) For all t > 0 there exists a map 6; : Q@ — Q such that Xs 00, = Xsyy
for all s > 0.

(M.3) (Pr)zcr, 1S a family of probability measures on (2, M), such that x
P,[B] is B(Ea)*-measurable for all B € M and B(Ea)-measurable for
all Beo(X;|t>0) and Pa[Xo = A] = 1.

17
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(M.4) For all A € B(EA), s,t >0 and x € Ep

Px[Xt+SEA’Mt] :PX,:[XS GA] Px-a.s

(M.5) P.[Xo=2x] =1 for all x € Ea.

(M.6) For each w € Q, t — X (w) is right continuous on [0, 00).

(M.7) (My)i>o0 is a right continuous filtration and for every (M;)-stopping
time T and every u € P(Ea)

PM[XT—HEA'MT] :PXT[XtGA] PM—(I.S.

for all A € B(Ea), t > 0.
(M.8) X,— :=limgy X exists in En for allt >0 P,-a.s. for all p € P(Ea).

(M.9) lim,, .o X7, = X; Py-a.s. on {1 < oo} and X, is\/, 5, F¥ -measurable

for every increasing sequence (T,)n>1 of (]—"tP“)-stopping times with
limit T and for all p € P(EA).

M is called a right process if it satisfies (M.1)-(M.7) above. The process M
is called strictly m-tight if there exists an increasing sequence (K, )nen of
compact metrizable sets in E such that

P, L}l_}fgo OR\K, < oo] =0.
For a right process M,
pif(x) = E.[f(Xy)] z€E, t>0, feB(E)"

defines a sub-Markovian semigroup of kernels on (E,B(F)). Furthermore,
we define

Unf(x) ::/0 e p, f(z) dt,

called the resolvent of M.
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Definition 2.2. A Hunt process M with resolvent U, is called associated (in
the resolvent sense) with € if Uy f is an m-version of Gof for a > 0 and
f € By(E)NH. M is called properly associated (in the resolvent sense) with
E if in addition Uy f is E-q.c. for « >0 and f € By(F)NH. The process is
called strictly properly associated if U, f is strictly £-q.c.

One can prove that M is associated to £ if and only if p, f is an m-version
of Ty f for allt > 0 and f € By(E) NH.

2.2 The Construction

First, we want to define a metric on Ya. For this let J = {u, | n € N} be the
countable family of functions from Lemma [1.17] For the rest of this chapter
set g, := Ryu,, n € N. Furthermore, define for all x,y € Ya

oo

plas) = 3 grlon() — )| A1

n=1

By Lemma [I.16{ii) and Lemmdl.17| {g,, | n € N} separates the points of
YA and hence p defines a metric on Y. Note that by definition we have

p—B(Ya)=0(gn|neN).

Since YA is a topological Lusin space, it follows by [Sch73, Lemma 18, p.108]
that B(Ya) = o(g, | n € N). Hence, the p-topology and the original topology
generate the same Borel o-algebra on YA. By the same arguments we obtain
that o(J) = B(Ya).

Let (3, M, P) be a probability space. For a fixed 8 € Q% let {Y?(k), k =
0,1,...} be a Markov chain on (X, M, P) with values in Y with some initial
distribution v and transition function SRz. Furthermore, let (Htﬁ )i>0 be a
Poisson process with parameter 3, i.e.

P’ = k] = e_ﬁt%.

Assume that (I1?)sso is independent of {Y?(k), k = 0,1,...}, i.e. the
o-algebras generated by them are independent, and define

X7 =vyA)), t>o.
Let " = o(Il] | s < t), and FX" = (X[ | s < t), and finally
M} =FN\ 7.
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Proposition 2.3. (X])1s¢ is a Markov process w.r.t. M} in Y.

Proof. (cf. [EKS86, IV.2]) Denote by B,(Ya) the set of all bounded Borel
functions on Y. By Markov property of Y” we have for all f € B, (Ya)

Blf(YP(k+1)) | Y?(0),....Y(1)] = (BRp)* F(YP(1))
for k,0=10,1,2,..., and we claim that
E[f(Y(k+TI°(t) | M{] = (BRs)* F(X)) P~ a.s.

for k=0,1,2,..., t >0 and for all f € By(Ya).
To see this, let A € FI'" and B € FY’ := o(YP(k) | k <1). Then

/ fYP(k+T10))dP = / f(YP(k+1)dP

ANBN{II? =1} ANBN{TI?=1}
— PAN{IT = 1})/ FOVO(k + 1)) dP
— P(AN{IY = 1}) /B (BRs) F(YP(1)) dP

-/ (8Ry)"(XP) dP.
ANBN{TI?=1}

Since {ANBN{IlY =1} | Ae F', Be ", 1=0,1,...} is closed under
finite intersections and generates ./\/l , by the Dynkin class theorem we have

/A SO0k 4+ T10)) dP = / (BRs)*f(XP) dP

for all A € M?. So we have that (X);=0 is a Markov process. O

For all f € B,(Ya) define

Plf .= e—ﬁtzwt) (BRp)*f Vt>o. (2.1)

k=0

Proposition 2.4. (P”);sq is the transition semigroup of (X )iso, i.e. for
all f € By(Ya), t,s > 0 we have

E[f(X/y.) | M) = (P2)(XT).
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Proof. (cf. [EK86, IV.2])We have

BUCOE) | MY = BT, 1+ 112 | M)
= > el pirrow 4 ) | e
k=0 '
= S e Bl ry)rox)
k=0 '
= PII(XY)

The equality in («) follows, because for A € FI', B € F)” we have
fAﬂB f(Yﬁ(Htﬁ-ﬁ-s - Htﬁ + Htﬁ)) ap

_ B B
_ zk:/mm{n FOYO(k + 117)) dP

B B_
s — 1L =k}

= YU, -1 = k) [ f 1) ap

=P(A)-e=Bs —(ﬁ]j,)k

> o5 ()" FOYP(k +11))) dP.

]

Remark 2.5. (Pf)tzo 15 a strongly continuous contraction semigroup on the
Banach space (By(Ya), || - ||lo) and the corresponding generator is given by

LPu(x) = B(BRau(z) — u(z)) Y u € By(Ya).
Indeed, for all x € YA we have

o0 k-1
o pw)y = )+ e S PO ),
k=0 ’

dt
= BBRsf = f)(=).

Now we have the following

Theorem 2.6. (X)) is a strong Markov process w.r.t. My, = M=o M.
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Proof. Since the p-topology and the original topology generate the same
Borel o-algebra, we consider the p-topology. In this case R, f is uniformly
continuous on Y for each v € Q% and f € J. Set

W {f € By(Ya) | Plt — Raf(XP)

is right continuous on [0,00)] =1V «a € Qi} (2.2)

Then J C W and W is a linear vector space. To prove that W is a monotone
vector space, consider Z{ = e "R, f(X7) + fg e f(XP) ds for f € W.
Then it can be easily seen that (th )e>0 is a right continuous martingale for
all feW. If f,, € W, n € Nsuch that 0 < f,, T f bounded then it follows by
monotone convergence theorem that th "7 th for all ¢ > 0. By [DM82, Thm.
VI.18] we have that th is indistinguishable from a right continuous process,
hence f € W, i.e. W is a monotone vector space. By the monotone class
theorem we obtain that By(Ya) is contained in W. Now the strong Markov
property follows from [Sha88, Thm. 7.4]. ]

For each 8 € Q7 have constructed a strong Markov process with a special
transition semigroup. We would like to find forms to which this process is
associated. Define the forms £, 3 > 0, by

5(5)(71,1)) = B(u — BGpu,v)y, u,veH,

where (Gg)p>o is the resolvent of £. It is known, that the semigroup associ-
ated to €@ is given by

=S O eys vicrwm e

J=0

From Proposition , (2.1) and (2.3) we see that (X]) is associated with
£B).

2.3 Hunt Processes

For an arbitrary subset M C Ea let Qy := Dy[0,00) be the space of all
cadlag functions from [0, 00) to M. Let (X;):>o be the coordinate process on
Qp,, ie. Xi(w) =w(t) for w € Qp,. Let PP be the law of X” on Qp, with
initial distribution ¢, for x € Ya, i.e.

PJ[]:=P[-| Xy = a];
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and for € Ea \ Ya let P? be the Dirac measure on g, such that P?[X; =
x for all t > 0] = 1. Finally, let (F;);>0 be the completion w.r.t. (P?),cp, of
the natural filtration of (X;);>o,i.e.

Fo= ) olX, [ s <)
HASIIN
Proposition 2.7. M? = (Qg., (X0, (Fi)s0, (PP)ecp,) is a Hunt
process associated with €%, i.e. for all t > 0 and any m-version of u €
L*(E;m),  — [u(X;) dP? is an m-version of T u.

Proof. (cf. [MR92, 1V.3.21]) By construction it is clear that M” is a right
process. And, of course, the left limits of X; exist in EA. So we only have to
prove the quasi-left continuity up to oc.

Let (7,,)n>1 be an increasing sequence of (F;)-stopping times such that 7, T 7.
Define

A if T(w) = oc.

So, we have to prove that V = X, P,-a.s. for all u € P(Ea).
Stepl : Assume first that 7 is bounded. For all f,g € C,(EA), © € Ean we
have

BaVIRS] = B2 g0)ER, | [T etrox e

Viw) = {lirmHoo X, (w) if T(w) < oo

= E°

g(v) /0 et Ex [f(X)] dﬂ]

=Ef [f(Xr42)|F7] PP _a.s.

= B2 [ov) [T B0 | 7]
= B2 jgv)e [Ten i

— lim E”

n—oo

8

g(X,,)e™ /Oo e f(X) dt]

= lim E][9(X,)Raf (X, )]

T

= El[g(V)Raf(V)],

where in the last step we used Lebesgue’s dominated convergence theorem.
By a monotone class argument we have

E]lg(V)aRa f(X;)] = Ef[g(V)aRaf(V)]
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for all Borel measurable bounded functions g. Since Y is Borel measurable,
we may replace g by 1y - g and if we let o tend to infinity, we obtain by
monotone convergence theorem that for all f € Cy(Ea), g € By(Ea)

Elg(V) (X)L wery] = EZ[g(V)F(V)Lveryl.
Again by a monotone class argument we obtain that
EJ WV, X)vevy] = E[[W(V.V)Liver)]

for all By(Ea x Ea)-measurable bounded functions h. Let now h to be the
indicator function of the diagonal in Ex X Ea. So, the assertion follows.
Step2 : For arbitrary 7 we have
P}V #X,,VeY]
= PPlVAX, VeEY, 1<)

= ZPf[V;&XT, Vey, n—1<7<n]

n=1

- 3P [khm Xynn 7 Xepny 1m0 X €V, n—1 <7< n]
—1 o0 —00

= 0,

where all summands are zero by step 1. Hence (X});>0 is quasi-left continuous
up to oo and so MP? is a Hunt process. O]

Our next aim is to prove the relative compactness of the family {P? |
B € Q% }. For technical reasons we will make use of a compactification
method. So we construct a compact superset of YA by completion w.r.t. p.
Set E = Y_Ap.

Proposition 2.8. (E, p) is a compact metric space.

Proof. Since J separates the points of Y,

b:z— ( 9n() )
gnlloo / nen

defines an isometry from (Ya, p) to [0, 1]N with the product metric. By Ty-
chonoff’s theorem [0, 1] is compact, hence so is (E, p). O

We extend the kernel (R, )qacqr to the space E by setting fora € Q%, A €
B(E),
RQ(ZL‘, AN YA), r € Ya

Ra(l',A) = {ilA(.’L'), S E\YA
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(Xf )e>o can be regarded as a cadlag process with state space E. We use the
same notation as before: P? denotes the law of (Xtﬁ )i>0 in Qg with initial
distribution ¢,. Each g, is uniformly continuous w.r.t. p and hence extends
uniquely to a continuous function on £ which we denote again by g,,.

2.4 The Skorohod Topology

Let (M,d) be an arbitrary metric space and let Dj,[0, 00) be the space of
all cadlag functions from [0,00) to M. Since we are concerned with cadlag
functions, we will introduce a topology on this space, the so-called Skorohod
topology. The first observation is that cadlag functions do not behave as bad
as we might think of them.

Lemma 2.9. [EKS86, chap. III, Lemma 5.1] Every x € Dy[0,00) has at
most a countable number of discontinuities.

Proof. Set for n > 1 A, = {t > 0 | d(xy,2,—) > *}. Then A, is count-
able, since lim; ~ z(s) and lims ; z(s) exist for all £ > 0. The set of all
discontinuities of x is (J,», A,, and hence countable. O

Let £ be the collection of all real-valued increasing functions A on [0, 00)
such that A(0) = 0. Such a function A is called a time change. Define for

AeL
log (M) ‘ + sup|A(t) — t].

—1 >0

[A]l := sup
s#t
Now, define for a,b € Dg[0, 00) the Skorohod metric
3 —t
s(a,b) = )1\I€1£ {||)\H + Stlég)e d(at,b,\(t))} )

Theorem 2.10. If M is separable, then Dy[0,00) is separable. If (M,d) is
complete then (Dp[0,00), s) is complete.

Proof. See [EK86|, chap. III, Thm. 5.6]. O

2.5 Relative Compactness of {P’ | 3 € Q*}

To prove the relative compactness we need some results which are taken from
[EK86].
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Theorem 2.11. Let (M,d) be a complete and separable metric space and
let (X*) be a family of processes with sample paths in Q. Suppose that the
compact containment condition holds. That is, for everyn > 0 and T" > 0
there exists a compact set I'y o C E for which

inf PIX el)r for0<t<T]>1—n.

Let H be a dense subset of Co(M) in the topology of uniform convergence
on compact sets. Then (X®) is relatively compact if and only if (f o X%) is
relatively compact for each f € H.

Proof. See [EK86, chap. III, Thm. 9.1]. O

If the metric space is compact then the compact containment condition
holds. Although the next theorem holds for arbitrary metric spaces, we will
formulate it in the case of our compact metric space (E, p).

For each «, let X* be a process with sample paths in 2z defined on
a probability space (X, F, Q%) and adapted to a filtration (F?). Let L*
be the Banach space of real-valued (F;)-progressive processes with norm
Y]] := supysq E[|Yi]] < 0o. Let

t
M, = {(Y, Z) e L* x LY, — / Zs ds is an LY — martingale} :
0

Theorem 2.12. Let (E,p) be the compact metric space from Proposition
2.8, and let (X®) be a family of processes as above. Let C, be a subalgebra of

C(E) and let D be the collection of f € C(E) such that for every ¢ >0 and
T > 0 there exist (Y, Z*) € M,, with

sup F/

[0

sup [V} — f(Xf“)ll <e

te[0,7]NQ
and
sup E[|| Z%||,r] < oo for some p € (1, 0],

a

1

where ||h|[,r = <f0T|h(t)|p>p if p < oo and ||h|ler = esssup0§t§T|h(t)|. If
C, is contained in ﬁ”'Hw, then {fo X} is relatively compact for each f € C,.
Proof. See [EK86, chap. III, Thm. 9.4]. ]

Now we have the following important theorem:
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Theorem 2.13. {P? | 3 € Q*.} is relatively compact for any x € E.

Proof. Recall that g, was defined by ¢, = Ryu,, n € N, where J = {u, |
n € N}. Since g; € D(LP) for all i € N, we can define for all i € N

¢
Mtﬁ’l ::gi(Xf)—/ Lﬁgi(Xf) ds, t>0.
0

It follows that (M)~ is an (M?)-martingale. Indeed, by Proposition
we have

E[M | M)
t+s
_ E[gxxﬂs)wﬂ—fz{ [ e dr|Mf]
0

t t+s
= Blg(xP) | MP) - / L g(XP) dr — / B[ gi(XP) | ME) dr
t ~~

0 (. /

s d t
= BlaX) | M) = [ TP ar= [ Dax ar

t
— Elg(XP) | MP] — PPg(XP) + Plai(XP) — / LPg(XP) dr

t
= 9i<Xtﬂ) - / LPg(XP) dr = Mtﬂ’l P —a.s.
0

Moreover, we have
Lgi(x) = 1y, BRs(gi — wi)(x).
Therefore, we conclude for all 1 € N

sup [|L%(gi)lle = sup |1y, BRs(gi — )|l
BeQ?, BeQt,

< yalgi = ui)lloe < +o0.
So, we proved that {g, | n € N} is contained in D, where D is defined as in
Theorem [2.12, Every u € J is p-uniformly continuous on Y and hence has

a unique p-continuous extension @ to E. Set J := {u € Co(E) | Uy, € J}.
Consider for u € J

Ria(u — aRyu) () = aRau(x) Tu(x) V€ Ya.
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The extension of a R, u to E is pointwise increasing in o on £. By the Dini
theorem R, u T v uniformly on E for some v € Cy(F). By uniqueness of

the extension we obtain v = @. It follows that J is contained in Dl Since
D> is a linear space, we have J — J C D= Furthermore, the set J — J
contains the constant functions, is inf-stable and separates the points of E.
Hence, by the Stone-Weierstra8 theorem we obtain that J — J is dense in

Cy(E). Since

CE)=T—T ~cD'™cey(B),

it follows that Cy(F) = D" By Theorem

2.12

we have that {f o XP| 3 €

Q7 } is relatively compact for all f € Cy(E). And by Theorem this is
equivalent with the relative compactness of {X féi | 3 € Q3 }. In particular,
{PP| 8 €Q} is relatively compact for all z € E. O



Chapter 3

The Key Theorem

This chapter is devoted to the proof of Theorem (the key theorem). In
particular, we will make use of the potential theory developed in chapter 1.
Let R,, Y beas in Lemma[l.17]and M? := (Qp,, (Xi)iz0, (Fi)iz0s (P2)rens)
be the Hunt process from Proposition Furthermore, let (€, F) be a
strictly quasi-regular generalized Dirichlet form satisfying SD3. In particu-
lar, we follow [MRZ98| Section 3]. All the lemmas there remain true in the
case of generalized Dirichlet forms.

For a Borel subset S C Y, we shall write Sa for S U {A}. The topology
on Sx is, except otherwise stated, the one induced by the metric p.

Theorem 3.1. There exists a Borel subset Z C'Y and a Borel subset 2 C Qp
with the following properties:

(i) E\ Z is strictly £-exceptional.
(i) Ro(z,E\ Za) =0, ¥V x € Za, a € QY.

(i1i) If w € Q, then wy, wi— € Za for all t > 0. Moreover, each w € ) is
cadlag in the original topology of Ya and w? = w;_ for allt > 0, where

w?_ denotes the left limit in the original topology.

() If v € Zn and P, is a weak limit of some sequence (Pxﬁj)jeN with B; €
Q%, B; 1 oo, then P[] = 1.

We explain why this theorem is crucial. This theorem provides two Borel
sets Z and 2 with the property that all paths from €2 take their values and

29
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left-limits in Za. Z and € are big enough, in the sense that E \ Z is strictly
E-exceptional and P,[Q}] = 1. Restricting our process to 2 we get a Hunt
process, as we will see in chapter 4. The proof of the key theorem will
be accomplished through several lemmas, which are contained in the next
section.

3.1 Construction of Excessive Functions

In this section we construct a Borel set S and a family of 2-excessive func-
tions, such that these functions have nice properties on S. The details are
contained in the next lemmas.

For our purposes we will use a description of strictly £-exceptional sets
by p-zero sets, where pu is taken from a special class of measures. For details
we refer to [Tru05].

For an arbitrary subset D € H let 7517 p denote the set of all 1-coexcessive
functions in V, which are dominated by some function in D. Furthermore,
let ﬁft} denote the set of all s.£-q.c. m-versions of 1-excessive elements in V
which are dominated by elements in F.

Theorem 3.2. Letu € 751 7. Then there exists a unique o-finite and positive
str

measure (3" on (E,B(E)) charging no strictly £-exceptional sets, such that
/ f st = lim & (f,aGoa) ¥ f € Pl — Pl
E a—00

Proof. See [Tru05, Thm. 4]. O

According to the notation in Theorem [3.2| we introduce the following class
of measures

Setr = { s | a e 7317(;le+ and jf"(E) < oo},

u u

where GyH; := {G1h | h € H;} and H; denotes the set of all positive and
bounded elements in H.

Theorem 3.3. For B € B(E) the following statements are equivalent:

1. B is strictly £-exceptional.

2. u(B) =0 for all p € S5t
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Proof. See [Tru05, Thm. 5]. O

Recall that
Capy 4(U) = /eygp dm,

where ey € L>®(E;m). If w is in P; then u will denote the fixed s.£-q.ls.c
m-version (regularization) defined by

= supnl,1u.
neN

Lemma 3.4. Let U, C E, n > 1 be a decreasing sequence of open sets. If
Capy4(U,) — 0, as n — oo, then we can find m-versions e,, of ey, such that

(i) e, > 1 strictly E-q.e. on Uy, n > 1.
(i1) aRa+1(en) < e, strictly E-q.e. for a € Q, n > 1.

(7i) e, | O strictly E-q.e. asn — 0.

Proof. Let (U,)n>1 be the decreasing sequence of open sets in E such that
Capy 4(Uy,) — 0. Define

e 1= klim (kGyip A 1)y,

We have (kGip A1)y, > kGip A1 = kRjp A1 m—ae. on U,. By Lemma
[A.4] we obtain

(kG1o A1)y, > kRip A1 s.E —q.e. on U,.

Note that Ry > 0 s.£-q.e. Hence, by letting k — oo we obtain (i).
We have, since R, is kernel,

ORui1(en) = aRap (li}gn(kGlgo A l)Un>

T Gy
< liinm
= e, s.&E—q.e.

This proves (ii). By assumption we have Cap; ,(U,) | 0 as n — oo. So it
follows that e,, ¢ — 0 m-a.e. for a subsequence (ny),>1. But by monotonicity
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we get e,p — 0 m-a.e. and since ¢ > 0 we obtain e, — 0 m-a.e. Next,
applying Theorem we have for u; € S5t and h € H; such that @ < G1h

/en A ngo dpg, = lim aRaJrl(en A ]:Elgo) dpg

a—00

= lim lim 81 (OéGa+1 (€n A\ RﬂD), ﬁénglﬁ)

a—00 f—00

S lim 51 (OéGa+1 (en N ngp), Glh)
= lim (aGat1(en A Ri), )

a—00

= /(en A Ifh(p)h dm —p_e0 0,

since e, — 0 m-a.e. So it follows that e,, A ngo — 0 pg-a.e. and again
by monotonicity we get e, A Ri¢ — 0 pg-a.e. Since Ry > 0 we obtain
that e, — 0 pg-a.e. Define now N := {z | e,(z) - 0}. Then we have
pa(N) = 0 for all g € S5 and by Theorem this is equivalent with
e, — 0s.E-q.e. O

Lemma 3.5. In the situation of Lemma there exists S € B(E), S CY
such that E\ S is strictly £-exceptional and the following holds:

(i) Ro(z, Y\ S)=0VYz €S, acQ:.
(it) en(x) > 1 forx € SNU,, n>1.
(“Z) aRa-i—l(en)(x) S en(I)a Vr € S, (ORS Q*.H n Z 1.

() e, | 0, Yz € S.

Proof. By Lemma [3.4] there exists a Borel set S; C Y such that assertions
(ii)-(iv) hold pointwise on Sy and Y \ S is strictly E-exceptional. Thus by
Proposition we can find a Borel set Sy C S such that
Ro(z, Y\ S)) =0z €Sy, acQ

and E \ Sy is strictly £-exceptional. Repeating this argument, we get a
decreasing sequence (Sy)n>1 of Borel sets such that £\ S, is strictly &-
exceptional and R, (z,Y'\S,) = 0Vz € S,41, a € Q. Clearly, S := ﬂnZI Sh
is strictly £-exceptional and

Ro(z,Y\S)=0 VzeS acQ.
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Lemma 3.6. Let S € B(E) such that Lemma/[3.5 (i) holds. Then
PP[X, €85, X, €SAVE>0] =1V x € Sa.
Proof. Lemma [3.5| (i) implies that
(BRg)"(x, E\ Sa) =0, Vo € Sa, € Q%, n> 1.

Therefore, if Y2(k), k = 1,2, ...1is a Markov chain starting from some x € Sa
with transition function $Rgs, then

P[YP(k) € E\ Sa for some k] = 0.
Clearly, this implies
P[Y?(IT}) € E\ Sx for some t > 0] = 0
and
PlY3(IIY ) € E\ Sa for some t > 0] = 0,
since (Htﬁ ) is cadlag. Hence, the assertion follows. ]

Lemma 3.7. Let § € QF, 3 > 2, n > 1. Then e, is a (Ptﬁ)—,?—excessive
function on Sa, i.e.
e Ple,(x) < e,(x) and

lime 2Ple,(z) = e,(2z) ¥V & € Sa.

t—0

Proof. We have by Lemma (i)and (iii) ((B—1)Rg)*(en)(z) < en(x) Vo €
Sa. Hence V x € Sa

et = > U am e,

[\
ml
=
&
[~
VS
=)
o~ L|w
| o~
~_
ES

since 3 > 2. This gives
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But
lime > P f (x) = f(x)

holds V z € E and f € By(E). Hence, e, is a (P])-2-excessive function. [

Define for n € N the stopping time
T, =inf{t >0| X, € Uy,},
called the first entry time of (X;) in U,.

Lemma 3.8. Let $ € Q%, 3> 2 and MP := (Qp, (Xi)is0, (P9).ep) be the

T

canonical realization of the Markov process (Xtﬂ) Then
EPle™®™] < e,(x), V o € Sa.

Proof. Since by Lemma S is invariant set of M”, the resriction MgA of
MP? to Sp is still a Hunt process. We first prove that (e=?'e, (X;))i>0 is an
(F:)-supermartingale. By the Markov property we have for s <t

Ezﬂ[e_Qten(Xt) | Fs] = E)ﬁ(s [e_2t€n(Xt—s)]
= e_QtPtB,sen(Xs) = 6_256_2(t_S)P1586n(X8>
< e Fe,(X,),

where the last inequality follows from Lemma [3.7. So by the optional sam-
pling theorem we have

Efle™ e, (X,,)] < EP[e™?%,(X0)] = en(z), © € Sa.

T

By Lemma [3.5| we have that e, (z) > 1 for all z € U,,. In view of Lemma
we may apply [FOT94, Thm. A.2.5] and obtain

PP[t +— e,(X,) is right continuous] =1 V¥ x € Sa.

Hence, for all z € Sa we have e,(X,,) > 1 PP-as. It follows that for all
T € Sa
et < e ?™e,(X,,) PP —as

Hence,
Efle™™] < EPle™?™e,(X,,)] < en(z) VY x € Sa.

— xT

Now we are well prepared for the proof of Theorem
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3.2 Proof of the Key Theorem
Proof. Take a strict E-nest (F,El))keN such that Jy € Coo({FkEl)}), Fk(l) u{A}

is compact and
JFRY cv.
k>1

Let Uy := E'\ F,gl) and 7 ;= inf{t > 0 | X; € Uyx}. (Uk)ren is a decreasing
sequence of open sets and

Capy 4(Uy) — 0 as k — oo.

Hence the assumptions in Lemma [3.5| are satisfied and we can find a subset
SW ¢ B(E) satisfying Lemma [3.5( (i)-(iv). Without loss of generality we can
assume that SU) C Ups1 F,El). Fixany T'> 0, 8 € Q%, 8>2, k€ Nand

RS S(Al). By Lemma ﬁ we have
Pl < T) = E][Lncry] = EJle™**]e™" < e ex(x).

Now, consider the canonical projection IT : Qz x [0,7) — E. Clearly, II is
continuous and therefore

Bl ={weQs|w e FYU{A}Vt<T}

is a closed subspace of Q, since B}l = H_I(Fk(l) U {A}) and since the trace
topology of E on F,El) U {A} is the same as the original one. Thus, if P, is

a weak limit of some sequence (Pfj)jeN, B T oo, B; € Qf, and if (fn)nen €
Cy(E) is a positive monotone sequence such that f, | 1 BT then

P.BI) = Eiflgy] = B, |lim 1]

n—oo

= lim E,[f,] = lim lim E%[f,]
n N——

n j—oo

B
ZEac] [IBI’{}

> limsup E% [1pr] = limsup PPiln > T]

= limsup(l — P%[r, < T]) > 1 — e ex()
Jj—00

But by Lemma [3.5| (iv) it follows that

P, [ U Bﬂ = kh_}rglo P,[Bl] > limsup(1 — e*ei(z)) = 1.

k>1 k—o0
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Let Q1 = Nys1 Upsy Bi'- Then P[] = 1 for z € S and Q; satisfies
Theorem [3.1 (iii) with Za replaced by J;, Fk(l).
Now take another strict £-nest (F,gz))kzl such that F,EQ) C F,El) V k, and

JF? s,

k>1

Repeating the above argument we get S C Uss1 FIEQ) and {2y C €y, satis-
fying the same property as above.

Repeating the procedure we obtain the following: strict E-nests (F ,in))kz 1,
Borel sets S C E such that Theorem key (ii) holds with Z replaced by
Sgl) and

Yol JEVosWo . o JEYDos™ o,

E>1 E>1

and finally Borel sets €, C Dg[0, 00) such that
Dg[0,00) D2 D2 D ..., D ...

Q,, satisfies (iii) with Za replaced by (J;~, F,ﬁn) U{A}, satisfies (iv) with Za

replaced by S(A"). We now define Q := () o, Qn, Z =), S™. Then Z
and Q satisfy (i)-(iv). - - O



Chapter 4

Hunt Processes Associated

with (&€, F)

Again, let (€, F) be a strictly quasi-regular generalized Dirichlet form sat-
isfying SD3. The notation is the same as in the previous chapters. This
chapter contains the main result. Let 2, Za and (P,).cz, be as in Theorem
B.1] Consider a process M := (Q, (X})i>0, (Pr)zezs ). We will prove that this
process is associated to (€, F) and unique. Furthermore, we will prove that
M is a Hunt process. We follow, as before, [MRZ98, Section 4].

Lemma 4.1. Define for o, € Q7

RPf(x) := E° {/00 e f(Xy) dt} , fEBYE), v€E.

0

Then

Rﬁf—<i)23 f+ 1 f (4.1)
ol “\a+p) " Tarp” '

Proof. Denote by AP f the r.h.s of (4.1). Then we just start to calculate and

37
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use LPf = B(BRsf — f) and the resolvent equation.

800 18 5 Y 5y
(Aa(a=LP))f = (m) OfR;TB/@f_ (Oé—-l—ﬁ) B R%Rﬁf

8 Y ap a
+<a+6) Plesl+org!
3

52
P [ a 5 p
: O‘+ﬁ\[0‘+5R5fﬂf+a+5R£&f]/_a+ﬁR£ﬁaf

=R a,@‘f

a+pB
5 5
Sl Rl T
= f.

In the same way we obtain

((a=LHADf = f.
Hence, we obtain that R f = (a — LP)~1f = APf for f € By(E). O

Lemma 4.2. Let v € E and let P, be a weak limit of a subsequence (Pfj)jzl
with B3; T oo, B; € QY. Define the kernel

P f(x) = E.[f(Xy)] V fe€ Bb(E).
Then

/OO e P f(z) dt = Rof(z), Y f € By(E), a € Q. (4.2)
0

In particular, the kernels P, t > 0, are independent of the subsequence
(Pr)j>1-

Proof. Since Py - p, weakly in (25, we have by [EK80, I11.7.8] and Lebesgue’s
dominated convergence theorem

2 | [Teooa] = [Temmpion)a
= [ e B

— Bz [f(X¢)]

— e P f(x) dt

Jj—00 0
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for all f € Cy(F) and a > 0. But by Lemma |4.1| we have

2| [Tea] — rés)

0

_ 5\ 1
_ (a+@>Rﬁ%ﬂ@+a+@ﬂ@

— Rof(x) (4.3)

J

for all f € By(E), * € E. The convergence follows from the resolvent
equation:

6' 2 a?ﬁ?
J Roz' :—]Ra'Ra +RO¢ Ra,
(awj) S e e R

N

-

=:APj

since

Aﬁj — Oéﬁ] aﬁ] R w5,

-~
—0 contraction

Hence the assertion holds for all f € Cy(E). Define

f—0uas B; — oc.

Vo= {f c B,,(E)‘ /Ooo e~ Pf(z) dt = Rof(z) Y x € E} .

Then V is a monotone vector space and we proved that V' contains Cy(E).
Hence, by monotone class theorem, it follows that V' contains all bounded,
o(Cy(E))-measurable functions. But o(Cy(E)) = By(E). So the assertion
holds for all f € By(E). The last statement follows by the right continuity of
Pif(z) in t for f € Cy(E) and the uniqueness of the Laplace transform. [

Theorem 4.3. For every x € Za the relatively compact set {P? | 8 € Q*}
has a unique limit P, for 3 1 oo. The process (g, (Xt)i>0, (Pr)zezy) 1S @
Markov process with the transition semigroup (P;);>o determined by .
Moreover,

P.[Xi € ZaA, Xy € Zp forall t > 0] =1

for all x € Z.

Proof. The last assertion follows from Theorem [3.1 By the previous Lemma
P, is unique, since it is independent of the chosen subsequence. So we only
prove that (Q2z, (X¢)i>0, (Pr)zez,) is a Markov process. For that we have to
prove

Ex[fl(th) s fn(Xth...tn)] = Ptl[flpt2 [f2 ce Ptn [fn] . ](.1') (4'4)
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for any n > 1, ty,...t, > 0 and fi,...f, € By(Za), which is equivalent
for (X;)i>0 to be a Markov process. The equation (4.4) follows by induction
from

E fi(Xe) - fu(Xevn,)]
= B [fi(Xe,) o fat(Xiy vt ) P (Fn) (X)) (425)

Assume first that fi,...f,-1 € Cp(Za) and f, = R.Rju for some a €
Q%, a>1, ue€ J In this case

Rﬁﬁfn = G_Btz (ﬁkt') (ﬁRﬂ) R, Riu € Cb(ZA X [O,T])
k=0

for 8 € Q7 and any T > 0. For 3, 3, € Q7 we have

t
P - PEg = [ SPRREL) ds
o ds
t
= [ et - pgds )
0
By a calculation we get
(LP* — L”)f, = Rg,w — Rg,w, (4.7)

where w := Rj(aRqu — u) — (aRyu — u). By (4.6) and (4.7)) it follows that

t
supsup [P fu(w) = P fulw)| < supsup / |PPPE (L — L) fo()]| ds
< x < x 0 -~

Ssup, |71 fu(a)~L%2 o (z)

< Tsup L7 fo(x) — L fo(2)]
= Tsup|Ryu(z) — Royw(z)]
1 1
< T sup |w(x
< (ﬁl 52) e
From this and (4.3 we have
sup sup ]Pffn(x) — P, fu(x)] — 0. (4.8)
t<T = B—00

In particular P, f,(x) is jointly continuous in (¢, x).
Set ¢(t1, e ,tn) = e_altl_“'_a"t"fl (Xt1> e fnfl(Xt1+...+tn_1)- Since P.ZI’SJ —
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P, weakly by [EK86, I11.7.8] and Lebesgue’s dominated convergence theorem
we have

lim E% U / Ot tn) P (f) (X, ) dty .. dty

J—o0

= ll;’n Efj / - / d](t]_’ . ,tn)Ptn (fn)(Xt1+~v-+tn—1) dt] . dtn
0 0

= h;’n Efj / N / w(t:b . ,tn)Ptn (fn)(Xt1+...+tn_1) dtl e dtn
0 0

= h;’n Exﬁj / N / w(t:b . ,tn)Ptn (fn)(Xt1+...+tn_1) dtl e dtn
0 0

/ / Yty b)) P (fo) (X4, 1) dty - d]
= {/ / Y(ty, . tn) P (o) (Xt y) dty .. dE }

From here and (4.8)) it follows that

J

lim £ / " / Ot )P (F) (Ko en )ty dtn]
LJO 0

= ll;’n Eg] / Ce / @Z)(th e ;tn)Ptij (fn)(Xt1+._.+tn71) dtl e dtn:|
LJ O 0

= s [ [T [T ) )

_ V /wtl,... D a(Kos o) dt dtn},

where we used Proposition 2.4, From here we conclude by Fubini’s theorem

/ / emorh—mentn TR (XY L (X a0 )] dt - dt
0 0

= / .. / e,altlf..fantn Ez [fl(}<t1> ce. fn—l(Xt1+... tnfl)
0 0
1 tn<fn)(;<t1+...+tn_1)] dtl R dtn

Since the above integrands are right-continuous, by the uniqueness of the
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Laplace-transform we get successively

Bl fi(Xe) o f( Xyt
= B [fi(Xe) o ot (Xt ) P (o) (X e 0)], (49)

for fi,... fa—1 € Co(ZA), fu = RaRiu, u € J. Multiplying this equation by
a and letting o — oo, we obtain by Lemma [1.17

Ew[fl (Xt1) s Rlu(Xh—l—--.—l—tn)]
= E.[f1(Xe) - ot (Xeypgt) Pry (Baw) (Xey 4ty )]- - (4.10)

Now we have for u € J that u — aR,u € J and Rio(u — aRypqu) =
aRq11u T u, hence by monotone convergence theorem it follows that

Eo[fi(Xy) - u( X1 4,)]
= Ew[fl (th) s fnfl(th‘i’-n‘i’tnfl)Ptn (U) (Xt1+.~.+tn71)] (411>

holds for all fi,... fn_1 € Cy(Za), for all u € J. Define now

V= {u| (4.11)) holds for u}.

Then V is a monotone vector space and we have J C V. It follows that
J—J C V. The set J— J is a positive conves cone, inf-stable and contains
1. Hence, we obtain by monotone class theorem that V' contains all bounded
o(J — J)-measurable functions. But by [Sch73, Lemma 18] we have that
B(Zx) Co(J) Co(J—J). We conclude that

Efi(Xy) o fo(Xy v
= B [fi(Xy) - ot (Xiypgt ) P (Fn) (X 0)] (412)

for all fi1,... fu_1 € Co(Za) and f,, € By(Za). And now it is easy to obtain,
again by monotone class arguments, the assertion for fi,... f, € By(Za). O

In what follows let (P,)sez, be as in Theorem Let Q and Za be
specified by Theorem [3.1] Since P,[Q] = 1 for all z € Z, we may restrict P,
and the coordinate process (X;);>0 to 2. Let (F;)i>0 be the natural filtration
of (Xi)i>0. Finally, we are well prepared to state and to prove our main
result. Here we use the same arguments as in chapter 2. For completeness
we give all the details.

Theorem 4.4. M := (2, (X¢)i>0, (Ft)t>0, (Pr)eezy) s a Hunt process with
respect to both the p-topology and the original topology.
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Proof. The p-topology and the original topology generate the same Borel
sets. Hence, we only discuss the p-topology case. In this case R, f is uni-
formly continuous on YA for each o € Q% and f € J. Set

W = {f € By(Ya) | Pelt — Raf(Xt)

is right continuous on [0,00)] =1V a € Q', V€ E'} (4.13)

Then J C W and W is a linear vector space. To prove that W is a monotone
vector space, consider th = e ™R, f(Xy) + fot e f(Xs) ds for f € W.
Then it can be easily seen that (th )t>0 1s a right continuous martingale for
all feW. If f, € W, n € Nsuch that 0 < f,, T f bounded then it follows
by monotone convergence theorem that th" T th for all ¢ > 0. By [DMS&2]
Thm. VI.18] we have that th is indistinguishable from a right continuous
process, hence f € W, ie. W is a monotone vector space. By the monotone
class theorem we obtain that B,(Ya) is contained in W. Now the strong
Markov property follows from [Sha88, Thm. 7.4]. So, it remains to prove the
quasi-left-continuity of (X;);>o. Assume first that 7 is bounded. Then let
(Tn)n>1 be an increasing sequence of stopping times such that 7,, T 7. Define

A if T(w) = oo.

So, we have to prove that V = X, P,-a.s. For all f,g € C,(Ea), x € Za we
have

Vi) = {nmnﬂ X, (w) if T(w) < o0

BLVIRSCC) = B |oV)Es, | [~ etrx at]

= Fk,

g(V) / T By [f(X))] e

=Eo[f(Xr44)|Fr] PP —as.
: {g<v> [ erenmieo) £ dt}
_ 5 [g Vyerr / e f(Xy) d }
= hmE l O‘T” e_atf(Xt) dt}

— nhjgloEx[( Tn)Rocf( rn>]
= E,[9(V)Raf(V)],

I
&
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where in the last step we used Lebesgue’s dominated convergence theorem.
By a monotone class argument we have

Exlg(V)aRa f(X7)] = Ex[g(V)aRaf(V)]

for all Borel measurable bounded functions g. Since Y is Borel measurable,
we may replace g by 1y - g and if we let o tend to infinity, we obtain by
monotone convergence theorem that for all f € Cy(Ea), g € By(Ea)

ElgV)f(X:)lvevy] = Exlg(V) fF(V)1veyy)-

Again by a monotone class argument we obtain that
E. [0V, X:)1lvevy] = Eo[h(V,V)1lvey)]

for all By(Ea x Ea)-measurable bounded functions h. Let now h to be the
indicator function of the diagonal in EaA X Ea. So, the assertion follows.
Step2 : For arbitrary 7 we have

P.[V#X.VeY]
= P[V#X, VeY, 7<x]

— ZPI[V%XT, Vey, n—1<71<n]

n=1

= P [lim Xopw # Xopa, Jim X €Y, n—1<7 <)
n=1 e -

= 0,
where all summands are 0 by step 1. Hence (X;);>o is a Hunt process. [

Note that by Lemmas and M is even strictly properly associated
in the resolvent sense to £.



Chapter A

Appendix

The next results are strict versions of some results from [Sta99b].

Lemma A.1. [Sta990, II11.5.5] Let S be a countable family of s.E-q.c. func-
tions. Then there exists a s.E-nest (Fi)k>1 such that S C C({Fy}).

Proof. Let S = {fi | | € N}. For every | € N there exists a strict &-
nest (Fjp)e>1 such that f; € C({Fi}) and Capiy(Ff) < 7. Let Fy, =
ﬂzzl Fy., k € N. Then each Fj, is closed and

Capg(Ff) <) Capy4(F) <

>1

e

Hence, (F)k>1 is a s.E-nest and obviously S C C({F}}). O
Definition A.2. (i) A(n) (strict) E-nest (Fi)i>1 is called regular if for all
keN, UcCE, U open, m(UN Fy) =0 implies that U C F¥.

(ii) A subspace A C E is called the topological support of a measure u, if for
every open set ) = U C A we have u(U) > 0. Notation: supp p := A.

(1ii) A topological space is called strongly Lindeldf if every open covering of
an open set U has a countable subcover.

Lemma A.3. [Sta99b, I11.2.4] Let (F},)x>1 be a s.E-nest such that the relative
topology on Fy, is strongly Lindelof for all k, and define Fy, := supp[lg, - m].
Then (Fi)i>1 is a reqular strict €-nest with Fy, C Fy, for all k.
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Proof. Fix k € N. Note that F}, is smallest closed set F such that m(F°nN

Fy,) = 0. In particular, F, C Fy and m(F, \ F},) = m(Fc N Fy) = 0. Hence
Capy 4(Fy) = Caplg(Fk) If U ¢ E open with m(U N F},) = 0 then m(U N
F,) = 0, since m(Fy, \ F},) = 0. Consequently, U¢ D Fj, and this is equivalent
with U C ﬁ,f. Hence, (Fk>k21 is a strict regular £-nest. O

Lemma A.4. [Sta99b, 111.3.3] If f is s.£-q.s.l.c. and f < 0 m-a.e. on an
open set U C E, then f <0 s.E-q.e. on U.

Proof. Let (Fy)r>1 be a strict E-nest such that f € C({Fy}) and let Ey, k €
N, be the sets from Definition [1.11| which can be assumed to be metrizable.
Then set F} := F, N Ej, k € N. Then Fj is strongly Lindel6f as a second-
countable space. Hence, by Lemma we have F := supp[lpé -m|, k€N
forms a strict regular E-nest. For & € N {f > 0} U Fy N U is open and

m({f > 0YUF:NUNE) = 0, since f < 0m-a.e. Hence {f > 0}UFENU C FE,
since Fj, is a strict regular £-nest. So, we obtain {f > 0} NU C Fj, which is
equivalent with F,, N U C {f < 0}. Consequently,

U FEnUc{r<o}

k>1
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