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Introduction

In this master’s thesis we would like to explore a deeper connection of gen-
eralized Dirichlet forms and associated Markov processes. We are motivated
by the results in [MRZ98], where processes associated to sectorial Dirichlet
forms are approximated in a canonical way using the Yosida approximation.
We wish to extend these methods and results for generalized Dirichlet forms,
as developed in [Sta99b]. In the following we have two aims.

The first one is to approximate a given Hunt process associated with a
generalized Dirichlet form in a canonical way. We have to assume our gener-
alized Dirichlet form to be strictly quasi-regular, since this property charac-
terizes all forms which are associated with a Hunt process (cf. [Tru05]). We
give here a short approximation scheme, which is taken from [MRZ98] and
[EK86, IV.2]: Consider a Markov chain Y β with some transition kernel, and
a Poisson process (Πβ

t )t≥0 with parameter β. Then the compound process
Xβ
t := Y β(Πβ

t ) is a strong Markov process, and the corresponding transition
semigroup can be calculated explicitely. If the transistion kernel of Y β is
given by βRβ, then (Xβ

t )t≥0 is associated to the approximate forms Eβ for E .

Furthermore, we will prove that the laws of (Xβ
t ) are relatively compact and

hence, there exists a weak limit along a subsequence which can be shown to
be unique. This means, that the processes converge in distribution. Finally,
we will prove that the so constructed limit process is a Hunt process.

The second aim is to give a new existence proof of a Hunt process asso-
ciated to a strictly quasi-regular generalized Dirichlet form. Since we start
our construction with a strictly quasi-regular generalized Dirichlet form, by
the approximation above we obtain the existence of a Hunt process.

In chapter 1 we introduce all the necessary notions used in this text, in
particular the notion of strict quasi-regularity. Also we give some examples
for strictly quasi-regular generalized Dirichlet forms.
In chapter 2 we introduce the approximation scheme and the process (Xβ).
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Furthermore, we make use of a compactification method, which makes things
easier to handle. In particular, we prove that the laws of (Xβ) are relatively
compact. The proof of Theorem 2.13 has been modificated.
In chapter 3 we will prove our key theorem which will then be used in chapter
4. This will be done with the help of nice excessive functions. The proof of
Lemma 3.4 is new and the one of Lemma 3.8 has been modificated.
In chapter 4 we prove our main result, namely that there exists a Hunt pro-
cess associated to a generalized Dirichlet form. Furthermore, if we are already
given a Hunt process, we can approximate this process in distribution in a
canonical way.

Finally, I would like to thank Prof. Dr. M. Röckner, who led me to the
interesting field of Dirichlet forms. I also want to thank him for his encour-
agement during my whole mathematical education. Furthermore, I would
like to thank Dr. G. Trutnau for several discussions and helpful comments
during the preperation of this master’s thesis.



Chapter 1

Dirichlet Forms and Potential
Theory

In this chapter we introduce the basic notions from Dirichlet form theory.
We also present some results concerning the potential theory of generalized
Dirichlet forms. Furthermore, we introduce a new capacity. As we will see,
the strict quasi-regularity plays an important role in our considerations. We
also present some examples. For details we refer to [Sta99b] and [Tru05].

1.1 Generalized Dirichlet Forms

Let H be a real separable Hilbert space and let (A,V) be a coercive closed
form on H, i.e. V is a dense linear subspace of H and A : V × V → R is a
positive definite bilinear form such that V is complete w.r.t. the norm given

by (A(·, ·) + (·, ·)H)
1
2 and (A,V) satisfies the weak sector condition, i.e. there

exists a constant K > 0 such that

|A1(u, v)| ≤ K · A
1
2 (u, u)A

1
2 (v, v) ∀ u, v ∈ V .

A coercive closed form on L2(E;m) is called a Dirichlet form if for all v ∈ V
one has v+ ∧ 1 ∈ V and

A(v + v+ ∧ 1, v − v+ ∧ 1) ≥ 0 and

A(v − v+ ∧ 1, v + v+ ∧ 1) ≥ 0.

We stress that A needs not to be symmetric. Since in applications the weak
sector condition turns out to be very restrictive, it is natural to consider
forms without this property.
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2 CHAPTER 1. DIRICHLET FORMS AND POTENTIAL THEORY

Since V ⊂ H continuously and densely and by identifying H with its dual
H′ we obtain an embedding V ↪→ H = H′ ↪→ V ′ which again is continuously
and densely. For a linear operator Λ defined on a linear subspace D of one
of the Hilbert spaces V , H, V ′ we will use the notation (Λ, D).
Let Λ be a linear operator with domain D(Λ,H) on H with the following
properties:

D1 (i) (Λ, D(Λ,H)) generates a C0 − semigroup of contractions (Ut)t≥0.

(ii) V is Λ− admissible, i.e. (Ut)t≥0 can be restricted to a

C0 − semigroup on V .

We obtain that D(Λ,H) ∩ V is a dense subset of V . And by [Sta99b, I.2.3]
Λ : D(Λ,H) ∩ V → V ′ is closable. So we denote its closure by (Λ,F). Then
F itself is a real Hilbert space with corresponding norm

‖u‖2
F := ‖u‖2

V + ‖Λu‖2
V ′ ,

and we have F ⊂ V . Furthermore, by [Sta99b, I.2.4] we have that the adjoint
semigroup (Ût)t≥0 of (Ut)t≥0 can be extended to a C0-semigroup on V ′. The

corresponding generator (Λ̂, D(Λ̂,V ′)) is the dual operator of (Λ, D(Λ,V)).
Then F̂ := D(Λ̂,V ′) ∩ V is again a real Hilbert space with corresponding
norm

‖u‖2
F̂ := ‖u‖2

V + ‖Λ̂u‖2
V ′ .

Definition 1.1. Let

E(u, v) :=

{
A(u, v)− V ′〈Λu, v〉V if u ∈ F , u ∈ V
A(u, v)− V ′〈Λ̂v, u〉V if u ∈ V , v ∈ F̂

and Eα(u, v) := E(u, v) + α(u, v)H for α > 0, where V ′〈·, ·〉V denotes the
dualization between V and V ′. We call E the bilinear form associated with
(A,V) and (Λ, D(Λ,H)).

Note that, in general, E does not satisfy the weak sector condition.

Proposition 1.2. There exists a unique C0-resolvent (Gα)α>0 and a unique
C0-coresolvent (Ĝα)α>0 on H such that for all α > 0, f ∈ H and u ∈ V

Gα(H) ⊂ F , Ĝα(H) ⊂ F̂ ,

Eα(Gαf, u) = Eα(u, Ĝαf) = (f, u)H.
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Ĝα is the adjoint of Gα and αGα, αĜα are contraction operators on H. Also,
we have for u ∈ V that

lim
α→∞

αGαu = u

strongly in V.

Proof. See [Sta99b, section I.3]

The C0-semigroup of contractions (Tt)t≥0 corresponding to (Gα)α>0 is
called the semigroup associated with E . The corresponding generator (L,D(L))
is called the generator associated with E .

Definition 1.3.

(i) A bounded linear operator G : H → H is called positivity preserving
(resp. sub-Markovian) if Gf ≥ 0 (resp. 0 ≤ Gf ≤ 1) for all f ∈ H
with f ≥ 0 (resp. 0 ≤ f ≤ 1).

(ii) A C0-resolvent (Gα)α>0 is called positivity preserving (resp. sub-Markovian)
if αGα is positivity preserving (resp. sub-Markovian) for all α > 0.

(iii) A C0-semigroup (Tt)t≥0 is called positivity preserving (resp. sub-Markovian)
if Tt is positivity preserving (resp. sub-Markovian) for all t ≥ 0.

(iv) A linear operator (L,D(L)) is called a Dirichlet operator if
(Lu, (u− 1)+)H ≤ 0 for all u ∈ D(L).

Proposition 1.4. The resolvent (Gα)α>0 associated with E is sub-Markovian
if and only if

D2 u ∈ F ⇒ u+ ∧ 1 ∈ V and E(u, u− u+ ∧ 1) ≥ 0.

Proof. [Sta99b, I.4.5]

A criterion for D2 to be satisfied gives us the next proposition, which is
an analogue of [MR92, I.4.4].

Proposition 1.5. If (A,V) is a Dirichlet form and (Λ, D(Λ,H)) is a Dirich-
let operator then D2 is satisfied.

Proof. [Sta99b, I.4.7]
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Definition 1.6. The bilinear form E associated with (A,V) and (Λ, D(Λ,H))
is called a generalized Dirichlet form if D2 is satisfied.

We now give some examples of generalized Dirichlet forms, which include
the case of non-symmetric sectorial Dirichlet forms.

Example 1.7.

(i) Let (A,V) be a Dirichlet form and Λ = 0. Then with F = V = F̂ and
E = A, it follows that E is a generalized Dirichlet form.

(ii) Let A = 0 on V = H and (Λ, D(Λ,H)) be a Dirichlet operator generat-
ing a C0-semigroup of contractions on H. In this case, F = D(Λ), F̂ =
D(Λ̂) and the corresponding bilinear form E(u, v) = −(Λu, v)H if u ∈
D(Λ), v ∈ H, and E(u, v) = −(u, Λ̂v)H if u ∈ H, v ∈ D(Λ̂), is a
generalized Dirichlet form.

1.2 Analytic Potential Theory

Let E be a Hausdorff topological space such that the Borel σ-algebra B(E)
is generated by the set C(E) of all continuous functions on E. We stress that
no other assumptions will be made on E. Let m be a σ-finite measure on
(E,B(E)) and let (E ,F) be a generalized Dirichlet form on H := L2(E;m)
with inner product (·, ·)H and coercive part (A,V).

We recall some facts from analytic potential theory of generalized Dirich-
let forms as developed in [Sta99b, ch. III] and [Tru05]. For α > 0 we call
an element u ∈ H α-excessive if βGβ+αu ≤ u for all β > 0. This definition
is equivalent with e−αtTtu ≤ u for all t ≥ 0, and if u ∈ V this is equivalent
with Eα(u, v) ≥ 0 for v ∈ F̂ , v ≥ 0. Denote by Pα the set of all α-excessive
elements in V . For an element h ∈ H let Lh = {v | v ∈ H, v ≥ h}. Sup-
pose that Lh ∩F 6= ∅ then we denote by eh the smallest 1-excessive function
greater or equal than h. We have eh ∈ Lh∩P1 and eh is called the 1-reduced
function of h.

For U ⊂ E open and f ∈ H with Lf ·1U ∩ F 6= ∅ let fU := e(f ·1U ) be the
1-reduced function of f · 1U . Now an increasing sequence of closed subsets
(Fk)k≥1 is called an E-nest if for every element u ∈ F ∩ P1 it follows that
limk→∞ uF ck = 0 in H. A subset N ⊂ E is called E-exceptional if there exists
an E-nest (Fk)k≥1 such that N ⊂

⋂
k≥1 F

c
k . Finally, we say that a property



1.2. ANALYTIC POTENTIAL THEORY 5

of points in E holds E-quasi everwhere (E-q.e.) if the property holds for all
points outside some E-exceptional set. For an E-nest (Fk)k≥1 we define

C({Fk}) :=

{
f : A→ R |

⋃
k≥1

Fk ⊂ A ⊂ E, f|Fk is cont. ∀ k

}
.

An E-q.e. defined function f is called E-quasi-continuous (E-q.c.) if f ∈
C({Fk}) for some E-nest (Fk)k≥1.

Definition 1.8. The generalized Dirichlet form E is called quasi-regular if:

(i) There exists an E-nest (Ek)k≥1 such that Ek, k ≥ 1, is compact in E.

(ii) There exists a dense subset of F whose elements have E-q.c. m-versions.

(iii) There exist un ∈ F , n ∈ N, having E-q.c. m-versions ũn, n ∈ N, and
an E-exceptional set N ⊂ E such that {ũn | n ∈ N} separates the points
of E \N.

The quasi-regularity is the analytic characterization of those generalized
Dirichlet forms which are associated to an m-tight special standard process,
if in addition E satisfies the following (cf. [Sta99b, chap. IV]):

D3 There exists a linear subspace Y ⊂ H ∩ L∞(E;m) such that Y ∩ F is
dense in F , limα→∞ eαGαu−u = 0 in H for all u ∈ Y and for the closure
Ȳ of Y in L∞(E;m) it follows that u ∧ α ∈ Ȳ for u ∈ Ȳ and α ≥ 0.

We give an example of a quasi-regular generalized Dirichlet form, which is
taken from [Sta99b, II.1].

Example 1.9 (Time dependent potentials). Let d ≥ 1, and V : R × Rd →
R, V ∈ L1

loc(R × Rd, dt ⊗ dx), V ≥ 0, be a time dependent potential. Let
(E , C∞0 (Rd+1)) be the bilinear form

E(u, v) :=

∫
R

∫
Rd
〈∇u,∇v〉 dx dt+

∫
R

∫
Rd
uvV dx dt

−
∫

R

∫
Rd

∂u

∂t
v dx dt; u, v ∈ C∞0 (Rd+1), (1.1)
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where ∇u means gradient w.r.t. x. Our aim is to construct a generalized
Dirichlet form on H := L2(R × Rd, dx ⊗ dt) extending the bilinear form E.
To this end define

A0(u, v) :=

∫
R

∫
Rd
〈∇u,∇v〉 dx dt; u, v ∈ C∞0 (Rd+1)

and

A(u, v) :=

∫
R

∫
Rd
〈∇u,∇v〉 dx dt+

∫
R

∫
Rd
uvV dx dt; u, v ∈ C∞0 (Rd+1).

It is easy to see that (A0, C∞0 (Rd+1)) is closable in H, but by [Sta99b, II.1.1]
we obtain that (A, C∞0 (Rd+1)) is also closable in H and the closure (A,V) is
a symmetric Dirichlet form. Now, we assume the following on V :∫

R

∫
Rd

∂u

∂t
uV dx dt ≤ c · A1(u, u) for all u ∈ C∞0 (Rd+1) (1.2)

Then by [Sta99b, II.1.2] V is ∂
∂t

-admissible, if V satisfies (1.2). In this case
the bilinear form associated with (A,V) and ( ∂

∂t
, D( ∂

∂t
,H)) extends the bilin-

ear form E, and E is a generalized Dirichlet form. Furthermore, this form
is quasi-regular. Indeed, let (Ut)t≥0 denote the semigroup corresponding to(
∂
∂t
, D( ∂

∂t
,H)

)
. Since Ut(C∞0 (Rd+1)) ⊂ C∞0 (Rd+1), t ≥ 0, and C∞0 (Rd+1) ⊂

D( ∂
∂t
,V) it follows from [RS80, Theorem X.49] that C∞0 (Rd+1) ⊂ D( ∂

∂t
,V)

dense w.r.t. the graph norm. In particular, C∞0 (Rd+1) ⊂ F dense. Hence if
(Kn)n≥1 is an increasing sequence of compact subsets with Rd+1 =

⋃
n≥1Kn

and Kn ⊂ K̊n+1, n ≥ 1, it follows that C∞0 (Rd+1) ⊂
⋃
n≥1FKn and conse-

quently, (Kn)n≥1 is an E-nest. Hence E is a quasi-regular generalized Dirich-
let form. Moreover, D3 is satisfied for Y = C∞0 (Rd+1).

In the following we adjoin an extra point ∆ to our state space E and we
denote by E∆ the set E ∪ {∆}. The point ∆ serves as a cemetery for our
Markov process. If the space E is locally compact then there are two ways
of defining a topology on E∆. Either we consider ∆ as an isolated point of
E∆, or we consider E∆ with the one point compactification. We fix one of
the two topologies. Of course, if E is not locally compact then we consider
∆ as an isolated point of E∆. So our framework can be easily extended to
E∆ : We extend any function on E to E∆ by setting f(∆) = 0. In the same
way our measure m is extended to (E∆,B(E∆)) by putting m(∆) = 0. For
an E-nest (Fk)k∈N we define

C∞({Fk}) :=

{
f : A→ R |

⋃
k≥1

⊂ A ⊂ E, f|Fk∪{∆} is continuous for every k ∈ N

}
.
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Of course, if we consider ∆ as an isolated point then C∞({Fk}) coincides with
C({Fk}).

We now introduce strict notions, which already have been considered in
[MR92, ch. V] and in [Tru05], and therefore we need a new capacity. From
now on fix ϕ ∈ L1(E,m) ∩ B(E) with 0 < ϕ(z) ≤ 1 for every z ∈ E and set
g := Ĝ1ϕ.

Definition 1.10. For U ⊂ E, U open, set

Cap1,g(U) :=

∫
E

eUϕ dm,

where eU := limk→∞(kG1ϕ ∧ 1)U exists in L∞(E;m). If A ⊂ E arbitrary
then Cap1,g(A) := inf{Cap1,g(U) | U ⊃ A, Uopen}.

Note that eU is not necessarily in H.
By [Tru05, Thm.1] Cap1,g is a finite Choquet capacity, i.e. Cap1,g has the

following properties:

(i) If (An)n∈N is an increasing sequence of subsets of E then

Cap1,g

(⋃
n∈N

An

)
= sup

n≥1
Cap1,g (An) .

(ii) If (Kn)n∈N is a decreasing sequence of compact subsets of E then

Cap1,g

(⋂
n∈N

Kn

)
= inf

n≥1
Cap1,g (Kn) .

A subset N ⊂ E is called strictly E-exceptional if Cap1,g(N) = 0. An
increasing sequence (Fk)k∈N of closed subsets of E is called a strict E-nest
if Cap1,g(F

c
k ) ↓ 0 as k → ∞. A property of points in E holds strictly E-

quasi-everywhere (s. E-q.e.) if the property holds outside some strictly E-
exceptional set. A function f defined up to some strictly E-exceptional set
N ⊂ E is called strictly E-quasi-continuous (s. E-q.c.) if there exists a strict
E-nest (Fk)k∈N such that f ∈ C∞({Fk}). For a subset D ⊂ H denote by D̃str
all s. E-q.c. m-versions of elements in D. After all these preparations we are
able to give the essential definition for our purposes.
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Definition 1.11. The generalized Dirichlet form E is called strictly quasi-
regular if:

(i) There exists a strict E-nest (Ek)k≥1 such that Ek ∪{∆}, k ≥ 1, is com-
pact in E∆.

(ii) There exists a dense subset of F whose elements have s. E-q.c. m-
versions.

(iii) There exist un ∈ F , n ∈ N, having s. E-q.c. m-versions ũn, n ∈ N,
and a strictly E-exceptional set N ⊂ E such that {ũn | n ∈ N} separates
the points of E∆ \N.

Although the next two propositions will not be used in the sequel, we
include them for completeness.

Proposition 1.12. Let E be a locally compact separable metric space. Let
the generalized Dirichlet form (E ,F) be regular, i.e. C0(E) ∩ F is dense in
F w.r.t. ‖·‖F as well as in C0(E) w.r.t the uniform norm. Then it is strictly
quasi-regular.

Proof. See [Tru05, Prop. 1]

Proposition 1.13. Assume that (E ,F) is a quasi-regular generalized Dirich-
let form on H such that 1 ∈ F and ∆ is adjoined to E as an isolated point
of E∆. Then (E ,F) is strictly quasi-regular.

Proof. See [Tru05, Prop. 3]

We now give a condition, which is sufficient for our purposes:

SD3 There exists an algebra of functions G ⊂ Hb such that G ∩ F is dense
in F and limα→∞ eu−αGαu + eαGαu−u = 0 for every u ∈ G.

If SD3 is satisfied then the strict quasi-regularity of a generalized Dirichlet
form characterizes all m-tight Hunt processes which are associated with E
(cf. [Tru05]).

Having introduced all necessary notions and results, we now turn to the
preparation for the next chapter. Also the next three lemmas will be impor-
tant for the rest of this work.
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Define
Y1 :=

⋃
k≥1

Ek,

where (Ek)k≥1 is such as in Definition 1.11. By the arguments in [MR92,
IV.3, Remark 3.2(iii)] Y1 can always be assumed as a Lusin topological space.

From now on the generalized Dirichlet form (E ,F) will be as-
sumed to be strictly quasi-regular.

Proposition 1.14. Let E be a strictly quasi-regular. Then every u ∈ F
admits a s.E-q.c. m-version ũ. In particular we have for any ε > 0

Cap1,g({|ũ| > ε}) ≤ ε−1‖eu + e−u‖H‖ϕ‖H.

Let E satisfy SD3 in addition. Then every element in G admits a s. E-q.c.
m-version.

Proof. See [Tru05, Prop. 2]

Lemma 1.15. [Tru05, Lemma 2]Let E be strictly quasi-regular. Let α > 0.
There exists a kernel R̃α from (E,B(E)) to (Y1,B(Y1)) such that

(i) R̃αf is a s. E-q.c. m-version of Gαf for all f ∈ H,

(ii) αR̃α(z, Y1) ≤ 1 for all z ∈ E.

The kernel R̃α is unique in the sense that, if K is another kernel from
(E,B(E)) to (Y1,B(Y1)) satisfying (i) and (ii), it follows that K(z, ·) =
R̃α(z, ·) s. E − q.e.

Proof. Fix α > 0. Let sqC(E) denote the set of s. E-q.c. functions defined
s. E-q.e. on E. Let T : H → sqC(E), f 7→ G̃αf , where G̃αf is a s. E-q.c.
m-version of Gαf . By Proposition 1.14 G̃αf exists and we will show that T
is quasi-linear. Indeed, let c1, c2 ∈ R, f1, f2 ∈ H. By Proposition 1.14 we
have for any ε > 0

Cap1,g

(
{|G̃α(c1f1 + c2f2)− c1G̃αf1 − c2G̃αf2| > ε}

)
≤ ε−1‖e0+e−0‖H‖ϕ‖H = 0.

Hence G̃α(c1f1 + c2f2) = c1G̃αf1 + c2G̃αf2 s. E-q.e. If fn ↓ 0, fn ∈ H
then fn → 0 in H. Hence eGαfn + e−Gαfn → 0 in H and therefore again by
Proposition 1.14

Cap1,g({|G̃αfn| > ε}) −→ 0
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for all ε > 0 as n → ∞. Finally, if f ≥ 0 m-a.e., f ∈ H then G̃αf ≥ 0
s. E-q.e. Indeed, since Gαf ≥ 0 m-a.e. and G̃αf = Gαf m-a.e. we have
by Lemma A.4 that G̃αf ≥ 0 s. E-q.e. This completes the proof that T
is quasi-linear. By [AM91, Thm. 4.2] there exists a unique kernel K from
(E,B(E)) to (Y1,B(Y1)) such that Kf = Tf s. E-q.e. for all f ∈ H. Since
m is σ-finite it follows in particular

αK1Y1 = αT1Y1 = αG̃α1Y1 ≤ 1 s. E − q.e.,

and hence there exists a s. E-exceptional set N ∈ B(E) such that αK(z, ·) ≤
1 for all z ∈ E \N. Now let

R̃α(z, ·) := 1E\NK(z, ·).

Let E satisfy SD3. The condition SD3 implies the condition D3. Hence,
we can adapt the arguments in [Sta99b, IV.2] to the strictly quasi-regular
case to get the following results.

Lemma 1.16. There exists a countable family J0 of bounded strictly E-quasi-
continuous 1-excessive functions and a Borel set Y ⊂ Y1 satisfying:

(i) If u, v ∈ J0, α, c1, c2 ∈ Q∗+, then R̃αu, u∧v, u∧1, (u+1)∧v, c1u+c2v
are all in J0.

(ii) N := E \ Y is strictly E-exceptional and R̃α(x,N) = 0, for all x ∈
Y, α ∈ Q∗+.

(iii) J0 separates the points of Y∆.

(iv) If u ∈ J0, x ∈ Y , then βR̃1+βu(x) ≤ u(x) for all β ∈ Q∗+,

R̃αu(x)− R̃βu(x) = (β − α)R̃αR̃βu(x) for all α, β ∈ Q∗+,

limα→∞ αR̃αu(x) = u(x).

We now want to extend our kernel R̃α to the point ∆. So define for
α ∈ Q∗+, A ∈ B(Y∆) := B(E∆) ∩ Y∆

Rα(x,A) :=

{
R̃α(x,A ∩ Y ) +

(
1
α
− R̃α(x, Y )

)
1A(∆), if x ∈ Y

1
α

1A(∆), ifx = ∆
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and set
J := {u+ c1Y∆

| u ∈ J0, c ∈ Q+}.
Since J0 separates the points of Y∆, so does J .

Lemma 1.17. Let (Rα)α∈Q∗+ and J be as above. Then the statements of

Lemma 1.16 remain true with J0, Y and R̃α replaced by J, Y∆ and Rα

respectively.

We close this chapter with two important examples.

1.3 Examples of s. Quasi-Regular Dirichlet

Forms

These examples are taken from [Tru05]. The first one shows that the gener-
alized Dirichlet form defined in [Sta99a] is actually strictly quasi-regular.

Example 1.18 (Non-symmetric perturbations through divergence free vec-
tor fields). Let U ⊂ Rd be open and let H1,2

0 (U) be the closure of C∞0 (U) in
L2(U ; dx) w.r.t. the norm given by

∫
U
|∇u|2 +u2 dx. Let H1,2

loc (U) be the space

of all elements u such that uχ ∈ H1,2
0 (U) for all χ ∈ C∞0 (U). Let ρ ∈ H1,2

loc (U)
such that the measure m := ρ2dx on U has full support. Similarly to the
above H1,2

loc (U,m) and H1,2
0 (U,m) are defined.

Let A = (aij)1≤i,j≤d with aij ∈ H1,2
loc (U,m) be a symmetric matrix and locally

uniformly elliptic, i.e. for any V relatively compact in U there exists νV > 0
such that

ν−1
V |h|

2 ≤ 〈A(x)h, h〉 ≤ νV |h|2 for all h ∈ Rd, x ∈ V. (1.3)

Consider the closure of

E0(u, v) =
1

2

∫
〈A∇u,∇v〉 dm, u, v ∈ C∞0 (U)

on L2(U,m) which we denote by (E0, D(E0)). Let (L0, D(L0)) be the associ-
ated generator. By construction we have that C∞0 (U) ⊂ D(L0) and

L0 =
1

2

d∑
i,j=1

aij∂i∂ju+
1

2

d∑
i=1

βA,i∂iu, u ∈ C∞0 (U),

where

βA,i =
d∑
j=1

(∂jaij +
2aij∂jρ

ρ
).



12 CHAPTER 1. DIRICHLET FORMS AND POTENTIAL THEORY

Let B = (b1, . . . bd) ∈ L2
loc(U,Rd,m), i.e.

∫
V
〈B,B〉 dm < ∞ for all V

relatively compact in U , and such that∫
〈B,∇u〉 dm = 0 for all u ∈ C∞0 (U). (1.4)

For a subset W ∈ L2(U ;m) let W0 denote the space of all u ∈ W such that
supp |u|m is compact in U and let W0,b = W0 ∩Wb. Define

Lu := L0u+
d∑

i,j=1

bi∂iu, u ∈ D(L0)0,b.

By [Sta99a, Thm. 1.5] there exists a closed extension (L̄,D(L̄)) of (L,D(L0)0,b)
on L1(U,m) generating a strongly continuous resolvent (Ḡα)α>0 on L1(U,m)
which is sub-Markovian. Furthermore, we have D(L̄)b ⊂ D(E0) and

E0(u, v)−
∫
〈B,∇u〉v dm = −

∫
L̄uv dm, u ∈ D(L̄)b, v ∈ D(E0)0,b.

(1.5)
Now, let (L,D(L)) be the part of (L̄,D(L̄)) in L2(U,m), i.e.

D(L) = {f ∈ D(L̄) ∩ L2(E;m) | L̄f ∈ L2(E;m)},

Lf := L̄f, f ∈ D(L).

Let (L′, D(L′)) be the adjoint operator of (L,D(L)) in L2(U ;m). Let (Gα)α>0

(resp. (G′α)α>0) be the associated resolvent to (L,D(L)) (resp. (L′, D(L′))).
(Ḡα)α>0 and (Gα)α>0 coincide on L1(U ;m)∩L2(U ;m). According to our basic
example (L,D(L)) is associated to a generalized Dirichlet form on D(L) ×
L2(U ;m) ∪ L2(U ;m)×D(L′) given by

E(u, v) :=

{
(−Lu, v)H for u ∈ D(L), v ∈ L2(U ;m)

(u,−L′v)H if u ∈ L2(U ;m), v ∈ D(L′).

In this case F = D(L). Then by [Tru05, Thm. 6] it follows that E is strichtly
quasi-regular.

Example 1.19 (Time inhomogeneous diffusions on infinite dimensional space).
Let E be a separable real Banach space with norm ‖·‖E and let E ′ equipped
with the operator norm ‖·‖E′ be its dual. In particular, we have B(E) =
σ(E ′). Let (H, (·, ·)H) be a separable real Hilbert space such that H ⊂ E
densely and continuously. Identifying H with its dual H′ we obtain E ′ ⊂
H ⊂ E densely and continuously. The corresponding dualization E′〈·, ·〉E :



1.3. EXAMPLES OF S. QUASI-REGULAR DIRICHLET FORMS 13

E ′ × E → R restricted to E ′ ×H coincides with (·, ·)H.
Let C1

0,b(R × Rm) denote the one times continuously differentiable functions
on R×Rm with all partial derivatives in space bounded and compact support
in time. Let C1

0,b([0,∞)×Rm) denote the restrictions to [0,∞)×Rm of func-
tions in C1

0,b(R × Rm). Let us now define the finitely based time-dependent
functions as

FT C1
0,b :=

{
f(t, l1, · · · , lm) | m ∈ N, f ∈ C1

0,b([0,∞)× Rm), l1, · · · lm ∈ E ′
}
.

For u ∈ FT C1
0,b, k ∈ E, let

∂u

∂k
(t, z) :=

d

ds
u(t, z + sk)|s=0 ∈ [0,∞)× E

denote the Gâteaux-derivative of u in the direction k.
If u(t, z) = f(t, l1(z), . . . , lm(z)), then

∂u

∂k
(t, z) =

m∑
i=1

∂f

∂xi
(t, l1(z), . . . , lm(z)) E′〈li, k〉E.

Hence, if k ∈ H, then there exists by the Riesz representation theorem a
unique element ∇Hu(t, z) ∈ H such that

(∇Hu(t, z), k)H =
∂u

∂k
(t, z).

Let ds denote the Lebesgue measure on [0,∞). Let µ be a finite positive
measure with full support on (E,B(E)). Let ρ : [0,∞)×E → R be B([0,∞))⊗
B(E)-measurable, ρ > 0 dµds-a.e., and

∫
K

∫
E
ρ(s, z)µ(dz)ds < ∞ for any

compact set K ⊂ [0,∞). Let C1
0([0,∞)) consist of restrictions to [0,∞) of

the one times continuously differentiable functions with compact support on
R. Note that FT C1

0,b contains functions of the form fg, f ∈ C1
0([0,∞)), g ∈

FC∞b := {f(l1, · · · , lm) | m ∈ N, f ∈ C∞b (Rm), l1, · · · lm ∈ E ′}, the finitely
based smooth functions. Since FC∞b separates the points of E by the Hahn-
Banach theorem, it is clear that FT C1

0,b separates the points of [0,∞) × E.

Furthermore FT C1
0,b is an algebra of functions. Thus, by monotone class

arguments

FT C1
0,b ⊂ H := L2([0,∞)× E, ρdµds) densely.

Let c ∈ L∞([0,∞)×E, ρdµds), c ≥ 0, and assume that the following densely
defined positive-definite symmetric bilinear form

A(u, v) :=
1

2

∫ ∞
0

∫
E

(∇Hu(s, z),∇Hv(s, z))Hρ(s, z)µ(dz)ds

+

∫ ∞
0

∫
E

c(s, z)u(s, z)v(s, z)ρ(s, z)µ(dz)ds; u, v ∈ FT C1
0,b (1.6)
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is closable on H. The closure (A,V) is then a symmetric Dirichlet form.
Let us now define the semigroup corresponding to the perturbation of A. Let
d ≥ 0 be a constant. For u(s, z) = f(s, l1(z), . . . , lm(z)) let first either

Utu(s, z) := f(sedt, l1(z), . . . , lm(z)); t ≥ 0

or
Utu(s, z) := u(s+ t, z); t ≥ 0.

It is clear that (Ut)t≥0 has the semigroup property on FT C1
0,b and this space

is invariant under Ut, t ≥ 0. Furthermore Ut is sub-Markovian for all t ≥ 0.
Let us assume the following:

ρ(s, ·) ≤ ρ(t, ·) µ− a.e. ∀ s ≤ t

and
c(s, ·)ρ(s, ·) ≤ c(t, ·)ρ(t, ·) µ− a.e. ∀ s ≤ t.

In case of the first semigroup we have the following contraction property for
u ∈ FT C1

0,b ∫ ∞
0

∫
E

Utu(s, z)2ρ(s, z)µ(dz)ds

=

∫ ∞
0

∫
E

f(sedt, l1(z), . . . , lm(z))2ρ(s, z)µ(dz)ds

=

∫ ∞
0

∫
E

u(s, z)2e−dtρ(se−dt, z)µ(dz)ds

≤
∫ ∞

0

∫
E

u(s, z)2ρ(s, z)µ(dz)ds,

by our assumptions on ρ. In the second case the contraction property is even
easier to see. Hence we proved ‖Utu‖2

H ≤ ‖u‖2
H. Since FT C1

0,b ⊂ H densely,
(Ut)t≥0 above induces a sub-Markovian semigroup of contractions on H which
we also denote by (Ut)t≥0. This is a C0-semigroup on H. Indeed, in the first
case we have

|Utu(s, z)− u(s, z)| = |f(sedt, l1(z), . . . , lm(z))− f(s, l1(z), . . . , lm(z))|

and |Utu(s, z)−u(s, z)| converges pointwise to zero as t→ 0. Let the support
of f be contained in K × E with K ⊂ [0,∞), K compact. For any t ≥ 0,
the support of f(sedt, l1(z), . . . , lm(z)) is also contained in K × E since d is
a positive constant. Therefore |Utu−u| is bounded by the integrable function
2‖f‖∞1K×E. Hence, (Ut)t≥0 is strongly continuous on H. In the second case
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this is again even easier to see. The corresponding generator (Λ, D(Λ,H))
on H is an extension of

Λu(t, z) = td∂tu(t, z)

on FT C1
0,b in the first case and of

Λu(t, z) = ∂tu(t, z)

in the second case. Furthermore, (Ut)t≥0 can be restricted to a C0-semigroup
on V. The last clearly follows from

‖Utu‖2
V ≤ ‖u‖2

V ,

which again follows from our assumptions on ρ. Now we have the following

Theorem 1.20. Let Λ = ∂t and 1 ∈ F . Then (E ,F) is strictly quasi-regular.

Proof. See [Tru05, Prop. 5]
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Chapter 2

Processes Associated with E (β)

Let (E ,F) be a strictly quasi-regular generalized Dirichlet form satisfying
SD3. Let J, Y∆ and (Rα)α∈Q∗+ be as in Lemma 1.17. The aim of this chapter

is to construct a family of processes (Xβ), β > 0, which is a compostion of a
Poisson process and a Markov chain and which is associated to the approx-
imate forms E (β) for E . The process (Xβ), β > 0 will serve to approximate
a Hunt process that is associated to E and therefore leads to a new proof of
existence (cf. chapter 4).

2.1 Basic Definitions

In the following we will deal with a special class of Markov processses, namely
Hunt processes, so we give a precise definition:

Definition 2.1. M = (Ω,M, (Xt)t≥0, (Px)x∈E∆
) is called a Hunt process with

state space E, lifetime ζ and corresponding filtration (Mt)t≥0, if

(M.1) Xt : Ω → E∆ is Mt/B(E∆)-measurable for all t ≥ 0 and Xt(ω) =
∆⇔ t ≥ ζ(ω) for all ω ∈ Ω, where ζ : Ω→ [0,∞].

(M.2) For all t ≥ 0 there exists a map θt : Ω → Ω such that Xs ◦ θt = Xs+t

for all s ≥ 0.

(M.3) (Px)x∈E∆
is a family of probability measures on (Ω,M), such that x 7→

Px[B] is B(E∆)∗-measurable for all B ∈M and B(E∆)-measurable for
all B ∈ σ(Xt | t ≥ 0) and P∆[X0 = ∆] = 1.

17
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(M.4) For all A ∈ B(E∆), s, t ≥ 0 and x ∈ E∆

Px[Xt+s ∈ A | Mt] = PXt [Xs ∈ A] Px-a.s

(M.5) Px[X0 = x] = 1 for all x ∈ E∆.

(M.6) For each ω ∈ Ω, t 7→ Xt(ω) is right continuous on [0,∞).

(M.7) (Mt)t≥0 is a right continuous filtration and for every (Mt)-stopping
time τ and every µ ∈ P(E∆)

Pµ[Xτ+t ∈ A | Mτ ] = PXτ [Xt ∈ A] Pµ − a.s.

for all A ∈ B(E∆), t ≥ 0.

(M.8) Xt− := lims↑tXs exists in E∆ for all t > 0 Pµ-a.s. for all µ ∈ P(E∆).

(M.9) limn→∞Xτn = Xτ Pµ-a.s. on {τ <∞} and Xτ is
∨
n≥1F

Pµ
τn -measurable

for every increasing sequence (τn)n≥1 of (FPµt )-stopping times with
limit τ and for all µ ∈ P(E∆).

M is called a right process if it satisfies (M.1)-(M.7) above. The process M
is called strictly m-tight if there exists an increasing sequence (Kn)n∈N of
compact metrizable sets in E such that

Pϕ·m

[
lim
n→∞

σE\Kn <∞
]

= 0.

For a right process M,

ptf(x) := Ex[f(Xt)] x ∈ E, t ≥ 0, f ∈ B(E)+

defines a sub-Markovian semigroup of kernels on (E,B(E)). Furthermore,
we define

Uαf(x) :=

∫ ∞
0

e−αtptf(x) dt,

called the resolvent of M.
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Definition 2.2. A Hunt process M with resolvent Uα is called associated (in
the resolvent sense) with E if Uαf is an m-version of Gαf for α > 0 and
f ∈ Bb(E) ∩H. M is called properly associated (in the resolvent sense) with
E if in addition Uαf is E-q.c. for α > 0 and f ∈ Bb(E) ∩ H. The process is
called strictly properly associated if Uαf is strictly E-q.c.

One can prove that M is associated to E if and only if ptf is an m-version
of Ttf for all t ≥ 0 and f ∈ Bb(E) ∩H.

2.2 The Construction

First, we want to define a metric on Y∆. For this let J = {un | n ∈ N} be the
countable family of functions from Lemma 1.17. For the rest of this chapter
set gn := R1un, n ∈ N. Furthermore, define for all x, y ∈ Y∆

ρ(x, y) =
∞∑
n=1

1

2n
|gn(x)− gn(y)| ∧ 1.

By Lemma 1.16(ii) and Lemma1.17 {gn | n ∈ N} separates the points of
Y∆ and hence ρ defines a metric on Y∆. Note that by definition we have

ρ− B(Y∆) = σ(gn | n ∈ N).

Since Y∆ is a topological Lusin space, it follows by [Sch73, Lemma 18, p.108]
that B(Y∆) = σ(gn | n ∈ N). Hence, the ρ-topology and the original topology
generate the same Borel σ-algebra on Y∆. By the same arguments we obtain
that σ(J) = B(Y∆).

Let (Σ,M, P ) be a probability space. For a fixed β ∈ Q∗+, let {Y β(k), k =
0, 1, . . .} be a Markov chain on (Σ,M, P ) with values in Y∆ with some initial
distribution ν and transition function βRβ. Furthermore, let (Πβ

t )t≥0 be a
Poisson process with parameter β, i.e.

P [Πβ
t = k] = e−βt

(βt)k

k!
.

Assume that (Πβ
t )t≥0 is independent of {Y β(k), k = 0, 1, . . .}, i.e. the

σ-algebras generated by them are independent, and define

Xβ
t = Y β(Πβ

t ), t ≥ 0.

Let FΠβ

t = σ(Πβ
s | s ≤ t), and FXβ

t = σ(Xβ
s | s ≤ t), and finally

Mβ
t = FΠβ

t

∨
FXβ

t .
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Proposition 2.3. (Xβ
t )t≥0 is a Markov process w.r.t. Mβ

t in Y∆.

Proof. (cf. [EK86, IV.2]) Denote by Bb(Y∆) the set of all bounded Borel
functions on Y∆. By Markov property of Y β we have for all f ∈ Bb(Y∆)

E[f(Y β(k + l)) | Y β(0), . . . , Y β(l))] = (βRβ)kf(Y β(l))

for k, l = 0, 1, 2, . . ., and we claim that

E[f(Y β(k + Πβ(t)) | Mβ
t ] = (βRβ)kf(Xβ

t ) P − a.s.

for k = 0, 1, 2, . . . , t ≥ 0 and for all f ∈ Bb(Y∆).
To see this, let A ∈ FΠβ

t and B ∈ FY βl := σ(Y β(k) | k ≤ l). Then∫
A∩B∩{Πβt =l}

f(Y β(k + Πβ
t )) dP =

∫
A∩B∩{Πβt =l}

f(Y β(k + l)) dP

= P (A ∩ {Πβ
t = l})

∫
B

f(Y β(k + l)) dP

= P (A ∩ {Πβ
t = l})

∫
B

(βRβ)kf(Y β(l)) dP

=

∫
A∩B∩{Πβt =l}

(βRβ)kf(Xβ
t ) dP.

Since {A ∩ B ∩ {Πβ
t = l} | A ∈ FΠβ

t , B ∈ FY βl , l = 0, 1, . . .} is closed under
finite intersections and generatesMβ

t , by the Dynkin class theorem we have∫
A

f(Y β(k + Πβ
t )) dP =

∫
A

(βRβ)kf(Xβ
t ) dP

for all A ∈Mβ
t . So we have that (Xβ

t )t≥0 is a Markov process.

For all f ∈ Bb(Y∆) define

P β
t f := e−βt

∞∑
k=0

(βt)k

k!
(βRβ)kf ∀ t ≥ 0. (2.1)

Proposition 2.4. (P β
t )t≥0 is the transition semigroup of (Xβ

t )t≥0, i.e. for
all f ∈ Bb(Y∆), t, s ≥ 0 we have

E[f(Xβ
t+s) | M

β
t ] = (P β

s f)(Xβ
t ).
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Proof. (cf. [EK86, IV.2])We have

E[f(Xβ
t+s) | M

β
t ] = E[f(Y β(Πβ

t+s − Πβ
t + Πβ

t )) | Mβ
t ]

=
(?)

∞∑
k=0

e−βs
(βs)k

k!
E[f(Y β(k + Πβ

t )) | Mβ
t ]

=
∞∑
k=0

e−βs
(βs)k

k!
(βRβ)kf(Xβ

t )

= P β
s f(Xβ

t ).

The equality in (?) follows, because for A ∈ FΠβ

t , B ∈ FY βt we have∫
A∩B f(Y β(Πβ

t+s − Πβ
t + Πβ

t )) dP

=
∑
k

∫
A∩B∩{Πβt+s−Πβt =k}

f(Y β(k + Πβ
t )) dP

=
∑
k

P (A ∩ {Πβ
t+s − Πβ

t = k})︸ ︷︷ ︸
=P (A)·e−βs (βs)k

k!

∫
B

f(Y β(k + Πβ
t )) dP

=
∑
k

e−βs
(βs)k

k!

∫
A∩B

f(Y β(k + Πβ
t )) dP.

Remark 2.5. (P β
t )t≥0 is a strongly continuous contraction semigroup on the

Banach space (Bb(Y∆), ‖ · ‖∞) and the corresponding generator is given by

Lβu(x) = β(βRβu(x)− u(x)) ∀ u ∈ Bb(Y∆).

Indeed, for all x ∈ Y∆ we have

d

dt
P β
t f(x)

∣∣
t=0

= −βe−βtf(x) + e−βt
∞∑
k=0

βk(βt)k−1

k!
(βRβ)kf(x)

∣∣
t=0

= β(βRβf − f)(x).

Now we have the following

Theorem 2.6. (Xβ
t ) is a strong Markov process w.r.t. Mβ

t+ :=
⋂
ε>0M

β
t+ε.
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Proof. Since the ρ-topology and the original topology generate the same
Borel σ-algebra, we consider the ρ-topology. In this case Rαf is uniformly
continuous on Y∆ for each α ∈ Q∗+ and f ∈ J. Set

W :=

{
f ∈ Bb(Y∆) | P [t 7→ Rαf(Xβ

t )

is right continuous on [0,∞)] = 1 ∀ α ∈ Q∗+
}
. (2.2)

Then J ⊂ W and W is a linear vector space. To prove that W is a monotone
vector space, consider Zf

t := e−αtRαf(Xβ
t ) +

∫ t
0
e−αsf(Xβ

s ) ds for f ∈ W .

Then it can be easily seen that (Zf
t )t≥0 is a right continuous martingale for

all f ∈ W . If fn ∈ W, n ∈ N such that 0 ≤ fn ↑ f bounded then it follows by
monotone convergence theorem that Zfn

t ↑ Z
f
t for all t ≥ 0. By [DM82, Thm.

VI.18] we have that Zf
t is indistinguishable from a right continuous process,

hence f ∈ W , i.e. W is a monotone vector space. By the monotone class
theorem we obtain that Bb(Y∆) is contained in W . Now the strong Markov
property follows from [Sha88, Thm. 7.4].

For each β ∈ Q∗+ have constructed a strong Markov process with a special
transition semigroup. We would like to find forms to which this process is
associated. Define the forms E (β), β > 0, by

E (β)(u, v) := β(u− βGβu, v)H, u, v ∈ H,

where (Gβ)β>0 is the resolvent of E . It is known, that the semigroup associ-
ated to E (β) is given by

T βt f = e−βt
∞∑
j=0

(βt)j

j!
(βGβ)jf ∀ f ∈ L2(E;m). (2.3)

From Proposition 2.4, (2.1) and (2.3) we see that (Xβ
t ) is associated with

E (β).

2.3 Hunt Processes

For an arbitrary subset M ⊂ E∆ let ΩM := DM [0,∞) be the space of all
càdlàg functions from [0,∞) to M . Let (Xt)t≥0 be the coordinate process on
ΩE∆

, i.e. Xt(ω) = ω(t) for ω ∈ ΩE∆
. Let P β

x be the law of Xβ on ΩE∆
with

initial distribution δx for x ∈ Y∆, i.e.

P β
x [·] := P [ · | Xβ

0 = x];
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and for x ∈ E∆ \Y∆ let P β
x be the Dirac measure on ΩE∆

such that P β
x [Xt =

x for all t ≥ 0] = 1. Finally, let (Ft)t≥0 be the completion w.r.t. (P β
x )x∈E∆

of
the natural filtration of (Xt)t≥0,i.e.

Ft =
⋂
x∈E∆

σ(Xs | s ≤ t)P
β
x .

Proposition 2.7. Mβ := (ΩE∆
, (Xt)t≥0, (Ft)t≥0, (P β

x )x∈E∆
) is a Hunt

process associated with E (β), i.e. for all t ≥ 0 and any m-version of u ∈
L2(E;m), x 7→

∫
u(Xt) dP

β
x is an m-version of T βt u.

Proof. (cf. [MR92, IV.3.21]) By construction it is clear that Mβ is a right
process. And, of course, the left limits of Xt exist in E∆. So we only have to
prove the quasi-left continuity up to ∞.
Let (τn)n≥1 be an increasing sequence of (Ft)-stopping times such that τn ↑ τ.
Define

V (ω) :=

{
limn→∞Xτn(ω) if τ(ω) <∞
∆ if τ(ω) =∞.

So, we have to prove that V = Xτ Pµ-a.s. for all µ ∈ P(E∆).
Step1 : Assume first that τ is bounded. For all f, g ∈ Cb(E∆), x ∈ E∆ we
have

Eβ
x [g(V )Rαf(Xτ )] = Eβ

x

[
g(V )Eβ

Xτ

[∫ ∞
0

e−αtf(Xt) dt

]]
= Eβ

x

[
g(V )

∫ ∞
0

e−αt Eβ
Xτ

[f(Xt)]︸ ︷︷ ︸
=Eβx [f(Xτ+t)|Fτ ] Pβx −a.s.

dt]

]

= Eβ
x

[
g(V )

∫ ∞
τ

e−α(t−τ)Eβ
x [f(Xt) | Fτ ] dt

]
= Eβ

x

[
g(V )eατ

∫ ∞
τ

e−αtf(Xt) dt

]
= lim

n→∞
Eβ
x

[
g(Xτn)eατn

∫ ∞
τn

e−αtf(Xt) dt

]
= lim

n→∞
Eβ
x [g(Xτn)Rαf(Xτn)]

= Eβ
x [g(V )Rαf(V )] ,

where in the last step we used Lebesgue’s dominated convergence theorem.
By a monotone class argument we have

Eβ
x [g(V )αRαf(Xτ )] = Eβ

x [g(V )αRαf(V )]
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for all Borel measurable bounded functions g. Since Y is Borel measurable,
we may replace g by 1Y · g and if we let α tend to infinity, we obtain by
monotone convergence theorem that for all f ∈ Cb(E∆), g ∈ Bb(E∆)

Eβ
x [g(V )f(Xτ )1{V ∈Y }] = Eβ

x [g(V )f(V )1{V ∈Y }].

Again by a monotone class argument we obtain that

Eβ
x [h(V,Xτ )1{V ∈Y }] = Eβ

x [h(V, V )1{V ∈Y }]

for all Bb(E∆ × E∆)-measurable bounded functions h. Let now h to be the
indicator function of the diagonal in E∆ × E∆. So, the assertion follows.
Step2 : For arbitrary τ we have

P β
x [V 6= Xτ , V ∈ Y ]

= P β
x [V 6= Xτ , V ∈ Y, τ <∞]

=
∞∑
n=1

P β
x [V 6= Xτ , V ∈ Y, n− 1 ≤ τ < n]

=
∞∑
n=1

P β
x

[
lim
k→∞

Xτk∧n 6= Xτ∧n, lim
k→∞

Xτk∧n ∈ Y, n− 1 ≤ τ < n
]

= 0,

where all summands are zero by step 1. Hence (Xt)t≥0 is quasi-left continuous
up to ∞ and so Mβ is a Hunt process.

Our next aim is to prove the relative compactness of the family {P β
x |

β ∈ Q∗+}. For technical reasons we will make use of a compactification
method. So we construct a compact superset of Y∆ by completion w.r.t. ρ.
Set Ē := Y∆

ρ
.

Proposition 2.8. (Ē, ρ) is a compact metric space.

Proof. Since J separates the points of Y∆,

Φ : x→
(
gn(x)

‖gn‖∞

)
n∈N

defines an isometry from (Y∆, ρ) to [0, 1]N with the product metric. By Ty-
chonoff’s theorem [0, 1]N is compact, hence so is (Ē, ρ).

We extend the kernel (Rα)α∈Q∗+ to the space Ē by setting for α ∈ Q∗+, A ∈
B(Ē),

Rα(x,A) :=

{
Rα(x,A ∩ Y∆), x ∈ Y∆

1
α

1A(x), x ∈ Ē \ Y∆.
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(Xβ
t )t≥0 can be regarded as a càdlàg process with state space Ē. We use the

same notation as before: P β
x denotes the law of (Xβ

t )t≥0 in ΩĒ with initial
distribution δx. Each gn is uniformly continuous w.r.t. ρ and hence extends
uniquely to a continuous function on Ē which we denote again by gn.

2.4 The Skorohod Topology

Let (M,d) be an arbitrary metric space and let DM [0,∞) be the space of
all càdlàg functions from [0,∞) to M . Since we are concerned with càdlàg
functions, we will introduce a topology on this space, the so-called Skorohod
topology. The first observation is that càdlàg functions do not behave as bad
as we might think of them.

Lemma 2.9. [EK86, chap. III, Lemma 5.1] Every x ∈ DM [0,∞) has at
most a countable number of discontinuities.

Proof. Set for n ≥ 1 An := {t > 0 | d(xt, xt−) > 1
n
}. Then An is count-

able, since lims↗t x(s) and lims↘t x(s) exist for all t ≥ 0. The set of all
discontinuities of x is

⋃
n≥1An, and hence countable.

Let L be the collection of all real-valued increasing functions λ on [0,∞)
such that λ(0) = 0. Such a function λ is called a time change. Define for
λ ∈ L

‖λ‖ := sup
s6=t

∣∣∣∣log(λ(s)− λ(t)

s− t

)∣∣∣∣+ sup
t≥0
|λ(t)− t|.

Now, define for a, b ∈ DE[0,∞) the Skorohod metric

s(a, b) = inf
λ∈L

{
‖λ‖+ sup

t≥0
e−td(at, bλ(t))

}
.

Theorem 2.10. If M is separable, then DM [0,∞) is separable. If (M,d) is
complete then (DM [0,∞), s) is complete.

Proof. See [EK86, chap. III, Thm. 5.6].

2.5 Relative Compactness of {P β
x | β ∈ Q∗+}

To prove the relative compactness we need some results which are taken from
[EK86].
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Theorem 2.11. Let (M,d) be a complete and separable metric space and
let (Xα) be a family of processes with sample paths in ΩM . Suppose that the
compact containment condition holds. That is, for every η > 0 and T > 0
there exists a compact set Γη,T ⊂ E for which

inf
α
P [Xα

t ∈ Γη,T for 0 ≤ t ≤ T ] ≥ 1− η.

Let H be a dense subset of Cb(M) in the topology of uniform convergence
on compact sets. Then (Xα) is relatively compact if and only if (f ◦Xα) is
relatively compact for each f ∈ H.

Proof. See [EK86, chap. III, Thm. 9.1].

If the metric space is compact then the compact containment condition
holds. Although the next theorem holds for arbitrary metric spaces, we will
formulate it in the case of our compact metric space (Ē, ρ).

For each α, let Xα be a process with sample paths in ΩĒ defined on
a probability space (Σα,Fα, Qα) and adapted to a filtration (Fαt ). Let Lα

be the Banach space of real-valued (Fαt )-progressive processes with norm
‖Y ‖ := supt≥0E[|Yt|] <∞. Let

M̂α =

{
(Y, Z) ∈ Lα × Lα

∣∣Yt − ∫ t

0

Zs ds is an Lα −martingale

}
.

Theorem 2.12. Let (Ē, ρ) be the compact metric space from Proposition
2.8, and let (Xα) be a family of processes as above. Let Ca be a subalgebra of
C(Ē) and let D be the collection of f ∈ C(Ē) such that for every ε > 0 and
T > 0 there exist (Y α, Zα) ∈ M̂α with

sup
α
E

[
sup

t∈[0,T ]∩Q
|Y α
t − f(Xα

t )|

]
< ε

and
sup
α
E[‖Zα‖p,T ] <∞ for some p ∈ (1,∞],

where ‖h‖p,T =
(∫ T

0
|h(t)|p

) 1
p

if p < ∞ and ‖h‖∞,T = ess sup0≤t≤T |h(t)|. If

Ca is contained in D
‖·‖∞

, then {f ◦Xα} is relatively compact for each f ∈ Ca.

Proof. See [EK86, chap. III, Thm. 9.4].

Now we have the following important theorem:
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Theorem 2.13. {P β
x | β ∈ Q∗+} is relatively compact for any x ∈ Ē.

Proof. Recall that gn was defined by gn = R1un, n ∈ N, where J = {un |
n ∈ N}. Since gi ∈ D(Lβ) for all i ∈ N, we can define for all i ∈ N

Mβ,i
t := gi(X

β
t )−

∫ t

0

Lβgi(X
β
s ) ds, t ≥ 0.

It follows that (Mβ,i
t )t≥0 is an (Mβ

t )-martingale. Indeed, by Proposition 2.4
we have

E[Mβ,i
t+s | M

β
t ]

= E[gi(X
β
t+s) | M

β
t ]− E

[∫ t+s

0

Lβgi(X
β
r ) dr | Mβ

t

]
= E[gi(X

β
t+s) | M

β
t ]−

∫ t

0

Lβgi(X
β
r ) dr −

∫ t+s

t

E[Lβgi(X
β
r ) | Mβ

t ]︸ ︷︷ ︸
= d
dr
Pβr (gi(X

β
t ))

dr

= E[gi(X
β
t+s) | M

β
t ]−

∫ s

0

d

dr
P β
r (gi(X

β
t )) dr −

∫ t

0

Lβgi(X
β
r ) dr

= E[gi(X
β
t+s) | M

β
t ]− P β

s gi(X
β
t ) + P β

0 gi(X
β
t )−

∫ t

0

Lβgi(X
β
r ) dr

= gi(X
β
t )−

∫ t

0

Lβgi(X
β
r ) dr = Mβ,i

t P − a.s.

Moreover, we have

Lβgi(x) = 1Y∆
βRβ(gi − ui)(x).

Therefore, we conclude for all i ∈ N

sup
β∈Q∗+

‖Lβ(gi)‖∞ = sup
β∈Q∗+

‖1Y∆
βRβ(gi − ui)‖∞

≤ ‖1Y∆
(gi − ui)‖∞ < +∞.

So, we proved that {gn | n ∈ N} is contained in D, where D is defined as in
Theorem 2.12. Every u ∈ J is ρ-uniformly continuous on Y∆ and hence has
a unique ρ-continuous extension ū to Ē. Set J := {ū ∈ Cb(Ē) | ū|Y∆

∈ J}.
Consider for u ∈ J

R1α(u− αRα+1u)(x) = αRα+1u(x) ↑ u(x) ∀ x ∈ Y∆.
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The extension of αRα+1u to Ē is pointwise increasing in α on Ē. By the Dini
theorem αRα+1u ↑ v uniformly on Ē for some v ∈ Cb(Ē). By uniqueness of

the extension we obtain v = ū. It follows that J is contained in D
‖·‖∞

. Since
D
‖·‖∞

is a linear space, we have J − J ⊂ D
‖·‖∞

. Furthermore, the set J − J
contains the constant functions, is inf-stable and separates the points of Ē.
Hence, by the Stone-Weierstraß theorem we obtain that J − J is dense in
Cb(Ē). Since

Cb(Ē) = J − J
‖·‖∞
⊂ D

‖·‖∞ ⊂ Cb(Ē),

it follows that Cb(Ē) = D
‖·‖∞

. By Theorem 2.12 we have that {f ◦Xβ | β ∈
Q∗+} is relatively compact for all f ∈ Cb(Ē). And by Theorem 2.11 this is
equivalent with the relative compactness of {Xβ | β ∈ Q∗+}. In particular,
{P β

x | β ∈ Q∗+} is relatively compact for all x ∈ Ē.



Chapter 3

The Key Theorem

This chapter is devoted to the proof of Theorem 3.1 (the key theorem). In
particular, we will make use of the potential theory developed in chapter 1.
LetRα, Y be as in Lemma 1.17 and Mβ := (ΩE∆

, (Xt)t≥0, (Ft)t≥0, (P β
x )x∈E∆

)
be the Hunt process from Proposition 2.7. Furthermore, let (E ,F) be a
strictly quasi-regular generalized Dirichlet form satisfying SD3. In particu-
lar, we follow [MRZ98, Section 3]. All the lemmas there remain true in the
case of generalized Dirichlet forms.

For a Borel subset S ⊂ Y , we shall write S∆ for S ∪ {∆}. The topology
on S∆ is, except otherwise stated, the one induced by the metric ρ.

Theorem 3.1. There exists a Borel subset Z ⊂ Y and a Borel subset Ω ⊂ ΩĒ

with the following properties:

(i) E \ Z is strictly E-exceptional.

(ii) Rα(x, Ē \ Z∆) = 0, ∀ x ∈ Z∆, α ∈ Q∗+.

(iii) If ω ∈ Ω, then ωt, ωt− ∈ Z∆ for all t ≥ 0. Moreover, each ω ∈ Ω is
cadlag in the original topology of Y∆ and ω0

t− = ωt− for all t > 0, where
ω0
t− denotes the left limit in the original topology.

(iv) If x ∈ Z∆ and Px is a weak limit of some sequence (P
βj
x )j∈N with βj ∈

Q∗+, βj ↑ ∞, then Px[Ω] = 1.

We explain why this theorem is crucial. This theorem provides two Borel
sets Z and Ω with the property that all paths from Ω take their values and

29
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left-limits in Z∆. Z and Ω are big enough, in the sense that E \Z is strictly
E-exceptional and Px[Ω] = 1. Restricting our process to Ω we get a Hunt
process, as we will see in chapter 4. The proof of the key theorem will
be accomplished through several lemmas, which are contained in the next
section.

3.1 Construction of Excessive Functions

In this section we construct a Borel set S and a family of 2-excessive func-
tions, such that these functions have nice properties on S. The details are
contained in the next lemmas.

For our purposes we will use a description of strictly E-exceptional sets
by µ-zero sets, where µ is taken from a special class of measures. For details
we refer to [Tru05].

For an arbitrary subset D ∈ H let P̂1,D denote the set of all 1-coexcessive
functions in V , which are dominated by some function in D. Furthermore,
let P̃str1,F denote the set of all s.E-q.c. m-versions of 1-excessive elements in V
which are dominated by elements in F .

Theorem 3.2. Let û ∈ P̂1,F̂ . Then there exists a unique σ-finite and positive
measure µstrû on (E,B(E)) charging no strictly E-exceptional sets, such that∫

E

f̃ dµstrû = lim
α→∞

E1(f, αĜα+1û) ∀ f̃ ∈ P̃str1,F − P̃str1,F .

Proof. See [Tru05, Thm. 4].

According to the notation in Theorem 3.2 we introduce the following class
of measures

Ŝstr00 := {µstrû | û ∈ P̂1,Ĝ1H+
b
and µstrû (E) <∞},

where Ĝ1H+
b := {Ĝ1h | h ∈ H+

b } and H+
b denotes the set of all positive and

bounded elements in H.

Theorem 3.3. For B ∈ B(E) the following statements are equivalent:

1. B is strictly E-exceptional.

2. µ(B) = 0 for all µ ∈ Ŝstr00 .
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Proof. See [Tru05, Thm. 5].

Recall that

Cap1,g(U) =

∫
eUϕ dm,

where eU ∈ L∞(E;m). If u is in P1 then ū will denote the fixed s.E-q.l.s.c
m-version (regularization) defined by

ū := sup
n∈N

nR̃n+1u.

Lemma 3.4. Let Un ⊂ E, n ≥ 1 be a decreasing sequence of open sets. If
Cap1,g(Un)→ 0, as n→∞, then we can find m-versions en of eUn such that

(i) en ≥ 1 strictly E-q.e. on Un, n ≥ 1.

(ii) αR̃α+1(en) ≤ en strictly E-q.e. for α ∈ Q∗+, n ≥ 1.

(iii) en ↓ 0 strictly E-q.e. as n→∞.

Proof. Let (Un)n≥1 be the decreasing sequence of open sets in E such that
Cap1,g(Un)→ 0. Define

en := lim
k→∞

(kG1ϕ ∧ 1)Un .

We have (kG1ϕ ∧ 1)Un ≥ kG1ϕ ∧ 1 = kR̃1ϕ ∧ 1 m−a.e. on Un. By Lemma
A.4 we obtain

(kG1ϕ ∧ 1)Un ≥ kR̃1ϕ ∧ 1 s.E − q.e. on Un.

Note that R̃1ϕ > 0 s.E-q.e. Hence, by letting k →∞ we obtain (i).
We have, since R̃α+1 is kernel,

αR̃α+1(en) = αR̃α+1

(
lim
k

(kG1ϕ ∧ 1)Un

)
= lim

k
αR̃α+1

(
(kG1ϕ ∧ 1)Un

)
≤ lim

k
(kG1ϕ ∧ 1)Un

= en s.E − q.e.

This proves (ii). By assumption we have Cap1,g(Un) ↓ 0 as n → ∞. So it
follows that enkϕ→ 0 m-a.e. for a subsequence (nk)k≥1. But by monotonicity
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we get enϕ → 0 m-a.e. and since ϕ > 0 we obtain en → 0 m-a.e. Next,
applying Theorem 3.2 we have for µû ∈ Ŝstr00 and h ∈ H+

b such that û ≤ Ĝ1h∫
en ∧ R̃1ϕ dµû = lim

α→∞

∫
αR̃α+1(en ∧ R̃1ϕ) dµû

= lim
α→∞

lim
β→∞

E1(αGα+1(en ∧ R̃1ϕ), βĜβ+1û)

≤ lim
α→∞

E1(αGα+1(en ∧ R̃1ϕ), Ĝ1h)

= lim
α→∞

(αGα+1(en ∧ R̃1ϕ), h)H

=

∫
(en ∧ R̃1ϕ)h dm→n→∞ 0,

since en → 0 m-a.e. So it follows that enk ∧ R̃1ϕ → 0 µû-a.e. and again
by monotonicity we get en ∧ R̃1ϕ → 0 µû-a.e. Since R̃1ϕ > 0 we obtain
that en → 0 µû-a.e. Define now N := {x | en(x) 9 0}. Then we have
µû(N) = 0 for all µû ∈ Ŝstr00 and by Theorem 3.3 this is equivalent with
en → 0 s.E-q.e.

Lemma 3.5. In the situation of Lemma 3.4 there exists S ∈ B(E), S ⊂ Y
such that E \ S is strictly E-exceptional and the following holds:

(i) R̃α(x, Y \ S) = 0 ∀x ∈ S, α ∈ Q∗+.

(ii) en(x) ≥ 1 for x ∈ S ∩ Un, n ≥ 1.

(iii) αR̃α+1(en)(x) ≤ en(x), ∀x ∈ S, α ∈ Q∗+, n ≥ 1.

(iv) en ↓ 0, ∀x ∈ S.
Proof. By Lemma 3.4, there exists a Borel set S1 ⊂ Y such that assertions
(ii)-(iv) hold pointwise on S1 and Y \ S1 is strictly E-exceptional. Thus by
Proposition A.4 we can find a Borel set S2 ⊂ S1 such that

R̃α(x, Y \ S1) = 0 ∀x ∈ S2, α ∈ Q∗+
and E \ S2 is strictly E-exceptional. Repeating this argument, we get a
decreasing sequence (Sn)n≥1 of Borel sets such that E \ Sn is strictly E-
exceptional and R̃α(x, Y \Sn) = 0 ∀x ∈ Sn+1, α ∈ Q∗+. Clearly, S :=

⋂
n≥1 Sn

is strictly E-exceptional and

R̃α(x, Y \ S) = 0 ∀ x ∈ S, α ∈ Q∗+.
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Lemma 3.6. Let S ∈ B(E) such that Lemma 3.5 (i) holds. Then

P β
x [Xt ∈ S∆, Xt− ∈ S∆ ∀ t ≥ 0] = 1 ∀ x ∈ S∆.

Proof. Lemma 3.5 (i) implies that

(βRβ)n(x, Ē \ S∆) = 0, ∀x ∈ S∆, β ∈ Q∗+, n ≥ 1.

Therefore, if Y β(k), k = 1, 2, . . . is a Markov chain starting from some x ∈ S∆

with transition function βRβ, then

P [Y β(k) ∈ Ē \ S∆ for some k] = 0.

Clearly, this implies

P [Y β(Πβ
t ) ∈ Ē \ S∆ for some t ≥ 0] = 0

and
P [Y β(Πβ

t−) ∈ Ē \ S∆ for some t ≥ 0] = 0,

since (Πβ
t ) is càdlàg. Hence, the assertion follows.

Lemma 3.7. Let β ∈ Q∗+, β ≥ 2, n ≥ 1. Then en is a (P β
t )-2-excessive

function on S∆, i.e.
e−2tP β

t en(x) ≤ en(x) and

lim
t→0

e−2tP β
t en(x) = en(x) ∀ x ∈ S∆.

Proof. We have by Lemma 3.5 (i)and (iii) ((β−1)Rβ)k(en)(x) ≤ en(x) ∀ x ∈
S∆. Hence ∀ x ∈ S∆

P β
t (en)(x) = e−βt

∞∑
k=0

(βt)k

k!
(βRβ)ken(x)

= e−βt
∞∑
k=0

(βt)k

k!

(
β

β − 1

)k
((β − 1)Rβ)ken(x)

≤ e−βt
∞∑
k=0

(
β2

β−1
t
)k

k!
en(x)

= e(1+( 1
β−1

)t)en(x) ≤ e2ten(x),

since β ≥ 2. This gives

e−2tP β
t en(x) ≤ en(x), ∀ x ∈ S∆.
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But
lim
t→0

e−2tP β
t f(x) = f(x)

holds ∀ x ∈ Ē and f ∈ Bb(Ē). Hence, en is a (P β
t )-2-excessive function.

Define for n ∈ N the stopping time

τn := inf{t ≥ 0 | Xt ∈ Un},

called the first entry time of (Xt) in Un.

Lemma 3.8. Let β ∈ Q∗+, β ≥ 2 and Mβ := (ΩĒ, (Xt)t≥0, (P β
x )x∈Ē) be the

canonical realization of the Markov process (Xβ
t ). Then

Eβ
x [e−2τn ] ≤ en(x), ∀ x ∈ S∆.

Proof. Since by Lemma 3.6 S∆ is invariant set of Mβ, the resriction Mβ
S∆

of

Mβ to S∆ is still a Hunt process. We first prove that (e−2ten(Xt))t≥0 is an
(Ft)-supermartingale. By the Markov property we have for s ≤ t

Eβ
x [e−2ten(Xt) | Fs] = Eβ

Xs
[e−2ten(Xt−s)]

= e−2tP β
t−sen(Xs) = e−2se−2(t−s)P β

t−sen(Xs)

≤ e−2sen(Xs),

where the last inequality follows from Lemma 3.7. So by the optional sam-
pling theorem we have

Eβ
x [e−2τnen(Xτn)] ≤ Eβ

x [e−2·0en(X0)] = en(x), x ∈ S∆.

By Lemma 3.5 we have that en(x) ≥ 1 for all x ∈ Un. In view of Lemma 3.7
we may apply [FOT94, Thm. A.2.5] and obtain

P β
x [t 7→ en(Xt) is right continuous] = 1 ∀ x ∈ S∆.

Hence, for all x ∈ S∆ we have en(Xτn) ≥ 1 P β
x -a.s. It follows that for all

x ∈ S∆

e−2τn ≤ e−2τnen(Xτn) P β
x − a.s

Hence,
Eβ
x [e−2τn ] ≤ Eβ

x [e−2τnen(Xτn)] ≤ en(x) ∀ x ∈ S∆.

Now we are well prepared for the proof of Theorem 3.1.
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3.2 Proof of the Key Theorem

Proof. Take a strict E-nest (F
(1)
k )k∈N such that J0 ∈ C∞({F (1)

k }), F
(1)
k ∪ {∆}

is compact and ⋃
k≥1

F
(1)
k ⊂ Y.

Let Uk := E \ F (1)
k and τk := inf{t ≥ 0 | Xt ∈ Uk}. (Uk)k∈N is a decreasing

sequence of open sets and

Cap1,g(Uk) −→ 0 as k →∞.

Hence the assumptions in Lemma 3.5 are satisfied and we can find a subset
S(1) ∈ B(E) satisfying Lemma 3.5 (i)-(iv). Without loss of generality we can

assume that S(1) ⊂
⋃
k≥1 F

(1)
k . Fix any T > 0, β ∈ Q∗+, β ≥ 2, k ∈ N and

x ∈ S(1)
∆ . By Lemma 3.8 we have

P β
x [τk < T ] = Eβ

x [1{τk<T}] = Eβ
x [e−2τk ]e2T ≤ e2T ek(x).

Now, consider the canonical projection Π : ΩĒ × [0, T ) → Ē. Clearly, Π is
continuous and therefore

BT
k := {ω ∈ ΩĒ | ωt ∈ F

(1)
k ∪ {∆},∀ t < T}

is a closed subspace of ΩĒ, since BT
k = Π−1(F

(1)
k ∪ {∆}) and since the trace

topology of Ē on F
(1)
k ∪ {∆} is the same as the original one. Thus, if Px is

a weak limit of some sequence (P
βj
x )j∈N, βj ↑ ∞, βj ∈ Q∗+, and if (fn)n∈N ∈

Cb(Ē) is a positive monotone sequence such that fn ↓ 1BTk , then

Px[B
T
k ] = Ex[1BTk ] = Ex

[
lim
n→∞

fn

]
= lim

n
Ex[fn] = lim

n
lim
j→∞

Eβj
x [fn]︸ ︷︷ ︸

≥E
βj
x [1

BT
k

]

≥ lim sup
j→∞

Eβj
x [1BTk ] ≥ lim sup

j→∞
P βj
x [τk ≥ T ]

= lim sup
j→∞

(1− P βj
x [τk < T ]) ≥ 1− e2T ek(x)

But by Lemma 3.5 (iv) it follows that

Px

[ ⋃
k≥1

BT
k

]
= lim

k→∞
Px[B

T
k ] ≥ lim sup

k→∞
(1− e2T ek(x)) = 1.
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Let Ω1 :=
⋂
N≥1

⋃
k≥1B

N
k . Then Px[Ω1] = 1 for x ∈ S(1) and Ω1 satisfies

Theorem 3.1 (iii) with Z∆ replaced by
⋃
k≥1 F

(1)
k .

Now take another strict E-nest (F
(2)
k )k≥1 such that F

(2)
k ⊂ F

(1)
k ∀ k, and⋃

k≥1

F
(2)
k ⊂ S(1).

Repeating the above argument we get S(2) ⊂
⋃
k≥1 F

(2)
k and Ω2 ⊂ Ω1, satis-

fying the same property as above.
Repeating the procedure we obtain the following: strict E-nests (F

(n)
k )k≥1,

Borel sets S(n) ⊂ E such that Theorem key (ii) holds with Z∆ replaced by

S
(n)
∆ and

Y ⊃
⋃
k≥1

F
(1)
k ⊃ S(1) ⊃ . . . ⊃

⋃
k≥1

F
(n)
k ⊃ S(n) ⊃ . . . ,

and finally Borel sets Ωn ⊂ DĒ[0,∞) such that

DĒ[0,∞) ⊃ Ω1 ⊃ Ω2 ⊃ . . .Ωn ⊃ . . . .

Ωn satisfies (iii) with Z∆ replaced by
⋃
k≥1 F

(n)
k ∪ {∆}, satisfies (iv) with Z∆

replaced by S
(n)
∆ . We now define Ω :=

⋂
n≥1 Ωn, Z :=

⋂
n≥1 S

(n). Then Z
and Ω satisfy (i)-(iv).



Chapter 4

Hunt Processes Associated
with (E ,F)

Again, let (E ,F) be a strictly quasi-regular generalized Dirichlet form sat-
isfying SD3. The notation is the same as in the previous chapters. This
chapter contains the main result. Let Ω, Z∆ and (Px)x∈Z∆

be as in Theorem
3.1. Consider a process M := (Ω, (Xt)t≥0, (Px)x∈Z∆

). We will prove that this
process is associated to (E ,F) and unique. Furthermore, we will prove that
M is a Hunt process. We follow, as before, [MRZ98, Section 4].

Lemma 4.1. Define for α, β ∈ Q∗+

Rβ
αf(x) := Eβ

x

[∫ ∞
0

e−αtf(Xt) dt

]
, f ∈ Bb(Ē), x ∈ Ē.

Then

Rβ
αf =

(
β

α + β

)2

R αβ
α+β

f +
1

α + β
f. (4.1)

Proof. Denote by Aβαf the r.h.s of (4.1). Then we just start to calculate and

37
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use Lβf = β(βRβf − f) and the resolvent equation.

(Aβα(α− Lβ))f =

(
β

α + β

)2

αR αβ
α+β

f −
(

β

α + β

)2

β2R αβ
α+β

Rβf

+

(
β

α + β

)2

βR αβ
α+β

f +
α

α + β
f

− β2

α + β
Rβf +

β

α + β
f

=
β2

α + β

[
α

α + β
R αβ

α+β
f +

β

α + β
R αβ

α+β
f

]
︸ ︷︷ ︸

=R αβ
α+β

f

− β2

α + β
R αβ

α+β
f

− β2

α + β
Rβf +

β2

α + β
Rβf + f

= f.

In the same way we obtain

((α− Lβ)Aβα)f = f.

Hence, we obtain that Rβ
αf = (α− Lβ)−1f = Aβαf for f ∈ Bb(Ē).

Lemma 4.2. Let x ∈ Ē and let Px be a weak limit of a subsequence (P
βj
x )j≥1

with βj ↑ ∞, βj ∈ Q∗+. Define the kernel

Ptf(x) := Ex[f(Xt)] ∀ f ∈ Bb(Ē).

Then ∫ ∞
0

e−αtPtf(x) dt = Rαf(x), ∀ f ∈ Bb(Ē), α ∈ Q∗+. (4.2)

In particular, the kernels Pt, t ≥ 0, are independent of the subsequence
(P

βj
x )j≥1.

Proof. Since P
βj
x → Px weakly in ΩĒ, we have by [EK86, III.7.8] and Lebesgue’s

dominated convergence theorem

Eβj
x

[∫ ∞
0

e−αtf(Xt) dt

]
=

∫ ∞
0

e−αtEβj
x [f(Xt)] dt

=

∫ ∞
0

e−αtEβj
x [f(Xt)]︸ ︷︷ ︸
→Ex[f(Xt)]

dt

−→
j→∞

∫ ∞
0

e−αtPtf(x) dt
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for all f ∈ Cb(Ē) and α > 0. But by Lemma 4.1 we have

Eβj
x

[∫ ∞
0

e−αtf(Xt) dt

]
= Rβj

α f(x)

=

(
βj

α + βj

)2

R αβj
α+βj

f(x) +
1

α + βj
f(x)

−→
j→∞

Rαf(x) (4.3)

for all f ∈ Bb(Ē), x ∈ Ē. The convergence follows from the resolvent
equation:(

βj
α + βj

)2

R αβj
α+βj

f =
α2β2

j

(α + βj)3
R αβj

α+βj︸ ︷︷ ︸
=:Aβj

Rαf +Rαf −→
j→∞

Rαf,

since

Aβjf =
αβj

(α + βj)2︸ ︷︷ ︸
→0

αβj
α + βj

R αβj
α+βj︸ ︷︷ ︸

contraction

f −→ 0 as βj →∞.

Hence the assertion holds for all f ∈ Cb(Ē). Define

V :=

{
f ∈ Bb(Ē)

∣∣∣ ∫ ∞
0

e−αtPtf(x) dt = Rαf(x) ∀ x ∈ Ē
}
.

Then V is a monotone vector space and we proved that V contains Cb(Ē).
Hence, by monotone class theorem, it follows that V contains all bounded,
σ(Cb(Ē))-measurable functions. But σ(Cb(Ē)) = Bb(Ē). So the assertion
holds for all f ∈ Bb(Ē). The last statement follows by the right continuity of
Ptf(x) in t for f ∈ Cb(Ē) and the uniqueness of the Laplace transform.

Theorem 4.3. For every x ∈ Z∆ the relatively compact set {P β
x | β ∈ Q∗+}

has a unique limit Px for β ↑ ∞. The process (ΩĒ, (Xt)t≥0, (Px)x∈Z∆
) is a

Markov process with the transition semigroup (Pt)t≥0 determined by (4.2).
Moreover,

Px[Xt ∈ Z∆, Xt− ∈ Z∆ for all t ≥ 0] = 1

for all x ∈ Z∆.

Proof. The last assertion follows from Theorem 3.1. By the previous Lemma
Px is unique, since it is independent of the chosen subsequence. So we only
prove that (ΩĒ, (Xt)t≥0, (Px)x∈Z∆

) is a Markov process. For that we have to
prove

Ex[f1(Xt1) . . . fn(Xt1+...tn)] = Pt1 [f1Pt2 [f2 . . . Ptn [fn] . . .](x) (4.4)
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for any n ≥ 1, t1, . . . tn ≥ 0 and f1, . . . fn ∈ Bb(Z∆), which is equivalent
for (Xt)t≥0 to be a Markov process. The equation (4.4) follows by induction
from

Ex[f1(Xt1) . . . fn(Xt1+...tn)]

= Ex[f1(Xt1) . . . fn−1(Xt1+...tn−1)Ptn(fn)(Xt1+...tn−1)]. (4.5)

Assume first that f1, . . . fn−1 ∈ Cb(Z∆) and fn = RαR1u for some α ∈
Q∗+, α > 1, u ∈ J. In this case

P β
t fn = e−βt

∞∑
k=0

(βt)k

k!
(βRβ)kRαR1u ∈ Cb(Z∆ × [0, T ])

for β ∈ Q∗+ and any T > 0. For β1, β2 ∈ Q∗+ we have

P β1
t fn − P β2

t fn =

∫ t

0

d

ds
(P β1

s P β2
t−sfn) ds

=

∫ t

0

P β1
s (P β2

t−s)(L
β1 − Lβ2)fn ds. (4.6)

By a calculation we get

(Lβ1 − Lβ2)fn = Rβ1w −Rβ2w, (4.7)

where w := R1(αRαu− u)− (αRαu− u). By (4.6) and (4.7) it follows that

sup
t≤T

sup
x
|P β1
t fn(x)− P β2

t fn(x)| ≤ sup
t≤T

sup
x

∫ t

0

|P β1
s P β2

t−s(L
β1 − Lβ2)fn(x)|︸ ︷︷ ︸

≤supx |Lβ1fn(x)−Lβ2fn(x)|

ds

≤ T sup
x
|Lβ1fn(x)− Lβ2fn(x)|

= T sup
x
|Rβ1w(x)−Rβ2w(x)|

≤ T

(
1

β1

+
1

β2

)
sup
x
|w(x)|

From this and (4.3) we have

sup
t≤T

sup
x
|P β
t fn(x)− Ptfn(x)| −→

β→∞
0. (4.8)

In particular Ptfn(x) is jointly continuous in (t, x).

Set ψ(t1, . . . , tn) := e−α1t1−...−αntnf1(Xt1) . . . fn−1(Xt1+...+tn−1). Since P
βj
x →
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Px weakly by [EK86, III.7.8] and Lebesgue’s dominated convergence theorem
we have

lim
j→∞

Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]
= lim

j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]

= lim
j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]

= lim
j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]

= Ex

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]

= Ex

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]
.

From here and (4.8) it follows that

lim
j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)Ptn(fn)(Xt1+...+tn−1) dt1 . . . dtn

]
= lim

j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)P
βj
tn (fn)(Xt1+...+tn−1) dt1 . . . dtn

]
= lim

j
Eβj
x

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)fn(Xt1+...+tn) dt1 . . . dtn

]
= Ex

[∫ ∞
0

. . .

∫ ∞
0

ψ(t1, . . . , tn)fn(Xt1+...+tn) dt1 . . . dtn

]
,

where we used Proposition 2.4. From here we conclude by Fubini’s theorem∫ ∞
0

. . .

∫ ∞
0

e−α1t1−...−αntnEx[f1(Xt1) . . . fn(Xt1+...+tn)] dt1 . . . dtn

=

∫ ∞
0

. . .

∫ ∞
0

e−α1t1−...−αntnEx[f1(Xt1) . . . fn−1(Xt1+...+tn−1)

Ptn(fn)(Xt1+...+tn−1)] dt1 . . . dtn

Since the above integrands are right-continuous, by the uniqueness of the
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Laplace-transform we get successively

Ex[f1(Xt1) . . . fn(Xt1+...+tn)]

= Ex[f1(Xt1) . . . fn−1(Xt1+...+tn−1)Ptn(fn)(Xt1+...+tn−1)], (4.9)

for f1, . . . fn−1 ∈ Cb(Z∆), fn = RαR1u, u ∈ J. Multiplying this equation by
α and letting α→∞, we obtain by Lemma 1.17

Ex[f1(Xt1) . . . R1u(Xt1+...+tn)]

= Ex[f1(Xt1) . . . fn−1(Xt1+...+tn−1)Ptn(R1u)(Xt1+...+tn−1)]. (4.10)

Now we have for u ∈ J that u − αRα+1u ∈ J and R1α(u − αRα+1u) =
αRα+1u ↑ u, hence by monotone convergence theorem it follows that

Ex[f1(Xt1) . . . u(Xt1+...+tn)]

= Ex[f1(Xt1) . . . fn−1(Xt1+...+tn−1)Ptn(u)(Xt1+...+tn−1)] (4.11)

holds for all f1, . . . fn−1 ∈ Cb(Z∆), for all u ∈ J. Define now

V := {u | (4.11) holds for u}.

Then V is a monotone vector space and we have J ⊂ V . It follows that
J − J ⊂ V . The set J − J is a positive conves cone, inf-stable and contains
1. Hence, we obtain by monotone class theorem that V contains all bounded
σ(J − J)-measurable functions. But by [Sch73, Lemma 18] we have that
B(Z∆) ⊂ σ(J) ⊂ σ(J − J). We conclude that

Ex[f1(Xt1) . . . fn(Xt1+...+tn)]

= Ex[f1(Xt1) . . . fn−1(Xt1+...+tn−1)Ptn(fn)(Xt1+...+tn−1)] (4.12)

for all f1, . . . fn−1 ∈ Cb(Z∆) and fn ∈ Bb(Z∆). And now it is easy to obtain,
again by monotone class arguments, the assertion for f1, . . . fn ∈ Bb(Z∆).

In what follows let (Px)x∈Z∆
be as in Theorem 4.3. Let Ω and Z∆ be

specified by Theorem 3.1. Since Px[Ω] = 1 for all x ∈ Z∆, we may restrict Px
and the coordinate process (Xt)t≥0 to Ω. Let (Ft)t≥0 be the natural filtration
of (Xt)t≥0. Finally, we are well prepared to state and to prove our main
result. Here we use the same arguments as in chapter 2. For completeness
we give all the details.

Theorem 4.4. M := (Ω, (Xt)t≥0, (Ft)t≥0, (Px)x∈Z∆
) is a Hunt process with

respect to both the ρ-topology and the original topology.
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Proof. The ρ-topology and the original topology generate the same Borel
sets. Hence, we only discuss the ρ-topology case. In this case Rαf is uni-
formly continuous on Y∆ for each α ∈ Q∗+ and f ∈ J. Set

W :=

{
f ∈ Bb(Y∆) | Px[t 7→ Rαf(Xt)

is right continuous on [0,∞)] = 1 ∀ α ∈ Q∗+, ∀ x ∈ Ē
}
. (4.13)

Then J ⊂ W and W is a linear vector space. To prove that W is a monotone
vector space, consider Zf

t := e−αtRαf(Xt) +
∫ t

0
e−αsf(Xs) ds for f ∈ W .

Then it can be easily seen that (Zf
t )t≥0 is a right continuous martingale for

all f ∈ W . If fn ∈ W, n ∈ N such that 0 ≤ fn ↑ f bounded then it follows
by monotone convergence theorem that Zfn

t ↑ Z
f
t for all t ≥ 0. By [DM82,

Thm. VI.18] we have that Zf
t is indistinguishable from a right continuous

process, hence f ∈ W , i.e. W is a monotone vector space. By the monotone
class theorem we obtain that Bb(Y∆) is contained in W . Now the strong
Markov property follows from [Sha88, Thm. 7.4]. So, it remains to prove the
quasi-left-continuity of (Xt)t≥0. Assume first that τ is bounded. Then let
(τn)n≥1 be an increasing sequence of stopping times such that τn ↑ τ. Define

V (ω) :=

{
limn→∞Xτn(ω) if τ(ω) <∞
∆ if τ(ω) =∞.

So, we have to prove that V = Xτ Pµ-a.s. For all f, g ∈ Cb(E∆), x ∈ Z∆ we
have

Ex[g(V )Rαf(Xτ )] = Ex

[
g(V )EXτ

[∫ ∞
0

e−αtf(Xt) dt

]]
= Ex

[
g(V )

∫ ∞
0

e−αt EXτ [f(Xt)]︸ ︷︷ ︸
=Ex[f(Xτ+t)|Fτ ] Pβx −a.s.

dt

]

= Ex

[
g(V )

∫ ∞
τ

e−α(t−τ)Ex[f(Xt) | Fτ ] dt
]

= Ex

[
g(V )eατ

∫ ∞
τ

e−αtf(Xt) dt

]
= lim

n→∞
Ex

[
g(Xτn)eατn

∫ ∞
τn

e−αtf(Xt) dt

]
= lim

n→∞
Ex [g(Xτn)Rαf(Xτn)]

= Ex [g(V )Rαf(V )] ,



44 CHAPTER 4. HUNT PROCESSES ASSOCIATED WITH (E ,F)

where in the last step we used Lebesgue’s dominated convergence theorem.
By a monotone class argument we have

Ex[g(V )αRαf(Xτ )] = Ex[g(V )αRαf(V )]

for all Borel measurable bounded functions g. Since Y is Borel measurable,
we may replace g by 1Y · g and if we let α tend to infinity, we obtain by
monotone convergence theorem that for all f ∈ Cb(E∆), g ∈ Bb(E∆)

Ex[g(V )f(Xτ )1{V ∈Y }] = Ex[g(V )f(V )1{V ∈Y }].

Again by a monotone class argument we obtain that

Ex[h(V,Xτ )1{V ∈Y }] = Ex[h(V, V )1{V ∈Y }]

for all Bb(E∆ × E∆)-measurable bounded functions h. Let now h to be the
indicator function of the diagonal in E∆ × E∆. So, the assertion follows.
Step2 : For arbitrary τ we have

Px [V 6= Xτ , V ∈ Y ]

= Px [V 6= Xτ , V ∈ Y, τ <∞]

=
∞∑
n=1

Px [V 6= Xτ , V ∈ Y, n− 1 ≤ τ < n]

=
∞∑
n=1

Px

[
lim
k→∞

Xτk∧n 6= Xτ∧n, lim
k→∞

Xτk∧n ∈ Y, n− 1 ≤ τ < n
]

= 0,

where all summands are 0 by step 1. Hence (Xt)t≥0 is a Hunt process.

Note that by Lemmas 1.15 and 4.2 M is even strictly properly associated
in the resolvent sense to E .
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Appendix

The next results are strict versions of some results from [Sta99b].

Lemma A.1. [Sta99b, III.3.5] Let S be a countable family of s.E-q.c. func-
tions. Then there exists a s.E-nest (Fk)k≥1 such that S ⊂ C({Fk}).

Proof. Let S = {fl | l ∈ N}. For every l ∈ N there exists a strict E-
nest (Flk)k≥1 such that fl ∈ C({Flk}) and Cap1,g(F

c
lk) < 1

2lk
. Let Fk :=⋂

l≥1 Flk, k ∈ N. Then each Fk is closed and

Cap1,g(F
c
k ) ≤

∑
l≥1

Cap1,g(F
c
k ) ≤ 1

k
.

Hence, (Fk)k≥1 is a s.E-nest and obviously S ⊂ C({Fk}).

Definition A.2. (i) A(n) (strict) E-nest (Fk)k≥1 is called regular if for all
k ∈ N, U ⊂ E, U open, m(U ∩ Fk) = 0 implies that U ⊂ F c

k .

(ii) A subspace A ⊂ E is called the topological support of a measure µ, if for
every open set ∅ 6= U ⊂ A we have µ(U) > 0. Notation: suppµ := A.

(iii) A topological space is called strongly Lindelöf if every open covering of
an open set U has a countable subcover.

Lemma A.3. [Sta99b, III.2.4] Let (Fk)k≥1 be a s.E-nest such that the relative
topology on Fk is strongly Lindelöf for all k, and define F̃k := supp[1Fk ·m].
Then (F̃k)k≥1 is a regular strict E-nest with F̃k ⊂ Fk for all k.
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Proof. Fix k ∈ N. Note that F̃k is smallest closed set F such that m(F c ∩
Fk) = 0. In particular, F̃k ⊂ Fk and m(Fk \ F̃k) = m(F̃ c

k ∩ Fk) = 0. Hence
Cap1,g(F

c
k ) = Cap1,g(F̃k). If U ⊂ E open with m(U ∩ F̃k) = 0 then m(U ∩

Fk) = 0, since m(Fk \ F̃k) = 0. Consequently, U c ⊃ F̃k and this is equivalent
with U ⊂ F̃ c

k . Hence, (F̃k)k≥1 is a strict regular E-nest.

Lemma A.4. [Sta99b, III.3.3] If f is s.E-q.s.l.c. and f ≤ 0 m-a.e. on an
open set U ⊂ E, then f ≤ 0 s.E-q.e. on U.

Proof. Let (Fk)k≥1 be a strict E-nest such that f ∈ C({Fk}) and let Ek, k ∈
N, be the sets from Definition 1.11 which can be assumed to be metrizable.
Then set F ′k := Fk ∩ Ek, k ∈ N. Then F ′k is strongly Lindelöf as a second-
countable space. Hence, by Lemma A.3 we have F̃k := supp[1F ′k ·m], k ∈ N
forms a strict regular E-nest. For k ∈ N {f > 0} ∪ F c

k ∩ U is open and
m({f > 0}∪F c

k∩U∩F̃k) = 0, since f ≤ 0m-a.e. Hence {f > 0}∪F c
k∩U ⊂ F̃ c

k ,
since F̃k is a strict regular E-nest. So, we obtain {f > 0} ∩U ⊂ F̃k, which is
equivalent with F̃k ∩ U ⊂ {f ≤ 0}. Consequently,⋃

k≥1

F̃k ∩ U ⊂ {f ≤ 0}.
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