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Introduction

In this Diploma Thesis the existence and uniqueness of solutions of stochastic di�erential
equations are studied. Di�ering from most of the existing literature, (see [IW81, Str84,
Pro90, KS91]), we concentrate on the case of non-Lipschitz coe�cients.
More precisely, the aim of this thesis is to extend the corresponding results of [FZ05] to

the case of time dependent coe�cients. Those extended results we will apply to the Newton
system, which describes the evolution of a small particle moving in a random �eld. A further
step is to use our results for stochastic di�erential equations to prove the Smoluchowski-
Kramers approximation, which states the convergence of the solutions of this Newton system.
The �rst three chapters of this thesis are based on the paper [FZ05], which was written by

Fang and Zhang and published in 2005. The results of this paper are adapted to our frame-
work and are extended to the time dependent case. As an application of the obtained results,
we study in chapter 4 the Newton system, which was �rst considered by [Nel67]. Finally
we prove the convergence of Smoluchowski-Kramers approximation in our more general case.

We give a short summary of each chapter. In chapter 1 we outline our notations and
repeat a few basic concepts of Stochastic Analysis. In section 1.2 we establish the de�nition
of weak and strong solutions of stochastic di�erential equations. We do this closely to the
presentation in the book of Karatzas and Shreve [KS91]. Furthermore, we recall some well
known theorems from Stochastic Calculus and martingale theory.

In chapter 2 we study conditions to gain a unique solution of a given stochastic di�erential
equation. We examine the following stochastic di�erential equation

dXt = σ(t,Xt)dWt + b(t,Xt)dt, X0 = x0 ∈ Rd. (0.1)

This is a generalization of the paper of Fang and Zhang, [FZ05], where the coe�cients σ
and b are not time dependent:

dXt = σ(Xt)dWt + b(Xt)dt, X0 = x0 ∈ Rd. (0.2)

We prove that even in the general case, there exists a unique strong solution of (0.1). This
will be proved by two theorems. The key idea is to show that the solution does not explode,
where we assume conditions similar to those stated in the paper (cf. Theorem A), and
pathwise uniqueness (cf. Theorem B). We point out, that the assumption on the function b,
(H1) and (H2), are noticeable weaker than that of Fang and Zhang.
In this more general framework, we prove that two solutions to the same stochastic di�eren-

tial equation with di�erent starting points will not coincide P -a.s. The details are expounded
in sections 2.4 and 2.5. As a preparation we extend the result of Ikeda Watanabe, Theorem
1.8, to our time dependent case. For a clearer presentation and easier understanding we put
some technical lemmas in section 2.3. Furthermore we prove Theorem 2.11 about continuous
dependence on initial data.
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In Chapter 3, we will prove that the solution of the stochastic di�erential equation is
continuously dependent on both, the initial value and time (cf. Theorem D). To this end we
construct an Euler approximation of the solution of the stochastic di�erential equation (0.2)
in section 3.1. Here, we assume σ and b to be bounded. As in [FZ05] we obtain the uniform
convergence in t ∈ [0, T ] (see Theorem 3.1). The next step (cf. section 3.2) is to establish
some technical lemmas again for a better readability of the following proof. We work out
some steps of the proof in more detail than Fang and Zhang did.

Finally, we consider in chapter 4 the Newton system

dXµ
t = Y µ

t dt,

µ dY µ
t = b(t,Xµ

t ) dt+ σ(t,Xµ
t ) dWt − dXµ

t , (0.3)

Xµ
0 = ζ1, Y µ

0 = ζ2

and prove the existence of a unique strong solution. The Newton system describes the
behavior of a small particle with mass µ, 0 < µ� 1, placed in a force �eld. The force �eld
consists of a deterministic part b(t,Xµ

t ), which only depends on the position of the particle
and the time, and a random part, where σ(t,Xµ

t ) dWt represents the stochastic di�erential.
The term dXµ

t describes the friction of the particle. In section 4.2 we consider along with the
Newton system above the stochastic di�erential equation (0.1). We prove that the solution of
(0.3) converges in probability to that of (0.1), if the mass µ tends to zero. This property, (cf.
Theorem 4.5), is called Smoluchowski-Kramers approximation. It allows us to solve a one-
dimensional stochastic di�erential equation like (0.1) instead of solving the 2-dimensional
Newton system. Clearly, this reduces the complexity of our problem.
The Smoluchowski-Kramer approximation has �rst been discussed rigorously by Nelson

[Nel67, chapter 10] in 1967. He assumed that the function b satis�es a global Lipschitz
condition and σ ≡ 1 and proved then (4.10). Thereafter Z. Schuss [Sch80, chapter 6] proved
a Smoluchowski-Kramers approximation for the Langevin equation, an equation well known
by physicists. There, σ is still a constant, but the coe�cient b describing the force does not
need to be necessarily Lipschitz. The main contribution in the last years is due to M. Freidlin,
S. Cerrai and Z. Chen, [Fre04, CF05, CF06a, CF06b]. These papers concentrate mostly
on properties around the Smoluchowski-Kramers approximation, but did not deal with best
possible solvability. M. Freidlin [Fre04] assumes a non trivial σ, but still a Lipschitz condition.
So does R. Westermann [Wes06]. We consider the Smoluchowski-Kramer approximation for
a similar system and impose considerably weaker assumptions. Furthermore, we use a new
technique to prove the approximation.
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1 Mathematical Basis and Tools

1.1 Basic De�nitions and Notations

First we want to introduce some frequently used notations. By |x| we mean the Euclidean
norm for a vector x ∈ Rd. Let M(d×m, R) denote the set of all real d×m-matrices.

De�nition 1.1 (norm). For a matrix σ ∈M(d×m, R) we denote by ‖σ‖ its Hilbert-Schmidt

norm:

‖σ‖2 :=
∑
ij

σ2
ij ,

(which is equivalent to the usual operator norm R
m → R

d).

In the following, we consider a �ltered probability space (Ω,F , (Ft)0≤t<∞, P ) that satis�es
the usual hypotheses as follows:

(i) F0 contains all the P -null sets of F ;

(ii) Ft =
⋂
u>tFu, for all 0 ≤ t <∞; that is, the �ltration (Ft)0≤t<∞ is right continuous.

A stochastic process X on (Ω,F , P ) is a collection of random variables (Xt)0≤t<∞. The
process X is said to be adapted if Xt ∈ Ft. This means that Xt is Ft-measurable for each t.

De�nition 1.2 (Brownian motion). An adapted process B = (Bt)0≤t<∞ taking values in

R
m is called an m-dimensional Brownian motion if:

(i) for 0 ≤ s < t <∞, Bt −Bs is independent of Fs

(ii) for 0 ≤ s < t, the increment Bt − Bs is normally distributed with mean zero and

covariance matrix equal to (t− s)Id, where Id is the (m×m) identity matrix.

The Brownian motion starts at x if P (B0 = x) = 1.

Every Brownian motion has a continuous modi�cation cf. [Pro90, Thrm. 26, p.17].
We will now give a general version of Itô's formula, later we will use a special case of it.

Theorem 1.3 (Itô's formula). We assume that:

σ : [0, T ]× Ω→M(d×m,R) is predictable with P (
∫ t

0 ‖σs‖
2 ds <∞) = 1, t ∈ [0, T ],

b : [0, T ]× Ω→ R
d is a predictable and P -a.s. Bochner integrable process on [0, T ],

F : [0, T ] × Rd → R is twice Fréchet di�erentiable with derivatives Ft := ∂
∂t , Fxx := ∂2

∂x2

which are continuous on bounded subsets. Under these assumptions the process

Xt = X0 +
∫ t

0
σs dWs +

∫ t

0
bs ds, t ∈ [0, T ],

7



1 Mathematical Basis and Tools

is well de�ned and there exists a P -null set N ∈ F , such that the following formula is ful�lled

on N c for all t ∈ [0, T ]:

F (t,Xt) = F (0, X0) +
∫ t

0
〈Fx(s,Xs), σsdWs〉

+
∫ t

0
Ft(s,Xs) + 〈Fx(s,Xs), bs〉+

1
2
tr[Fxx(s,Xs)σsσ∗s ] ds,

where tr denotes the trace of the operator.

Proof. see [Röc06, 2.4.5] or the standard reference [DPZ92, Thrm. 4.17, p.105].

1.2 Solutions of SDEs

We follow the exposition in [KS91, p. 285, 300]. Consider an m-dimensional Brownian
motion W = {Wt,FWt ; 0 ≤ t < ∞} on a probability space (Ω,F , P ). For a random vector
ξ ∈ Rd, we consider the left-continuous �ltration

Gt := σ(ξ) ∨ FWt = σ(ξ,Ws; 0 ≤ s ≤ t); 0 ≤ t <∞.

By adding a collection of null sets

N := {N ⊆ Ω| ∃G ∈ G∞ with N ⊆ G and P (G) = 0},

we create the augmented �ltration

Ft := σ(Gt ∪N ), 0 ≤ t <∞; F∞ := σ

⋃
t≥0

Ft

 .

This �ltration {Ft} is a normal �ltration, that means it ful�lls the usual hypotheses. In the
following we de�ne two di�erent types of solution: weak and strong solutions.

De�nition 1.4 (strong solution). A strong solution of the stochastic di�erential equation

(0.1) on the given probability space (Ω,F , P ) with the �xed Brownian motion W and initial

condition ξ, is a process X = {Xt ; 0 ≤ t < ∞} with continuous sample paths and with the

following properties:

(i) X is adapted to the normal �ltration {Ft} de�ned above;

(ii) P (X0 = ξ) = 1;

(iii) ∫ t

0
|b(s,X)| ds <∞ P-a.e. for all t ∈ [0,∞)∫ t

0
‖σ(s,X)‖2 ds <∞ P-a.e. for all t ∈ [0,∞);
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1.2 Solutions of SDEs

(iv) the integral version

Xt = X0 +
∫ t

0
b(s,X) ds+

∫ t

0
σ(s,X) dWs 0 ≤ t <∞,

holds almost surely.

One can interpret the strong solution of the stochastic di�erential equation (0.1) as an
output of a machine, which consists of the functions b and σ. This machine will be fed by
the initial condition ξ and a Brownian motion W and produces then with every input a
solution X.

De�nition 1.5 (weak solution). A weak solution of equation (0.1) is a triple (X,W ),
(Ω,F , P ), {Ft}, where

(i) (Ω,F , P ) is a probability space and {Ft} is a �ltration which satis�es the usual hy-

potheses;

(ii) X = {Xt,Ft ; 0 ≤ t <∞} is a continuous, adapted Rd-valued process,W = {Wt,Ft ; 0 ≤
t <∞} is an m-dimensional Brownian motion;

(iii) ∫ t

0
|b(s,X)| ds <∞ P-a.e. for all t ∈ [0,∞)∫ t

0
‖σ(s,X)‖2 ds <∞ P-a.e. for all t ∈ [0,∞);

(iv) the integral version

Xt = X0 +
∫ t

0
b(s,X) ds+

∫ t

0
σ(s,X) dWs 0 ≤ t <∞

holds almost surely.

In contrast to the strong solution we do not have the automatism, that we can choose
any Brownian motion W and initial condition ξ and get a solution X in the case of weak
solutions. Here it is possible that there exists no weak solution to a given Brownian motion
on a probability space. This is due to the fact that the �ltration {Ft} does not need to be
the augmentation of the �ltration Gt = σ(ξ)∨FWt . Therefore the weak solution Xt(ω) does
not need to be a measurable functional of the Brownian motion and the initial condition.

De�nition 1.6 (pathwise uniqueness). We say that pathwise uniqueness holds for (0.1), if
whenever X and X ′ are two (weak) solutions on the same stochastic basis (Ω,F , P, (Ft)) and
with the same (Ft)-Wiener process W (t), t ∈ [0,∞) on (Ω,F , P ) such that X(0) = X ′(0)
P -a.e., then P -a.e.

X(t) = X ′(t), t ∈ [0,∞).
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1 Mathematical Basis and Tools

Sometimes one does not have a solution for all times, but just locally. Then it blows up
in �nite time. Therefore it is more convenient to modify the notion of a solution to include
solutions admitting explosions similarly to [IW81, p.158].

De�nition 1.7 (explosion time). Let R̂d := R
d ∪ {M} be the one-point compacti�cation of

R
d and

Ŵ d := {w| [0,∞) 3 t 7→ w(t) ∈ Rd is continuous and such that if

w(t) =M, then w(t′) =M for all t′ ≥ t}.

Let B(Ŵ d) be the σ-�eld generated by all Borel cylinder sets. For w ∈ Ŵ d, we set

ζ(w) := inf{t|w(t) =M}

and call ζ(w) the explosion time of the trajectory w.

Now we recall an important theorem that ensures the existence of a weak solution only
with continuous coe�cients.

Theorem 1.8. Given continuous σ : Rd → R
d ⊗ Rm and b : Rd → R

d, we consider the

equation (0.2). Then for any probability µ on (Rd,B(Rd)) with compact support, there exists

a weak solution Xt of 0.2 such that the law of X0 coincides with µ i.e., P (X0 ∈ A) = µ(A)
for any A ∈ B(Rd).

Proof. see [IW81, Theorem 2.3 on p. 159].

1.3 Tools from Stochastic Calculus and martingale theory

The connection between the two kinds of solution is given by the theorem of Yamada and
Watanabe:
Let W d := C([0,∞) → R

d). Let Bt(W d) denote the σ-algebra generated by all maps πs,
0 ≤ s ≤ t, where πs(w) := w(s), w ∈ W d. Let Ad,m denote the set of all B([0,∞)) ⊗
B(W d)/B(M(d ×m, R))-measurable maps α : [0,∞) ×W d → M(d ×m, R) such that for
each t ∈ [0,∞) the map

W d 3 w 7→ α(t, w) ∈M(d×m,R)

is Bt(W d)/B(M(d×m,R))-measurable.

Theorem 1.9 (Yamada-Watanabe). Let σ ∈ Ad,m and b ∈ Ad,1. Then the equation (0.1)
has a unique strong solution if and only if the following two properties hold:

(i) For every probability measure µ on (Rd,B(Rd)) there exists a (weak) solution (X,W )
of (0.1) such that µ is the distribution of X(0).

(ii) Pathwise uniqueness holds for (0.1).

Proof. See [PR07, Appendix E] or [Röc06, Appendix E].

In fact, it is enough to consider initial distributions only of the form µ = δx0 for all
x0 ∈ Rd. There is the following re�nement of the Yamada-Watanabe theorem:
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1.3 Tools from Stochastic Calculus and martingale theory

Theorem 1.10 (Kallenberg). Let weak existence and pathwise uniqueness hold for the equa-

tion (0.2) for every initial data µ on Rd. Then strictly strong existence and uniqueness in

law hold for any initial probability distribution µ on Rd.

Proof. See [Kal96].

In particular, we have unique strong solvability for any initial data x0 ∈ Rd

The next Theorem claims the existence of a continuous modi�cation of a stochastic process
under certain boundary conditions. Recall that a process Xt where every sample path is
right-continuous on [0,∞) with �nite left-hand limits on (0,∞) is called a càdlàg process.

Theorem 1.11 (Kolmogorov's modi�cation). Let (Xa
t )t≥0,a∈Rd be a parameterized family

of stochastic processes such that t → Xa
t is càdlàg almost surely for each a ∈ Rd. Suppose

that

E[sup
s≤t
|Xa

s −Xb
t |α] ≤ C(t)|a− b|d+β

for some α, β > 0, C(t) > 0. Then there exists a version X̂a
t of Xa

t which is B(R+) ⊗
B(Rd)⊗F measurable and which is càdlàg in t and uniformly continuous in a on compacts

and is such that for all a ∈ Rd, t ≥ 0,

X̂a
t = Xa

t almost surely.

Proof. See [Pro90, p.173].

We de�ne

Zt(X) := exp
[∫ t

0
Xs dWs −

1
2

∫ t

0
|X|2 ds

]
, (1.1)

which is a local martingale cf.[KS91, p.198]. A su�cient condition for Zt(X) to be a mar-
tingale is known as the Novikov criterium. We give its version for Brownian motion, for the
general version see [KS91, Prop.5.12, p.198].

Theorem 1.12 (Novikov criterium). Let W = (Wt,Ft ; 0 ≤ t < ∞) be an m-dimensional

Brownian motion, and let X = (Xt,Ft ; 0 ≤ t < ∞) be a measurable, adapted Rd-valued

process satisfying P (
∫ t

0 |Xs|2 ds <∞) = 1 for all t ∈ [0,∞). If

E

[
exp

(
1
2

∫ t

0
|Xs|2 ds

)]
<∞, 0 ≤ t <∞,

then Zt(X) de�ned by (1.1) is a martingale.

Proof. see [KS91, Thrm. 5.13, p.199].

Here we recall a useful fact about functions of bounded variation (which easily can be
checked):

Lemma 1.13. Let F = F (t), t ∈ [a, b] be such that its derivative F ′(t) exists for all t ∈ [a, b].

11



1 Mathematical Basis and Tools

Moreover, F ′ is integrable on [a, b]. Then F is of bounded variation and

var[a,b](F ) =
∫ b

a
|F ′(t)| dt.

We also need some facts about quadratic variation: Let τn be a sequence of partitions of
[0, t], whose mesh tends to zero as n tends to in�nity. Then the quadratic variation (along
(τn)) of a real valued, continuous process t 7→ Xt, t ∈ [0,∞) is de�ned as

〈X〉t := lim
n→∞

∑
ti∈τn
ti≤t

(Xti+1 −Xti)
2,

where the limit (provided it exists) is taken in probability.

Lemma 1.14. Let Xt be a real valued continuous process such that the quadratic variation

〈X〉t exists for all t ≥ 0 and is continuous on [0,∞).

(i) Let F ∈ C1(R). Then t 7→ F (Xt) has (�nite) quadratic variation

〈F (X)〉t =
∫ t

0
(F ′(Xs))2 d〈X〉s.

(ii) If Mt := Xt +At, t ≥ 0, for some t 7→ At continuous and 〈A〉 ≡ 0, then

〈M〉t = 〈X〉t

Proof. see [Röc07, Lemma 1.2.9].
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2 Existence and Uniqueness of strong

solutions

2.1 Weak solutions for time dependent equations

Let σ : Rd → R
d ⊗Rm and b : Rd → R

d be continuous functions. Since we have by [IW81,
Theorem 2.3 on p. 159] only a weak solution for the time-independent equation (0.2), we
have to use a trick to get it for the time-dependent one. So, our aim is to construct a weak
solution for

Xt = x0 +
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds, (2.1)

where σ : [0, T ] ×Rd → R
d ×Rm and b : [0, T ] ×Rd → R

d are continuous and x0 ∈ Rd is
an initial value.

Theorem 2.1. There exists a weak solution up to an explosion time ζ of the stochastic

di�erential equation (2.1)

Proof. Instead of (2.1) we consider the following, Rd+1-valued equation:

Zt = Z0 +
∫ t

0
σ̄(Zs) dWs +

∫ t

0
b̄(Zs) ds (2.2)

with Zt = (t,Xt) ∈ Rd+1, t ∈ R, Xt ∈ Rd. The coe�cients are given by the functions
b̄ : Rd+1 = R×Rd → R×Rd,

b̄(z) := b̄(t, x) :=

{
(1, b(t, x)), t ∈ [0,+∞)
0, t < 0

and σ̄ : Rd+1 = R×Rd → R
d+1 ⊗Rm:

σ̄(z) := σ̄(t, x) :=




0 · · · 0 σ(t, x)


 , t ∈ [0,+∞),

0, t < 0.

Obviously the functions σ̄ and b̄ are continuous. So we can apply Theorem 1.8, which tells
us there exists an Rd+1-valued weak solution Yt of (2.2) up to the explosion time ζ which
satis�es

Yt = Y0 +
∫ t

0
σ̄(Ys) dWs +

∫ t

0
b̄(Ys) ds,

13



2 Existence and Uniqueness of strong solutions

where Y0 = (0, x0). Now we de�ne projections:

Pd : Rd+1 → R
d, Pd(t, x1, . . . , xd) = (x1, . . . , xd),

X̄t := PdYt

ξt := P0Yt := (1− Pd)Yt,

so that Yt = (ξt, X̄t). Now we show that X̄t = Xt and ξt = t:

X̄t = PdYt = PdY0 + Pd

∫ t

0
σ̄(Ys) dWs + Pd

∫ t

0
b̄(Ys) ds

= PdY0 + Pd


∑m

j=1

∫ t
0 σ̄1j(Ys) dW

(j)
s

...∑m
j=1

∫ t
0 σ̄d+1j(Ys) dW

(j)
s

+ Pd


∫ t

0 b̄1(Ys) ds
...∫ t

0 b̄d+1(Ys) ds



= x0 +


∑m

j=1

∫ t
0 σ1j(Ys) dW

(j)
s

...∑m
j=1

∫ t
0 σdj(Ys) dW

(j)
s

+


∫ t

0 b1(Ys) ds
...∫ t

0 bd(Ys) ds


= x0 +

∫ t

0
σ(Ys) dWs +

∫ t

0
b(Ys) ds

= Xt,

ξt = P0Yt = P0Y0 + P0

∫ t

0
σ̄(Ys) dWs + P0

∫ t

0
b̄(Ys) ds

= P0Y0 + P0


∑m

j=1

∫ t
0 σ̄1j(Ys) dW

(j)
s

...∑m
j=1

∫ t
0 σ̄d+1j(Ys) dW

(j)
s

+ P0


∫ t

0 b̄1(Ys) ds
...∫ t

0 b̄d+1(Ys) ds


= 0 +

∫ t

0
1 ds

= t.

Therefore, we have a weak solution of (2.1) up to the explosion time ζ.

2.2 Main results about strong solvability

In the global Lipschitz case, it is clear, that a strong solution exists. Fang and Zhang
[FZ05] showed in their paper, that we have for the time-independent case also a strong
solution under certain boundary conditions on the functions σ and b. We will generalize this
condition to time dependent σ and b. The �rst result tells us that our weak solution does
not explode in �nite time P -a.s. even in the time-dependent case.

Theorem A. Let ρ be a strictly positive, C1-function de�ned on (0,+∞), satisfying

(i) lim
s→+∞

ρ(s) = +∞, (2.3)

14



2.2 Main results about strong solvability

(ii) lim
s→+∞

sρ′(s)
ρ(s)

= 0 and (2.4)

(iii)

∫ +∞

0

ds

sρ(s) + 1
= +∞. (2.5)

Assume that there exist C,K > 0, such that for all x ∈ Rd and t ∈ [0,∞)

‖σ(t, x)‖2 ≤ C(|x|2ρ(|x|2) + 1),
〈x, b(t, x)〉 ≤ C(|x|2ρ(|x|2) + 1).

(H1)

Then the weak solution of the stochastic di�erential equation (2.1) with the initial distribution
δx0, x0 ∈ Rd, has no explosion, that means P (ζ = +∞) = 1 where ζ = supR>0 τR and

τR := inf{t > 0|ξt > R}.

Remark 2.2. (i) For example the function ρ(s) := log(1 + s) satis�es the conditions (i)-

(iii). This fact will be checked later in section 2.3 (see Lemma 2.4).

(ii) In Theorem A we may always assume that ρ ≥ 1.

The second result is about pathwise uniqueness of the weak solution. Here we claim that
semi-monotonicity for b and certain bounds, which hold uniformly in t, are enough to have
pathwise uniqueness.

Theorem B. Let r be a strictly positive, C1-function de�ned on an interval (0, c0] with
c0 ≥ 0, satisfying

(i) lim
s→0

r(s) = +∞, (2.6)

(ii) lim
s→0

sr′(s)
r(s)

= 0 and (2.7)

(iii)

∫ a

0

ds

sr(s)
= +∞ ∀a > 0. (2.8)

Assume that there exists C > 0, such that for |x− y| ≤ c0 and all t ∈ [0,+∞)

‖σ(t, x)− σ(t, y)‖2 ≤ C|x− y|2r(|x− y|2),
〈x− y, b(t, x)− b(t, y)〉 ≤ C|x− y|2r(|x− y|2).

(H2)

Then pathwise uniqueness holds for the weak solution of the stochastic di�erential equation

(2.1).
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2 Existence and Uniqueness of strong solutions

Remark 2.3. The second condition in (H1) is called coercivity. The second condition in

(H2) is called semi-monotonicity. A typical example of a function r satisfying the conditions
(i)-(iii) is given by r(s) := log 1/s. This we prove in the next section, see Lemma 2.5.

Combining the two Theorems A and B, it follows by the Yamada-Watanabe and Kallen-
berg theorems, (cf. Theorems 1.9 and 1.10), that there exists a unique strong solution of
(2.1).
Our next result is the same what Fang and Zhang [FZ05] claimed in their paper but under
our weaker conditions in Theorem B and with time-dependent coe�cients. It says, that two
solutions with di�erent starting points will P -a.s. never meet each other.

Theorem C. Let the hypothesis of Theorem B hold with

|〈x− y, b(t, x)− b(t, y)〉| ≤ C|x− y|2r(|x− y|2), (2.9)

which is stronger than the semi-monotonicity assumption in (H2). Suppose that the solution
does not explode at a �nite time. Then for x0 6= y0, almost surely Xt(x0) 6= Xt(y0) for all

t > 0.

The last result is about continuous dependence of the solution with respect to the initial
data.

Theorem D. Assume that there exist C, c0 > 0 such that for all x, y with |x− y| ≤ c0 and

all t > 0

‖σ(t, x)− σ(t, y)‖2 ≤ C|x− y|2r(|x− y|2),
|b(t, x)− b(t, y)| ≤ C|x− y|r(|x− y|2)

(H3)

with r(s) = log 1/s. Suppose that the stochastic di�erential equation has no-explosion.

Then there exists a version X̃t(x0) of Xt(x0) such that (t, x0) → X̃t(x0) is continuous over

[0,+∞)×Rd almost surely.

2.3 Preparing Lemmas

Before we prove the theorems we need to prove some technical lemmas. First we prove that
our examples really ful�ll the conditions.

Lemma 2.4. The function ρ(s) = log(1 + s) satis�es the conditions (2.3)-(2.5) in Theorem

A.

Proof. (i): It is clear,
(ii): Noting that ρ′(s) = 1

1+s , we have

sρ′(s)
ρ(s)

=
s · 1

1+s

log(1 + s)
≤ 1

log(1 + s)
−→
s→∞

0.

(iii): We need to show:
∫ +∞

0
ds

s log(s+1)+1 = +∞.
We have that∫ ∞

0

ds

s log(1 + s) + 1
≥
∫ ∞

0

ds

(1 + s) log(1 + s) + 1
=
∫ ∞

1

ds

s log s+ 1
.
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2.3 Preparing Lemmas

We observe that

1
s log s+ 1

≥ 1
2

1
s log s

∀s ≥ 2

⇔ s log s+ 1 ≤ 2s log s
⇔ 1 ≤ s log s.

Therefore ∫ +∞

1

ds

s log s+ 1
≥
∫ +∞

2

1
2

1
s log s

ds+
∫ 2

1

1
s log s+ 1

ds

≥ 1
2

∫ +∞

2

1
s log s

ds+
1

2 log 2 + 1

≥ 1
2

∫ +∞

2
(log s)′

1
log s

ds

=
1
2

∫ +∞

log 2

1
y
dy

=
1
2

log y|∞log 2

=
1
2

(log∞− log log 2) =∞.

So all three claims are ful�lled.

Lemma 2.5. The function r(s) = log 1/s satis�es the conditions (2.6)-(2.8) in Theorem B.

Proof. (i):

lim
s→0

log
1
s

= log lim
s→0

1
s

=∞.

(ii): lim
s→0

sr′(s)
r(s)

= lim
s→0

s(−1
s )

log 1/s
= − lim

s→0

1
log 1/s

= 0.

(iii): ∫ a

0

1
s log 1/s

ds = −
∫ a

0

1
s log s

ds

= − lim
ε→0

∫ a

ε

1
s log s

ds

= − lim
ε→0

∫ log a

logε

1
y
dy

= − lim
ε→0

(log | log a| − log | log ε|)

= −(log | log a| − log |(lim
ε→0

log ε)|)

=∞.
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2 Existence and Uniqueness of strong solutions

Let (Ω,F , P ) be a probability space, endowed with a �ltration (Ft)t≥0. Let (Wt)t≥0 be a
Ft-Brownian motion taking values in Rm. Consider the following Itô process in Rd:

ηt = η0 +
∫ t

0
es dWs +

∫ t

0
fs ds, η0 ∈ Rd, (2.10)

where (et(ω))t≥0 is an M(d ×m, R)-valued adapted process such that
∫ T

0 ‖es‖
2 ds < +∞

for any T > 0 and (ft(ω))t≥0 is an Rd-valued adapted process such that
∫ T

0 |fs| ds < +∞
for any T > 0.
The following lemma is a particular case of Itô's formula for the square of norm. For a

general formulation of Itô's formula see Theorem 1.3. For completeness of exposition we give
a proof.

Lemma 2.6 (Itô's formula). Let ξt := |ηt|2, t ∈ [0,∞). Then

dξt = 2〈e∗t ηt, dWt〉+ 2〈ηt, ft〉 dt+ ‖et‖2 dt (2.11)

where e∗t denotes the transpose matrix of et. The stochastic contraction (i.e. quadratic

variation) 〈dξt〉 (see the de�nition before Lemma 1.14) is given by

〈dξt〉 = 4|e∗t ηt|2dt. (2.12)

Proof. For the function F : [0, T ]×Rd → R, (t, x) 7→ |x|2 =
∑d

i=1 x
2
i we have the derivatives:

Fx = 2x, Ft = 0 and Fxx = 2 · Id. Thus with the Itô-formula in Theorem 1.3:

|ηt|2 = |η0|2 +
∫ t

0
〈2ηs, esdWs〉+ 〈2ηs, fs〉+

1
2
tr[2ese∗s] ds

= ξ0 +
∫ t

0
2〈ηs, esdWs〉+

∫ t

0
2〈ηs, fs〉+ tr[ese∗s] ds

= ξ0 + 2
∫ t

0
〈e∗sηs, dWs〉+ 2

∫ t

0
〈ηs, fs〉 ds+

∫ t

0
‖es‖2 ds,

where we used the fact, that Q = Id and the calculation below:

tr[(esQ1/2)(esQ1/2)∗] =
d∑
i=1

〈esQ1/2(esQ1/2)∗li, li〉

=
d∑
i=1

〈Q1/2(esQ1/2)∗li, e∗sli〉

=
d∑
i=1

〈Q1/2Q(1/2)∗︸ ︷︷ ︸
=Q1/2

e∗sli, e
∗
sli〉

=
d∑
i=1

〈e∗sli, e∗sli〉︸ ︷︷ ︸
=|e∗s li|2

=
d∑
i=1

〈ese∗sli, li〉 = tr[ese∗s]

= ‖e∗s‖2 = ‖es‖2.
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2.3 Preparing Lemmas

Here {li}di=1 is an orthonormal basic of Rd. To check the second claim we show �rst, that∫ t
0 〈ηs, fs〉ds and

∫ t
0 ‖es‖

2ds are of bounded variation. Since et is continuous by assumption,

we see that
∫ t

0 ‖es‖
2 ds is continuous, too, even continuously di�erentiable with derivative

‖et‖2. Therefore, by Lemma 1.13 we have for t ∈ [0, T ]

var[0,t](
∫ t

0
‖es‖2 ds) =

∫ t

0
‖es‖2 ds <∞,

hence the quadratic variation 〈
∫ t

0 ‖es‖
2 ds〉 = 0. The same result follows from the additivity

property of the integral.
The continuity of

∫ t
0 2〈ηs, fs〉 ds is obvious, since es, fs and Ws are, too. It is even contin-

uously di�erentiable with derivative 2〈ηt, ft〉. Again by Lemma 1.13

var[0,t](
∫ t

0
2〈ηs, fs〉 ds) =

∫ t

0
|2〈ηs, fs〉| ds

≤ 2
∫ t

0
|ηs||fs| ds <∞,

hence the quadratic variation 〈
∫ t

0 2〈ηs, fs〉 ds〉 = 0. Now we apply Lemma 1.14 and get

〈ξ〉t = 〈
∫ t

0
2〈e∗sηs, dWs〉〉 = 4|e∗t ηt|2t,

which completes the proof.

The next two lemmas give us useful upper bounds for E[Φ(ξ(t))] under di�erent assump-
tions on the function Φ and its derivatives. These are due to [FZ05].

Lemma 2.7. Let ρ be a continuous function on [0,+∞) such that ρ ≥ 1. Let Φ be a strictly

positive, C2-function on [0,+∞) satisfying the following conditions

|Φ′(ξ)| ≤ C1Φ(ξ)
ξρ(ξ) + 1

, Φ′′(ξ) ≤ C2Φ(ξ)ρ(ξ)
(ξρ(ξ) + 1)2

, ξ ∈ [0,∞), (2.13)

where C1, C2 are two positive constants. Keeping the notations in Lemma 2.6, assume that

for all t ≥ 0.

‖et‖2 ≤ C3(ξtρ(ξt) + 1), (2.14)

|〈ηt, ft〉| ≤ C4(ξtρ(ξt) + 1), (2.15)

where C3, C4 are two positive constants. Set

K := (C1 + 2C2)C3 + 4C1C4, (2.16)

then the following bound holds uniformly for all t > 0, R > 0

E(Φ(ξt∧τR)) ≤ Φ(|η0|2)eKt, (2.17)

where τR := inf{t > 0|ξt ≥ R} is a stopping time.

If additionally Φ′(ξ) > 0, ξ ∈ [0,+∞), then the result still holds under the weaker (than

(2.15)) assumption

〈ηt, ft〉 ≤ C4(ξtρ(ξt) + 1) (2.18)
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2 Existence and Uniqueness of strong solutions

Proof. We use Itô's formula (Theorem 1.3) with F = Φ and (2.11), (2.12):

Φ(ξt∧τR)− Φ(ξ0) =
∫ t∧τR

0
Φ′(ξs) dξs +

1
2

∫ t∧τR

0
Φ′′(ξs) d〈ξs〉

= 2
∫ t∧τR

0
Φ′(ξs)〈e∗sηs, dWs〉+ 2

∫ t∧τR

0
Φ′(ξs)〈ηs, fs〉 ds

+
∫ t∧τR

0
Φ′(ξs)‖es‖2 ds+

1
2

4
∫ t∧τR

0
Φ′′(ξs)|e∗sηs|2 ds

= I1(t) + I2(t) + I3(t) + I4(t)

In the next steps we estimate the single terms.
(i) Claim: I1(t) is a martingale
Proof of claim (i): Since

I1(t) = 2
∫ t∧τR

0
Φ′(ξs)〈e∗sηs, dWs〉

= 2
∫ t∧τR

0
〈e∗sηs,Φ′(ξs)dWs〉,

it is clearly a local martingale. To prove that I1(t) is indeed a martingale, we need to check
that E[〈I1〉t] <∞ for all t ≥ 0. Let us recall the following fact from [Pro90]. If X is a local
martingale, then X2 − 〈X〉 is a local martingale, too. If in addition E[〈X〉t] < ∞ ∀t ≥ 0
holds, then X is a quadratic integrable martingale. It remains to check the integrability of
〈I1〉t: By [Röc06, Lemma 2.4.4]

〈I1〉t =
∫ t∧τR

0
|Φ′(ξs)|2 · ‖e∗sηs‖2 ds

and hence by (2.13), (2.14) and (2.15)

E[〈I1〉t] ≤ E
[∫ t∧τR

0
(‖e∗s‖ · |ηs| · |Φ′(ξs)|)2 ds

]
≤ E

[∫ t∧τR

0
C3(ξsρ(ξs) + 1)ξs

(
C1Φ(ξs)
ξsρ(ξs) + 1

)2

ds

]

= E

[∫ t∧τR

0
C3C

2
1ξsΦ(ξs)2 1

ξsρ(ξs) + 1
ds

]
≤ C2

1C3E

[∫ t∧τR

0
ξsΦ(ξs)2 1

ξs + 1
ds

]
≤ C2

1C3E

[∫ t

0
Φ(ξs∧τR)2 ds

]
<∞.

The expectation in the last line is �nite because Φ ∈ C2 is uniformly bounded on the interval
[0, R]. M
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2.3 Preparing Lemmas

(ii) Estimate of I2(t). First we observe that

|Φ′(ξs)〈ηs, fs〉| ≤ |Φ′(ξs)| · |〈ηs, fs〉|

≤ C1Φ(ξs)
ξsρ(ξs) + 1

C4(ξsρ(ξs) + 1)

≤ C1C4Φ(ξs),

where we used (2.13) and (2.14). If Φ′ > 0, then we can use here the weaker assumption
(2.18).
Hence, we get the following estimate:

E(I2(t)) = E

[
2
∫ t∧τR

0
Φ′(ξs)〈ηs, fs〉 ds

]
≤ 4C1C4

∫ t∧τR

0
E[Φ(ξs)] ds

≤ 4C1C4

∫ t

0
E[Φ(ξs∧τR)] ds. M

(iii) Estimate I3(t) by direct calculation:

E[I3(t)] ≤ E
[∫ t∧τR

0
|Φ′(ξs)| · ‖es‖2 ds

]
≤ E

[∫ t∧τR

0

C1Φ(ξs)
ξsρ(ξs) + 1

C3(ξsρ(ξs) + 1) ds
]

= E

[∫ t∧τR

0
C1C3Φ(ξs) ds

]
≤ C1C3

∫ t

0
E[Φ(ξs∧τR)] ds. M

(iv) Estimate of I4(t). We observe that by (2.13)

Φ′′(ξs) ≤
C2Φ(ξs)ρ(ξs)
(ξsρ(ξs) + 1)2

≤ C2Φ(ξs)
ξs(ξsρ(ξs) + 1)

,

which holds because of ρ(ξ)
ξρ(ξ)+1 ≤

1
ξ and ρ ≥ 1. Thus with (2.14)

Φ′′(ξs)|e∗sηs|2 ≤
C2Φ(ξs)

ξs(ξsρ(ξs) + 1)
|e∗sηs|2

≤ C2Φ(ξs)
ξs(ξsρ(ξs) + 1)

‖e∗s‖2|ηs|2

≤ C2Φ(ξs)
ξs(ξsρ(ξs) + 1)

ξsC3(ξsρ(ξs) + 1)

≤ C2C3Φ(ξs).
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2 Existence and Uniqueness of strong solutions

This implies the �nal estimate

E[I4] ≤ E
[
2
∫ t∧τR

0
C2C3Φ(ξs) ds

]
≤ 2C2C3

∫ t

0
E[Φ(ξs∧τR)] ds. M

Putting all four parts (i)-(iv) together, we have

E[Φ(ξt∧τR)] = E[Φ(ξ0) + I1 + I2 + I3 + I4]

≤ Φ(ξ0) + 0 + (4C1C4 + C1C3 + 2C2C3︸ ︷︷ ︸
=K

)
∫ t

0
E(Φ(ξs∧τR)) ds

By Gronwall's inequality we get that for all t ≥ 0 and R > 0

E[Φ(ξt∧τR)] ≤ Φ(ξ0)eKt,

which completes the proof of the lemma.

Lemma 2.8. Let r be a continuous function de�ned on a neighborhood of zero, say (0, c0],
such that r ≥ 1. Let Φ be a strictly positive, C2-function de�ned on [0, c0]. Suppose that

there exists δ > 0 such that for ξ ∈ [0, c0]

|Φ′(ξ)| ≤ C1Φ(ξ)
ξr(ξ) + δ

, Φ′′(ξ) ≤ C2Φ(ξ)r(ξ)
(ξr(ξ) + δ)2

. (2.19)

Keeping the notations in Lemma 2.6, suppose that |η0|2 < c0. De�ne the stopping time

τ = inf{t > 0|ξt ≥ c0}.

Assume that for t < τ ,

‖et‖2 ≤ C3(ξtr(ξt) + δ), (2.20)

|〈ηt, ft〉| ≤ C4(ξtr(ξt) + δ). (2.21)

Let

K = (C1 + 2C2)C3 + 4C1C4, (2.22)

then

E[Φ(ξt∧τ )] ≤ Φ(|η0|2)eKt, for any t ≥ 0.

If additionally Φ′(ξ) > 0 for all ξ ∈ [0, c0], then in (2.21) it su�ces to assume

〈ηt, ft〉 ≤ C4(ξtr(ξt) + δ) (2.23)
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Proof. Using Itô's formula with F = Φ and according to (2.11) and (2.12):

Φ(ξt∧τ ) = Φ(ξ0) +
∫ t∧τ

0
Φ′(ξs) dξs +

1
2

∫ t∧τ

0
Φ′′(ξs) d〈ξs〉

= Φ(ξ0) + 2
∫ t∧τ

0
Φ′(ξs)〈e∗sηs, dWs〉+ 2

∫ t∧τ

0
Φ′(ξs)〈ηs, fs〉 ds

+
∫ t∧τ

0
Φ′(ξs)‖es‖2 ds+ 2

∫ t∧τ

0
Φ′′(ξs)|e∗sηs|2 ds

= Φ(ξ0) + I1(t) + I2(t) + I3(t) + I4(t).

By assumption (2.20), for any s < τ ,

|e∗sηs|2 ≤ ‖e∗s‖2|ηs|2 ≤ C3(ξsr(ξs) + δ)ξs.

According to (2.19), for any s < τ and 0 ≤ ξs < c0, we have

|Φ′(ξs)e∗sηs|2 ≤ |Φ′(ξs)|2‖e∗s‖2|ηs|2

≤
∣∣∣∣ C1Φ(ξs)
ξsr(ξs) + δ

∣∣∣∣2C3(ξsr(ξs) + δ)ξs

= C2
1C3Φ(ξs)2 ξs

ξsr(ξs) + δ

≤ C2
1C3Φ(ξs)2 <∞,

where we used that Φ ∈ C2[0, c0]. As in the previous lemma, we thus get that I1 is a
martingale and E[I1] = 0. With the assumptions (2.19), (2.20) and (2.21) we obtain

|Φ′(ξs)〈ηs, fs〉| ≤ |Φ′(ξs)| · |〈ηs, fs〉| ≤
C1Φ(ξs)
ξsr(ξs) + δ

C4(ξsr(ξs) + δ) = C1C4Φ(ξs),

|Φ′(ξs)| · ‖es‖2 ≤
C1Φ(ξs)
ξsr(ξs) + δ

C3(ξsr(ξs) + δ) = C1C3Φ(ξs)

and

Φ′′(ξs)|e∗sηs|2 ≤ Φ′′(ξs)‖es‖2|ηs|2

≤ C2Φ(ξs)r(ξs)
(ξsr(ξs) + δ)2

C3(ξsr(ξs) + δ)ξs

= C2C3Φ(ξs)
r(ξs)ξs

ξsr(ξs) + δ︸ ︷︷ ︸
<1

≤ C2C3Φ(ξs).

If additionally Φ′ > 0 then by (2.23) we have

Φ′(ξs)〈ηs, fs〉 ≤ C1C4Φ(ξs).

Let K be the constant de�ned in (2.22). Then we get as in Lemma 2.7

E[Φ(ξt∧τ )] ≤ Φ(|η0|2) +K

∫ t

0
E[Φ(ξs∧t)] ds.

Finally, by Gronwall's inequality, it follows that E[Φ(ξt∧τ )] ≤ Φ(|η0|2)eKt for all t > 0.
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2 Existence and Uniqueness of strong solutions

The next Lemma will be used in the proof of Theorem 3.1.

Lemma 2.9. Keeping the same notation, assume that the coe�cients e and f are bounded,

namely

‖et(ω)‖ ≤ A, |ft(ω)| ≤ B uniformly for all t ∈ [0,∞) and ω ∈ Ω.

Assume η0 = 0. Then for any T > 0 and R >
√
dBT , we have

P

(
sup

0≤s≤T
|ξs| ≥ R2

)
≤ 2de−(R−

√
dBT )2/2dA2T . (2.24)

This is a classical result, its proof can be found in [Str84, p. 81]. For the reader's
convenience, we present a detailed proof adapted to our concrete setup.

Proof. We have

P ( sup
0≤s≤T

|ξs| ≥ R2) = P ( sup
0≤s≤T

|ηs| ≥ R)

= P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
es dWs +

∫ t

0
fs ds

∣∣∣∣ ≥ R
)

since η0 = 0 and

ηt =
∫ t

0
es dWs +

∫ t

0
fs ds.

Let

ζ̄t := ηt −
∫ t

0
fs ds =

∫ t

0
es dWs.

(i) Claim: The process

exp
(
〈θ, ζ̄t〉 −

1
2

∫ t

0
|e∗sθ|2 ds

)
= exp

(∫ t

0
〈θ, es dWs〉 −

1
2

∫ t

0
|e∗sθ|2 ds

)
(2.25)

is a martingale for all θ ∈ Rd.
We will show, that (2.25) is an exponential martingale. De�ne Yt :=

∫ t
0 〈θ, es dWs〉 =∫ t

0 〈e
∗
sθ, dWs〉, which is obviously a local martingale. By [Röc06, Lemma 2.4.4]

〈Yt〉 =
∫ t

0
|e∗sθ|2 ds.

The Novikov criterium (Theorem 1.12) is ful�lled:

E

[
exp(

1
2

∫ t

0
|e∗sθ|2︸ ︷︷ ︸
≤‖e∗s‖2|θ|2

ds)
]
≤ E

[
exp(

1
2

∫ t

0
‖e∗s‖2 ds)

]
< e

1
2
tA2
.

Therefore exp(Yt − 1
2〈Yt〉) = exp(θ

∫ t
0 es dWs − 1

2

∫ t
0 |e
∗
sθ|2 ds) is a martingale. M
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(ii) Let Sd−1 be the d− 1-dimensional sphere in Rd. For �xed θ ∈ Sd−1 and for all λ > 0
we obtain

P ( sup
0≤t≤T

〈θ, ηt〉 ≥ R)

= P ( sup
0≤t≤T

〈θ, ηt〉 −BT ≥ R−BT )

≤ P ( sup
0≤t≤T

〈θ, ηt〉 − 〈θ,
∫ t

0
fs ds〉 ≥ R−BT )

= P ( sup
0≤t≤T

〈θ, ζ̄t〉 ≥ R−BT )

= P ( sup
0≤t≤T

λ〈θ, ζ̄t〉 ≥ λ(R−BT ))

= P

(
sup

0≤t≤T

(
λ〈θ, ζ̄t〉 −

λ2

2

∫ t

0
|e∗sθ|2 ds

)
≥ λ(R−BT )− λ2

2

∫ t

0
|e∗sθ|2 ds︸ ︷︷ ︸

≤
∫ T
0 A2 ds=A2T

)

≤ P

(
sup

0≤t≤T

(
λ〈θ, ζ̄t〉 −

λ2

2

∫ t

0
|e∗sθ|2 ds

)
≥ λ(R−BT )− λ2A2T

2

)

= P

(
sup

0≤t≤T
exp

(
λ〈θ, ζ̄t〉 −

λ2

2

∫ t

0
|e∗sθ|2 ds

)
≥ exp

(
λ(R−BT )− λ2A2T

2

))
.

Since

Zλ,t := exp(λYt −
λ2

2
〈Yt〉) = exp

(
λ〈θ, ζ̄t〉 −

λ2

2

∫ t

0
|e∗sθ|2 ds

)
is a martingale, we can use Doob's maximal inequality and get,

P
(

sup
0≤s≤T

θηt ≥ R
)
≤ exp

(
−λ(R−BT ) +

λ2A2T

2

)
, (2.26)

keeping in mind that E[Zλ,t] = 1. Taking λ = R−BT
A2T

, we arrive at

exp
(
−λ(R−BT ) +

λ2A2T

2

)
= exp

(
−R−BT

A2T
(R−BT ) +

(R−BT
A2T

)2A2T

2

)

= exp
(
−(R−BT )2

A2T
+

(R−BT )2

2A2T

)
= exp

(
−(R−BT )2

2A2T

)
. (2.27)

Let {ei}di=1 be an ONB of Rd. Then we have

{ sup
0≤s≤T

|ηs| ≥ R} =

{
sup

0≤s≤T

d∑
i=1

〈ηs, ei〉2 ≥ R2

}

⊂

{
d∑
i=1

sup
0≤s≤T

〈ηs, ei〉2 ≥ R2

}
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2 Existence and Uniqueness of strong solutions

⊂
d⋃
i=1

[{
sup

0≤s≤T
〈ηs, ei〉 ≥

R√
d

}
∪

{
sup

0≤s≤T
〈ηs, ei〉 ≤ −

R√
d

}]
. (2.28)

Hence

P
(

sup
0≤s≤T

|ηs| ≥ R
)

≤
d∑
i=1

[
P

(
sup

0≤s≤T
〈ηs, ei〉 ≥

R√
d

)
+ P

(
sup

0≤s≤T
〈ηs, ei〉 ≤ −

R√
d

)]

≤
d∑
i=1

[
sup

1≤i≤d
P

(
sup

0≤s≤T
〈ηs, ei〉 ≥

R√
d

)
+ sup

1≤i≤d
P

(
sup

0≤s≤T
〈ηs, ei〉 ≤ −

R√
d

)]

≤ d

[
sup

θ∈Sd−1

P

(
sup

0≤s≤T
〈ηs, θ〉 ≥

R√
d

)
+ sup
θ∈Sd−1

P

(
sup

0≤s≤T
〈ηs, θ〉 ≤ −

R√
d

)]

≤ 2d sup
θ∈Sd−1

P

(
sup

0≤s≤T
〈θ, ηs〉 ≥

R√
d

)
.

Putting (2.26), (2.27) and (2.28) together we prove the claim:

P ( sup
0≤s≤T

|ηs| ≥ R) ≤ 2d sup
θ∈Sd−1

P

(
sup

0≤s≤T
〈θ, ηs〉 ≥

R√
d

)

≤ 2d sup
θ∈Sd−1

exp

−
(
R√
d
−BT

)2

2A2T


= 2d exp

(
−(R−

√
dBT )2

2dA2T

)
.

2.4 Proof of non-explosion

The aim of this section is to prove Theorem A. Therefore we recall our setup. Let σ :
[0, T ]×Rd → R

d ⊗Rm and b : [0, T ]×Rd → R
d be continuous functions. Let (Xt,Wt) be

a weak solution of the Itô stochastic di�erential equation

dXt = σ(t,Xt) dWt + b(t,Xt) dt, X0 = x0 ∈ Rd, (2.29)

up to the explosion time ζ. Such solution exists by Theorem 2.1. We need to show that
ζ = +∞.

Proof of Theorem A. Without loss of generality we may always assume that ρ ≥ 1, see
Remark 2.2 (ii). Let us de�ne the functions

Ψ(ξ) :=
∫ ξ

0

ds

sρ(s) + 1
and Φ(ξ) := eΨ(ξ), ξ ≥ 0.
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2.4 Proof of non-explosion

We calculate their derivatives:

Φ′(ξ) = eΨ(ξ)Ψ′(ξ) = Φ(ξ)
d

dξ

∫ ξ

0

ds

sρ(s) + 1
= Φ(ξ)

1
ξρ(ξ) + 1

and

Φ′′(ξ) =
Φ′(ξ)(ξρ(ξ) + 1)− Φ(ξ)(ξρ′(ξ) + ρ(ξ))

(ξρ(ξ) + 1)2
=

Φ(ξ)(1− ξρ′(ξ)− ρ(ξ))
(ξρ(ξ) + 1)2

.

This shows, that Φ is in C2 and it's clear, that Φ and Φ′ are strictly positive. Since ρ ≥ 1
and ρ obeys conditions (2.3), (2.4), the following estimate holds:

|1− ρ(ξ)− ξρ′(ξ)| ≤ |1− ρ(ξ)|︸ ︷︷ ︸
≤ρ(ξ)

+ |ξρ′(ξ)|︸ ︷︷ ︸
≤C̃ρ(ξ)

≤ (1 + C̃)ρ(ξ) = C1ρ(ξ)

So we have

Φ′′(ξ) ≤ C1
Φ(ξ)ρ(ξ)

(ξρ(ξ) + 1)2
for all ξ ≥ 0.

This means that the conditions in (2.13) are satis�ed. Let now ηt := Xt, ξt := |ηt|2 according
to the notation in Lemma 2.7. Then, by comparison of (2.29) and (2.10) we have et = σ(t,Xt)
and ft = b(t,Xt). By hypothesis (H1),

‖et‖2 ≤ C(ξtρ(ξt) + 1), 〈ft, ηt〉 ≤ C(ξtρ(ξt) + 1), t ∈ [0,∞).

So the conditions in (2.14) and (2.18) are ful�lled, too. Now we de�ne the stopping time

τR := inf{t > 0|ξt ≥ R}, R > 0.

It is clear, that τR tends to the explosion time ζ as R → +∞. Now we can use Lemma 2.7
which gives us the existence of a constant C2 > 0 such that

E[Φ(ξt∧τR)] ≤ Φ(ξ0)eC2t.

Thus, employing the continuity of ξt, we have for every t > 0, R > 0,

E[1(ζ≤t)Φ(R)] ≤ E[1(ζ≤t)Φ(ξt∧τR)] ≤ Φ(ξ0)eC2t

Letting R → ∞ we have by the condition (2.5) that Φ(+∞) = +∞. Hence, P (ζ ≤ t) = 0
for any t > 0 which implies P (ζ = +∞) = 1.

Let Xt(x0) be a solution of SDE (2.29) with initial value x0.

Theorem 2.10. Under the hypothesis of Theorem A but with

|〈x, b(t, x)〉| ≤ C(|x|2ρ(|x|2) + 1)

instead of the second condition in (H1) we have

lim
|x0|→+∞

|Xt(x0)| = +∞ in probability, (2.30)

that means that lim|x0|→∞ P (|Xt(x0)| ≥ R) = 1 for all R > 0.
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2 Existence and Uniqueness of strong solutions

Proof. Let Ψ be the same as in the proof of Theorem A, that is Ψ(ξ) :=
∫ ξ

0
ds

sρ(s)+1 . The
function Φ now is de�ned by

Φ(ξ) := e−Ψ(ξ).

We see that Φ is a decreasing function (because Ψ is increasing) with the derivatives

Φ′(ξ) = − Φ(ξ)
ξρ(ξ) + 1

< 0, |Φ′(ξ)| = Φ(ξ)
ξρ(ξ) + 1

,

Φ′′(ξ) = −Φ′(ξ)(ξρ(ξ) + 1)− Φ(ξ)(ρ(ξ) + ξρ′(ξ))
(ξρ(ξ) + 1)2

=
Φ(ξ)(1 + ρ(ξ) + ξρ′(ξ))

(ξρ(ξ) + 1)2
.

Because of ρ ≥ 1 and condition (2.4) we have

1︸︷︷︸
≤ρ(ξ)

+ρ(ξ) + ξρ′(ξ)︸ ︷︷ ︸
≤Cρ(ξ)

≤ ρ(ξ)(C + 2).

Thus,

Φ′′(ξ) ≤ C1
Φ(ξ)ρ(ξ)

(ξρ(ξ) + 1)2
,

with C1 = C+2 > 0. Hence, the conditions in (2.13) are satis�ed. Let R,M be two positive
constants such that R < |x0| < M . De�ne

τ̂R := inf{t > 0||Xt(x0)| ≤ R} and τM := inf{t > 0||Xt(x0)| ≥M}.

By Theorem A we know that τM ↑ +∞ as M ↑ +∞. Let ηt = Xt∧τ̂R , which is an Itô
process. According to notations in Lemma 2.6, we have

es(ω) = 1{τ̂R≥s}σ(s,Xs), fs(ω) = 1{τ̂R≥s}b(s,Xs).

By hypothesis (H1) it follows

‖es‖2 ≤ C(ξsρ(ξs) + 1), 〈ηs, fs〉 ≤ C(ξsρ(ξs) + 1).

Using Lemma 2.7 we have

E[Φ(ξt∧τM )] ≤ Φ(|x0|2)eCt.

Letting M →∞ and repeating the arguments from the proof of Theorem A, we get

E[Φ(|Xt∧τ̂R(x0)|2)] ≤ Φ(|x0|2)eCt. (2.31)

Because of Xt∧τ̂R = Xτ̂R on the set {t ≥ τ̂R} and |Xτ̂R | ≤ R, we have |Xt∧τ̂R |2 ≤ R2. Since
Φ is decreasing, it follows Φ(|Xt∧τ̂R |2) ≥ Φ(R2). Combining this with (2.31) we get

P (τ̂R ≤ t)Φ(R2) =
∫
1{τ̂R≤t}Φ(R2) dt ≤

∫
1{τ̂R≤t}Φ(|Xτ̂R |

2) dt

≤
∫

Φ(|Xt∧τ̂R |
2) dt = E[Φ(|Xt∧τ̂R |

2)] ≤ Φ(|x0|2)eCt.
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2.5 Proof of pathwise uniqueness and non contact property

Therefore for every �xed R,

P ( inf
0≤s≤t

|Xs(x0)| ≤ R) ≤ P (τ̂R ≤ t) ≤
Φ(|x0|2)
Φ(R2)

eCt

= eCte−(Ψ(|x0|2)−Ψ(R2))

≤ eCt exp

{
−
∫ |x0|2

R2

ds

sρ(s) + 1︸ ︷︷ ︸
→+∞

}

→ 0

when |x0| tends to +∞. Then convergence in probability follows.

2.5 Proof of pathwise uniqueness and non contact property

In this section we will prove Theorem B and C. The proofs mainly follow the idea of the
paper of Fang and Zhang [FZ05]. Afterwards, we will prove Theorem 2.11 whose arguments
of proof will be used for the Smoluchowski-Kramer approximation (see Section 4.2).

Proof of Theorem B. Without loss of generality we can assume that the explosion time ζ of
SDE (2.29) is in�nite, otherwise we have the pathwise uniqueness up to the explosion time.
Let Xt and Yt be two solutions of (2.29) having the same initial data. Consider the deviation
process ηt = Xt − Yt and ξt = |ηt|2, t ∈ [0,∞). According to the notations in Lemma 2.6,

et = σ(t,Xt)− σ(t, Yt), ft = b(t,Xt)− b(t, Yt).

Let τ = inf{t > 0|ξt ≥ c2
0}. By hypothesis (H2), for δ > 0 and t ≤ τ

‖et‖2 = ‖σ(t,Xt)− σ(t, Yt)‖2 ≤ C|Xt − Yt|2r(|Xt − Yt|2)
= Cξtr(ξt) ≤ C(ξtr(ξt) + δ),

and

〈ηt, ft〉 = 〈Xt − Yt, b(t,Xt)− b(t, Yt)〉
≤ C|Xt − Yt|2r(|Xt − Yt|2) = Cξtr(ξt) ≤ C(ξtr(ξt) + δ),

where r is de�ned in Theorem B. According to condition (2.6) on the function r, we assume
that r(ξ) ≥ 1 for all ξ ∈ (0, c0]. Otherwise we choose a smaller c0. We de�ne for δ ≥ 0

Ψδ(ξ) =
∫ ξ

0

ds

sr(s) + δ
and Φδ(ξ) = eΨδ(ξ).

Condition (2.8) on r leads to

Φ0(ξ) = eΨ0(ξ) = exp
(∫ ξ

0

ds

sr(s) + 0

)
= e+∞ = +∞ ∀ξ > 0. (2.32)
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2 Existence and Uniqueness of strong solutions

Calculation as in the proof of Theorem A implies

Φ′δ(ξ) =
Φδ(ξ)

ξr(ξ) + δ
> 0, Φ′′δ (ξ) = Φδ(ξ)

1− r(ξ)− ξr′(ξ)
(ξr(ξ) + δ)2

.

Conditions (2.6) and (2.7) ensures that there exists a large constant C1 > 0 such that

|1− r(ξ)− ξr′(ξ)| ≤ |1− r(ξ)|+ |ξr′(ξ)| ≤ C1r(ξ), ξ ∈ (0, c0].

Therefrom it follows that for ξ ∈ (0, c0]

Φ′′δ (ξ) ≤ C1
Φδ(ξ)r(ξ)

(ξr(ξ) + δ)2
.

The conditions in (2.19) are ful�lled. Now the Lemma 2.8 tells us that there exists a constant
C2 > 0 such that for any t > 0

E[Φδ(ξt∧τ )] ≤ Φδ(|η0|2)︸ ︷︷ ︸
=Φδ(0)=e0

eC2t = eC2t.

Letting δ ↓ 0 and applying Fatou's lemma we have

lim inf
δ↓0

E[Φδ(ξt∧τ )] ≥ E[lim inf
δ↓0

Φδ(ξt∧τ )]

= E

[
exp

(
lim
δ↓0

∫ ξt∧τ

0

1
sr(s) + δ

ds

)]
= E

[
exp

(∫ ξt∧τ

0

1
sr(s)

ds

)]
. (2.33)

In regard of (2.32), this implies that for any given t,

ξt∧τ = 0 almost surely. (2.34)

Recall that ηt and hence ξt is continuous in t. Hence, by continuity ξτ = 0 on {τ < ∞}
P -a.s. But again by continuity ξτ ≥ c2

0. Hence P (τ <∞) = 0.

Proof of Theorem C. Without loss of generality we may assume |x0 − y0| < c0/2. Let 0 <
ε < |x0 − y0| and de�ne the random times

τ̂ε := inf{t > 0||Xt(x0)−Xt(y0)| ≤ ε}, τ̂ := inf{t > 0|Xt(x0) = Xt(y0)}. (2.35)

It's clear that τ̂ε ↑ τ̂ as ε ↓ 0. Let

τ := inf
{
t > 0

∣∣∣∣ |Xt(x0)−Xt(y0)| ≥ 3
4
c0

}
.

Consider

ηt = Xt∧τ̂ε(x0)−Xt∧τ̂ε(y0) and ξt = |ηt|2. (2.36)
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2.5 Proof of pathwise uniqueness and non contact property

Again we use the notation from Lemma 2.6:

et = 1τ̂ε≥t(σ(t,Xt(x0))− σ(t,Xt(y0))), ft = 1τ̂ε≥t(b(t,Xt(x0))− b(t,Xt(y0))).

By hypothesis (H2), it follows for t < τ and δ > 0,

‖et‖2 ≤ Cξtr(ξt) ≤ C(ξtr(ξt) + δ)

and

|〈ηt, ft〉| = |〈ηt,1τ̂ε≥t(b(t,Xt(x0))− b(t,Xt(y0)))〉|
≤ |〈Xt∧τ̂ε(x0)−Xt∧τ̂ε(y0), b(t ∧ τ̂ε, Xt∧τ̂ε(x0))− b(t ∧ τ̂ε, Xt∧τ̂ε(y0))〉|
≤ Cξtr(ξt)
≤ C(ξtr(ξt) + δ).

We de�ne the functions

Ψδ(ξ) :=
∫ c0

ξ

ds

sr(s) + δ
and Φδ := eΨδ(ξ)

for ξ ≤ c0. Like as in Theorem B we have

Φ′δ(ξ) < 0, |Φ′δ(ξ)| = |Φδ(ξ)Ψ′δ(ξ)| = Φδ(ξ)
1

ξr(ξ) + δ

and for a constant C1 large enough

Φ′′δ (ξ) = Φδ(ξ)
1 + r(ξ) + ξr′(ξ)

(ξr(ξ) + δ)2
≤ C1

Φδ(ξ)r(ξ)
(ξr(ξ) + δ)2

, ξ ∈ [0, c0].

So the conditions in (2.19) and (2.20) are ful�lled and we can apply Lemma 2.8 to get

E[Φδ(ξt∧τ )] ≤ Φδ(ξ0)eC2t,

for some C2 > 0 and for all t > 0. Letting δ ↓ 0, we get by Fatou's lemma

E[Φ0(ξt∧τ )] = E[lim inf
δ↓0

Φδ(ξt∧τ )]

≤ lim inf
δ↓0

E[Φδ(ξt∧τ )] ≤ lim
δ↓0

E[Φδ(ξt∧τ )]

≤ lim
δ↓0

Φδ(ξ0)eC2t = Φ0(ξ0)eC2t.

Writing out ξt we have

E[Φ0(|Xt∧τ̂ε∧τ (x0)−Xt∧τ̂ε∧τ (y0)|2)] ≤ Φ0(ξ0)eC2t.

On the subset {τ̂ε < t ∧ τ} we have by the de�nition (2.35) of τ̂ε

|Xt∧τ̂ε∧τ (x0)−Xt∧τ̂ε∧τ (y0)| = |Xτ̂ε(x0)−Xτ̂ε(y0)| = ε.
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2 Existence and Uniqueness of strong solutions

Therefore

P (τ̂ε < t ∧ τ)Φ0(ε2) = P (τ̂ε < t ∧ τ)Φ0

(
|Xτ̂ε(x0)−Xτ̂ε(y0)|2

)
≤ E[Φ0(|Xt∧τ̂ε(x0)−Xt∧τ̂ε(y0)|2)]

≤ Φ0(ξ0)eC2t.

Since ξ0 > ε2, the latter implies that

P (τ̂ε < t ∧ τ) ≤ Φ0(ξ0)
Φ0(ε2)

eC2t

= exp
(
−
∫ ξ0

ε2

1
sr(s)

ds

)
eC2t

−→ 0, as ε ↓ 0,

because of the condition (2.8) on r. Since τ̂ε ↑ τ̂ we have that P (τ̂ < t ∧ τ) = 0 for all
t. Letting t → ∞ we get P (τ̂ < τ) = 0. So, we see that ξt is positive almost surely on
the interval [0, τ ]. This means that the deviation ξt �rst becomes bigger than 3c0

4 instead of
becoming zero almost surely. Now de�ne T0 := 0 and

T1 := τ, T2 = inf
{
t > 0

∣∣∣|Xt(x0)−Xt(y0)| ≤ c0

2

}
and generally

T2n := inf
{
t > T2n−1

∣∣∣|Xt(x0)−Xt(y0)| ≤ c0

2

}
,

T2n+1 := inf
{
t > T2n

∣∣∣∣|Xt(x0)−Xt(y0)| ≥ 3c0

4

}
.

By de�nition Tn → ∞ as n → ∞. By pathwise uniqueness of solutions by Theorem B,
X enjoys the strong Markovian property, cf. [KS91, Theorem. 4.20, p.322]. By de�nition
ξt is positive on the interval [T2n−1, T2n]. With help of the strong Markovian property, we
start again from T2n and apply the same arguments as in the �rst part of the proof. This
shows that ξt is positive almost surely also on the interval [T2n, T2n+1]. So the proof is
completed.

Theorem 2.11. Under the same hypothesis as in Theorem B, for any ε > 0, we have

lim
y0→x0

P ( sup
0≤s≤t

|Xs(x0)−Xs(y0)| > ε) = 0. (2.37)

Proof. Let x0, y0 be such that |x0 − y0| < ε < c0, where c0 is the parameter in de�nition of
function r in Theorem B. Without loss of generality let c0 < 1 and de�ne

ξt := |Xt(y0)−Xt(x0)|2 and τ(x0, y0) := inf{t > 0|ξt > ε2}.

Let Φδ and Ψδ be de�ned like as in the proof of Theorem B:

Φδ(ξ) := exp
(∫ ξ

0

1
sr(s) + δ

ds

)
, Ψδ(ξ) :=

∫ ξ

0

ds

sr(s) + δ
, ξ ∈ (0,+∞).
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It is important to note that Φ′δ(ξ) > 0. Similarly to the proof of Theorem B we can use
Lemma 2.8, which gives us a constant C > 0 such that

E[Φδ(ξt∧τ(x0,y0))] ≤ Φδ(ξ0)eCt for all t > 0 and δ > 0.

Let δ = |x0 − y0|, then from the above inequality

E[Φδ(ξt∧τ(x0,y0))] ≤ eΨδ(δ
2)eCt

≤ eδeCt. (2.38)

In the last line we used the estimate∫ δ2

0

1
sr(s) + δ

ds ≤ δ2 sup
s∈[0,δ2]

1
sr(s) + δ

≤ δ.

Taking into account that ξt∧τ = ξτ > ε2 on the set {τ < t} and that Φδ is increasing, we
obtain from (2.38)

P (τ(x0, y0) < t)Φδ(ε2) ≤ P (τ(x0, y0) < t)Φδ(ξt∧τ(x0,y0))

≤ E[Φδ(ξt∧τ(x0,y0))]

≤ eδeCt.

Therefore

P ( sup
0≤s≤t

|Xs(x0)−Xs(y0)| > ε) = P ( sup
0≤s≤t

√
ξs > ε) = P ( sup

0≤s≤t
ξs > ε2)

= P (τ(x0, y0) < t)

≤ eδeCt 1
Φδ(ε2)

= eδeCt exp

(
−
∫ ε2

0

1
sr(s) + δ

ds

)
−→
δ→0

0,

which completes the proof.
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3 Continuous dependence of initial data

In this chapter we are interested in continuous modi�cation of a solution Xt(x0) of the
stochastic di�erential equation (2.29). Therefore, in the �rst section, we construct the strong
solution via Euler approximation. In the second section we will prove some technical lemmas
which thereafter will be used to prove Theorem D in Section 3.3.

3.1 Euler approximation

We assume that for all t ≥ 0 and x, y ∈ Rd, 0 ≤ |x − y| ≤ c0, where c0 > 0 is a small
constant,

‖σ(t, x)− σ(t, y)‖2 ≤ C|x− y|2 log 1
|x−y| ,

|b(t, x)− b(t, y)| ≤ C|x− y| log 1
|x−y| .

(3.1)

Then (H2) holds and by Theorem B the stochastic di�erential equation (2.29) obeys a path-
wise unique solution up to the explosion time ζ. We now construct the strong solution
directly via uniform Euler approximation under the additional assumption that the coe�-
cients σ and b are bounded.

Theorem 3.1. Let σ and b satisfy the condition (3.1) and be bounded:

‖σ(t, x)‖ ≤ A, |b(t, x)| ≤ B for all x ∈ Rd and t > 0.

Fix an initial data x0 ∈ Rd. For n ≥ 1 de�ne (Xn(t))n≥1 by Xn(0) = x0 and

Xn(t) := Xn(k2−n) + σ(k2−n, Xn(k2−n))(Wt −Wk2−n) + b(k2−n, Xn(k2−n))(t− k2−n)

for k2−n ≤ t ≤ (k + 1)2−n. Then for any T > 0, almost surely, Xn(t) converges uniformly

in t ∈ [0, T ] to the solution Xt of stochastic di�erential equation (2.29).

Proof. De�ne

φn(t) := k2−n for t ∈ [k2−n, (k + 1)2−n), k ≥ 0.

Then by de�nition of the stochastic integral we have∫ t

φn(t)
σ(k2−n, Xn(φn(s)))︸ ︷︷ ︸

=const ∀s∈[φn(t),t]

dWs = σ(k2−n, Xn(φn(t)))(Wt −Wφn(t)).
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3 Continuous dependence of initial data

By iteration over k, Xn(t) can be expressed by

Xn(t) = Xn

(
k2−n

)
+ σ

(
k2−n, Xn(k2−n)

)
(Wt −Wk2−n) + b

(
k2−n, Xn(k2−n)

)
(t− k2−n)

= Xn

(
k2−n

)
+
∫ t

φn(t)
σ(k2−n, Xn(φn(s))) dWs +

∫ t

φn(t)
b(k2−n, Xn(φn(s))) ds

= Xn

(
(k − 1)2−n

)
+
∫ k2−n

(k−1)2−n
σ((k − 1)2−n, Xn(φn(s))) dWs

+
∫ k2−n

(k−1)2−n
b((k − 1)2−n, Xn(φn(s))) ds

+
∫ t

k2−n
σ(k2−n, Xn(φn(s))) dWs +

∫ t

k2−n
b(k2−n, Xn(φn(s))) ds

= . . . = Xn(0) +
∫ t

0
σ̄(s,Xn(φn(s))) dWs +

∫ t

0
b̄(s,Xn(φn(s))) ds, (3.2)

where we set σ̄(s, x) := σ(k2−n, x) and b̄(s, x) := b(k2−n, x) for k2−n ≤ s ≤ (k + 1)2−n.
Now let 1 < a <

√
2. Introduce the stopping time

τn = inf{t > 0
∣∣|Xn(t)−Xn(φn(t))| ≥ a−n }.

For t ∈ [k2−n, (k + 1)2−n), by expression (3.2), we have

Xn(t)−Xn(φn(t))

=
∫ t

0
σ̄(s,Xn(φn(s))) dWs +

∫ t

0
b̄(s,Xn(φn(s))) ds

−
∫ φn(t)

0
σ̄(s,Xn(φn(s))) dWs −

∫ φn(t)

0
b̄(s,Xn(φn(s))) ds

=
∫ t

0
σ̄(s,Xn(φn(s))) dWs −

∫ φn(t)

0
σ̄(s,Xn(φn(s))) dWs +

∫ t

k
2n

b̄(s,Xn(φn(s))) ds

=
∫ t

k
2n

σ̄(Xn(s, φn(s))) dWs +
∫ t

k
2n

b̄(s,Xn(φn(s))) ds

=
∫ t− k

2n

0
σ̄
( k

2n
+ s,Xn

(
φn(

k

2n
+ s)

))
d(W k

2n
+s −W k

2n︸ ︷︷ ︸
=:W̃s

)

+
∫ t− k

2n

0
b̄
( k

2n
+ s,Xn

(
φn(

k

2n
+ s)

))
ds.

Then we apply Lemma 2.9 with ‖et(ω)‖ = ‖σ̄(t, x)‖ ≤ A and |ft(ω)| = |b̄(t, x)| ≤ B.
Choosing T = 1

2n and R = 1
an ( 2

a > 1, so R >
√
dBT holds for n large enough), we get

P

 sup
k
2n
≤t< (k+1)

2n

|Xn(t)−Xn(φn(t))| ≥ R


≤ 2de−(R−

√
dBT )2/2dA2T
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3.1 Euler approximation

= 2d exp

(
−(a−n −

√
dB2−n)2

2dA22−n

)

= 2d exp

(
−(a−n −

√
dB2−n)22n

2dA2

)

= 2d exp
(
−(

2
a2

)n
(

1−
√
dB(

2
a

)−n
)2
/2dA2

)
.

The last equality holds because of:

(
2
a2

)n
[
1−
√
dB(

2
a

)−n
]2

=
2n

a2n

(
1−
√
dB(

2
a

)−n + dB2(
2
a

)−2n
)

=
2n

a2n
−
√
dB

an

a2n
+ dB2 2n

22n

=
2n

a2n
−
√
dB

1
an

+ dB22−n

= 2n
(

1
a2n
−
√
dB

1
an2n

+ dB22−2n

)
= 2n

(
a−n −

√
dB2−n

)2
.

Let c = 2/a2, which is strictly bigger than 1 (cf. the above de�nition of a). Therefore we
have for large n,

P

 sup
k
2n
≤t< (k+1)

2n

|Xn(t)−Xn(φn(t))| ≥ a−n


≤ 2d exp
(
−cn(1−

√
dB(

2
a

)−n)2/2dA2

)
≤ 2d exp

(
−cn/4dA2

)
,

where the last inequality holds because 2
a > 1 and hence ( 2

a)−n → 0 as n → ∞. Therefore,

the term (1−
√
dB( 2

a)−n)2 → 1 as n→∞, so it is in especially bigger than 1
2 . On the other

hand, we have for integer T > 0

P (τn ≤ T ) = P

(
inf
t>0
{|Xn(t)−Xn(φn(t))| ≥ a−n} ≤ T

)
= P

(
sup

0<t≤T
|Xn(t)−Xn(φn(t))| ≥ a−n

)

= P

 sup
k∈N

0<k≤T2n

sup
k−1
2n

<t≤ k
2n

|Xn(t)−Xn(φn(t))| ≥ a−n


= P

 ⋃
k∈N

0<k≤T2n

 sup
k−1
2n

<t≤ k
2n

|Xn(t)−Xn(φn(t))| ≥ a−n
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3 Continuous dependence of initial data

≤
2nT∑
k=1

P

 sup
k−1
2n

<t≤ k
2n

|Xn(t)−Xn(φn(t))| ≥ a−n


≤ T2n2d exp
(
−cn/4dA2

)
.

We know that cn

(n+1) log 2+log Td →∞ when n→∞. Therefore,

cn

(n+ 1) log 2 + log Td
≥ 8dA2

⇔ cn

8dA2
≥ log(2n+1Td)

⇔ exp
(

cn

8dA2

)
≥ 2n+1Td

⇔ exp
(
− cn

8dA2

)
exp

(
cn

4dA2

)
≥ 2n+1Td

⇔ exp
(
− cn

8dA2

)
≥ 2nT2d exp

(
− cn

4dA2

)
.

Using this with the inequality above we arrive at

P (τn ≤ T ) ≤ exp
(
−cn/8dA2

)
. (3.3)

De�ning now

ηn(t) := Xn+1(t)−Xn(t), ξn(t) := |ηn(t)|2

and

et := σ̄(t,Xn+1(φn+1(t)))− σ̄(t,Xn(φn(t)))
ft := b̄(t,Xn+1(φn+1(t)))− b̄(t,Xn(φn(t)))

By Lemma 2.6 we have that

dξn(t) = 2〈e∗t ηn(t), dWt〉+ 2〈ηn(t), ft〉 dt+ ‖et‖2 dt

has the stochastic contraction

〈dξt(t)〉 = 4|e∗t ηn(t)|2 dt.

De�ne the stopping time

ζn := inf
{
t > 0

∣∣∣∣ξn(t) ≥ 1
n2β

}
with the parameter β > 1. Then for s ≤ τn+1 and n large enough (such that a−(n+1) < 1/e),
we can use (3.1) to obtain

‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s))‖2

≤ C|Xn+1(φn+1(s))−Xn+1(s)|2 log(1/|Xn+1(φn+1(s))−Xn+1(s)|)
≤ Ca−2(n+1) log(1/a−(n+1))

≤ Ca−2n log an,
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3.1 Euler approximation

where we used the fact that s→ s log 1/s is an increasing function for s ∈ [0, 1/e]. The same
arguments leads to

‖σ̄(s,Xn(Φn(t)))− σ̄(s,Xn(s))‖2 ≤ Ca−2n log an, (3.4)

and hence with the parallelogram law for s ≤ τn ∧ τn+1 ∧ ζn,

‖es‖2 = ‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s)) + σ̄(s,Xn+1(s))− σ̄(s,Xn(s))

+ σ̄(s,Xn(s))− σ̄(Xn(s, φn(s)))‖2

≤ 2[‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s))‖2

+ ‖σ̄(s,Xn+1(s))− σ̄(s,Xn(s)) + σ̄(s,Xn(s))− σ̄(s,Xn(φn(s)))‖2]
− ‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s))

− (σ̄(s,Xn+1(s))− σ̄(s,Xn(s)) + σ̄(s,Xn(s))− σ̄(s,Xn(φn(s))))‖2

≤ 2[‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s))‖2

+ 2(‖σ̄(s,Xn+1(s))− σ̄(s,Xn(s))‖2 + ‖σ̄(s,Xn(s))− σ̄(s,Xn(φn(s)))‖2)

− ‖σ̄(s,Xn+1(s))− σ̄(s,Xn(s))− (σ̄(s,Xn(s))− σ̄(s,Xn(φn(s))))‖2︸ ︷︷ ︸
>0

]

≤ 4[‖σ̄(s,Xn+1(φn+1(s)))− σ̄(s,Xn+1(s))‖2 + ‖σ̄(s,Xn+1(s))− σ̄(s,Xn(s))‖2

+ ‖σ̄(s,Xn(s))− σ̄(s,Xn(φn(s)))‖2]

≤ 4
[
2Ca−2n log an + C|Xn+1(s)−Xn(s)|2 log(1/|Xn+1(s)−Xn(s)|)

]
≤ 4C

(
2a−2n log an + ξn(s) log(|ηn(s)|−1)

)
≤ 4C

(
2a−2n log an + ξn(s) log(1/ξn(s))

)
.

Here we used (3.4) in the 5th line and the last inequality results from the relation s ≤ ζn
and then ξn ≤ 1

n2β ≤ 1. Therefore,

|ηn(t)|2 = ξn(t) ≤
√
ξn(t) ≤ 1.

On the other hand we have for t ≤ τn ∧ τn+1 ∧ ζn and n large enough so that a−(n+1) < 1/e,

|〈ηn(t), ft〉| ≤ |ηn(t)||ft| = |ηn(t)||b̄(t,Xn+1(φn+1(t)))− b̄(t,Xn(φn(t)))|
≤ |ηn(t)|[ |b̄(t,Xn+1(φn+1(t)))− b̄(t,Xn+1(t))|︸ ︷︷ ︸

≤
(3.1)

C|Xn+1(φn+1(t))−Xn+1(t)| log(1/|Xn+1(φn+1(t))−Xn+1(t)|)

+ |b̄(t,Xn+1(t))− b̄(t,Xn(t))|︸ ︷︷ ︸
≤

(3.1)
...

+ |b̄(t,Xn(t))− b̄(t,Xn(φn(t)))|︸ ︷︷ ︸
≤

(3.1)
...

]

≤ |ηn(t)|C
[
|Xn+1(φn+1(t))−Xn+1(t)| log(1/|Xn+1(φn+1(t))−Xn+1(t)|)︸ ︷︷ ︸

≤a−(n+1) log(1/a−(n+1))≤a−n log(1/a−n)

+ |ηn(t)| log(1/|ηn(t)|)

+ |Xn(φn(t))−Xn(t)| log(1/|Xn(φ(t))−Xn(t)|)︸ ︷︷ ︸
≤a−n log(1/a−n)

]
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3 Continuous dependence of initial data

≤ |ηn(t)|C
[
2a−n log(an) + |ηn(t)| log(1/|ηn(t)|)

]
≤ C

[
2 |ηn(t)|︸ ︷︷ ︸
≤ 1

nβ

a−n log(an) + |ηn(t)|2︸ ︷︷ ︸
=ξn(t)

log(1/|ηn(t)|)︸ ︷︷ ︸
≤log(1/ξn(t))

]

≤ C
[

2
nβ
a−n log an + ξn(t) log(1/ξn(t))

]
,

where we used again that s→ s log(1/s) is increasing. De�ne the parameter ρn by:

ρn :=
2
nβ
a−n log an.

We have to show that the conditions (2.20) of Lemma 2.8 are satis�ed with C3 = 4C, C4 = C
and δ = ρn. Indeed,

ρn ≥ 2a−2n log an ⇔ 2a−2n log an ≤ 2
nβ
a−n log an

⇔ a−2n ≤ a−n

nβ

⇔ a−2n

a−n
≤ 1
nβ

⇔ a−n ≤ 1
nβ
,

which is true for n large enough.
Consider now the functions Ψn(ξ) :=

∫ ξ
0

ds
s log(1/s)+ρn

and Φn(ξ) := e4Ψn(ξ). We have

Φ′n(ξ) =
4Φn(ξ)

ξ log(1/ξ) + ρn

and

Φ′′n(ξ) =
4Φ′n(ξ)(ξ log(1/ξ) + ρn)− 4Φn(ξ)(log(1/ξ)− 1)

(ξ log(1/ξ) + ρn)2

=
4 · 4Φn(ξ)− 4Φn(ξ)(log(1/ξ)− 1)

(ξ log(1/ξ) + ρn)2

=
4Φn(ξ)(4− log(1/ξ) + 1)

(ξ log(1/ξ) + ρn)2

=
4Φn(ξ)(5 + log(ξ))
(ξ log(1/ξ) + ρn)2

.

If ξ ≤ e−5 = c0, then Φ′′n(ξ) ≤ 0 and the conditions in (2.19) are satis�ed with C1 = 4,
C2 = 0. Consider the stopping time

τ̃n = τn ∧ τn+1 ∧ ζn.

For n large enough, we have ξn(t ∧ τ̃n) ≤ c0. Let K = 32C. Then by Lemma 2.8 we get

E[Φn(ξn(t ∧ τ̃n))] ≤ eKt for all t,
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3.1 Euler approximation

from which we conclude

E[1{τn∧τn+1≥T,ζn≤T}Φn(ξn(T ∧ τ̃n))] ≤ eKT .

On the set {T ≥ ζn}, by de�nition of τ̃n it holds T ∧ τ̃n = τ̃n = ζn because T ≤ τn ∧ τn+1.
So

E[1{τn∧τn+1≥T,ζn≤T}Φn(ξn(ζn))] ≤ eKT

⇒ E[1{τn∧τn+1≥T,ζn≤T}Φn(
1
n2β

)] ≤ eKT

⇔ Φn(
1
n2β

)P (τn ∧ τn+1 ≥ T, ζn ≤ T ) ≤ eKT

⇔ e4Ψn(1/n2β)P (τn ∧ τn+1 ≥ T, ζn ≤ T ) ≤ eKT

Thus we have

P (τn ∧ τn+1 ≥ T, ζn ≤ T ) ≤ eKt exp

(
−4
∫ n−2β

0

1
s log(1/s) + ρn

ds

)
. (3.5)

Note that n−β > a−n for large n. Using again that s log 1/s is increasing over [0, 1/e], we
have therefore n−β2 log nβ > 2a−n log an. So we see that ρn < n−2β log nβ < n−2β log n2β

holds for large n. Hence there exists a cn ∈ (0, n−2β) such that

cn log
1
cn

= ρn =
2
nβ
a−n log an < a−n log an.

Since s log 1/s is still increasing over [0, 1/e], we see that 0 < cn < a−n. Now

cn < s

⇔ cn log 1/cn < s log 1/s
⇔ s log 1/s+ cn log 1/cn < 2s log 1/s

⇔ 1
s log 1/s+ cn log 1/cn

>
1
2

1
s log 1/s

.

With the above we get∫ n−2β

0

1
s log 1/s+ ρn

ds =
∫ n−2β

0

1
s log 1/s+ cn log 1/cn

ds

≥
∫ n−2β

cn

1
2

1
s log 1/s

ds

= −1
2

∫ n−2β

cn

1
s log s

ds

= −1
2

∫ n−2β

cn

(log s)′
1

log s
ds

= −1
2

∫ logn−2β

log cn

1
y
dy = − 1

2

∣∣∣∣ log y
∣∣∣∣logn−2β

log cn

= −1
2

log
(

log n−2β

log cn

)
.
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3 Continuous dependence of initial data

This and (3.5) imply

P (τn ∧ τn+1 ≥ T, ζn ≤ T ) ≤ eKT exp
{
− 4

∫ n−2β

0

1
s log 1/s+ ρn

ds
}

≤ eKT exp
{
− 4(−1

2
log
(

log n−2β

log cn

)
)
}

= eKT exp

{
log
(

log n−2β

log cn

)2
}

= eKT
(

log n−2β

log cn

)2

= eKT
(
−2β log n

log cn

)2

≤ eKT
(

2β log n
n log a

)2

,

where we used that − log cn > − log a−n = log an > 0. De�ning C5 := eKT 4β2

(log a)2
and taking

n large enough, we conclude

P (τn ∧ τn+1 ≥ T, ζn ≤ T ) ≤ C5

(
log n
n

)2

. (3.6)

After putting (3.3) and (3.6) together, we see that for n large enough

P (ζn ≤ T ) = P ({τn ∧ τn+1 ≤ T, ζn ≤ T} ∪ {τn ∧ τn+1 ≥ T, ζn ≤ T})
≤ P (τn ∧ τn+1 ≤ T, ζn ≤ T ) + P (τn ∧ τn+1 ≥ T, ζn ≤ T )
≤ P (τn ≤ T ) + P (τn+1 ≤ T ) + P (τn ∧ τn+1 ≥ T, ζn ≤ T )

≤ exp
(
−cn/8dA2

)
+ exp

(
−cn+1/8dA2

)
+ C5

(
log n
n

)2

≤ 2e−c
n/8dA2

+ C5

(
log n
n

)2

≤ 1
nγ
, for some γ > 1

where we used that c > 1 and, for any ε > 0, (logn)2

n1+ε → 0, as n→∞. This means that

P
(

sup
0≤t≤T

|Xn+1(t)−Xn(t)|2 ≥ 1
n2β

)
≤ 1
nγ
−→
n→∞

0.

It is well known that
∑∞

n=1
1
nγ <∞ for γ > 1. Therefore, by Borel-Cantelli Lemma, almost

surely

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤ 1
nβ

for large n.

42



3.2 Preparing Lemmas

It follows that the series

Xt :=
∑
n≥1

(Xn+1(t)−Xn(t)) +X1(t)

converges uniformly in t ∈ [0, T ]. The only thing remains to check is that Xt is really a
solution of stochastic di�erential equation (2.29). Since the coe�cients σ(t, x) and b(t, x)
are continuous and bounded, we obtain together with (3.2) that

Xt =
∑
n≥1

(Xn+1(t)−Xn(t)) +X1(t) = lim
n→∞

Xn(t)

= lim
n→∞

(
Xn(

k

2n
) + σ

( k
2n
, Xn(

k

2n
)
)

(Wt −W k
2n

) + b
( k

2n
, Xn(

k

2n
)
)

(t− k

2n
)
)

= lim
n→∞

(
Xn(0) +

∫ t

0
σ̄(s,Xn(φn(s)))dWs +

∫ t

0
b̄(s,Xn(φn(s))) ds

)
= x+ lim

n→∞

∫ t

0
σ̄(s,Xn(φn(s)))dWs + lim

n→∞

∫ t

0
b̄(s,Xn(φn(s))) ds

= x+
∫ t

0
lim
n→∞

σ̄(s,Xn(φn(s))) dWs +
∫ t

0
lim
n→∞

b̄(s,Xn(φn(s))) ds

= x+
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds.

3.2 Preparing Lemmas

In this section we will prove several technical lemmas needed in the proof of Theorem D.

Lemma 3.2. Let r be a strictly positive continuous function de�ned on (0, c0], where 0 <
c0 < 1. Assume that the coe�cients σ and b are compactly supported, say

σ(t, x) = 0 and b(t, x) = 0 for all |x| ≥ R, 0 ≤ t ≤ T (3.7)

with some 0 < R, T < ∞, and satisfy the hypothesis (H3) in theorem D. Let p ≥ 1. If

s → r(s) is decreasing on (0, c0], then there exists a constant Cp > 0 such that for all

|x| ≤ R+ 1, |y| ≤ R+ 1, 0 ≤ t ≤ T‖σ(t, x)− σ(t, y)‖2 ≤ Cp|x− y|2r
(
|x−y|2p
Mp

)
|b(t, x)− b(t, y)| ≤ Cp|x− y|r

(
|x−y|2p
Mp

) (3.8)

where M = 4(R+1)2

c0
.

Proof. The similarity of these two inequalities show, that it is enough to prove only the one
for b. So if |x− y| ≤ c0, by (H3)

|b(t, x)− b(t, y)| ≤ C|x− y|r(|x− y|2)

≤ C|x− y|r
(( |x− y|2

M

)p)
, (3.9)
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3 Continuous dependence of initial data

because

M =
4(R+ 1)2

c0
> 1

⇒ 0 <
|x− y|2

M
< |x− y|2 ≤ c2

0 < 1

⇒
(
|x− y|2

M

)p
< |x− y|2 < |x− y|

and r is decreasing. We observe that

inf
c0≤ξ≤2(R+1)

ξ · r
([

ξ2

M

]p)
= inf

c0≤ξ≤2(R+1)
ξ · r

([
ξ2c0

4(R+ 1)2

]p)
≥ inf

c0≤ξ≤2(R+1)
ξ · r (cp0)

Hence, using that r is decreasing,

inf
c0≤ξ≤2(R+1)

ξ · r
([

ξ2

M

]p)
≥ c0r

([
(2(R+ 1))2

M

]p)
= c0r(c

p
0) > 0.

On the other hand,

sup
x,y
|b(t, x)− b(t, y)| ≤ sup

x,y
||b(x)|+ |b(y)|| ≤ 2‖b‖∞,

where ‖b‖∞ denotes the uniform norm of b over [0, T ]×Rd. Now let |x− y| ≥ c0. Choosing
a large Cp which ful�lls Cpc0r(c

p
0) ≥ 2‖b‖∞, we then have

|b(x)− b(y)| ≤ Cp|x− y| · r
([
|x− y|2

M

]p)
. (3.10)

Both inequalities (3.9) and (3.10) together gives us the result.

Lemma 3.3. Let σ and b be continuous functions satisfying the support condition (3.7). If

the stochastic di�erential equation (2.29) has the pathwise uniqueness, then for any |x0| ≤
R+ 1, it holds |Xt(x0)| ≤ R+ 1 almost surely for all t ∈ [0, T ].

Proof. We de�ne the stopping time

τ := inf{t > 0||Xt(x0)| ≥ R+ 1}. (3.11)

Set Yt := Xt∧τ (x0), 0 ≤ t ≤ T . Then Xs = Ys if s ≤ t ∧ τ , so that

Xt∧τ (x) = x0 +
∫ t∧τ

0
σ(s,Xs) dWs +

∫ t∧τ

0
b(s,Xs) ds

⇒ Yt(x) = x0 +
∫ t∧τ

0
σ(s, Ys) dWs +

∫ t∧τ

0
b(s, Ys) ds.
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On the other hand, we have

E[
∫ t

0
‖σ(s, Ys)‖2(1(s<τ) − 1)2 ds] = E[

∫ t

0
‖σ(s, Ys)‖21(s≥τ) ds]

= E[
∫ t

τ
‖σ(s, Ys)‖2 ds]

= E[
∫ t

τ
‖σ(s,Xτ )‖2 ds].

Since Xτ takes values on the sphere of Radius R+ 1, so σ(Xτ ) = 0 because σ is compactly
supported. Therefore the last term in the above equality is zero. Herefrom it follows that∫ t∧τ

0
σ(s, Ys) dWs =

∫ t∧τ

0
σ(s,Xs∧τ ) dWs

=

{∫ t
0 σ(s,Xs∧τ ) dWs, if t < τ,∫ τ
0 σ(s,Xs∧τ ) dWs =

∫ t
0 σ(s,Xs∧τ ) dWs, if τ < t,

=
∫ t

0
σ(s, Ys) dWs

and ∫ t∧τ

0
b(s, Ys) ds =

∫ t∧τ

0
b(s,Xs∧τ ) ds =

∫ t

0
b(s,Xs∧τ ) ds =

∫ t

0
b(s, Ys) ds

almost surely. Finally

Yt = x0 +
∫ t

0
σ(s, Ys) dWs +

∫ t

0
b(s, Ys) ds.

This means that (Yt, 0 ≤ t ≤ T ) satis�es the same stochastic di�erential equation as (Xt, 0 ≤
t ≤ T ). By pathwise uniqueness, we conclude that Yt = Xt almost surely for all 0 ≤ t ≤
T . By the de�nition (3.11) of τ , this means that if |x0| ≤ R + 1, |Xt(x0)| = |Yt(x0)| =
|Xt∧τ (x0)| ≤ R+ 1 almost surely for all t ∈ [0, T ].

Lemma 3.4. Assume the same hypothesis as in Lemma 3.2 and furthermore let r satisfy

the conditions (2.6)-(2.8) in Theorem B and let ξ → ξr(ξ) be concave over (0, c0]. Let p ≥ 2
be an integer. For |x0| ≤ R+ 1 and |y0| ≤ R+ 1, set

ηt := Xt(x0)−Xt(y0), ξt := |ηt|2 and zt :=
(
ξt
M

)p
, 0 ≤ t ≤ T, (3.12)

where M is the constant de�ned in Lemma 3.2. Put φ(t) = Ezt. Then for some constant Cp

φ′(t) ≤ Cpφ(t)r(φ(t)), 0 ≤ t ≤ T.

Proof. We can apply Lemmas 3.2 and 3.3 and get that for all 0 ≤ t ≤ T

zt =
ξpt
Mp

=
(
|Xt(x0)−Xt(y0)|2

M

)p
≤
(
|
≤R+1︷ ︸︸ ︷
|Xt(x0)|+

≤R+1︷ ︸︸ ︷
|Xt(y0)| |2

M

)p
≤
(

4(R+ 1)2

M

)p
= cp0,
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3 Continuous dependence of initial data

so zt is a bounded process. Let et = σ(Xt(x0))− σ(Xt(y0)) and ft = b(Xt(x0))− b(Xt(y0)).
Then with the help of Lemma 2.6 and Itô's formula, (cf. Theorem 1.3, where we used that
p ≥ 2) we have for all 0 ≤ t ≤ T

dzt = d
( ξpt
Mp

)
=

1
Mp

dξpt

=
1
Mp

[pξp−1
t dξt +

1
2
p(p− 1)ξp−2

s d〈ξt〉]

=
1
Mp

[2p〈e∗t ηt, dWt〉ξp−1
t + 2〈ηt, ft〉pξp−1

t dt

+ p‖et‖2ξp−1
t dt+ 2p(p− 1)ξp−2

t |e∗t ηt|2dt].

Now we will estimate the single terms: By Lemma 3.3 Xt(x0) and Xt(y0) are bounded by
R+ 1. So we can apply the result (3.8) of Lemma 3.2,

ξp−1
s

Mp
|〈ηs, fs〉| ≤

ξp−1
s

Mp
|ηs||fs|

≤ ξp−1
s

Mp
|ηs|Cp |Xs(x0)−Xs(y0)|︸ ︷︷ ︸

=|ηs|

r

(
|Xs(x0)−Xs(y0)|2p

Mp

)

≤ ξp−1
s

Mp
Cp |ηs|2︸︷︷︸

=ξs

r

(
|ηs|2p

Mp

)

=
ξps
Mp

Cpr

(
ξps
Mp

)
= Cpzsr(zs)

and similarly

ξp−1
s

Mp
‖es‖2 =

ξp−1
s

Mp
‖σ(Xs(x0))− σ(Xs(y0))‖2

≤ ξp−1
s

Mp
Cp|Xs(x0)−Xs(y0)|2r

(
|Xs(x0)−Xs(y0)|2p

Mp

)
= Cp

ξps
Mp

r

(
ξps
Mp

)
= Cpzsr(zs).

Finally we use that ‖T‖ = ‖T ∗‖ for any bounded linear operator T , which yields

ξp−2
s

Mp
|e∗sηs|2 =

ξp−2
s

Mp
| (σ(Xs(x0))− σ(Xs(y0)))∗ (Xs(x0)−Xs(y0)))|2

≤ ξp−2
s

Mp
‖ (σ(Xs(x0))− σ(Xs(y0)))∗ ‖2|Xs(x0)−Xs(y0)|2

≤ ξp−2
s

Mp
Cp|Xs(x0)−Xs(y0)|2r

(
|Xs(x0)−Xs(y0)|2p

Mp

)
|Xs(x0)−Xs(y0)|2︸ ︷︷ ︸

=ξs

= Cp
ξps
Mp

r(
ξps
Mp

) = Cpzsr(zs).
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3.3 Proof of Theorem D

Note that ξr(ξ) is in C1((0, c0]) by the same property of r(ξ). By assumption, ξr(ξ) is
concave, hence every tangent of ξr(ξ) is bigger or equal to its value at every point of the
domain. More precisely ξr(ξ) ≤ g(ξ) where g(ξ) is a linear function de�ned by

g(ξ) = r(c0) + (r(c0) + c0r
′(c0))(ξ − c0).

Therefore

sup
0<ξ≤c0

ξr(ξ) ≤ sup
0<ξ≤c0

g(ξ) <∞.

Thus the �rst term in the expression of dzt is a martingale and then φ(t) = Ezt is a
di�erentiable function with respect to t and its derivative can be estimated by

φ′(t) =
d

dt
E[zt]

=
1
Mp

(E[2pξp−1
t 〈e∗t ηt, dWt〉]︸ ︷︷ ︸

=0 (martingale)

+E[2pξp−1
t 〈ηt, ft〉]

+ E[pξp−1
t ‖et‖2] + E[2p(p− 1)ξp−2

t |e∗t ηt|2])

=
1
Mp

(E[2pξp−1
t 〈ηt, ft〉] + E[pξp−1

t ‖et‖2]

+ E[2p(p− 1)ξp−2
t |e∗t ηt|2])

≤ pCpE[ztr(zt)](2 + 1 + 2(p− 1))

= (p+ 2p2)CpE[ztr(zt)]

≤ (p+ 2p2)CpE[zt]r(E[zt]), 0 ≤ t ≤ T.

Note that in the last line we used Jensen's inequality. Then the Lemma is proved by taking
C̃p = (p+ 2p2)Cp as a new Cp.

3.3 Proof of Theorem D

Proof of Theorem D. Recall that under the hypothesis (H3) the equation (2.1) has a unique
strong solution. So, it is enough to prove the continuity of (t, x0) 7→ Xt(x0) on the domain
[0, T ]×Rd for each T > 0. We make two steps.
Step 1. Assume that σ and b are compactly supported, say

σ(t, x) = 0 and b(t, x) = 0 for |x| ≥ R.

Let φ be de�ned as φ(t) = Ezt, t ∈ [0, T ], where zt is de�ned in (3.12). Let us check the
conditions of the Lemma 3.4. Obviously, r(s) = log(1/s) satis�es (2.6)-(2.8), see Lemma
2.5. Furthermore r(s) > 0 for all s ∈ (0, c0], c0 < 1. The function f : s 7→ sr(s) is concave,
which follows by direct calculation: f ′′ = −1

s ≤ 0. So we can apply the Lemma 3.4 and get

φ′(t) ≤ Cpφ(t)r(φ(t)) = Cpφ(t) log(
1
φ(t)

), 0 ≤ t ≤ T.
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3 Continuous dependence of initial data

Solving the di�erential inequality:

φ′(t) ≤ Cpφ(t) log
1
φ(t)

⇔ (log φ(t))′ ≤ −Cp log φ(t),

we get that

φ(t) ≤ φ(0)e
−Cpt

or explicitly

E

[(
ξt
M

)p]
≤ E

[(
ξ0

M

)p]e−Cpt
⇔ E[|Xt(x0)−Xt(y0)|2p] ≤

(
E[|X0(x0)−X0(y0)|2p︸ ︷︷ ︸

=|x0−y0|2p

]
)e−Cpt

·Mp(1−e−Cpt)

⇔ E[|Xt(x0)−Xt(y0)|2p] ≤
(
|x0 − y0|2p

)e−Cpt ·Mp(1−e−Cpt)

≤Mp|x0 − y0|2pe
−Cpt

≤ C ′p|x0 − y0|2pe
−Cpt

, for |x0 − y0| ≤ 1, (3.13)

where C ′p is the maximum of Cp and M
p. Now we show some upper bounds on the integral

terms: for all t, s ∈ [0, T ], |t− s| ≤ 1,∣∣∣ ∫ t

s
b(r,Xr) dr

∣∣∣2p ≤ |t− s|2p‖b‖2p∞ ≤ |t− s|p‖b‖2p∞,
E

[∣∣∣ ∫ t

s
σ(r,Xr) dWr

∣∣∣2p] ≤ C(p)E
[(∫ t

s
‖σ(r,Xr)‖2 dr

)p]
≤ C(p)|t− s|p‖σ‖2p∞. (3.14)

In deriving (3.14) we used the Burkholder-Davis-Gundy inequality (see Theorem 3.28, p.
166, [KS91]). Recall that b, σ are compactly supported and continuous, therefore bounded
on [0, T ]×Rd, i.e. there exists K > 0 such that ‖b‖∞ ≤ K, ‖σ‖∞ ≤ K. Then with help of
(3.13) and (3.14) we see that

E[|Xt(x0)−Xs(y0)|2p] ≤ C ′′p
(
|t− s|p + |x0 − y0|2pe

−Cpt
)
,

with certain constant C ′′p > 0, uniformly for all x0, y0 ∈ Rd, |x0−y0| ≤ 1, and all s, t ∈ [0, T ],
|s− t| ≤ 1.
Fix p > d + 1. Choose a constant T0 ∈ (0, T ] small enough (T0 < 1/Cp log 2), such that
2pe−CpT0 > d + 1. Applying Kolmogorov's modi�cation Theorem 1.11 with β = 2p − 1,
α = 2p and c = Cp, we conclude that there exists X̂t(x0), a version of Xt(x0), which is
continuous in (t, x0), t ∈ [0, T0], |x0| ≤ R+ 1 almost surely. But from pathwise uniqueness
it is obvious that

Xt(x0, ω) ≡ x0 if |x0| > R.
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3.3 Proof of Theorem D

We conclude that (t, x0) → X̃t(x0, ω) can be extended continuously to [0, T0] × Rd. Let
(θT0ω)(t) = ω(t+ T0)− ω(T0). De�ne for 0 < t ≤ T0,

X̃T0+t(x0, ω) = X̃t(X̃T0(x0, ω), θT0ω).

Then X̃T0+·(x0, ω) satis�es the stochastic di�erential equation (2.29) driven by the Brownian
motion θT0ω with the initial condition X̃T0(x0, ω). Since by Theorem B we have pathwise
uniqueness, it holds that X̃T0+t(x0, ω) = XT0+t(x0, ω) almost surely for all t ∈ [0, T0]. This
means that X̃t(x0, ω) is a continuous version of Xt(x0, ω) over [0, 2T0]×Rd. Proceeding in
this way, we get a continuous version on the whole space [0, T ]×Rd.
Step 2: General case. For R > 0, let fR(x) denote a smooth function with compact

support satisfying

fR(x) = 1 for |x| ≤ R and fR(x) = 0 for |x| > R+ 1.

De�ne

σR(x) = σ(x)fR(x) and bR(x) = b(x)fR(x).

Let XR
t (x, ω) be the unique solution of the stochastic di�erential equation (2.29) with σ and

b replaced by σR and bR. Let X̃R
t (x, ω) denote a continuous version of XR

t (x, ω). Such a
version exists according to step 1. For K > 0, set

τRK(x) := inf
{
t ∈ (0, T ]

∣∣∣|X̃R
t (x, ω)| ≥ K

}
, τK(x) := inf {t ∈ (0, T ] ||Xt(x, ω)| ≥ K } .

If |x| ≤ R, by pathwise uniqueness we have P-a.s.

Xt(x, ω) = X̃N
t (x, ω) for all N > R+ 1 and t < τNR+1.

Since N > R+ 1, we conclude

τR+1(x) = inf{t ∈ (0, T ]||Xt(x, ω)| ≥ R+ 1}
= inf{t ∈ (0, T ]||X̃N

t (x, ω)| ≥ R+ 1}
= τNR+1(x).

For |x| ≤ R, we de�ne

X̃t(x, ω) := X̃R+2
t (x, ω) for t ∈ [0, τR+2

R+1 (x))

Then on this set, X̃·(x, ω) is a version of X·(x, ω). It remains to show that X̃t(x, ω) is
continuous in (t, x) ∈ [0, T ]×Rd for almost all ω. Fix x0 with |x0| ≤ R. Since the explosion
time of the solution is in�nite, there exists R > 0 such that τR+2

R+1 (x0) > t + ε for a small
ε > 0. The later implies that

sup
0≤s≤t+ε

∣∣∣X̃R+2
s (x0, ω)

∣∣∣ < R+ 1.

By the continuity we can �nd a neighborhood Bδ(x0) of x0 such that

sup
0≤s≤t+ε

∣∣∣X̃R+2
s (x, ω)

∣∣∣ < R+ 1 or τR+2
R+1 (x) > t+ ε

for all x ∈ Bδ(x0). Hence, X̃s(x0, ω) = X̃R+2
s (x, ω) for all x ∈ Bδ(x0) and s ≤ t + ε, which

implies that X̃s(x0, ω) is continuous at the point (t, x0).
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4 Smoluchowski-Kramer Approximation

In Section 4.1 we introduce the Newton system describing a motion of a small particle in
a force �eld and a notion of its solution. For the mathematical background and physical
motivation see the paper of M. Freidlin [Fre04]. Besides, we shall use the related results of
the diploma thesis by R. Westermann [Wes06], completed in Bielefeld in 2006. As compared
with the [Wes06], we impose considerably weaker assumptions on the interaction coe�cients.

4.1 The Newton system

We consider the motion of a particle of small mass µ, 0 < µ� 1 in a force �eld. We assume
that the di�erential of the force is given by b(s,Xs) ds+σ(s,Xs) dWs, where b : [0, T ]×R→
R and σ : [0, T ] ×R → R are continuous functions and Ws is an one-dimensional Wiener
process.
The motion of the particle is described by its position and velocity (Xµ

t , Y
µ
t ). By Newton's

law, Xµ
t is governed by the following system of stochastic di�erential equations:

dXµ
t = Y µ

t dt,

µ dY µ
t = b(t,Xµ

t ) dt+ σ(t,Xµ
t ) dWt − dXµ

t , (4.1)

Xµ
0 = ζ1, Y µ

0 = ζ2,

where ζ1, ζ2 ∈ R are the initial condition.
One can interpret the Newton system as follows: The momentum of a particle is de�ned by
mass times velocity. The Newton system says now that the increment of the momentum of
a particle is given by the di�erential of a force �eld from which we subtract the di�erential
of the friction. The force �eld consists of a deterministic part b(t,Xµ

t ), which only depends
on the path of the particle and the time, and a random part, where σ(t,Xµ

t ) dWt represents
the stochastic di�erential. The friction is represented by the term dXµ

t .

De�nition 4.1. A weak solution of the Newton system (4.1) is an Ft-adapted, real-valued
Wiener process on a probability space (Ω,F , {Ft}, P ) and a pair of real-valued stochastic

processes (X,Y ) = {(Xt, Yt)|t ≥ 0}, each of them has continuous sample paths and is adapted

to the �ltration Ft. It satis�es the initial conditions Xµ
0 = ζ1 and Y µ

0 = ζ2. Moreover the

process Y µ
t de�ned by Y µ

t dt = dXµ
t for all t ≥ 0 P -a.s. should be a weak solution (in sense

of De�nition 1.5) of

dY µ
t =

1
µ
σ(t,Xµ

t ) dWt +
(

1
µ
b(t,Xµ

t )− 1
µ
Y µ
t

)
dt.

The later means that for all t ≥ 0 P -a.s.

Y µ
t = ζ2 +

1
µ

∫ t

0
σ(s,Xµ

s ) dWs +
1
µ

∫ t

0
(b(s,Xµ

s )− Y µ
s ) ds.
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4 Smoluchowski-Kramer Approximation

De�nition 4.2. A strong solution of the Newton system (4.1) on the given probability space

(Ω, (Ft)t≥0, P ) with respect to the �xed Brownian motionW is a pair of real-valued stochastic

processes (X,Y ) = {(Xt, Yt)|t ≥ 0}, each of them with continuous sample paths and adapted

to the �ltration Ft. Moreover, it should hold Xµ
0 = ζ1 as well as Y µ

0 = ζ2 and the process

Y µ
t de�ned by Y µ

t dt = dXµ
t for all t ≥ 0 P -a.s. should be a strong solution (in sense of

De�nition 1.4) of

dY µ
t =

1
µ
σ(t,Xµ

t ) dWt +
(

1
µ
b(t,Xµ

t )− 1
µ
Y µ
t

)
dt.

This is to say that for all t ≥ 0 P -a.s.

Y µ
t = ζ2 +

1
µ

∫ t

0
σ(s,Xµ

s ) dWs +
1
µ

∫ t

0
(b(s,Xµ

s )− Y µ
s ) ds.

In her diploma thesis [Wes06], Ramona Westermann claimed that there exists a unique
strong solution (Xµ

t , Y
µ
t ) on [0, T ] under the following conditions on the functions b and σ:

(i) b, σ Lipschitz continuous on [0, T ] × Rd, i.e. there exists a D > 0, such that for all
x0, x1 ∈ R, t0, t1 ∈ [0, T ]

|b(t0, x0)− b(t1, x1)|+ |σ(t0, x0)− σ(t1, x1)| ≤ D(|x0 − x1|+ |t0 − t1|). (4.2)

(ii) there exists a K > 0, such that for all x ∈ R, t ∈ [0, T ] the linear growth condition
holds:

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2), (4.3)

Our aim is to give weaker conditions, under which the unique solvability still holds. We
can equivalently write (4.1) as the two-dimensional system

d

[
Xµ
t

Y µ
t

]
=
(

Y µ
t

1
µb(t,X

µ
t )− 1

µY
µ
t

)
dt+

(
0 0
0 1

µσ(t,Xµ
t )

)
dWt.

We de�ne z ∈ R2, f : [0, T ]×R×R→ R
2 and g : [0, T ]×R×R→M(2× 2,R), by

z :=
(
x
y

)
, f(t, x, y) :=

(
y

1
µb(t, x)− 1

µy

)
, g(t, x, y) :=

(
0 0
0 1

µσ(t, x)

)
.

Hence our second order system of stochastic di�erential equations can be written as

dZt = f(t,Xµ
t , Y

µ
t ) dt+ g(t,Xµ

t , Y
µ
t ) dWt. (4.4)

We impose the following conditions, which are weaker than (4.2),(4.3). Let f, g be con-
tinuous, and satisfy the following:

• For a constant C > 0 and all z ∈ R2, t ∈ [0, T ],

‖g(t, z)‖2 ≤ C(|z|2ρ(|z|2) + 1),
〈z, f(t, z)〉 ≤ C(|z|2ρ(|z|2) + 1);

(4.5)
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4.1 The Newton system

• There exists c0 > 0 such that for all t ∈ [0, T ] and all v, w ∈ R2, |v − w| ≤ c0,

‖g(t, v)− g(t, w)‖2 ≤ C|v − w|2r(|v − w|2),
〈v − w, f(t, v)− f(t, w)〉 ≤ C|v − w|2r(|v − w|2).

(4.6)

Here ρ : [0,∞) → [1,∞) is a continuously di�erentiable function satisfying the following
three conditions

(i) lims→∞ ρ(s) =∞,

(ii) lims→∞
sρ′(s)
ρ(s) = 0,

(iii)
∫ +∞

0
1

sρ(s)+1 ds =∞

and r : (0, c0] → [1,∞) is a continuously di�erentiable function satisfying also three condi-
tions:

(i) lims→0 r(s) =∞,

(ii) lims→0
sr′(s)
r(s) = 0,

(iii)
∫ a

0
1

sr(s) ds =∞ ∀a > 0.

Since f and g are continuous, the equation (4.4) is a special case of (2.1). Hence, by
Theorem 2.1 we have a weak solution (Xµ

t , Y
µ
t ) up to an explosion time ζ.

Theorem A'. Assume the conditions above are ful�lled, then the weak solution of (4.4) has
no explosion, that means, P (ζ =∞) = 1.

Proof. Since (4.4) is a special case of (2.1), we only have to check whether the conditions
of Theorem A are satis�ed. The function ρ ful�lls all the required conditions (2.3)-(2.5).
The assumptions (4.5) are chosen such that they ful�ll (H1). All conditions are satis�ed, so
Theorem A applies.

Theorem B'. Assume that the conditions above are ful�lled. Then the pathwise uniqueness

holds for the weak solution of (4.4).

Proof. As seen before, (4.4) �ts in (2.1). Furthermore, the function r ful�lls (2.6)-(2.8).
Comparing (4.6) with (H2), we see that indeed they are the same. We checked that all
conditions of Theorem B are satis�ed and thus the pathwise uniqueness holds.

The existence of a unique strong solution then follows by the theorems of Yamada-
Watanabe and Kallenberg, (cf. Theorems 1.9 and 1.10).

Proposition 4.3. Instead of considering functions f and g, it is possible to assume directly

that for all x, t ∈ R

‖σ(t, x)‖2 ≤ C(|x|2ρ(|x|2) + 1),
|b(t, x)| ≤ C(|x|ρ(|x|2) + 1),

(4.7)
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4 Smoluchowski-Kramer Approximation

and for all x, y ∈ R, |x− y| ≤ c0,

‖σ(t, x)− σ(t, y)‖2 ≤ C|x− y|2r(|x− y|2),
|b(t, x)− b(t, y)| ≤ C|x− y|r(|x− y|2).

(4.8)

Then we have the same estimates for the functions f and g, but we have to assume addi-

tionally that the functions ρ(s), sr(s) and sr(s2) are increasing. For example, the function

r(s) := log 1
s ful�lls the required property for s ∈]0, 1

e ] and the function ρ(s) := 1 + log(1 + s)
respectively for s ∈ (0,+∞). In especially we still have a unique strong solution.

Proof. First we show, that the function g(t, z) satis�es the conditions in (4.7) and (4.8): For
z = (x, y) ∈ R2 we have

‖g(t, z)‖2 =
∑
ij

g(t, z)2
ij =

1
µ2
σ(t, x)2

≤ 1
µ2
C(x2ρ(x2) + 1)

≤ C

µ2
((x2 + y2)ρ(x2 + y2) + 1)

=
C

µ2
(|z|2ρ(|z|2) + 1).

Let zi = (xi, yi) ∈ R2 for i = 1, 2, then

‖g(t, z1)− g(t, z2)‖2 =
∥∥∥∥(0 0

0 1
µσ(t, x1)

)
−
(

0 0
0 1

µσ(t, x2)

)∥∥∥∥2

=
1
µ2

(σ(t, x1)− σ(t, x2))2

≤ 1
µ2
C|x1 − x2|2r(|x1 − x2|2)

≤ 1
µ2
C(|x1 − x2|2 + |y1 − y2|2)r(|x1 − x2|2 + |y1 − y2|2)

≤ 1
µ2
C|z1 − z2|2r(|z1 − z2|2).

Note that the last inequality works only if sr(s) is increasing. So g ful�lls the required
inequalities.
Next, we prove that f(t, z) ful�lls (4.7) and (4.8). Let z = (x, y) ∈ R2, we have

|f(t, z)| =
(
y2 +

1
µ2

(b(t, x)− y)2

)1/2

≤
(
y2 +

1
µ2

(C(|x|ρ(x2) + 1)− y)2

)1/2

≤
(
y2 +

2
µ2

(C2(|x|ρ(x2) + 1)2 + y2)
)1/2

=
(
y2 +

2
µ2
y2 +

2C2

µ2
(|x|ρ(x2) + 1)2

)1/2
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=
((

1 +
2
µ2

)
y2 +

2C2

µ2
(|x|ρ(x2) + 1)2

)1/2

≤
((

1 +
2
µ2

)(
y2 + C2(|x|ρ(x2) + 1)2

))1/2

=
√

1 +
2
µ2

√
y2 + C2(|x|ρ(x2) + 1)2

≤ C
√

1 +
2
µ2

(
y2 + |x|2ρ(x2)2︸ ︷︷ ︸
≤(|x|2+y2)ρ(x2)2

+2 |x|︸︷︷︸
≤
√
x2+y2

ρ(x2) + 1
)1/2

≤ C
√

1 +
2
µ2

((√
x2 + y2 ρ(x2)︸ ︷︷ ︸

≤
ρ↗

ρ(x2+y2)

+1
)2)1/2

≤ C
√

1 +
2
µ2

(√
x2 + y2ρ(x2 + y2) + 1

)
= C̃(|z|ρ(|z|2) + 1).

Now we will show (4.8): In the following, we use the abbreviation ∆x := (x1 − x2)2 and
∆y := (y1 − y2)2. Thus

|f(t, z1)− f(t, z2)| =
(

(y1 − y2)2 +
1
µ2

(b(t, x1)− b(t, x2)− (y1 − y2))2

)1/2

≤
(

∆y +
1
µ2

(C(x1 − x2)r(∆x)− (y1 − y2))2

)1/2

≤
(

∆y +
2
µ2

(
C2∆x · r(∆x)2 + ∆y

))1/2

=
(

(1 +
2
µ2

)∆y +
2C2

µ2
∆x · r(∆x)2

)1/2

≤
(

(1 +
2
µ2

)
(
∆y + C2∆x · r(∆x)2

))1/2

≤ C
√

1 +
2
µ2

(
∆y + ∆x · r(∆x)2

)1/2
= C

√
1 +

2
µ2

(
∆y + [

√
∆x · r(∆x)]2

)1/2

≤
∗
C

√
1 +

2
µ2

(
∆y + [

√
∆x+ ∆y · r(∆x+ ∆y)]2

)1/2

≤ C
√

1 +
2
µ2

(
2(∆y + ∆x)r(∆x+ ∆y)2

)1/2
= C

√
2(1 +

2
µ2

)
√

∆y + ∆x · r(∆x+ ∆y)

= C|z1 − z2|r(|z1 − z2|2),

where we used that sr(s2) is increasing in the inequality marked with *. We checked, that
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4 Smoluchowski-Kramer Approximation

if we have the Lipschitz-type estimates for the coe�cients of the single SDE, then we have
the same estimates for the Newton system, too.

Remark 4.4. The properties of coercivity and semi-monotonicity for b(t, x) however do not

apply the same property for f(t, z) in (4.5), (4.6).

4.2 The Smoluchowski-Kramer Approximation

Along with the Newton system (4.1), we will consider in this section also the following
one-dimensional di�erential equation

dXt = σ(t,Xt) dWt + b(t,Xt) dt, (4.9)

with initial condition X0 = ζ1. We assume the functions b : [0, T ] × R → R and σ :
[0, T ]×R→ R to be continuous and bounded, i.e.

‖b‖∞ := sup
t∈[0,T ], x∈R

b(t, x) <∞, ‖σ‖∞ := sup
t∈[0,T ], x∈R

σ(t, x) <∞.

Furthermore, we assume that σ is even Lipschitz-continuous, i.e. there exists C1 > 0, such
that for all t ≥ 0 and x, y ∈ R

‖σ(t, x)− σ(t, y)‖ ≤ C1|x− y|.

Concerning b we assume that it satis�es the continuity condition (4.8) with r(s) = log(1/s)
and that there exists C2 > 0, such that for all t ≥ 0 and x, y ∈ R

(b(t, x)− b(t, y))(x− y) ≤ C2|x− y|2.

Then (4.9) is a special case of (4.4), and by the section above we have a unique strong
solution Xt.
The following theorem will compare these two equations and point out that the Newton
system converges in probability to the �rst order equation when µ tends to zero. Therefore
this theorem is the justi�cation for using the �rst order equation (4.9) to describe the motion
of a small particle disturbed by a Wiener process instead of using the two-dimensional
Newton system (4.1). Clearly, it is much easier to analyze the �rst order equation.

Theorem 4.5 (Smoluchowski-Kramers approximation). The �rst component of the solution

of (4.1), Xµ
t , converges in probability uniformly on [0, T ] to the solution Xt of (4.9). This

means that we have for all T > 0, ε > 0

lim
µ→0

P

(
sup

0≤s≤T
|Xµ

s −Xs| > ε

)
= 0. (4.10)

Proof. We use the idea of the proof of Theorem 2.11. Let ηt := Xµ
t − Xt. We de�ne the

stopping time τ := inf{t > 0|η2
t > ε2}. By [Fre04] (see also [Wes06, Prop. 3.2, p.30]) we

have that

Xµ
t = ζ1 + µζ2

(
1− e−

t
µ

)
+
∫ t

0
b(s,Xµ

s ) ds− e−
t
µ

∫ t

0
e
s
µ b(s,Xµ

s ) ds

+
∫ t

0
σ(s,Xµ

s ) dWs − e−
t
µ

∫ t

0
e
s
µσ(s,Xµ

s ) dWs.
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4.2 The Smoluchowski-Kramer Approximation

Since Xt is a strong solution, by De�nition 1.4 we have P -a.s.

Xt = ζ1 +
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds.

Therefore, we have the representation ηt = βt + γt, where

βt :=
∫ t

0
[b(s,Xµ

s )− b(s,Xs)] ds+
∫ t

0
[σ(s,Xµ

s )− σ(s,Xs)] dWs,

γt := ζ2

∫ t

0
e
− s
µ ds+ e

− t
µ

∫ t

0
e
s
µ b(t,Xµ

t ) ds+ e
− t
µ

∫ t

0
e
s
µσ(t,Xµ

t ) dWs.

Similarly to the proof of Lemma 2.6 and 2.8 we use Itô's formula with F = Id and get

β2
t∧τ = β2

0 +
∫ t∧τ

0
1 dβ2

s +
1
2

∫ t∧τ

0
0 d〈β2

s 〉

= β2
0 + 2

∫ t∧τ

0
βs[b(s,Xµ

s )− b(t,Xs)] ds

+ 2
∫ t∧τ

0
βs[σ(s,Xµ

s )− σ(t,Xs)] dWs +
∫ t∧τ

0
[σ(s,Xµ

s )− σ(t,Xs)]2 ds.

As in Claim (i) in the proof of Lemma 2.8, we have that the process
∫ t∧τ

0 βs[σ(s,Xµ
s ) −

σ(t,Xs)] dWs is a martingale. Now, keeping in mind that βt = ηt−γt, we take expectations:

E[β2
t∧τ ] = 2E

[∫ t∧τ

0
(ηs − γs)(b(s,Xµ

s )− b(t,Xs)) ds
]

+ E

[∫ t∧τ

0
(σ(s,Xµ

s )− σ(t,Xs))2 ds

]
≤ 2C2E

[∫ t∧τ

0
η2
s ds

]
+ 4E

[
‖b‖∞

∫ t∧τ

0
|γs| ds

]
+ C1E

[∫ t∧τ

0
η2
s ds

]
≤ (C1 + 2C2)

∫ t

0
E[η2

s∧τ ] ds+ 4‖b‖∞t sup
0≤s≤t

E[γs].

But η2
s ≤ 2(β2

s + γ2
s ) and hence

E[η2
t∧τ ] ≤ 2(C1 + 2C2)

∫ t

0
E[η2

s∧τ ] ds+ 8‖b‖∞t sup
0≤s≤t

E[γs] + 2 sup
0≤s≤t

E[γ2
s ], t ∈ R.

Set

Kt := 8‖b‖∞t sup
0≤s≤t

E[γs] + 2 sup
0≤s≤t

E[γ2
s ].

We claim that for each t > 0 we have Kt → 0 as µ→ 0. Indeed, if µ→ 0∣∣∣∣ζ2

∫ t

0
e
− s
µ ds

∣∣∣∣ = |ζ2|µ(1− e−
t
µ ) ≤ |ζ2|µ→ 0,∣∣∣∣e− t

µ

∫ t

0
e
s
µ b(s,Xµ

s ) ds
∣∣∣∣ ≤ ∣∣∣∣e− t

µ ‖b‖∞
∫ t

0
e
s
µ ds

∣∣∣∣ =
∣∣∣e− t

µ ‖b‖∞(e
t
µ − 1)µ

∣∣∣ ≤ ‖b‖∞µ→ 0,

E

[∣∣∣∣e− t
µ

∫ t

0
e
s
µσ(t,Xµ

t ) dWs

∣∣∣∣2
]

= E

[∫ t

0
e
− 2(t−s)

µ σ2(t,Xµ
t ) ds

]
≤ µ

2
‖σ‖2 → 0,
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4 Smoluchowski-Kramer Approximation

where we used Itô isometry. Thus, by Gronwall's inequality,

E[η2
t∧τ ] ≤ Kte

2(C1+2C2)t, t ≥ 0.

Therefore, by de�nition of the stopping time τ

P (τ < t)ε2 ≤ E[1τ<tη2
τ ] ≤ E[η2

t∧τ ] ≤ Kte
2(C1+2C2)t

Finally:

P ( sup
0≤s≤t

|Xµ
s −Xs| > ε) = P ( sup

0≤s≤t
η2
s > ε2) = P (τ < t)

≤ Kte
2(C1+2C2)t 1

ε2
−→
µ→0

0,

because Kt → 0 as µ→ 0.
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