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Introduction

In this Diploma Thesis the existence and uniqueness of solutions of stochastic differential
equations are studied. Differing from most of the existing literature, (see [IWS8I1l [Str84,
Pro90, [KS91]), we concentrate on the case of non-Lipschitz coefficients.

More precisely, the aim of this thesis is to extend the corresponding results of [FZ05] to
the case of time dependent coefficients. Those extended results we will apply to the Newton
system, which describes the evolution of a small particle moving in a random field. A further
step is to use our results for stochastic differential equations to prove the Smoluchowski-
Kramers approximation, which states the convergence of the solutions of this Newton system.

The first three chapters of this thesis are based on the paper [FZ05|, which was written by
Fang and Zhang and published in 2005. The results of this paper are adapted to our frame-
work and are extended to the time dependent case. As an application of the obtained results,
we study in chapter 4] the Newton system, which was first considered by [Nel67]. Finally
we prove the convergence of Smoluchowski-Kramers approximation in our more general case.

We give a short summary of each chapter. In chapter [I] we outline our notations and
repeat a few basic concepts of Stochastic Analysis. In section we establish the definition
of weak and strong solutions of stochastic differential equations. We do this closely to the
presentation in the book of Karatzas and Shreve [KS91]. Furthermore, we recall some well
known theorems from Stochastic Calculus and martingale theory.

In chapter [2] we study conditions to gain a unique solution of a given stochastic differential
equation. We examine the following stochastic differential equation

dX; = o(t, X;)dW; + b(t, X;)dt, Xo =z € R (0.1)

This is a generalization of the paper of Fang and Zhang, [FZ05], where the coefficients o
and b are not time dependent:

dX; = o(Xy)dW; + b(Xy)dt, Xo=x9 € R% (0.2)

We prove that even in the general case, there exists a unique strong solution of . This
will be proved by two theorems. The key idea is to show that the solution does not explode,
where we assume conditions similar to those stated in the paper (cf. Theorem , and
pathwise uniqueness (cf. Theorem . We point out, that the assumption on the function b,
and , are noticeable weaker than that of Fang and Zhang.

In this more general framework, we prove that two solutions to the same stochastic differen-
tial equation with different starting points will not coincide P-a.s. The details are expounded
in sections and 2.5} As a preparation we extend the result of Tkeda Watanabe, Theorem
to our time dependent case. For a clearer presentation and easier understanding we put
some technical lemmas in section[2.3] Furthermore we prove Theorem about continuous
dependence on initial data.
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In Chapter [3] we will prove that the solution of the stochastic differential equation is
continuously dependent on both, the initial value and time (cf. Theorem @ To this end we
construct an Euler approximation of the solution of the stochastic differential equation (|0.2)
in section Here, we assume o and b to be bounded. As in [FZ05] we obtain the uniform
convergence in ¢ € [0,7] (see Theorem [.1]). The next step (cf. section is to establish
some technical lemmas again for a better readability of the following proof. We work out
some steps of the proof in more detail than Fang and Zhang did.

Finally, we consider in chapter 4] the Newton system

dX!' =Y} dt,
pdY) = b(t, X1 dt + o (t, XIY) dW, — dXI, (0.3)
Xh=¢, Y'=¢

and prove the existence of a unique strong solution. The Newton system describes the
behavior of a small particle with mass p, 0 < pu < 1, placed in a force field. The force field
consists of a deterministic part b(¢, X}'), which only depends on the position of the particle
and the time, and a random part, where o (¢, X}') dW; represents the stochastic differential.
The term dX}" describes the friction of the particle. In section We consider along with the
Newton system above the stochastic differential equation . We prove that the solution of
(0.3) converges in probability to that of , if the mass p tends to zero. This property, (cf.
Theorem , is called Smoluchowski-Kramers approximation. It allows us to solve a one-
dimensional stochastic differential equation like instead of solving the 2-dimensional
Newton system. Clearly, this reduces the complexity of our problem.

The Smoluchowski-Kramer approximation has first been discussed rigorously by Nelson
[Nel67, chapter 10] in 1967. He assumed that the function b satisfies a global Lipschitz
condition and o = 1 and proved then (£.10)). Thereafter Z. Schuss [Sch80, chapter 6] proved
a Smoluchowski-Kramers approximation for the Langevin equation, an equation well known
by physicists. There, o is still a constant, but the coefficient b describing the force does not
need to be necessarily Lipschitz. The main contribution in the last years is due to M. Freidlin,
S. Cerrai and Z. Chen, [Ere04] [CF05, [CF06al, [CF06b]. These papers concentrate mostly
on properties around the Smoluchowski-Kramers approximation, but did not deal with best
possible solvability. M. Freidlin [Fre04] assumes a non trivial o, but still a Lipschitz condition.
So does R. Westermann [Wes(06]. We consider the Smoluchowski-Kramer approximation for
a similar system and impose considerably weaker assumptions. Furthermore, we use a new
technique to prove the approximation.



1 Mathematical Basis and Tools

1.1 Basic Definitions and Notations

First we want to introduce some frequently used notations. By |z| we mean the Euclidean
norm for a vector € R%. Let M(d x m, R) denote the set of all real d x m-matrices.

Definition 1.1 (norm). For a matriz o € M(dxm, R) we denote by ||o|| its Hilbert-Schmidt
norm:

lol* =" o,
i7

(which is equivalent to the usual operator norm R™ — R%).

In the following, we consider a filtered probability space (2, F, (Ft)o<t<oo, P) that satisfies
the usual hypotheses as follows:

(i) Fo contains all the P-null sets of F;
(ii) Ft = Nyse Fu, for all 0 <t < oo; that is, the filtration (F;)o<t<oo is right continuous.

A stochastic process X on (Q,F,P) is a collection of random variables (X;)o<t<oo. The
process X is said to be adapted if X; € F;. This means that X; is F;-measurable for each ¢.

Definition 1.2 (Brownian motion). An adapted process B = (Bt)o<t<oo taking values in
R™ is called an m-dimensional Brownian motion if:

(i) for 0 < s <t < oo, By — By is independent of Fy

(i1) for 0 < s < t, the increment By — B is normally distributed with mean zero and
covariance matriz equal to (t — s)Id, where Id is the (m x m) identity matriz.

The Brownian motion starts at z if P(By = x) = 1.

Every Brownian motion has a continuous modification cf. [Pro90, Thrm. 26, p.17].
We will now give a general version of [t0’s formula, later we will use a special case of it.

Theorem 1.3 (Itd’s formula). We assume that:

0:10,T] x Q@ — M(d x m,R) is predictable with P(fg llos||?ds < 00) =1, t € [0,T],
b:[0,T] x Q — R? is a predictable and P-a.s. Bochner integrable process on [0,T],

F :[0,T] x R? — R is twice Fréchet differentiable with derivatives Fy = %, F,. =
which are continuous on bounded subsets. Under these assumptions the process
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Xt:X0+/ adeS+/ beds, te€ 0,7,
0 0



1 Mathematical Basis and Tools

1s well defined and there exists a P-null set N € F, such that the following formula is fulfilled
on N€ for all t € [0,T]:

t
F(t, X)) = F(0, Xo) + / (Fu(s, Xs), 05dW)
0
t
1
+/ Ft(sts) + <Fx(57Xs)a bs) + itr[Fx:v(Sst)UsU:] dS;
0

where tr denotes the trace of the operator.

Proof. see [R6c06, 2.4.5| or the standard reference [DPZ92, Thrm. 4.17, p.105]. O

1.2 Solutions of SDEs

We follow the exposition in [KS91, p. 285, 300]. Consider an m-dimensional Brownian
motion W = {W;, F}V;0 <t < 0o} on a probability space (€2, F, P). For a random vector
¢ € RY, we consider the left-continuous filtration

Gii=a()VFV =0(6, Ws;0<s<t); 0<t< o0
By adding a collection of null sets
N :={N C Q3G € G with N C G and P(G) =0},

we create the augmented filtration

Fi=0(GiUN), 0<t<oo; Fx:i=0 U]:t

t>0

This filtration {F;} is a normal filtration, that means it fulfills the usual hypotheses. In the
following we define two different types of solution: weak and strong solutions.

Definition 1.4 (strong solution). A strong solution of the stochastic differential equation
on the given probability space (U, F, P) with the fized Brownian motion W and initial
condition &, is a process X = {X;;0 <t < oo} with continuous sample paths and with the
following properties:

(i) X is adapted to the normal filtration {F:} defined above;
(i) P(Xo=€) = 1;
(ii4)
t
/ |b(s, X)|ds < oo P-a.e. for allt € [0,00)
0

t
/ lo(s,X)||*ds < oo P-a.e. for allt € [0,00);
0



1.2 Solutions of SDFEs

(iv) the integral version

t t
Xt:X0+/ b(s,X)der/ o(s,X)dWs 0<t< oo,
0 0

holds almost surely.

One can interpret the strong solution of the stochastic differential equation as an
output of a machine, which consists of the functions b and o. This machine will be fed by
the initial condition £ and a Brownian motion W and produces then with every input a
solution X.

Definition 1.5 (weak solution). A weak solution of equation (0.1) is a triple (X, W),
(Q,F,P), {F}, where

(i) (2, F,P) is a probability space and {Fi} is a filtration which satisfies the usual hy-
potheses;

(ii) X = {X;, F;0 <t < oo} is a continuous, adapted R%-valued process, W = {W;, F;;0 <
t < oo} is an m-dimensional Brownian motion;

(iii)
t
/ |b(s, X)|ds < oo P-a.e. for allt € [0,00)
0

t
/ lo(s, X)||?ds < 0o P-a.e. for allt € [0,00);
0
(1v) the integral version

t t
Xt:Xo—l—/ b(s,X)ds+/ o(s,X)dWs 0<t<oo
0 0

holds almost surely.

In contrast to the strong solution we do not have the automatism, that we can choose
any Brownian motion W and initial condition £ and get a solution X in the case of weak
solutions. Here it is possible that there exists no weak solution to a given Brownian motion
on a probability space. This is due to the fact that the filtration {F;} does not need to be
the augmentation of the filtration G; = o(£) V F}V. Therefore the weak solution X;(w) does
not need to be a measurable functional of the Brownian motion and the initial condition.

Definition 1.6 (pathwise uniqueness). We say that pathwise uniqueness holds for (0.1), i
whenever X and X' are two (weak) solutions on the same stochastic basis (0, F, P, (F)) and
with the same (Ft)-Wiener process W(t), t € [0,00) on (2, F, P) such that X(0) = X'(0)
P-a.e., then P-a.e.



1 Mathematical Basis and Tools

Sometimes one does not have a solution for all times, but just locally. Then it blows up
in finite time. Therefore it is more convenient to modify the notion of a solution to include
solutions admitting explosions similarly to [TW8I1l p.158].

Definition 1.7 (explosion time). Let R? := RYU {A} be the one-point compactification of
RY and

W= {w|[0,00) 3 t — w(t) € R? is continuous and such that if
w(t) =A, then w(t') =A for all t' > t}.
Let B(Wd) be the o-field generated by all Borel cylinder sets. For w € W, we set
Cw) = inf{t w(t) =}
and call {(w) the explosion time of the trajectory w.

Now we recall an important theorem that ensures the existence of a weak solution only
with continuous coefficients.

Theorem 1.8. Given continuous o : R* — R ® R™ and b : R — R?, we consider the
equation (0.2)). Then for any probability p on (RY, B(R?Y)) with compact support, there exists
a weak solution X; of [0.9 such that the law of Xy coincides with p i.e., P(Xo € A) = p(A)
for any A € B(RY).

Proof. see [IW81], Theorem 2.3 on p. 159]. O

1.3 Tools from Stochastic Calculus and martingale theory

The connection between the two kinds of solution is given by the theorem of Yamada and
Watanabe:

Let W9 :=C([0,00) — R%). Let By(W?) denote the o-algebra generated by all maps 7,
0 < s < t, where m4(w) := w(s), w € W9 Let A%™ denote the set of all B([0,00)) ®
B(W®)/B(M(d x m, R))-measurable maps « : [0,00) x W? — M (d x m, R) such that for
each t € [0, 00) the map

W3 w— a(t,w) € M(dx m,R)
is B;(W?)/B(M(d x m,R))-measurable.

Theorem 1.9 (Yamada-Watanabe). Let 0 € A%™ and b € A%!. Then the equation (0.1
has a unique strong solution if and only if the following two properties hold:

(i) For every probability measure u on (RY, B(R?)) there exists a (weak) solution (X, W)
of (0.1) such that w is the distribution of X (0).

(11) Pathwise uniqueness holds for (0.1)).
Proof. See [PR0O7), Appendix E| or [R6c06, Appendix EJ. O

In fact, it is enough to consider initial distributions only of the form p = 6, for all
zo € R There is the following refinement of the Yamada-Watanabe theorem:

10



1.3 Tools from Stochastic Calculus and martingale theory

Theorem 1.10 (Kallenberg). Let weak existence and pathwise uniqueness hold for the equa-
tion (0.2)) for every initial data p on Re. Then strictly strong existence and uniqueness in
law hold for any initial probability distribution pn on RY.

Proof. See [Kal96]. O

In particular, we have unique strong solvability for any initial data =y € R?

The next Theorem claims the existence of a continuous modification of a stochastic process
under certain boundary conditions. Recall that a process X; where every sample path is
right-continuous on [0, co) with finite left-hand limits on (0, 00) is called a cadlag process.

Theorem 1.11 (Kolmogorov’s modification). Let (X{);>0.cre be a parameterized family

of stochastic processes such that t — X is cadlag almost surely for each a € RY. Suppose
that

Elsup | X¢ — X7|°] < O(t)|a — 0"

s<t

for some a, B > 0, C(t) > 0. Then there exists a version Xﬁ of X7 which is B(R4+) ®
B(RY) ® F measurable and which is cadlag in t and uniformly continuous in a on compacts
and is such that for all a € RY, t > 0,

X¢ = X®  almost surely.
Proof. See [Pro90, p.173|. O

We define
t 1 t
Z1(X) :=exp [/ XsdWy — 2/ |X2ds] , (1.1)
0 0

which is a local martingale cf.[KS91) p.198]. A sufficient condition for Z;(X) to be a mar-
tingale is known as the Novikov criterium. We give its version for Brownian motion, for the
general version see [KS91l Prop.5.12, p.198].

Theorem 1.12 (Novikov criterium). Let W = (Wy, F;;0 < t < 00) be an m-dimensional
Brownian motion, and let X = (X4, F1;0 < t < 00) be a measurable, adapted R%-valued
process satisfying P(fg | Xs|?ds < 00) =1 for all t € [0,00). If

1 t
E[exp (2/ |X3]2ds>} < oo, 0<t<oo,
0

then Z;(X) defined by (1.1)) is a martingale.
Proof. see [KS91, Thrm. 5.13, p.199]. O

Here we recall a useful fact about functions of bounded variation (which easily can be
checked):

Lemma 1.13. Let F = F(t), t € [a,b] be such that its derivative F'(t) exists for allt € [a,b].

11



1 Mathematical Basis and Tools

Moreover, F' is integrable on [a,b]. Then F is of bounded variation and

b
var[ayb](F):/ |F'(t)] dt.

We also need some facts about quadratic variation: Let 7, be a sequence of partitions of
[0,t], whose mesh tends to zero as n tends to infinity. Then the quadratic variation (along
(75)) of a real valued, continuous process t — X3, t € [0,00) is defined as

(X)e = lm Y (Ko — X2,
t; €™
t; <t

where the limit (provided it exists) is taken in probability.

Lemma 1.14. Let X; be a real valued continuous process such that the quadratic variation
(X)) ezists for all t > 0 and is continuous on [0, 00).

(i) Let F € CY(R). Then t — F(X;) has (finite) quadratic variation
t
(PEOY = [ (FOX)? dX)..
0

(ii) If My := Xy + Ay, t > 0, for some t — A; continuous and (A) =0, then

(M) = (X)

Proof. see [R6c07, Lemma 1.2.9]. O

12



2 Existence and Uniqueness of strong
solutions

2.1 Weak solutions for time dependent equations

Let 0: R = RY@R™ and b : RY — R? be continuous functions. Since we have by [TWS8I]
Theorem 2.3 on p. 159] only a weak solution for the time-independent equation , we
have to use a trick to get it for the time-dependent one. So, our aim is to construct a weak
solution for

t t
Xt =z0+ / o(s, Xs)dWs + / b(s, Xs)ds, (2.1)
0 0

where o : [0,7] x R? — R% x R™ and b: [0,7] x R? — R¢ are continuous and xg € R? is
an initial value.

Theorem 2.1. There exists a weak solution up to an explosion time ( of the stochastic
differential equation (2.1))

Proof. Instead of (2.1)) we consider the following, R4 _valued equation:
t t
Zy = 7y +/ 7(Zs) dWs +/ b(Zs) ds (2.2)
0 0

with Z; = (¢, Xt) € R™! t € R, X; € RY The coefficients are given by the functions
b:RM! =R x R — R x RY,

b(z) = b(t, z) = {él,b(t,x)), ii?ﬁ@

and 7 : R =R x R? — R @ R™:

/ 0 0
5(z) =5t x) == o(t,2) , tel0,+00),
0

, t<0.

Obviously the functions & and b are continuous. So we can apply Theorem which tells
us there exists an R%*!-valued weak solution Y; of (2.2)) up to the explosion time ¢ which
satisfies

t t
Yi=Yo+ [ o(dw.+ [ 5v)ds,
0 0

13



2 Existence and Uniqueness of strong solutions

where Yy = (0,20). Now we define projections:

P;: R S R, Py(t,z1,...,2q) = (z1,...,2q),
Xt = PdYt
& = RY; = (1 — Py)Ys,

so that Y; = (&, X¢). Now we show that X; = X; and & = t:

t t
X, = P)Y, = P;Y, + Pd/ o (Ys) dW; + Pd/ b(Y;) ds
0

> Jo Ulj dWs( 7 fg b1(Ys) ds
= PyYo + Py : + Py
> f 5d+1j(Ys) aw Jo bas1(Ys) ds
S fy o1 (Ye) dW Y [ by (Ya) ds
= xo + : + :
" oy ) [ ba(Ys) d
Ej:l fo 0dj (Y;) dWs o 0d\1s)as
t t
a0t [ o(V)dW.+ [ ovi)as
0 0

¢ ¢
ftZPOYtZPOYOwLPo/ 5(Ys)dWs+Po/ b(Y;) ds
0 0

>t Jo UlJ Y,) dwl? 3 b1 (Ys) ds
= PYo+ R : + Py :
_ j t7
21 fo Ud+1j<Y;) awy Jo ba+1(Ys) ds
t

=0+ / 1ds

0
=t.

Therefore, we have a weak solution of (2.1]) up to the explosion time (. O

2.2 Main results about strong solvability

In the global Lipschitz case, it is clear, that a strong solution exists. Fang and Zhang
[FZ05] showed in their paper, that we have for the time-independent case also a strong
solution under certain boundary conditions on the functions o and b. We will generalize this
condition to time dependent ¢ and b. The first result tells us that our weak solution does
not explode in finite time P-a.s. even in the time-dependent case.

Theorem A. Let p be a strictly positive, C1-function defined on (0,+00), satisfying

(i) lim p(s) = +oo, (2.3)

s§—+00

14



2.2 Main results about strong solvability

(ii) im S/’; /S) =0  and (2.4)
teo ds
(i11) /0 5 71 = +00. (2.5)

Assume that there exist C, K > 0, such that for all x € R? and t € [0, 0)

lo(t,2)[> < C(lzfp(|2]?) + 1),

(z,b(t,z)) < C(zp(|z|?) +1). (H1)

Then the weak solution of the stochastic differential equation (2.1|) with the initial distribution
0z, To € R?, has no explosion, that means P(( = 4+o00) = 1 where ( = SUPR~o TR and
TR := inf{t > 0|& > R}.

Remark 2.2. (i) For example the function p(s) := log(1l + s) satisfies the conditions (i)-
(ii). This fact will be checked later in section[2.3 (see Lemma[2.4)).

(i) In Theorem[A| we may always assume that p > 1.

The second result is about pathwise uniqueness of the weak solution. Here we claim that
semi-monotonicity for b and certain bounds, which hold uniformly in ¢, are enough to have
pathwise uniqueness.

Theorem B. Let v be a strictly positive, C-function defined on an interval (0,cq] with
co > 0, satisfying

(1) lli?((l) r(s) = +o0, (2.6)
(ii) lim SZS) = and (2.7)
tds o Va
(1i1) /0 () + Ya > 0. (2.8)

Assume that there exists C' > 0, such that for |z —y| < co and all t € [0, +00)

lo(t.z) —oty)lI> < Clo—yl’r(jz—yl*),

(@ —y.b(t,) — b(ty)) < Clz—yPr(lz—yP). (H2)

Then pathwise uniqueness holds for the weak solution of the stochastic differential equation

D).

15



2 Existence and Uniqueness of strong solutions

Remark 2.3. The second condition in (H1)) is called coercivity. The second condition in
(H2)) is called semi-monotonicity. A typical example of a function r satisfying the conditions
(i)-(ii3) is given by r(s) :=log1/s. This we prove in the next section, see Lemma[2.5]

Combining the two Theorems [A] and [B] it follows by the Yamada-Watanabe and Kallen-
berg theorems, (cf. Theorems and , that there exists a unique strong solution of
1)

Our next result is the same what Fang and Zhang [FZ05] claimed in their paper but under
our weaker conditions in Theorem |B|and with time-dependent coefficients. It says, that two
solutions with different starting points will P-a.s. never meet each other.

Theorem C. Let the hypothesis of Theorem B hold with
(& =y, b(t, ) = b(t,y))| < Cle —yPr(jz —y*), (2.9)

which is stronger than the semi-monotonicity assumption in (H2)). Suppose that the solution
does not explode at a finite time. Then for xo # yo, almost surely Xy(xo) # Xe(yo) for all
t>0.

The last result is about continuous dependence of the solution with respect to the initial
data.

Theorem D. Assume that there exist C,cy > 0 such that for all x,y with |z — y| < ¢o and
allt >0

lo(t,2) —o(tn)? < Clz—ylPr(lz—yP),

|b(t7x) _b(tvy)| < C|.’L'—y|7“<‘x—y‘2) (H3)

with r(s) = logl/s. Suppose that the stochastic differential equation has no-exzplosion.
Then there exists a version X¢(xo) of X¢(xo) such that (t,z¢) — Xy¢(x0) is continuous over
[0, +00) x RY almost surely.

2.3 Preparing Lemmas

Before we prove the theorems we need to prove some technical lemmas. First we prove that
our examples really fulfill the conditions.

Lemma 2.4. The function p(s) = log(1+ s) satisfies the conditions (2.3)-(2.5) in Theorem
4l

Proof. (i): Tt is clear,

(i1): Noting that p(s) = 1—_18, we have
1
sp(s) _ St oL .
p(s) log(1+s) = log(l+s) s—oo
(iii): We need to show: f0+°° slog(gﬁ = +o0.

We have that

/OO ds >/°° ds _/OO ds
o slog(l1+s)+1~Jy (1+s)log(l+s)+1 J; slogs+1°

16



We observe that

2.3 Preparing Lemmas

1 1 1

Vs > 2

slogs+1 — 2slogs
& slogs+1 < 2slogs

54

Therefore

ds
slogs+1

/+Oo
1

So all three claims are fulfilled.

Lemma 2.5. The function r(s) =

1 < slogs.

+ool 1 2
> = d —d
_/2 2slogs S+/1 slogs+1 °
1/+°° 1 1
2

= d
2 slog s S+210g2+1

1

v

1
ds
s

long?gQ

N =D =

(log oo — loglog 2) = cc.
O
log 1/s satisfies the conditions (2.6)-([2.8) in Theorem[B|

Proof.  (i):
1
lim log — = log lim — = oo.
s—0 S s—0 s
! _1
(i) tim 57y 205 !

s—0 7"(8)

1

r

T ds=
slog1/s °

520 logl/s T 0 log1/s -

1

slog s
a

a
J
1
= —lim
e—0 J. slogs

loga 1
_ dy
Y

- lir%(log |log a| —log |loge|)
e—

= — lim

=0 Jioge

= —(log[logal —log|(lim log €)[)

= OQ.

17



2 Existence and Uniqueness of strong solutions

Let (£, F, P) be a probability space, endowed with a filtration (F;)i>0. Let (W3)i>0 be a
Fi-Brownian motion taking values in R™. Consider the following It6 process in R%:

t t
7 = 1o + / esdW,+ [ fods, meRY, (2.10)
0 0

where (ex(w))i>0 is an M (d x m, R)-valued adapted process such that fOT lesl|*ds < +o0

for any 7' > 0 and (f;(w))¢>0 is an R%valued adapted process such that fOT |fs| ds < +o0
for any T > 0.

The following lemma is a particular case of It6’s formula for the square of norm. For a
general formulation of 1t6’s formula see Theorem For completeness of exposition we give
a proof.

Lemma 2.6 (Ito’s formula). Let & := |n|?, t € [0,00). Then
déy = 2(efne, dWy) + 2(ns, fr) dt + [leq||* dt (2.11)

where €f denotes the transpose matriz of e;. The stochastic contraction (i.e. quadratic
variation) (d&;) (see the definition before Lemma is given by

(d&r) = 4lem|*dt. (2.12)

Proof. For the function F : [0,T]xR¢ — R, (¢, ) +— |z|?> = Zle x? we have the derivatives:
F, =2z, F; =0 and F,, = 2 Id. Thus with the Ité-formula in Theorem

¢
1
[ne)? = |no)? —|-/ (2ns, esdWs) + (2ns, fs) + itr[Qese:] ds
0
t ¢
=& +/ 2(ns, esdWs) +/ 2(ns, fs) + trleses] ds
0 0

t t t
:§0+2/ (esns, dWs) +2/ (Ns, fs) ds + ||68||2d5,
0 0 0

where we used the fact, that () = Id and the calculation below:

d

tr[(es@"?)(esQ"?)] =) (esQ"?(esQY?)"1i, i)

i=1

= Q' (esQY*) L, e3ls)

d
Z<Q1/2Q 1/2)x *l e l>

_Q1/2
d

=1
d
= 2 (el k) = Y {eaelli i) = trleac]

zzl —lexly|? =1

= llell* = fles|.
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2.3 Preparing Lemmas

Here {I;}¢_; is an orthonormal basic of R?. To check the second claim we show first, that
fg(ns, fs)ds and fg lles||?ds are of bounded variation. Since e; is continuous by assumption,

we see that fg lles||? ds is continuous, too, even continuously differentiable with derivative
lle:||?. Therefore, by Lemma, we have for t € [0, 7]

t t
varga [ llecl?ds) = [ e ds <

hence the quadratic variation ( fot lles||? ds) = 0. The same result follows from the additivity
property of the integral.

The continuity of fg 2(ns, fs) ds is obvious, since ey, fs and Wy are, too. It is even contin-
uously differentiable with derivative 2(n, f;). Again by Lemma [1.13]

t t
vary( /0 2o, £ ds) = /0 20, £ ds

t
<2 [ nllflds < o
0

hence the quadratic variation ( fot 2(ns, fs) ds) = 0. Now we apply Lemma and get

t
(€)= { /0 2, dWL)) = dlejml?t,

which completes the proof. O

The next two lemmas give us useful upper bounds for E[®(£(¢))] under different assump-
tions on the function ® and its derivatives. These are due to [FZ05].

Lemma 2.7. Let p be a continuous function on [0, +00) such that p > 1. Let ® be a strictly
positive, C*-function on [0, +00) satisfying the following conditions
C12(¢) Ca2(§)p(€)

‘¢,(£)| S Wﬂ (I)”(E) S W?

where C1, Cy are two positive constants. Keeping the notations in Lemma assume that
for allt > 0.

¢ €[0,00), (2.13)

let]|* < Cs(&ep(&e) + 1), (2.14)
[(ne, fo)l < Ca(&ep(&e) + 1), (2.15)
where C3, Cy are lwo positive constants. Set
K = (C1 4 2C3)Cs5 + 4C1Cy, (2.16)
then the following bound holds uniformly for allt >0, R >0
E(®(étnry)) < @(|m0l*)e™, (2.17)

where T := inf{t > 0|§; > R} is a stopping time.
If additionally ®'(£) > 0, £ € [0,400), then the result still holds under the weaker (than
(2.15) ) assumption

(s fr) < Cal&ep(&) + 1) (2.18)
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2 Existence and Uniqueness of strong solutions

Proof. We use 1t0’s formula (Theorem with F' = ® and (2.11)), (2.12):

tATR 1 tATR
D) =B = [ Wlederg [ ¥ e
tATR t/\TR
=2 [ e a2 [ e 1) ds

tATR 9 1 tATR 5
4 / B (€4) esl|? ds + -4 / & (£,)|eina? ds
0

0
= 11 (t) + Ix(t) + I3(t) + 14(t)

l\D

In the next steps we estimate the single terms.
(i) Claim: I;(t) is a martingale
Proof of claim (i): Since

tATR
n(t) =2 /0 & (€) (e, dV)

tATR
- / (2110, ' (€,)dVV),
0

it is clearly a local martingale. To prove that I1(¢) is indeed a martingale, we need to check
that E[(I1):] < oo for all t > 0. Let us recall the following fact from [Pro90]. If X is a local
martingale, then X2 — (X) is a local martingale, too. If in addition E[(X);] < oo ¥t > 0
holds, then X is a quadratic integrable martingale. It remains to check the integrability of
(I1)¢: By [R6c06l Lemma 2.4.4]

tATR
(In) = / ()2 - [lets]? ds
and hence by (13), (214) and (Z13)

(LY <E| / et - Il |<1>'<§s>|>2ds]

[ rtnTr 2
<5| [ antenter + ve () ds]

1
6+ 1 ds}

tATR
< C(1203E [/0 §s¢(§s)2§ :_ 1 d8:|

r riATR
_E / C3026,B(¢,)?
0

t
< ClngE [/ (I)({sMR)Q ds] < 00.
0

The expectation in the last line is finite because ® € C? is uniformly bounded on the interval
[0, R]. A
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2.3 Preparing Lemmas

(ii) Estimate of I5(t). First we observe that

’q)/(§8)<7787f8>’ < ’@/(fs)’ ’ |<7757fs>’

Clq)(gs)
< m04(fsp(£s) +1)

< C1Cy (&),

where we used (2.13) and (2.14). If ' > 0, then we can use here the weaker assumption

(2.18).
Hence, we get the following estimate:

E(Lx(t) =E [2/0 " (&) (ns, [s) ds
<4010y /0 " Bl (e) ds

t
< 10,0, / E[®(Eny)ds. &
0
(iii) Estimate I3(t) by direct calculation:

mmm<E1£nmewwm%4

-/t/\TR Cl(b(gs)
Lo Esp(&s) + 1

I prtATR
=F _/0 0103(13(55) d8:|

@@M@+mm}

t
exe) /0 E[®(Enn,)]ds. A

(iv) Estimate of I4(t). We observe that by (2.13)

" C2q)(f$)p(55) 02(1)(53)
V&) S e+ 17 = Glep(e) < 1)

which holds because of gp[()g)ﬂ < % and p > 1. Thus with ([2.14])

" *, 12 02(1)(58) * 12
q) (és)‘esn8| S fs(fsﬂ(&s)""l)‘esns’
02@(55) * (12
< —gs(gsp(&)H)HesH s
< 02(1)(55)
T &(&sp(&s) +1)
< C2C039(&s).

’ 2

5503(§sp(§s) + 1)
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2 Existence and Uniqueness of strong solutions

This implies the final estimate

tATR
s <ef2 [ o) o)
0
t
< 20203/0 E[(I)(fs/\TR)] ds. A

Putting all four parts (i)-(iv) together, we have

E[®(&inrg)] = E[®(&0) + 11 + Iz + I3 + 1]

t
< B(£y) + 0 + (AC1Cy + CrCs + 205C5) / B(®(Eunry)) ds
0
=K

By Gronwall’s inequality we get that for all t > 0 and R > 0

E[®(Einre)] < P(E0)e™,

which completes the proof of the lemma. O

Lemma 2.8. Let r be a continuous function defined on a neighborhood of zero, say (0, col,
such that r > 1. Let ® be a strictly positive, C%-function defined on [0,co]. Suppose that
there exists § > 0 such that for £ € [0, co)

OIS i o ()<

(€r(§) +0)* '
Keeping the notations in Lemma suppose that |no|> < co. Define the stopping time
T = inf{t > 0[& > co}.

Assume that for t < T,

llecl|* < Ca(&er (&) + 9), (2.:20)
[(nes fe)]| < Cal&er(&e) +9). (2:21)
Let
K = (Cy +2C,)Cs + 4C1Cy, (2.22)
then

E[®(&inr)] < ®(|no[*)e™,  for any t > 0.
If additionally ®'(€) > 0 for all £ € [0, co], then in (2.21)) it suffices to assume

(e, fi) < Cal&r (&) +90) (2.23)
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2.3 Preparing Lemmas

Proof. Using It0’s formula with F' = ® and according to (2.11)) and (2.12):

tAT

b =0+ [ ey [ e de)

tAT tAT
b2 [ W) 12 [ Ve ) ds
tAT AT
b et as 12 [ @i ds
0 0

= ®(&) + 11(t) + Lz(t) + I3(t) + 14(t).

By assumption (2.20)), for any s < 7,
lexns® < llek]Pns|® < Cs(&sr(&s) + 6)s.

According to (2.19)), for any s < 7 and 0 < & < ¢p, we have

|<I)I(§S)e:778’2 < ’@/(58)‘2H€:”2’775‘2

C10(&) |
el Cutearte) + o)

= 01203¢’(§s)2§ﬂ,(§:)ﬂ5

< C3C3P(&,)% < oo,

where we used that ® € C?[0,cp]. As in the previous lemma, we thus get that I is a
martingale and E[I;] = 0. With the assumptions (2.19)), (2.20) and (2.21]) we obtain

/ ) C19(&s)
|D"(&s)(Ms, fs)| < [P(Es)] - [{ms, fs)| < E&r(E) + 0
C1@(&s)

D (&6)] - lles||® < m%(fsr(&) +6) = C1C39(&s)

Ca(&sr(&s) +0) = C1C4P(&s),

and

(& )lexns|” < (&) lles®lmsl?

Co®(E)r(&s) o e
= () +op GG O

_ 0y0s0() S (e,

Esr(€s) +0 —
~———

<1
If additionally ® > 0 then by (2.23) we have

q>,(§s)<778afs> < 0104‘13(55).
Let K be the constant defined in (2.22). Then we get as in Lemma

E[®(€nr)] < ®(nol?) + K /0 B[®(¢n,)] ds.

Finally, by Gronwall’s inequality, it follows that E[®(&a,)] < ®(|nol?)eXt for all t > 0. O
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2 Existence and Uniqueness of strong solutions

The next Lemma will be used in the proof of Theorem [.1]

Lemma 2.9. Keeping the same notation, assume that the coefficients e and f are bounded,
namely

led(w)]| < A4, |fi(w)| < B uniformly for all t € [0,00) and w € Q.

Assume ng = 0. Then for any T > 0 and R > VdBT, we have

r (P e RQ) < 2de” VARV, (224)

This is a classical result, its proof can be found in [Str84, p. 81]. For the reader’s
convenience, we present a detailed proof adapted to our concrete setup.

Proof. We have

P( sup |&| > R?) =P( sup |ns| > R)
0<s<T

0<s<T
t t
=P sup /eSdWs—}—/fsds
o<t<T |JO 0

t ¢
nt:/ 6stVs"i_/ fsds-
0 0
~ t t
G ::nt—/ fst:/ es dWs.
0 0
(i) Claim: The process

t t t
exp <<9,§t> - ;/0 ye;m?ds) ~ exp (/0 (0, ey dW,) — ;/O ]e§9]2ds> (2.25)

is a martingale for all # € R
We will show, that (2.25) is an exponential martingale. Define YV; := fg(&,es dWs) =

f(f(e:Q, dWs), which is obviously a local martingale. By [R6c06, Lemma 2.4.4]

ZR>

since 19 = 0 and

Let

t
aazjwm%&
0

The Novikov criterium (Theorem |1.12) is fulfilled:

1/t 1/t
Blowty [ o2 a9 | < Blew [ leita) <

<llezlI*161

Therefore exp(Y; — 1(Y;)) = exp(0 fg es dWs — %fg lex6|? ds) is a martingale. A
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2.3 Preparing Lemmas

(ii) Let S9! be the d — 1-dimensional sphere in R?. For fixed # € S9! and for all A > 0
we obtain

P( sup <9777t> > R)
0<t<T
= P( sup (¢,n:) — BT > R— BT)
0<t<T
< P( sup (0,m:) / fsds) > R— BT)
0<t<T

— P( sup (0,G) > R— BT)
0<t<T

= P( sup X0,() > AR — BT))
0<t<T

:P< sup ( 0,¢) —/ \e*ay2ds> > MR- BT) - = / X0 ds )
0<t<T
%,_/

<[ A2 ds=A2T

<P ( sup < 0,¢) — / lex 9[2ds) >ANR-BT) - )\2A2T>

0<t<T 2
N2A2T
:P(sup exp( 0,¢) —/\e 9[2ds)>exp<)\(R BT) — ))
0<t<T 2
Since
A2 * 0|2
Zxt = exp(A\Y; — ?<Y2>) =exp | M0, G) — \e 0|” ds
is a martingale, we can use Doob’s maximal inequality and get,
N2A2T
P( sup O > R) < exp (—)\(R _BT) + > : (2.26)
0<s<T
keeping in mind that E[Z) ;] = 1. Taking A = %, we arrive at
A2AT R— BT (Eh) AT
exp <—)\(R—BT)+ 5 ) = exp <—M(R—BT)+2
e _(R-BT)? N (R — BT)>*
- P A2T 9A2T
(R — BT)?

Let {e;}¢_; be an ONB of R?. Then we have

{ sup ‘775| > R} = { sup Z<77576i>2 > R2}
0<s<T 0<s<T ;|

d
C {Z sup <77576i>2 > RQ}

— 0<s<T
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2 Existence and Uniqueness of strong solutions

Hence

P( sup |ns| > R)

0<s<T
d
<)

=1

P( sup (ns, €;) =
0<s<T

Sl=

R
+ P | su 5, €i) < ——=
— ) (0§s£T<n ) \/Zi)
d

R
Z [sup P< sup (ns,€;) > ) + sup P( sup (7s,€;) < —

1 |1<i<d 0<s<T Vd 1<i<d 0<s<T

IN

)

Sl=

<d

R
sup P | sup (ns,0) > — |+ sup P| sup (n,,0) <—
fcgd—1 0<s<T Vd gesd—1 0<s<T

Si=
S—

<2d sup P ( sup (0,ns) > \2) .

feSd-1 0<s<T

Putting (2.26), (2.27) and (2.28) together we prove the claim:

Sl =

0<s<T feSd—1 0<s<T

(R Br)’
5o
<2d S € _—_
=2 S 9 A2T

e <_<R—¢5lBT>2> |

P( sup |ns| > R) <2d sup P( sup (0,ns) >

)

N—

2dA%2T

2.4 Proof of non-explosion

The aim of this section is to prove Theorem [A] Therefore we recall our setup. Let o :
[0, 7] x R* - R?*®@R™ and b : [0,T] x R? — R? be continuous functions. Let (X, W;) be
a weak solution of the Ito stochastic differential equation

dX; = o(t, X;) dW; + b(t, X;)dt, Xo =z € RY, (2.29)

up to the explosion time {. Such solution exists by Theorem We need to show that
¢ = 4o0.

Proof of Theorem[4] Without loss of generality we may always assume that p > 1, see
Remark (ii). Let us define the functions

[t _ds — V(O
U(&) .—/0 o) T 1 and ®(§):=e"\Y, £>0.
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2.4 Proof of non-explosion

We calculate their derivatives:

3 ds 1

@/(€) = OW(€) = p(6) L @1

de Jo sp(s)+1
and

(€)= '(E)(Ep(§) +1) — 2(E)(Ep'(§) + (&) _ 2 (L —Ep'(§) — p(£))
(€p(§) +1)2 (€p(§) +1)2 '

This shows, that ® is in C? and it’s clear, that ® and & are strictly positive. Since p > 1
and p obeys conditions (2.3]), (2.4), the following estimate holds:

1= p(&) = €0/ (©)] < [1 = ()] + |€0'(€)] < (1+ C)p(€) = C1p(€)
—_———  ——

<p(€) <Cp(e)

So we have

" ®(€)p(€)
P(¢) < Clm for all £ > 0.

This means that the conditions in (2.13) are satisfied. Let now 7, := Xy, & = |m|? according

to the notation in Lemma[2.7] Then, by comparison of (2.29) and (2.10)) we have e; = o'(¢, X;)
and f; = b(t, X;). By hypothesis (H1)),

lecl® < Clep(&) + 1), (feyme) < Cl&p(&) +1),  t € [0,00).
So the conditions in (2.14)) and (2.18) are fulfilled, too. Now we define the stopping time

T = inf{t > 0|§; > R}, R >0.

It is clear, that 7 tends to the explosion time ¢ as R — +oo. Now we can use Lemma
which gives us the existence of a constant Cy > 0 such that

E[®(8inry)] < @(60)e™".
Thus, employing the continuity of &, we have for every ¢t > 0, R > 0,
E[L¢<yy®(R)] < E[lc<n®(Einrg)] < ®(&0)e™"

Letting R — oo we have by the condition (2.5 that ®(+00) = +o0. Hence, P(¢ <t) =0
for any ¢ > 0 which implies P({ = +00) = 1. O

Let X;(zo) be a solution of SDE (2.29) with initial value .
Theorem 2.10. Under the hypothesis of Theorem [4] but with
(@, b(t,2))| < C(|l*p(j2]*) + 1)
instead of the second condition in (H1) we have

lim | Xy(zo)| = +o0 in probability, (2.30)

|zo| =00

that means that lim ;| P(|X¢(z0)| > R) =1 for all R > 0.
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2 Existence and Uniqueness of strong solutions

Proof. Let ¥ be the same as in the proof of Theorem , that is U(&) := fog Sp(‘iﬁ. The
function ® now is defined by

D(g) == e VO,

We see that @ is a decreasing function (because VU is increasing) with the derivatives

15 oy~ 2O
BT e I R GRS
3 - _ POERE +1) = BOIO) +E/O) _ MO+ p(O) +EH(€)
(Ep(&) +1)2 EpO+12

Because of p > 1 and condition (2.4)) we have

L +p(&) +£0'(€) < p()(C +2).

~~ ——r
<p(§) <Cp(€)
Thus,
" ()p(€)
Oy —SIPAS)
N GRS

with C; = C'+2 > 0. Hence, the conditions in (2.13]) are satisfied. Let R, M be two positive
constants such that R < |zg| < M. Define

fp o= inf{t > 0| Xy(xo)] < R} and Tap = inf{t > 0[|X¢(z0)| > M}.

By Theorem |A| we know that 7p; T +oo as M | +oo. Let 7 = Xyas,, which is an 1t6
process. According to notations in Lemma we have

es(w) = Liz>00(s, Xs), fs(W) = 13,56 008, Xs).
By hypothesis it follows
||€S||2 < C(sp(€s) +1), (ns, fs) < C(&p(§s) +1).

Using Lemma 2.7 we have
E[®(&inry,)] < (Jzol*)e .
Letting M — oo and repeating the arguments from the proof of Theorem [A] we get
E[®(| Xenrp (20) )] < @(|o]*)e". (2.31)

Because of X;r7, = Xz, on the set {t > 7z} and |X;,| < R, we have | X;nz,|? < R?. Since
® is decreasing, it follows ®(| X;n7,|*) > ®(R?). Combining this with (2.31) we get

P(tp < t)®(R?) = /ﬂ{mg}cb(R?)dt < /]l{%Rq}(I)(\XfR\?)dt

S/‘P(XtA%RIQ)dt = E[®(|Xinep[)] < @(Jzof*)e™.
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2.5 Proof of pathwise uniqueness and non contact property

Therefore for every fixed R,

P( inf |Xy(z0)] <R) < P(7r<t) < Me“
0<s<t T T T o)
— Cte—(T(lzol*)— T (R?))
|zol?
< Ctexp __]/ _ds
r2 sp(s)+1
— 400
— 0
when |zg| tends to +oo. Then convergence in probability follows. O

2.5 Proof of pathwise uniqueness and non contact property

In this section we will prove Theorem [B] and [C] The proofs mainly follow the idea of the
paper of Fang and Zhang [FZ05]. Afterwards, we will prove Theorem whose arguments
of proof will be used for the Smoluchowski-Kramer approximation (see Section .

Proof of Theorem [B Without loss of generality we can assume that the explosion time ¢ of
SDE is infinite, otherwise we have the pathwise uniqueness up to the explosion time.
Let X; and Y; be two solutions of having the same initial data. Consider the deviation
process 1; = X; — Y; and & = |n¢|?, t € [0,00). According to the notations in Lemma ,

et = U(t,Xt) — O’(t, Y;g), ft = b(t, Xt) — b(t, Y;j)
Let 7 = inf{t > 0|¢ > ¢2}. By hypothesis (H2)), for § > 0 and t < 7

ledl® = [lo(t, Xe) — o, Y)I* < ClXe = Yil*r(IXe — Yaf?)
=C&r(&) < C(&r(&) +9),

and

<77t7 ft> = <Xt - Y%a b(tv Xt) - b(tv Kf)>
<COIX =Y r(IXe —Yi|?) = C&r(&) < C(&r(&) +6),

where r is defined in Theorem [B] According to condition (2.6)) on the function r, we assume
that 7(£§) > 1 for all £ € (0, cp]. Otherwise we choose a smaller ¢y. We define for 6 > 0

— ¢ ds — %58
Ws(£) —/0 sr(s) +0 and  Q5(¢) = e,

Condition (2.8) on 7 leads to

¢
Bo(¢) = 70O = exp (/0 sr(j)s—l—(]> =e"™® =+00 VE>0. (2.32)
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2 Existence and Uniqueness of strong solutions

Calculation as in the proof of Theorem [A] implies

O = g s > w(6) = 5()" L)

§r(€) +6 (&r(8) +0)?
Conditions and ensures that there exists a large constant C; > 0 such that
[1=r() =& <L =r@+ &' (O < Crr(€), £ €(0,cql.

Therefrom it follows that for £ € (0, ¢

P5(&)r(€)
(£r(€) +0)*

The conditions in (2.19) are fulfilled. Now the Lemmal[2.8|tells us that there exists a constant
Cs > 0 such that for any ¢t > 0

PF(E) < Cy

E[®5(&inr)] < @s(|mol®) e = e,
N —

=®45(0)=el
Letting § | 0 and applying Fatou’s lemma we have

lim inf E[®5(£i0,)] > Elim inf ®5(E0,
i inf E[@s(§enr)] = Ellig inf @5(Giar)]

= e (i [ s
_F [exp < /0 o S:(S) d5>] . (2.33)

In regard of (2.32)), this implies that for any given ¢,

&inr = 0 almost surely. (2.34)

Recall that 7, and hence & is continuous in ¢. Hence, by continuity & = 0 on {7 < oo}
P-a.s. But again by continuity & > ¢3. Hence P(7 < 00) = 0. O

Proof of Theorem [(]. Without loss of generality we may assume |zg — yo| < co/2. Let 0 <
€ < |xo — yo| and define the random times

7o = 1inf{t > 0|| X¢(x0) — Xe(yo)| < e}, 7:=inf{t > 0|X¢(zo) = Xi(yo)}- (2.35)
It’s clear that 7. T 7 as £ | 0. Let
. 3
7 :=inf {t >0 ‘ | X+t (x0) — Xe(yo)| > 400} .
Consider

e = Xenz (o) — Xenr (yo) and & = me|. (2.36)
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2.5 Proof of pathwise uniqueness and non contact property

Again we use the notation from Lemma [2.6

et = Le>t(0(t, Xi(20)) — o, Xe(y0))),  fr = Laoza(b(t, Xe(20)) = b(L, Xi(y0)))-

By hypothesis (H2), it follows for ¢ < 7 and 6 > 0,

led]|? < C&r(&) < C(&r(&) +6)

and

[(mes fo)|l = [(ne; Lo > (b(E, Xi(z0)) — b(t, Xi(0))))
< ‘(Xt/\?s (wo) — Xin. (yo), b(t A 7e, Xins. (3?0)) - b(t N Tey Xips. (yo)m
< C&r (&)
< C(&r (&) +9).

We define the functions

o ds
Us() = | ———— D5 = e¥s(©)
5(8) /5 sr(s)+0 and b=¢

for &€ < ¢g. Like as in Theorem [B] we have

1
05(8) <0, [25(8)] = [@5(E)5(E)] = %(ﬁ)m
and for a constant Cp large enough
q)g(é-) _ @6(5) 1+ T(i) + 57‘/(5) < C (I)(;<€)T(§) g c [O,CQ].

E©+0? = TEr© o
So the conditions in (2.19) and (2.20) are fulfilled and we can apply Lemma [2.§[to get

E[®5(&inr)] < @5(&0)e™,

for some Cy > 0 and for all £ > 0. Letting 0 | 0, we get by Fatou’s lemma

E[Qo(&enr)] = E[lirgll%nf D5(Enr)]
< lim inf B[®5(§inr)] < 1im E[Ds(inr)]

< 151&)1 D5(£n)e " = Do(&n)e "

Writing out & we have

E[®0(| Xtnr.nr (0) — Xensonr (10)[%)] < ®o(&0)e .

On the subset {7. < t A 7} we have by the definition (2.35)) of 7.

| Xinsnr (@0) — Xensar (W0)] = | X5 (20) — X (v0)| = €.
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2 Existence and Uniqueness of strong solutions

Therefore

P(7c <t AT)®o(e?) = P(7 < t A7) (| X5, (x0) — X5 (30) )
< E[®@o([Xinz. (z0) — Xins. (Z/0)|2)]
< Dy(&p)e.

Since & > €2, the latter implies that

. D0(&0) oot
Plr. <tAhT) < 2
(7e T) < @0(€2>6
o
= exp (—/ ! ds) eC2t
2 sr(s)
— 0, ase | 0,

because of the condition on r. Since 7. T 7 we have that P(7 < t A7) = 0 for all
t. Letting t — oo we get P(7 < 7) = 0. So, we see that & is positive almost surely on
the interval [0, 7]. This means that the deviation & first becomes bigger than 3% instead of
becoming zero almost surely. Now define Ty := 0 and

T =T, Ty = inf {t >0 ‘|Xt(xo) — Xi(yo)| < %0}
and generally
‘ c
Ty, := inf {t > Top_1 ‘|Xt($o) — Xi(yo)| < EO } )

T2n+1 ;= inf {t > Ty,

300
‘Xt(SUO) - Xt(yo)’ > v } .
By definition 7,, — oo as n — oo. By pathwise uniqueness of solutions by Theorem [B]
X enjoys the strong Markovian property, cf. [KS91, Theorem. 4.20, p.322|. By definition
& is positive on the interval [Toy,_1,To,]. With help of the strong Markovian property, we
start again from 75, and apply the same arguments as in the first part of the proof. This

shows that & is positive almost surely also on the interval [Tay,T5,41]. So the proof is
completed. O

Theorem 2.11. Under the same hypothesis as in Theorem |B|, for any € > 0, we have

lim P( sup |Xs(xo) — Xs(yo)| >¢) =0. (2.37)

Yo—xo 0<s<t

Proof. Let xg, yo be such that |zo — yo| < & < o, where ¢ is the parameter in definition of
function r in Theorem |Bl Without loss of generality let co < 1 and define

& = | Xe(yo) — Xi(x0)]? and 7(z0,y0) := inf{t > 0|& > £*}.

Let ®5 and ¥y be defined like as in the proof of Theorem B:

%(s)::exp(/jmczs), %(5);:/05W(j;+5, € € (0, +0).
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2.5 Proof of pathwise uniqueness and non contact property

It is important to note that ®5(£) > 0. Similarly to the proof of Theorem B we can use
Lemma [2.8], which gives us a constant C' > 0 such that

E[®5(Einr(z0,y0))] < D5(&0)e”t for all t >0 and & > 0.
Let 0 = |xo — yol|, then from the above inequality

E[(I)(S(gt/\T(xo,yo))] < 6\115(52)801‘
< et (2.38)

In the last line we used the estimate

62
1 1
—— ds < §? — <.
/0 sr(s)+0 5= 55522] sr(s)+0 —

Taking into account that &ar = & > €2 on the set {7 < t} and that ® is increasing, we
obtain from ([2.38])

P(r(xg,10) < t)®s(c?) (20, y0) < t)Ps(&tar(oyo))

P(r
E®s (ft/\’r(xo,yo) )]

6eCt‘

(
[

IA A

IA
m

Therefore

P(sup |Xs(zo) — Xs(yo)| > ) = P(sup /& >e) = P(sup & > ¢e?)
0<s<t 0<s<t 0<s<t

= P(7(wo,y0) <1)

1 e 1
< 5.0t 5 Ct / d
e’e e e’e”" exp . sr(s) £ 0 S

— 0,
6—0

which completes the proof. O
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2 Existence and Uniqueness of strong solutions
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3 Continuous dependence of initial data

In this chapter we are interested in continuous modification of a solution X;(xg) of the
stochastic differential equation (2.29)). Therefore, in the first section, we construct the strong
solution via Euler approximation. In the second section we will prove some technical lemmas

which thereafter will be used to prove Theorem [D]in Section

3.1 Euler approximation

We assume that for all t > 0 and 2,5 € R?% 0 < |z — y| < ¢, where ¢y > 0 is a small
constant,

lo(t.) — ot l* < Cla -yl log i,
(3.1)
[b(t, ) = b(t,y)| < Clo—yllog 1.

Then holds and by Theorem |B|the stochastic differential equation obeys a path-
wise unique solution up to the explosion time (. We now construct the strong solution
directly via uniform Euler approximation under the additional assumption that the coeffi-
cients o and b are bounded.

Theorem 3.1. Let o and b satisfy the condition and be bounded:
o(t, )| < A, b(t,z)| < B for allz € RYand t > 0.
Fiz an initial data xo € R For n > 1 define (Xn(t))n>1 by Xn(0) = z0 and
Xn(t) = X (k27") + o(k27", X0 (k277)) (W — Wig—n) + b(k27", X, (k27™)) (t — k27™)

for k27" <t < (k+ 1)27". Then for any T > 0, almost surely, X, (t) converges uniformly
int € [0,T] to the solution X; of stochastic differential equation (2.29).

Proof. Define
On(t) :=k27" forte k27", (k+1)27"), k> 0.

Then by definition of the stochastic integral we have

/¢ o(k27", Xn(Pn(s))) AWs = o (k27", Xn(én (1)) (Wi = Wi, 1))

n(t)

=const Vs& [¢n (t) 1t]
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3 Continuous dependence of initial data

By iteration over k, X,,(t) can be expressed by

Xo(t) = Xy (k27") 4+ 0 (k27" X (k27™)) (Wi — Wig—n) + b (k27", X, (k277)) (t — k27")

=X, (k27" o(k27", X (dn(s))) dWs b(k27", X, (dn(s))) ds

( )+/¢n(t) ( (6n(5))) +/¢n(t)< (6n(5)))
k2—"m

=X, ((k: — 1)27") + /(k1)2—n o((k—1)27" X, (én(s))) dWs

k2—™m
n / b((k —1)27", Xo(¢n(s))) ds
(k—1)2—n

+/k U(k2_”,Xn(¢n(s)))dWS+/ b(k27", X (dn(s))) ds

2—n k2—n

_..._Xn(0)+/0 5(5,Xn<¢n(s)>)dws+/0 B(s, Xn(6n(s))) ds. (3.2)

where we set 6(s,z) := o(k27",2) and b(s,x) := b(k27",x) for k27" < s < (k+1)27™.
Now let 1 < a < v/2. Introduce the stopping time

T = inf{t > 0 || X, (t) — Xn(on(t)] > a "}
For t € [k27™, (k + 1)27™), by expression (3.2), we have
Xn(t) — Xn(on(t))
t

— / U(S,Xn(¢n(s)))dWs+/ B<3;Xn(¢n(s))>ds
0 0

én(t) on(t) _
- / (s, Xn(on(s))) dWs — / b(s, Xn(on(s)))ds
0 0

t

t #n () _
= [ots Xaone W~ [ (s Xa@ul ) W+ [ 55, Xa(0n(5) ds
0 0

:/ &(Xn(s,¢n(s)))dWs+/ b(s, Xn(dn(s))) ds

k k
b b

I N i AW W
= Tl n(¢n<gn+8>)) NEED)
N— ——

=W
t— -k
Tk k
+/ ’ b(— + 5, X, <gz5n( + s)> ) ds.
0 on on
Then we apply Lemma with |le;(w)|| = ||6(t,2)|| < A and |fi(w)| = |b(t,z)| < B.
Choosing T = 5 and R = ain (% > 1, s0 R > +/dBT holds for n large enough), we get

k+1
S <t BF)

P ( sup [ Xy (1) — Xn(én(t))] = R)

< Qde—(R—\/EBT)2/2dA2T
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3.1 FEuler approximation

a—n_\/gB2—n 2
= 2d exp (—( 5 A23n ) )

_ 9dexp (_ (@™ — \/&B2—n)22">

2d A2
2 n 2 -n 2 2
— 2dexp (—(a2) (1 ~ VaB() ) /2d A > .
The last equality holds because of:

2 n
G [1 - ﬂB(z)”} = (1= vaBC)y v aB )
-2 \/33;72 +dB?

a2n B

27’L
22

n
1 2_
:aTn—\/&Ba—n+dB2 n

1 1
= on (a% - J&BW + dB22—2”>

=" (a_" — \/gBQ_")2 )

Let ¢ = 2/a?, which is strictly bigger than 1 (cf. the above definition of a). Therefore we
have for large n,

P sup | Xn(t) = Xn(on(t))| > a™"

k+1
H << D

< 2dexp <—cn(1 — \/&B(z)")z/Qd/P)

< 2dexp (—c”/4dA2) ,

where the last inequality holds because % > 1 and hence (%)_” — 0 as n — oo. Therefore,

the term (1 — \/&B(%)_”)Z — 1l asn — oo, so it is in especially bigger than %. On the other
hand, we have for integer 7' > 0

Pl < 1) = P (1 {150 - Xa(6,(0)] 2 "} <)

=P ( sup | X (t) — Xn(on(t))| = a_">

0<t<T

=P sup Sup ‘Xn(t) - Xn((bn(t)” >a"

keEN k-1 k_
0<k€§T2" 2n <t< 2n

-pl U sup [ Xn(t) = Xn(on(t))] =2 a™

k—1
2—n<t<i

=9omn

0<k<T2M
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3 Continuous dependence of initial data

T

< ZP sup | Xn(t) — Xn(on(t))] > a™"
k=1 bt <i<gy

< T2"2d exp (—c"/4dA2) .

n

We know that (n+1)lo;—2+10gTd — 0o when n — oo. Therefore,
CTL
> 8dA?
(n+1)log2+logTd —
CTL
—— >log(2"*'Td
= saaz = o8l )
& ) s ontipg
HP\gaaz) =
c" c"
& exp( 8dA2>eXp(4dA2>_2 Td
c” n c”
-] > — .
& exp( 8dA2>_2 T2dexp< 4dA2>
Using this with the inequality above we arrive at
P(r, <T) < exp (—c"/8dA?). (3.3)

Defining now

() == Xnp1(t) = Xu(t),  &(t) = |na(t)?

and

@)
[
Ql

(t, Xnt1(dn1(1))) — 0 (8, Xn(n(t)))
(t, Xna1(Pn41 (1)) — b(t, Xn(dn(t)))

t -
Jt =
By Lemma [2.6] we have that

A& (t) = 2(efnn(t), AWy) + 2(nn (1), fr) dt + [|e;||* dt

S

has the stochastic contraction
(d&(t)) = 4|e7’fnn(t)|2 dt.

Define the stopping time

Cp = inf {t >0

&0 3 |

with the parameter 8 > 1. Then for s < 7,11 and n large enough (such that a= ("1 < 1/e),
we can use (3.1)) to obtain

15 (s, Xnt1(n+1(5))) = 3 (5, Xns1(5)) |
< O1Xp41(Pnr1(5)) = Xns1(5)*10g(1/[ X1 ($nr1(5)) — X1 (5)])
< Ca™ 2 1og(1/a=(+D)
< Ca?"loga”,
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3.1 FEuler approximation

where we used the fact that s — slog1/s is an increasing function for s € [0,1/e]. The same
arguments leads to

15(5, Xn(Pn(t))) — 5 (s, Xn(s))[|> < Ca™*"loga”, (3.4)
and hence with the parallelogram law for s < 7, A 71 A G,

lesll* = ll7(s, Xn+1(Pnr1(5)) = (5, Xn41(s)) + (s, Xnta(s)) — (s, Xn(s))
+ (5, Xn(5)) = 7(Xu(s,¢n(s)|
< 2[[|6 (5, Xn41(¢nr1(5))) = (s, Xnr1 ()|
+ 10 (s, Xur1(5)) = (s, Xn(s)) + 0 (s, Xn(s)) — (s, Xn (¢ ()]
— llo(s; Xnt1(dn+1(s))) — (s, Xn1(s))
— (05, Xus1(5)) = (5, Xn(s)) + 6 (5, Xn(5)) — (s, Xn(¢n ()|
< 2[[|6 (5, Xn41(¢nr1(5))) = (s, Xnr1 ()|
+2([l(s, Xn41(5)) = 0 (s, Xa(s))II* + |5(s, Xu(s)) — (s, Xn(dn(5)))]*)
= [7(s, Xnpa(s)) = (5, Xn(s)) = (@(s, Xn(s)) = 3 (s, Xn(dn(s5)))]%)
>0
< Allo(s, Xnr1(bn+1(5))) = (s, Xnar () + 75, Xns1(5)) = 0 (s, Xa(s))|?

1165, Xn(5)) — (5 Xngn() |
< 4[20a 2 og a” + C|Xns1(5) — Xa(s)[ 1og(1/| Xoa1 (5) — Xa(s))]
<40 (2a7*"log a™ + &a(s) log(|nna(s)| 1))
< 4C (2a_2" loga"™ + &,(s) log(l/fn(s))) .

Here we used (3.4]) in the 5th line and the last inequality results from the relation s < ¢,
and then &, < n%ﬁ < 1. Therefore,

a(t)]? = &u(t) < VEa(t) < 1.
On the other hand we have for ¢ < 7,, A 741 A G, and n large enough so that a=™+1) < 1/e,

[0 (0); fo)| < I (@1fs] = I (ONBE X1 (Sn41(1))) = b(ts Xn(n(1)))]

< (0] B(6; Xnt1($n41(1)) = bt Xnp1 (1))]
S OlXn41(dnt1() = Xn+1(0)|10g(1/|Xn+1(dnt1 (1)) = Xn+1(t)])
(EBY)
+ bt X1 () = b(t, Xn(8))] + [B(E, Xn (1) — b(t Xn(dn (1))
< .. < ..
(E3Y)

< I (8)|C [ | Xnt1(Pnt1(t) = Xny1(8)|10g(1/| Xng1(Png1(t)) — Xnpa(£)])
<a~(+Dlog(1/a=(m+1))<a=mlog(1/a™")
+ |1 (8) [ Log(1/|nn (t)])

+ [ Xn(9n (1) — Xa()|log(1/[Xn(o(t) — Xn(t)!)]

<a~"log(1/a~™)
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3 Continuous dependence of initial data

< In(®)]C [20™" 1og(a) + [ (1) 10g(1/ 1a (8) )]

< C[2 1 (t)] o™ log(a") + [ (t)  Jog(1/ Ina (1)) |
—— —_——— —————

=En(t)  <log(1/&n(t))

m‘“

2
< 0| Zam oga" + 6,(0)lou(1/6(1)
where we used again that s — slog(1/s) is increasing. Define the parameter p,, by:

2
Pn = ma‘" log a™.

We have to show that the conditions ) of Lemma are satisfied with C3 =4C, Cy = C
and 6 = p,. Indeed,

pn > 20" "loga” &  2a ?"loga” < nz,@ a "loga”
—2n a"
& a < B
a2 1
< a™ " = nf
& a "< !
— n/@?

which is true for n large enough.
Consider now the functions ¥, (&) := fog W and @, (&) := e*¥"(©). We have

490, (§)

) = Fogi/e) +

and

() = 497, (€)(€log(1/€) + pn) — 49, (&) (log(1/§) — 1)
n (510g(1/§) +Pn)2
_ 4-4P(§) — 4Pn(§)(log(1/¢) — 1)
(5 IOg(l/f) + pn)2
_ 42,(§)(4 —log(1/§) +1)
(€log(1/€) + pn)?
_ 42, (§)(5 +10g(€))
(Elog(1/€) + pn)?”

If £ < e = ¢y, then ®”(£) < 0 and the conditions in (2.19) are satisfied with C; = 4,
Cs = 0. Consider the stopping time

Tn = Tn A Tnt1 A Cn.
For n large enough, we have &,(t A 7,,) < ¢g. Let K = 32C. Then by Lemma we get

E[®,(&,(t A 7)) < et for all ¢,
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3.1 FEuler approximation

from which we conclude

Ell g 5T <y P (En(T A 7)) < T

On the set {T' > (,}, by definition of 7, it holds T'A 7, = 7, = {, because T' < 7, A Tpp1.
So

E[H{Tn/\fnﬂ ZT,g,LgT}q)n(ﬁn(Cn))] <eft

1
= E[]l{TnATn+1ZT,CnST}(I)TL(W)] < i
1
g (I)n(Tﬁ)P(Tn ANTag1 2T,6, <T) < KT
n
& VU P A g > T, < T) < 57
Thus we have
n—28 1
P(7, A >T.¢, <T) < el —4 - ds]. 3.5
(Tn Tn+1 - 7CTL = ) € eXp < /0 S].Og(]./s) + pn 3) ( )

Note that n™% > a™" for large n. Using again that slog1/s is increasing over [0,1/e], we
have therefore n=?2logn® > 2a""loga™. So we see that p, < n=2?logn® < n=2#logn?8

holds for large n. Hence there exists a ¢, € (0,n~27) such that
1 2 —-n n —-n n
cnlog — = pp = —30 loga™ < a "loga”.
Cn n

Since slog1/s is still increasing over [0, 1/e], we see that 0 < ¢, < a™". Now

en < S
& cnlogl/e, < slogl/s
& slogl/s+ cplogl/c, < 2slogl/s
1 1 1

=4

> — .
slogl/s+cplogl/e, = 2slogl/s
With the above we get

-2 —28

/ as= | s
0 slog1/s+ pp 0 slogl/s+ cplogl/cy,
25

S /n 1 1 d
> —————ds
e, 2slogl/s

1
= —/ ds
2 /., slogs
1 1
=—= 1 ! d
2/ (log 5) log s s
1 /logn 26 1 | logn~28
5 = — 5|8y
2 log cn, 2 log cn
1
2

1 —Qﬁ
log <0gn) ,
log ¢,
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3 Continuous dependence of initial data

This and (3.5) imply

—283

1
L)
slog1/s+ py

1 log n—2¢
S eKT exp{ — 4(—5 log <10gc )}

—28 2
= ef T exp { log <logn ) }
log ¢,
_98\ 2
_ KT logn—2°
log ¢,

_ KT (_ 2Blogn)2

log ¢,

2
< KT (2ﬂlogn>

nloga

n
Pty ATpe1 > T,6, <T) geKTexp{ —4/
0

where we used that —logc, > —loga™ = loga™ > 0. Defining Cs5 := &7 (lgfi)g and taking

n large enough, we conclude

2
P(Tn N Tpy1 2 T, Cn < T) < Cs <10gn> . (36)

n
After putting (3.3) and (3.6) together, we see that for n large enough

P(CHST):P({Tn/\Tn—O—l ST;CnST}U{Tn/\Tn—&-I ZT7<7L§T})
(Tn/\Tn+l STaCnST)+P(Tn/\Tn+1 ZT7CTL§T)
(TnST)+P(Tn+1 ST)“‘P(Tn/\TnJrl ZT,CnST)

2
< exp (—C"/SdA2) + exp (—C"H/SdAz) e (10571)

2
< 2e7" /8% 4 (loin>

< for some v > 1

1
e
nYy

2
where we used that ¢ > 1 and, for any € > 0, (12%1? — 0, as n — o0o. This means that

1
P< sup | Xpi1(t) — Xn(t)[2 > 7) <— — 0.
0<t<T

It is well known that > > L < o for 4 > 1. Therefore, by Borel-Cantelli Lemma, almost

n=1 nY
surely

1
sup | Xp+1(t) — X (t)]| < —5 for large n.
0<t<T n
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3.2 Preparing Lemmas

It follows that the series
Xy o= 3 (Xuia () = Xa(D) + X2 (0)

n>1

converges uniformly in ¢ € [0,7]. The only thing remains to check is that X; is really a
solution of stochastic differential equation (2.29)). Since the coefficients o(t,z) and b(t, x)
are continuous and bounded, we obtain together with (3.2) that

Xy = Z(Xn+1(t) — Xn (1)) + X1(t) = nlgrolo Xn(t)

n>1
= Jim (26,00 [ ot Xalu (i + [ B Xolon(s1) )
=+ nan;o Ot (s, Xn(dn(s)))dWs + nlglgo Ot b(s, Xn(dn(s))) ds

n—oo

:‘H/o JLH;OU(S,X,L(%(S)))CIWSjL/O lim b(s, Xn(dn(s)))ds

t t
::c+/ o(s, Xs) dWs—i-/ b(s, Xs)ds.
0 0

3.2 Preparing Lemmas

In this section we will prove several technical lemmas needed in the proof of Theorem D.

Lemma 3.2. Let r be a strictly positive continuous function defined on (0, col, where 0 <
co < 1. Assume that the coefficients o and b are compactly supported, say

o(t,x) =0 and b(t,x)=0 forall |z|>R,0<t<T (3.7)

with some 0 < R,T < oo, and satisfy the hypothesis (H3) in theorem @] Letp > 1. If
s — r(s) is decreasing on (0, cq], then there exists a constant C, > 0 such that for all
lz| <R+1, [y <R+1,0<t<T

lz—y|?P

lo(t,2) = ot )P < Cyla—ylr (5"

2p 3.8
) = bt )| < Gyl =yl (547 (38

where M = 4(R$1)2.

Proof. The similarity of these two inequalities show, that it is enough to prove only the one

for b. So if |[x — y| < ¢, by (H3)
[b(t, ) = b(t,y)| < Clz —y|r(jz —y[*)

< Clz—ylr <(m ;49’2)]”), (3.9)
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3 Continuous dependence of initial data

because
M:M>1
co
=0< |x;4y|2 <lz—y*<d <1
> (E) <lo-yp <oy

and r is decreasing. We observe that

inf E-r ﬁ ’ inf T 5260
co<E<2(R+1) M T o< R+1 4(R+1)?

> f ch
B c0<§£(R+1 r( 0)

Hence, using that r is decreasing,

et (] ) 2o ([*57])
= cor(ch) > 0.

On the other hand,

sup [b(t, z) — b(t, y)| < Supllb( I+ 1@ < 2[[blleo,
7y

where ||b||s denotes the uniform norm of b over [0, T] x R%. Now let |z —y| > c¢p. Choosing
a large C,, which fulfills Cpcor(ch) > 2||b||, we then have

|z —yI*]"
[b(z) =)l < Cplz —yl-r { | =7 | |- (3.10)
Both inequalities (3.9)) and (3.10) together gives us the result. O

Lemma 3.3. Let o and b be continuous functions satisfying the support condition . If
the stochastic differential equation has the pathwise uniqueness, then for any |xo| <
R +1, it holds | X¢(z0)| < R+ 1 almost surely for all t € [0,T7].

Proof. We define the stopping time
= inf{t > 0|| X¢(x0)| > R+ 1}. (3.11)

Set Y; := Xyar(x0), 0 <t <T. Then X, =Yy if s <t AT, so that

tAT tAT
Xt/\‘r(x) = xo + / O'(S, Xs) dWs + / b(‘S» Xs) ds
0 0

tAT tAT
=Y (z) = o +/ o(s,Ys)dWs —l—/ b(s,Ys)ds.
0 0
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3.2 Preparing Lemmas

On the other hand, we have

Bl / lo(s, Yo > (Ljsery — 1) ds] = E| / o (5, Yo)lI?1 s ]
— R / lo (s, Yo)|I? ds]

= B[ o5, X, s

Since X takes values on the sphere of Radius R + 1, so o(X;) = 0 because o is compactly
supported. Therefore the last term in the above equality is zero. Herefrom it follows that

tAT AT
/" d&nymg:/“ o (5, Xons) AW,
0

JE o (s, Xonr) dW, if t <7,
T 0(8, Xonr) dWs = [1 (s, Xonr) AWy, if 7 < t,

=A o(s, Vo) AW,

tAT tAT t t
/ b(s,Ys)ds = / b(s, Xspr)ds = / b(s, Xsnr)ds = / b(s,Ys)ds
0 0 0 0

almost surely. Finally

and

t t
Y =z + / o(s,Ys) dWs +/ b(s,Ys)ds.
0 0

This means that (Y;,0 < t < T') satisfies the same stochastic differential equation as (X, 0 <
t < T). By pathwise uniqueness, we conclude that Y; = X; almost surely for all 0 < ¢ <
T. By the definition of 7, this means that if |z¢] < R+ 1, | Xy(x0)| = |Yi(zo)|
| Xinr(20)| < R+ 1 almost surely for all ¢ € [0,T].

O

Lemma 3.4. Assume the same hypothesis as in Lemma and furthermore let r satisfy
the conditions (2.6)-(2.8) in Theorem [B and let & — &r(€) be concave over (0, co). Let p > 2
be an integer. For |xo| < R+ 1 and |yo| < R+ 1, set

&t

P
ne = Xe(xo) — Xe(yo), § = ’Ut’z and 2z = (M> ) 0<t<T, (3.12)

where M is the constant defined in Lemma , Put ¢(t) = Ez. Then for some constant C,

¢(t) < Cpo(t)r(e(t)),  0<t<T
Proof. We can apply Lemmas [3.2] and [3.3] and get that for all 0 <¢ < T

<R+1 <R+1

& (1Xulwo) = Xiwo)PY _ (1Kol + Kol P \? _ (4R + 12\
Aﬁ:< ] >§< M >§<A4):%’

Zt =



3 Continuous dependence of initial data

50 z¢ is a bounded process. Let e; = (X (x0)) — 0(X¢(yo)) and fr = b(X¢(x0)) — b(Xt(yo))-
Then with the help of Lemma and Ito’s formula, (cf. Theorem , where we used that
p>2) wehave forall 0 <t < T

b=l =

= olpel e+ (o — D d(E)

1 . _ N
= 2plein, AW & + 2(m, fu)pel " dt

—1 —2| %
+ plled|PE ™ dt + 2p(p — 1)EP% |ef | *dt.

Now we will estimate the single terms: By Lemma Xi(zo) and X;(yo) are bounded by
R+ 1. So we can apply the result (3.8) of Lemma

p—1 p—1
gM,, [(ns, fs)] < 5 = (sl fs|
571 X, — X, %
< 7s|Cp | Xs(20) — Xs(yo)| 7 | Xs(z0) - (vo)| )

=[ns|

p—1 2p
s 2 75|
S Mp Cp ‘7/’8| r < Mp )

and similarly

p—1 p—1
©eal? = & o(Xa(a0)) — o(Xa(wo))|?

MP MP
p—1 Xs _Xs 2p
S I e
& (&
C”Mp (Mp>
= Cpzer(2s).

Finally we use that ||T'|| = ||T%|| for any bounded linear operator T', which yields

p 2 p—2
el = S (o (Xum0) — (X)) (Kale) — X))
p—2
< &N 0(X(a0) ~ o(Xa )" 1P1Xul0) — X (a0)P
p—2 o) — 2p
R L e IL ROl
=¢s
= Cp]\;pr(]\;p) = Cpzer(zs)
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3.3 Proof of Theorem D

Note that &r(€) is in C1((0,¢co]) by the same property of 7(¢). By assumption, &r(€) is
concave, hence every tangent of £r(€) is bigger or equal to its value at every point of the
domain. More precisely {r(€) < g(§) where g(£) is a linear function defined by

9(&) = r(co) + (r(co) + cor’(c0)) (€ — co)-

Therefore
sup &r(€) < sup g(§) < oo.
0<€<co 0<€¢<co
Thus the first term in the expression of dz; is a martingale and then ¢(t) = Ez is a

differentiable function with respect to ¢ and its derivative can be estimated by

#(t) = Pl
1

= (B[2pg ™ e, AW +B (29l ™ s 1)

~~

=0 (martingale)
+ E[pelled|?] + E[2p(p — 1)EX 2 efmel])
(E[206) " (me, f)] + Elpel " lec]|*]
+ E2p(p — 1)&|efme] )
< pCyElzr(2)](2+ 1+ 2(p — 1))
= (p + 2p*)Cp B[z (24))
< (p+ 2p*)CoE[z)r(E[z)), 0<t<T.

1
- My

Note that in the last line we used Jensen’s inequality. Then the Lemma is proved by taking
Cp = (p+2p?)Cp as a new C,,. O

3.3 Proof of Theorem D

Proof of Theorem[D, Recall that under the hypothesis the equation has a unique
strong solution. So, it is enough to prove the continuity of (¢,z¢) — X¢(xo) on the domain
[0, 7] x R? for each T > 0. We make two steps.

Step 1. Assume that o and b are compactly supported, say

o(t,x) =0 and b(t,z) =0 for |z|> R.

Let ¢ be defined as ¢(t) = Ez, t € [0,T], where z; is defined in (3.12)). Let us check the
conditions of the Lemma Obviously, 7(s) = log(1/s) satisfies (2.6)-([2.8)), sce Lemma
Furthermore r(s) > 0 for all s € (0, cpl, co < 1. The function f : s+ sr(s) is concave,
which follows by direct calculation: f” = —% < 0. So we can apply the Lemma and get

9(t) < Cpat)r(8(1)) = Cro(t) 1og<¢gt)>, 0<t<T.
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3 Continuous dependence of initial data

Solving the differential inequality:

& (log ¢(t))" < —Cplog é(t),

we get that

or explicitly

(@ E@T

< E[|Xy(z0) = Xu(yo) ] < (EHXO(H?O) - Xo(yo)’%])e L pp(—e” 7Y

=|zo—yo|??
& E[|X¢(z0) — X¢(y0)|*] < (Jzo — yo|*)°
< MP|zg — yo| ¢

Cpt

. pyp(l—em Pt

Cpt

< Cplzo — yol <", for |z — ol < 1, (3.13)

where C]’D is the maximum of C), and M?. Now we show some upper bounds on the integral
terms: for all ¢,s € [0,T], |t —s| <1,

t 2p
[t xyar " < e bR < e s
S

") <cwe ([ ot xaipar)]

< Cp)lt = slPllol22. (3.14)

E U /Sta(r, X,) dW,

In deriving we used the Burkholder-Davis-Gundy inequality (see Theorem 3.28, p.
166, [KS91]). Recall that b, o are compactly supported and continuous, therefore bounded
on [0,7] x R, i.e. there exists K > 0 such that ||b]|cc < K, ||0||co < K. Then with help of
(3-13)) and (3.14) we see that

—C
E[1X(w0) = X, (90)/] < Cy (1t = I + | = o "),

with certain constant C, > 0, uniformly for all zo,yo € RY, |20 —yo| < 1, and all s,t € [0, T,
|s —t| < 1.

Fix p > d + 1. Choose a constant Tp € (0,7] small enough (Tp < 1/Cplog2), such that
2pe~CrT0 > d 4+ 1. Applying Kolmogorov’s modification Theorem with 0 = 2p — 1,
a = 2p and ¢ = C,, we conclude that there exists X;(xp), a version of X;(xo), which is
continuous in (¢,xg), t € [0,Tp], |xo] < R+ 1 almost surely. But from pathwise uniqueness
it is obvious that

Xi(xg,w) =29 if |xo| > R.
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3.3 Proof of Theorem D

We conclude that (¢,29) — X;(zo,w) can be extended continuously to [0,7p] x R®. Let
(Or,w)(t) = w(t + To) — w(Tp). Define for 0 < t < Ty,
Xry1t(wo,w) = X¢ (X7, (20, w), O, w).

Then X7, (zo,w) satisfies the stochastic differential equation (2.29) driven by the Brownian
motion f7,w with the initial condition Xr,(zo,w). Since by Theorem [B| we have pathwise
uniqueness, it holds that Xr1y+t(z0,w) = X1y+e(20,w) almost surely for all ¢ € [0,7p]. This
means that X;(zo,w) is a continuous version of Xy(zg,w) over [0,27p] x R%. Proceeding in
this way, we get a continuous version on the whole space [0,7] x R

Step 2: General case. For R > 0, let fr(z) denote a smooth function with compact
support satisfying

fr(x)=1 for |z|<R and fr(z)=0 for |z|>R+1.
Define
or(x) = o(x)fr(z) and br(z)="b(z)fr(z).

Let X/*(x,w) be the unique solution of the stochastic differential equation (2.29) with ¢ and
b replaced by o and bg. Let X/ (x,w) denote a continuous version of X/[*(z,w). Such a
version exists according to step 1. For K > 0, set

@) =it {t € 0.7 || @w)| 2 K}, ric(@) = inf {t € (0,7 Xe(w, )| = K}
If |z| < R, by pathwise uniqueness we have P-a.s.
Xi(z,w) = XN (z,w) forall N>R+1 and t<7p,,.
Since N > R+ 1, we conclude
Tr+1(x) = inf{t € (0,T]|| X¢(z,w)| > R+ 1}
= inf{t € (0,T)|| X} (z,w)| > R+ 1}
= TI{YV+1($)'
For |z| < R, we define
Xt(x,w) = Xf‘“(:c,w) for te [O,Tgif(x))

Then on this set, X.(x,w) is a version of X.(z,w). It remains to show that X;(z,w) is
continuous in (t,z) € [0, 7] x RY for almost all w. Fix z¢ with 29| < R. Since the explosion
time of the solution is infinite, there exists R > 0 such that Tgif(l‘o) > t 4 ¢ for a small

€ > 0. The later implies that

sup
0<s<t+e

Xf+2(xo,w)) <R+1.

By the continuity we can find a neighborhood Bg(xg) of x¢ such that

sup Xf+2(x,w)‘<R+1 or Tg_—:f(x)>t—|—€

0<s<t+e

for all € Bj(zg). Hence, X,(zo,w) = XF+2(z,w) for all z € Bs(zg) and s < t + ¢, which

implies that X(zo,w) is continuous at the point (¢, z). O
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4 Smoluchowski-Kramer Approximation

In Section we introduce the Newton system describing a motion of a small particle in
a force field and a notion of its solution. For the mathematical background and physical
motivation see the paper of M. Freidlin [Fre04]. Besides, we shall use the related results of
the diploma thesis by R. Westermann [Wes06], completed in Bielefeld in 2006. As compared
with the [Wes06], we impose considerably weaker assumptions on the interaction coefficients.

4.1 The Newton system

We consider the motion of a particle of small mass 1, 0 < 4 < 1 in a force field. We assume
that the differential of the force is given by b(s, Xs) ds+o(s, Xs) dWs, where b: [0,T] xR —
R and o : [0,7] x R — R are continuous functions and W; is an one-dimensional Wiener
process.

The motion of the particle is described by its position and velocity (X}, Y/"). By Newton’s
law, X}" is governed by the following system of stochastic differential equations:

dX!' =Y/ dt,
pdY}l =b(t, X!") dt + o(t, X}") dW; — dX}, (4.1)
Xg:C17 YDM:C27

where (1,(2 € R are the initial condition.

One can interpret the Newton system as follows: The momentum of a particle is defined by
mass times velocity. The Newton system says now that the increment of the momentum of
a particle is given by the differential of a force field from which we subtract the differential
of the friction. The force field consists of a deterministic part b(¢, X}), which only depends
on the path of the particle and the time, and a random part, where o (¢, X}') dW; represents
the stochastic differential. The friction is represented by the term dX}'.

Definition 4.1. A weak solution of the Newton system 1s an Fi-adapted, real-valued
Wiener process on a probability space (Q,F,{Fi}, P) and a pair of real-valued stochastic
processes (X,Y) = {(X¢, Y1)|t > 0}, each of them has continuous sample paths and is adapted
to the filtration Fy. It satisfies the initial conditions X} = (1 and Y§' = (3. Moreover the
process Y} defined by Y/} dt = dX}' for all t > 0 P-a.s. should be a weak solution (in sense

of Definition of
Ay} = la(t,Xt“) AWy + <1b(t,Xt“) — 1Yt"> dt.
H H H
The later means that for all t > 0 P-a.s.

1 [t 1t
V=Gt [ ol xmawis o [ v X2 v ds
K Jo K Jo
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4 Smoluchowski-Kramer Approximation

Definition 4.2. A strong solution of the Newton system on the given probability space
(Q, (Ft)t=0, P) with respect to the fired Brownian motion W is a pair of real-valued stochastic
processes (X,Y) = {(Xy,Y;)|t > 0}, each of them with continuous sample paths and adapted
to the filtration Fy. Moreover, it should hold X} = (1 as well as YJ' = (3 and the process
Y} defined by Y/ dt = dX}' for all t > 0 P-a.s. should be a strong solution (in sense of
Definition |1.4)) of

1 1 1
aylt = —o(t, X!")dW; + (b t, X1 — Y“) dt.
t = (t, Xp') dWy . (t, X3') LY
This is to say that for all t > 0 P-a.s.

1 [t 1 [t
Y=+ / o(s, X*)dWy + / (b(s, X¥) —YH) ds.
K Jo ®Jo

In her diploma thesis [Wes06], Ramona Westermann claimed that there exists a unique
strong solution (X!, Y}') on [0, 7] under the following conditions on the functions b and o:

(i) b, o Lipschitz continuous on [0,7] x R?, i.e. there exists a D > 0, such that for all
g, 21 € R, tg,t1 € [O,T}

‘b(to,:l,‘o) — b(thxl)\ + ’O’(to,l’o) — J(t1,$1)| < D(|SCQ — l‘l| + ‘tg — t1|). (42)

(i) there exists a K > 0, such that for all x € R,t € [0,7] the linear growth condition
holds:

b(t, ) + o (t2)* < K21+ [a]?), (4.3)

Our aim is to give weaker conditions, under which the unique solvability still holds. We
can equivalently write (4.1]) as the two-dimensional system

X _ v 0 0

We define 2 € R?, f: [0,T] x Rx R —R%?and ¢g:[0,7T] x R x R — M(2 x 2,R), by

z::(‘;), f(t,x,y)1=<ib(t7:,§/)_iy>’ g(t’x’y)::<8 ;08,96))

Hence our second order system of stochastic differential equations can be written as
dZy = f(t, XF, Y} dt + g(t, X}, V) dWs. (4.4)

We impose the following conditions, which are weaker than (4.2)),(4.3). Let f, g be con-
tinuous, and satisfy the following:

e For a constant C' > 0 and all z € R2, ¢t € [0,T],

lg(t, )| C(lzPp(l2) + 1),

<
<z7 f(t, Z)) < C(!z|2p(|z|2) + 1); (4-5)
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4.1 The Newton system

e There exists co > 0 such that for all ¢ € [0,T] and all v,w € R?, |[v — w| < ¢,

lg(t,v) —g(t,w)]> < Clo—wr(jv—w/?),

(w—w, f(t,0) - ft,w) < Clo—wPr(v—wp). (46)

Here p : [0,00) — [1,00) is a continuously differentiable function satisfying the following
three conditions

(1) lims_oo p(s) = 00,
(if) im0 2
(i) fo™™ sy ds = o0

and 7 : (0,¢o] — [1,00) is a continuously differentiable function satisfying also three condi-
tions:

(1) lims_g7(s) = oo,

YT sT(s) _
(i) lims_o s = 0

)

(i) [y srlﬁ ds = oo Ya > 0.
Since f and g are continuous, the equation (4.4) is a special case of (2.1). Hence, by
Theorem we have a weak solution (X', Y/") up to an explosion time (.

Theorem A’. Assume the conditions above are fulfilled, then the weak solution of (4.4]) has
no explosion, that means, P({ = oo) = 1.

Proof. Since is a special case of , we only have to check whether the conditions
of Theorem |A| are satisfied. The function p fulfills all the required conditions —.
The assumptions are chosen such that they fulfill (HI). All conditions are satisfied, so
Theorem [A] applies. O

Theorem B’. Assume that the conditions above are fulfilled. Then the pathwise uniqueness
holds for the weak solution of (4.4]).

Proof. As seen before, (4.4) fits in (2.1). Furthermore, the function r fulfills (2.6)-(2.8)).
Comparing (4.6) with (H2), we see that indeed they are the same. We checked that all

conditions of Theorem [B] are satisfied and thus the pathwise uniqueness holds. ]

The existence of a unique strong solution then follows by the theorems of Yamada-
Watanabe and Kallenberg, (cf. Theorems [1.9| and [1.10)).

Proposition 4.3. Instead of considering functions f and g, it is possible to assume directly
that for all z,t € R

lor(t, )2 C(lz[p(l2]?) + 1),

<
bt x)l < Clzlp(2l?) +1), (4.7)
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4 Smoluchowski-Kramer Approximation

and for all x,y € R, |z — y| < co,

lo(t,z) —a(t, > < Cle—yPr(z—yP),

b(t, z) — b(t,y)] < Clz —ylr(lz —y[?). (4.8)

Then we have the same estimates for the functions f and g, but we have to assume addi-
tionally that the functions p(s), sr(s) and sr(s®) are increasing. For example, the function
r(s) :=log L fulfills the required property for s €]0,1] and the function p(s) := 1+log(1+s)
respectively for s € (0,4+00). In especially we still have a unique strong solution.

Proof. First we show, that the function g(¢, z) satisfies the conditions in (4.7)) and (4.8): For
z = (z,y) € R? we have

1
Hg t Z H2 Zg t Z z] = ;U(ta$)2

< EC({L‘Q[)(ZL'% +1)

IN

52((3;2 L P)pa® + o) + 1)
;<|z2p<|z|2> 1),

Let z; = (x;,9;) € R? for i = 1,2, then

t t 0 0 ;
Hg( Zl) o g Z2 t xl o 0 I%O'(t, (EQ)

1

=—(o (t x1) — o(t, 13))?
1
1

< ECW — 22?r(|zy — a2|?)
1

< EC(|$1 — x9? + |1 — valH)r(jz1r — 222 + Jy1 — 2|?)
1

< —Clz — zz\zr(]zl — z2]2)
1
Note that the last inequality works only if sr(s) is increasing. So g fulfills the required

inequalities.
Next, we prove that f(t,z) fulfills (4.7) and (4.8). Let z = (z,y) € R?, we have

1/2
F(t.2)] = (y + 5 0lt0) - y>2)

1/2
+ L (C(ella?) + 1) - y>2)

IN

2 202 1/2
2 2 2
v+ =y  + —5(zlp(z®) + 1 >

(v
<y2+ 52 (C*(|a|p(x?) + 1) +y2)>1/2
(
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4.1 The Newton system

- ((1 + ;) y? + 252’2(\:B|p(x2) + 1)2>1/2
< ((1 + ;) (v* + C*(|z|p(a?) + 1)2)>l/2

2
= |1+ V7 + (o) + 17

) 1/2
<1+ 5 (y +laPpa®)? 42 Jal p(a?)+1)
2\ e — ~—

(2P0 <\ faTrg?

<C 1+;<( /22 + y2 p(xz) +1>2)1/2

2
< 2 2 2 2
_C,/1+—M2( z? +y?p(x” +y )+1)
= C(lzlp(|=[*) + 1).

Now we will show (.8)): In the following, we use the abbreviation Az := (71 — 22)? and
Ay = (y1 — y2)%. Thus

1/2
|f(t,21) = f(t,22)| = ((yl —y2)® + :Q(b(tawl) = b(t,z2) — (y1 — y2))2>

1 1/2
< (B0t 5 (Clor — an)r(80) — (1 — )
5 1/2
< ( + ? (C*Az - r(Az)? + Ay)>
2 1/2
= ( 22 Y+ gAav r(Ax)2>
u 12
9 1/2
< ((1 + =) (Ay + C*Ax - T(Ax)2)>
o\ 1/2
< Cy/14+ = (Ay+ Az - r(Ax) %)
1/2
- Ay+[VAz-r(A2)?)

(
(
(2(Ay + Ax)r(Az + Ay)2) '/

2
WAy + Ax - r(Az + Ay)

= Clz1 — z2|r(|z1 — 2’2’2),

1/2
Ay + [/Az + Ay - r(Am—I—Ay)])

|/\
=

| /\

=4 /201

+
7;[0‘

where we used that sr(s?) is increasing in the inequality marked with *. We checked, that
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4 Smoluchowski-Kramer Approximation

if we have the Lipschitz-type estimates for the coefficients of the single SDE, then we have
the same estimates for the Newton system, too. O

Remark 4.4. The properties of coercivity and semi-monotonicity for b(t,x) however do not

apply the same property for f(t,z) in (4.5), (4.6).

4.2 The Smoluchowski-Kramer Approximation

Along with the Newton system (4.1)), we will consider in this section also the following
one-dimensional differential equation

dX; = O'(t, Xt) dW; + b(t, Xt) dt, (49)

with initial condition Xo = (3. We assume the functions b : [0,7] x R — R and o :
[0,7] x R — R to be continuous and bounded, i.e.

IIblloc == sup  b(t,x) < o0, lolloo ;== sup  o(t,z) < oo.
t€[0,T], zeR te[0,T], zeR

Furthermore, we assume that o is even Lipschitz-continuous, i.e. there exists C7 > 0, such
that for all £ > 0 and =,y € R
lo(t,z) —o(t,y)| < Cilz —yl.
Concerning b we assume that it satisfies the continuity condition (4.8)) with r(s) = log(1/s)
and that there exists Cy > 0, such that for all £ > 0 and z,y € R
(b(t,2) = b(t,y))(x — y) < Calz —yl*.

Then is a special case of , and by the section above we have a unique strong
solution X;.

The following theorem will compare these two equations and point out that the Newton
system converges in probability to the first order equation when p tends to zero. Therefore
this theorem is the justification for using the first order equation to describe the motion
of a small particle disturbed by a Wiener process instead of using the two-dimensional
Newton system . Clearly, it is much easier to analyze the first order equation.

Theorem 4.5 (Smoluchowski-Kramers approximation). The first component of the solution
of @.1), X!, converges in probability uniformly on [0,T] to the solution X; of (4.9). This
means that we have for oll T >0, ¢ >0

limP< sup |X¥ — X >€> = 0. (4.10)
#=0 -\ 0<s<T

Proof. We use the idea of the proof of Theorem Let m := X} — X;. We define the
stopping time 7 := inf{t > 0|n? > £2}. By [Fre04] (see also [Wes06, Prop. 3.2, p.30]) we
have that

t ¢
XI'= G+ po (176_ﬁ> +/0 b(s,Xs“)dse_fL/o enb(s, X!)ds

t to
—I—/ o(s, Xt) dWS—e_ﬁ/ eno(s, XF)dWs.
0 0
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4.2 The Smoluchowski-Kramer Approximation

Since X; is a strong solution, by Definition [I.4] we have P-a.s.

t t
Xi=0Q —i—/ o(s, Xs)dWg + / b(s, Xs)ds.
0 0

Therefore, we have the representation n; = G + ¢, where
t t
5= [ s, X2) s, X)) ds + [ o, X2) = (s, X)W,
0 0

¢ ¢ ¢
V= CQ/ e wds+ 6_;/ erb(t, X!") ds + e_li/ ero(t,X{') dWs.
0 0 0

Similarly to the proof of Lemma [2.6] and [2.8 we use 1t6’s formula with F' = I'd and get

) 2 tAT 5 1 tAT 9
=G+ [ 1ageg [ o
tAT
=2 [ B XE) — bt X)) ds

0
tAT

v2 [ Bilo(s, XE) — oft, X.)] dW, + / (s, X1 — o(t, X)) ds.
0 0

As in Claim (i) in the proof of Lemma we have that the process fOtAT Bslo(s, XE) —
o(t, Xs)] dWy is a martingale. Now, keeping in mind that ; = 1, — 74, we take expectations:

Bl =28 [ [ =006, ) - b0t X s

LB [/OMT(J(S,X@ ot X)) ds}

tAT tAT tAT
<90, U n? ds} 4B {|b|yw/ |73|ds] b OB U . ds]
0 0 0

t
< (Cy +20) / Eli,] ds + 4blloct sup Efpa).
0 0<s<t
But n? < 2(8? +~?) and hence

t
Bl ) < 2(C1 +2C) [ Bl ]ds+8blt sup B +2 sup EpZ, teR.
0 0<s<t 0<s<t
Set

K; = 8||b|loct sup Efvs] +2 sup E[y2].
0<s<t 0<s<t

We claim that for each t > 0 we have Ky — 0 as 4 — 0. Indeed, if y — 0

t
Cg/ e rds
0

o
e_;/ enb(s, X#)ds
0

_1
= |Glp(l —e ) < [G|p — 0,

_t t El
e u||b|oo/ ends
0

2

_t t
< = e Blloo(er — Dp| < [Bllocts = 0,

e [t b 209 2 M 2
Elle / eF ot, X1 W, :E[/ e (t,Xf)ds] <ol — o,
0 0

o7



4 Smoluchowski-Kramer Approximation

where we used It6 isometry. Thus, by Gronwall’s inequality,
E[n2.] < KeXCit202)t, > 0.
Therefore, by definition of the stopping time 7
P(r < t)e® < B[l «m?] < E[nj,,] < K;e?(@122)
Finally:

P(sup | X' — X | >¢e)=P(sup n?>¢e?)=P(r <t)
0<s<t 0<s<t

1
S Kt62(01+202)t72 07
g4 p—0

because K; — 0 as u — 0.
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