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Introduction

In the study of stochastic di�erential equations the questions of existence and uniqueness
of an invariant measure for the associated Markov semigroup are crucial:

(1) If there exists an invariant measure µ for the Markov semigroup (Pt)t≥0, the semi-
group can be extended uniquely to the space Lp(H, µ), p ≥ 1.

(2) If, in addition, the invariant measure µ is unique, the dynamical system is ergodic.

Hence it might be important to look for conditions under which existence respectively
uniqueness of an invariant measure follows. Concerning the �rst there is the much cele-
brated theorem of Krylov and Bogoliubov, stating that existence of an invariant measure
is a consequence of the Markov semigroup having the Feller property and ful�lling some
tightness assumption. On the other hand uniqueness of the invariant measure is of-
ten derived from results due to Khasminskii and Doob, stating that the strong Feller
property together with some irreducibility condition ensure uniqueness of the invariant
measure.
The present work focuses on the �rst property. While in �nite dimensions there is a

su�cient condition for the strong Feller property to hold, e.g. Hörmander's Theorem
(cf. Theorem 8.1 in [6]), in in�nite-dimensional spaces no corresponding theorem is
known. Moreover the strong Feller property often fails to hold in in�nite-dimensional
spaces. Only if the forcing noise is su�ciently rough, e.g. the covariance of the noise is
nondegenerate, the Bismut-Elworthy formula allows to show the strong Feller property
for a class of semilinear parabolic SPDE's with in�nite-dimensional state space. But in
cases where the noise is very weak, even this is not applicable.
Therefore it would be extremely convenient to have a weaker property that still allows

to conclude uniqueness of the invariant Borel probability measure. This idea is pursued in
[7] by introducing the 'asymptotic strong Feller property'. In fact, there is the following
main result (cf. Corollary 3.20 below): if the Markov semigroup (Pt)t≥0 is asymptotically
strong Feller and there exists some point x which belongs to the support of every invariant
Borel probability measure for (Pt)t≥0, then there is at most one invariant measure for
this Markov semigroup.
How should one de�ne this asymptotic strong Feller property? Since for a Markov

semigroup (Pt)t≥0 on a Polish space X the strong Feller property is equivalent to the
continuity of the function x 7→ πt(x, ·) on X in the total variation norm (cf. Theorem
1.14 below), a suitable approach would be to �nd another (semi-)norm that generates a
weaker topology on the space of all Borel probability measures on X . Furthermore it is
known that for any separable metric space the Wasserstein distance metrizes the weak
topology (cf. [5], Theorem 11.3.3). Hence it should be at least plausible to work with
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the Wasserstein distance. And in fact, it turns out that this is the right choice, since the
Wasserstein distances corresponding to an increasing sequence of (continuous) pseudo-
metrics less or equal 1 (called a totally separating system of (continuous) pseudo-metrics)
converge to the total variation distance. This leads to the de�nition of the asymptotic
strong Feller property (cf. De�nition 3.8 below).
Let us now give an overview of the structure of this Diploma Thesis:
In Chapter 1 we �rst introduce well-known concepts for Markov semigroups, e.g. ir-

reducibility, (strong) Feller property, regularity and ergodicity. Afterwards we will see
that the combination of regularity properties (Feller property respectively strong Feller
property) and topological concepts (compactness respectively irreducibility) guarantees
existence (cf. Theorem 1.32 below) respectively uniqueness (cf. Theorem 1.35 below)
of an invariant Borel probability measure for the Markov semigroup (Pt)t≥0. As a �rst
step towards the above mentioned Corollary 3.20, in section 1.6 we present another way
on how to derive uniqueness of the invariant measure.
Chapter 2 deals with �nding a dual representation for the Wasserstein distance in

terms of Lipschitz continuous functions. There we work - leaded by the book of Rachev
- in a much more general framework than it is required by the application in chap-
ter 3. More precisely, we �rst prove dual representations for the Monge-Kantorovich
and the Kantorovich-Rubinstein problem respectively, meaning that the cost function
is not neccessarily a metric. Then in section 2.3 we link both problems by showing
that they coincide in case of a metric taking the role of the cost function. In particu-
lar, the Monge-Kantorovich problem equals the dual representation of the Kantorovich-
Rubinstein problem when the cost function is a metric. Section 2.4 slightly generalizes
this for a pseudo-metric. At this point it should be mentioned that chapter 2 is inde-
pendent of the rest of this thesis and worth reading in its own. Unequivocal Rachev's
book is a standard reference in the �eld of optimal transportation. In particular one
is often refered to it for the proof of the (multi-dimensional) Kantorovich Theorem (cf.
Theorem 5.2.1 in [12]). Nevertheless this proof is done quite rough and many details are
left to the reader. So we decided to work out this part of his monograph in all details
at least for the two-dimensional case (cf. Theorem 2.1 below).
The main content of Chapter 3 is to introduce the asymptotic strong Feller property

and to give a su�cient condition. As a basic preparation it is shown in Corollary 3.7 that
the total variation distance of two Borel probability measures is the limit of a sequence of
their Wasserstein distances corresponding to a totally separating system of (continuous)
pseudo-metrics. Having this in mind, we can de�ne what we mean by saying that a
Markov semigroup is asymptotically strong Feller. While the rest of section 3.3 examines
the relation to the strong Feller property, Theorem 3.13 provides a su�cient condition for
the asymptotic strong Feller property to hold. Afterwards the power of the asymptotic
strong Feller property is shown even in the �nite-dimensional setting by considering two
quite simple examples of stochastic di�erential equations whose Markov semigroups are
asymptotically strong Feller but not strong Feller. As the �nal result of this chapter it is
shown in Corollary 3.20 that the asymptotic strong Feller property combined with some
kind of irreducibility condition implies the uniqueness of the invariant Borel probability
measure for the Markov semigroup (Pt)t≥0.
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Finally, in Chapter 4 we show the asymptotic strong Feller property for (Markov
semigroups associated to) stochastic di�erential equations of type

dX(t) = (AX(t) + F (X(t))) dt+B dW (t)

X(0) = x

on a real separable Hilbert space, where F is assumed to be Lipschitz (cf. Theorem 4.4
below). Contrary to former works proving the strong Feller property for such equations
we do not impose the operator B to be continuously invertible in order to apply the
Bismut-Elworthy formula. Unfortunately we have to require that A is of (su�ciently
large) negative type. Nonetheless this is a quite large class of semilinear SPDE's. For
example A can be chosen to be the Laplacian ∆.
Note that usually the asymptotic strong Feller property is shown by transforming a

regularity problem into a linear control problem via techniques from Malliavin calculus,
see e.g. [7]. A very similar situation to the above is treated in [6]. Since even there
the asymptotic strong Feller property is shown in that way, we have good reason to
conjecture that at least the idea of our proof is entirely new. In particular, we do not
use tools from Malliavin calculus in order to show the asymptotic strong Feller property.
However the considerations in this chapter are meant to be of an exemplary character
so that even more applications are expected.
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1 Invariant measures for Markov

semigroups

This chapter is a slightly modi�cated composition of chapters 2.1, 3, 4 in [11], chapters
5 and 7 in [10] as well as chapters 6 and 7 in [6].

1.1 Markov semigroups

Let H be a real separable Hilbert space and denote by B(H) its Borel �eld. Let Bb(H) be
the space of all bounded, Borel measurable functions ϕ : H → R and denote by Cb(H) the
subspace of all continuous and bounded functions on H with values in R. Furthermore
L(Bb(H)) denotes the space of all linear bounded operators from Bb(H) into itself.

De�nition 1.1. A function κ : H × B(H) → [0,∞[ is called a transition kernel on
(H,B(H)) if

(i) x 7→ κ(x,A) is measurable for every A ∈ B(H) and

(ii) A 7→ κ(x,A) is a measure on (H,B(H)) for every x ∈ H.

The transition kernel κ is said to be Markovian if κ(x,H) = 1 for all x ∈ H, e.g. κ(x, ·)
is a probability measure on (H,B(H)) for every x ∈ H.

So a Markovian transition kernel κ on the measurable space (H,B(H)) could be
thought as a family (κ(x, ·))x∈H of probability measures on (H,B(H)) which is mea-
surable in the parameter x ∈ H. If there is a (Markovian) transition kernel πt for each
time t ≥ 0, we introduce the following

De�nition 1.2. A family (πt)t≥0 of (Markovian) transition kernels on (H,B(H)) is
called a (Markovian) semigroup of transition kernels on (H,B(H)) if πt+s = πtπs for all
t, s ∈ [0,∞[, i.e.

πt+s(x,A) =

∫
H
πs(y, A) πt(x, dy) (1.1)

for all t, s ≥ 0, x ∈ H and A ∈ B(H).

Equation (1.1) is called Chapman-Kolmogorov equation. A heuristic interpretation of
this equality is given by: the probability for a particle starting at time 0 in x ∈ H to
be in A ⊂ H at time t+ s (left hand side) is equal to the probability the particle starts
at time 0 in x ∈ H and being in some in�nitesimal small volume dy at time t and then
starting new in y ∈ H at time t and being in the subset A at time t+ s integrated over
all 'intermediate points' y ∈ H (right hand side).
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1 Invariant measures for Markov semigroups

De�nition 1.3. A family (Pt)t≥0 of linear bounded operators on Bb(H) is called a
Markov semigroup if

(i) P0 = 1;

(ii) Pt+s = PtPs for all t, s ≥ 0;

(iii) For any t ≥ 0 and x ∈ H there exists a probability measure πt(x, ·) on (H,B(H))
such that

Ptϕ(x) =

∫
H
ϕ(y) πt(x, dy) (1.2)

for all ϕ ∈ Bb(H).

If, in addition, for any ϕ ∈ Cb(H) and x ∈ H the mapping

t 7→ Ptϕ(x) (1.3)

is continuous on [0,∞[, the Markov semigroup is said to be stochastically continuous.

Remark 1.4. (1) For t = 0 (1.2) yields π0(x, ·) = δx(·). Furthermore by (1.2) it follows
that for any A ∈ B(H)

Pt1A(x) = πt(x,A) (1.4)

for all t ≥ 0, x ∈ H.

(2) Since for arbitrary A ∈ B(H)

πt+s(x,A) = Pt+s1A(x) = PtPs1A(x) = Ptπs(·, A)(x) =

∫
H
πs(y, A) πt(x, dy)

for all t, s ≥ 0, the probability measures πt(x, ·), x ∈ H, t ≥ 0, realizing (1.2) will
in fact form a Markovian semigroup of transition kernels. Hence (iii) in the above
de�nition could be reformulated as:

(iii') There exists a Markovian semigroup of transition kernels, (πt)t≥0, on the
measurable space (H,B(H)) such that

Ptϕ(x) =

∫
H
ϕ(y) πt(x, dy)

for all ϕ ∈ Bb(H) and for any t ≥ 0, x ∈ H.

(3) For any t ≥ 0 the operator Pt preserves positivity, i.e. Ptϕ ≥ 0 for all ϕ ≥ 0. In
particular, Pt1 = 1 for all t ≥ 0.

(4) Let ϕ ∈ Bb(H). Since by de�nition of the supremum norm |ϕ(x)| ≤ ‖ϕ‖∞ for all
x ∈ H, we have |Ptϕ(x)| ≤ ‖ϕ‖∞ for all x ∈ H, t ≥ 0. Hence the operator norm
‖Pt‖L(Bb(H)) ≤ 1 for all t ≥ 0, that is (Pt)t≥0 is a semigroup of contractions on
Bb(H).
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1.1 Markov semigroups

Let d be some metric generating the topology of H and denote by B(x, δ) := {y ∈ H |
d(x, y) < δ} the open ball of radius δ > 0 centered at x ∈ H. Furthermore let UCb(H)
(respectively Ld(H)) be the space of all bounded and uniformly continuous (respectively
d-Lipschitz-continuous) functions on H with values in R.

Lemma 1.5. A Markov semigroup (Pt)t≥0 is stochastically continuous if and only if one
of the following equivalent conditions holds:

(i) limt→0 πt(x,B(x, δ)) = 1 for all x ∈ H, δ > 0;

(ii) limt→0Ptϕ(x) = ϕ(x) for all ϕ ∈ UCb(H), x ∈ H;

(iii) limt→0Ptϕ(x) = ϕ(x) for all ϕ ∈ Ld(H), x ∈ H.

Proof. Obviously, (1.3) implies (ii) and (ii) implies (iii). So it is enough to show that
(iii) implies (i) and (i) implies (1.3).
Let ϕ ∈ Cb(H), x ∈ H. Then for each δ > 0 we have

|Ptϕ(x)− ϕ(x)|

=

∣∣∣∣∫
H

(ϕ(y)− ϕ(x)) πt(x, dy)

∣∣∣∣
=

∣∣∣∣∫
B(x,δ)

(ϕ(y)− ϕ(x)) πt(x, dy) +

∫
(B(x,δ))c

(ϕ(y)− ϕ(x)) πt(x, dy)

∣∣∣∣
≤ sup

y∈B(x,δ)

|ϕ(y)− ϕ(x)|+ 2 · ‖ϕ‖∞ · (1− πt(x,B(x, δ))) .

Since by (i) limt→0 πt(x,B(x, δ)) = 1, the second summand tends to 0 for t → 0. Fur-
thermore, letting δ → 0 the �rst summand vanishes because ϕ ∈ Cb(H). Hence the
continuity of t 7→ Ptϕ(x) in zero is proved and by a straightforward computation using
the semigroup property we gain the continuity for an arbitrary time t > 0. Therefore
(i) implies (1.3).
To show that (iii) implies (i), �rst note that if ϕ, ψ ∈ Ld(H) then also c · ϕ, ϕ ∨ ψ ∈
Ld(H) for all c ∈ R. For arbitrary x ∈ H and δ > 0 de�ne

ϕ(y) :=

{
1− d(y,x)

δ
if y ∈ B(x, δ)

0 if y ∈ (B(x, δ))c
=

1

δ
· ((δ − d(y, x)) ∨ 0) .

Then ϕ ∈ Ld(H) and

ϕ(x)− Ptϕ(x) = 1−
∫
H
ϕ(y) πt(x, dy)

= 1−
∫
B(x,δ)

ϕ(y) πt(x, dy) ≥ 1− πt(x,B(x, δ)).

Consequently (iii) implies (i), because the right hand side is greater or equal 0.
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1 Invariant measures for Markov semigroups

For the rest of the chapter (Pt)t≥0 is assumed to be a stochastically continuous Markov
semigroup.

De�nition 1.6. The Markov semigroup (Pt)t≥0 is called

(i) regular at time t > 0 if all probability measures πt(x, ·), x ∈ H, are mutually
equivalent. It is called regular if it is regular at all times t > 0.

(ii) Feller at time t ≥ 0 if Ptϕ ∈ Cb(H) for any ϕ ∈ Cb(H). It is called Feller if it is
Feller at all times t ≥ 0.

(iii) irreducible at time t > 0 if Pt1B(x0,δ)(x) > 0 for all x, x0 ∈ H, δ > 0. It is called
irreducible if it is irreducible at all times t > 0.

Remark 1.7. (1) Note that the de�nitions in (ii) and (iii) depend on the topology of
H.

(2) If the Markov semigroup (Pt)t≥0 is regular at time s > 0, i.e. the probability measures
πs(x, ·), x ∈ H, are mutually equivalent, then it is regular for all times u ≥ s.
Moreover, all probability measures πu(x, ·), x ∈ H, u ≥ s, are mutually equivalent.

Clearly, it would be enough to show the last assertion. So, let x, y ∈ H and �rst
suppose πs(x,A) = 0 for some A ∈ B(H). Then using (1.1)

πu(y, A) = π(u−s)+s(y, A) =

∫
H
πs(z, A) πu−s(y, dz) = 0,

because πs(z, ·) ≈ πs(x, ·) for all z ∈ H. Hence πs(x, ·) � πu(y, ·). Now take
A ∈ B(H) such that πu(y, A) = 0. Then from the above equality we conclude that
πs(z, A) = 0 for πu−s(y, ·)-a.e. z ∈ H. But πs(z, ·), z ∈ H, are mutually equivalent
and thus πs(z, A) = 0 for every z ∈ H. In particular, πs(x,A) = 0, that is πs(x, ·)�
πu(y, ·). Alltogether we have shown that πs(x, ·) ≈ πu(y, ·) for all x, y ∈ H, u ≥ s.

(3) If the Markov semigroup (Pt)t≥0 is irreducible at time s, i.e. Ps1B(x0,δ)(x) > 0 for
all x, x0 ∈ H, δ > 0, then it is irreducible for all times u ≥ s: for x, x0 ∈ H, δ > 0
and u ≥ s we obtain

Pu1B(x0,δ)(x) = P(u−s)+s1B(x0,δ)(x)

= Pu−sPs1B(x0,δ)(x)

=

∫
H
Ps1B(x0,δ)(y)︸ ︷︷ ︸

>0

πu−s(x, dy)

> 0,

because (Pt)t≥0 is irreducible at time s.

16



1.2 Strong Feller property

1.2 Strong Feller property

Since it is not true in general to have uniqueness of the invariant Borel probability
measure from topological irreducibility combined with the Feller property - the coun-
terexmaple is the Ising model (cf. [6], Example 7.4) - we have to replace the latter by
a stronger regularity property. The right choice will be the strong Feller property (cf.
Theorem 1.35 below).

De�nition 1.8. A Markov semigroup (Pt)t≥0 is called strong Feller at time t > 0 if
Ptϕ ∈ Cb(H) for any ϕ ∈ Bb(H). It is called strong Feller if it is strong Feller at all
times t > 0.

Remark 1.9. If the Markov semigroup (Pt)t≥0 is strong Feller at time s, i.e. Psϕ ∈
Cb(H) for all ϕ ∈ Bb(H), then it is strong Feller for all times u ≥ s. In fact, by the
semigroup property for arbitrary ϕ ∈ Bb(X ) we have

Puϕ = Ps+(u−s)ϕ = Ps (Pu−sϕ)

and this function is continuous, because Pu−sϕ ∈ Bb(H) and (Pt)t≥0 is strong Feller at
time s.

De�nition 1.10. Let µ be a �nite signed measure on (H,B(H)) with Jordan decompo-
sition µ = µ+ − µ−. Then the total variation norm of µ is given by

‖µ‖TV :=
1

2
·
(
µ+(H) + µ−(H)

)
.

In order to prove a su�cient condition for the strong Feller property, we need the
following approximation result for continuous functions by twice continuously Frechet
di�erentiable functions:

Lemma 1.11. Let ϕ ∈ Cb(H). Then there exists a sequence (ϕm)m∈N , ϕm ∈ C2
b (H), such

that ‖ϕm‖∞ ≤ ‖ϕ‖∞ for all m ∈ N and ϕm
m→∞−→ ϕ pointwisely.

Proof. Let ϕ ∈ Cb(H) and {ei}i∈N be an orthonormal basis of H. For m ∈ N de�ne
orthogonal projections

Pm : H → Pm(H) = span{e1, . . . , em}

x 7→ Pmx :=
m∑
i=1

〈x, ei〉 · ei

and corresponding functions

Jm : Pm(H) → Rm

m∑
i=1

〈x, ei〉 · ei 7→ (〈x, e1〉, . . . , 〈x, em〉) ,

17



1 Invariant measures for Markov semigroups

which are bijections.

Note that ϕ ◦ J−1
m ∈ Cb(Rm) for all m ∈ N. Hence by Lemma A.2 in the appendix, for

every m ∈ N there exists a sequence (fm,k)k∈N, fm,k ∈ C2
b (Rm), such that fm,k(x)

k→∞−→
(ϕ◦J−1

m )(x) for all x ∈ Rm and ‖fm,k‖∞ ≤ ‖ϕ◦J−1
m ‖∞ for all k ∈ N. Replacing x by Jm(x)

yields (fm,k ◦Jm)(x)
k→∞−→ ϕ(x) for all x ∈ Pm(H). Consequently (fm,k ◦Jm ◦Pm)(x)

k→∞−→
(ϕ◦Pm)(x) for all x ∈ H. Moreover ‖fm,k ◦Jm ◦Pm‖∞ ≤ ‖ϕ◦Pm‖∞ for all k ∈ N. Since
ϕ ◦ Pm

m→∞−→ ϕ pointwisely and ‖ϕ ◦ Pm‖∞ ≤ ‖ϕ‖∞ for all m ∈ N, a diagonal argument
applies in order to obtain a subsequence (ϕm)m∈N, ϕm := fm,m ◦ Jm ◦ Pm ∈ C2

b (H), such

that ϕm(x)
m→∞−→ ϕ(x) for all x ∈ H and ‖ϕm‖∞ ≤ ‖ϕ‖∞ for all m ∈ N.

Theorem 1.12. Let (Pt)t≥0 be a Markov semigroup on Bb(H) and let c > 0 and t > 0
be �xed. Then the following conditions are equivalent:

(i) For all ϕ ∈ C2
b (H) |Ptϕ(x)− Ptϕ(y)| ≤ c · ‖ϕ‖∞ · ‖x− y‖ for all x, y ∈ H, that is

Ptϕ(·) is Lipschitz continuous for all ϕ ∈ C2
b (H).

(ii) For all ϕ ∈ Bb(H) |Ptϕ(x)− Ptϕ(y)| ≤ c · ‖ϕ‖∞ · ‖x− y‖ for all x, y ∈ H, that is
Ptϕ(·) is Lipschitz continuous for all ϕ ∈ Bb(H).

(iii) ‖πt(x, ·)−πt(y, ·)‖TV ≤ c
2
·‖x−y‖ for all x, y ∈ H, that is the Markovian transition

kernel πt is Lipschitz continuous in the �rst parameter with respect to the total
variation norm ‖·‖TV .

In particular, if one of the above conditions holds (for all t > 0), the Markov semigroup
(Pt)t≥0 is strong Feller.

Proof. (iii)⇒ (ii): Let ϕ ∈ Bb(H) and x, y ∈ H. Then

|Ptϕ(x)− Ptϕ(y)| =

∣∣∣∣∫
H
ϕ(z) πt(x, dz)−

∫
H
ϕ(z) πt(y, dz)

∣∣∣∣
=

∣∣∣∣∫
H
ϕ(z) (πt(x, dz)− πt(y, dz))

∣∣∣∣
≤

∫
H
|ϕ(z)| |πt(x, dz)− πt(y, dz)|

≤ 2 · ‖ϕ‖∞ · ‖πt(x, ·)− πt(y, ·)‖TV
≤ c · ‖ϕ‖∞ · ‖x− y‖.

(ii)⇒ (i): Obvious, because C2
b (H) ⊂ Bb(H).

(i)⇒ (iii): De�ne

K1 := {ϕ ∈ Cb(H) | ‖ϕ‖∞ ≤ 1}

and

K2 := {ϕ ∈ C2
b (H) | ‖ϕ‖∞ ≤ 1}.
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1.2 Strong Feller property

Obviously, K2 ⊆ K1 and therefore supϕ∈K2
|Ptϕ(x)−Ptϕ(y)| ≤ supϕ∈K1

|Ptϕ(x)−Ptϕ(y)|.
But by Lemma 1.11 for each ϕ ∈ K1 there exists a sequence (ϕn)n∈N, ϕn ∈ K2, such that
ϕn

n→∞−→ ϕ pointwisely. Hence by Lebesgues dominated convergence theorem

|Ptϕ(x)− Ptϕ(y)| =

∣∣∣∣∫
H
ϕ(z) (πt(x, dz)− πt(y, dz))

∣∣∣∣
=

∣∣∣∣∫
H

lim
n→∞

ϕn(z) (πt(x, dz)− πt(y, dz))
∣∣∣∣

= lim
n→∞

∣∣∣∣∫
H
ϕn(z) (πt(x, dz)− πt(y, dz))

∣∣∣∣
= lim

n→∞
|Ptϕn(x)− Ptϕn(y)|

≤ sup
n∈N
|Ptϕn(x)− Ptϕn(y)|

≤ sup
ϕ∈K2

|Ptϕ(x)− Ptϕ(y)|

for all x, y ∈ H and any ϕ ∈ K1. Therefore supϕ∈K1
|Ptϕ(x)−Ptϕ(y)| ≤ supϕ∈K2

|Ptϕ(x)−
Ptϕ(y)| for all x, y ∈ H and alltogether

sup
ϕ∈K1

|Ptϕ(x)− Ptϕ(y)| = sup
ϕ∈K2

|Ptϕ(x)− Ptϕ(y)| (1.5)

for all x, y ∈ H. Furthermore, as a simple consequence of the Hahn-Banach theorem we
have

sup
ϕ∈K1

|Ptϕ(x)− Ptϕ(y)| = 2 · ‖πt(x, ·)− πt(y, ·)‖TV . (1.6)

Combining (1.5) and (1.6) and applying (i), the assertion in (iii) follows.

In order to compare the later introduced asymptotic strong Feller property with the
strong Feller property, we stress the following proposition, which is in fact part of the
previous theorem:

Proposition 1.13. Let H be a separable Hilbert space and (Pt)t≥0 a Markov semigroup
on Bb(H). If for all functions ϕ ∈ Bb(H)

|Ptϕ(x)− Ptϕ(y)| ≤ C(‖x‖ ∨ ‖y‖) · ‖ϕ‖∞ · ‖x− y‖ (1.7)

for all x, y ∈ H, t > 0, where C : R+ → R is a �xed nondecreasing function, then (Pt)t≥0

is strong Feller.

Note that the equivalence of (ii) and (iii) in Theorem 1.12 remains valid for a Pol-
ish space X . In particular we have the following characterization of the strong Feller
property, which will be needed in chapter 3:

Theorem 1.14. Let X be a Polish space and (Pt)t≥0 a Markov semigroup on Bb(X ).
Then (Pt)t≥0 is strong Feller if and only if for all t > 0 the transition probabilities πt(x, ·)
are continuous in the parameter x with respect to the total variation norm ‖ · ‖TV .
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1 Invariant measures for Markov semigroups

Proof. Let t > 0 and x ∈ X �xed.
First assume that the transition probabilities πt(x, ·) are continuous in x with respect

to the total variation norm ‖ · ‖TV . Let ϕ ∈ Bb(X ) and take a sequence (xn)n∈N ⊆ X
such that d(xn, x) −→ 0 as n→∞. Then

|Ptϕ(xn)− Ptϕ(x)| =
∣∣∣ ∫
X
ϕ(y) πt(xn, dy)−

∫
X
ϕ(y) πt(x, dy)

∣∣∣
=

∣∣∣ ∫
X
ϕ(y)

(
πt(xn, dy)− πt(x, dy)

)∣∣∣
≤

∫
X
|ϕ(y)| |πt(xn, dy)− πt(x, dy)|

≤ ‖ϕ‖∞ ·
∫
X
|πt(xn, dy)− πt(x, dy)|

= 2 · ‖ϕ‖∞ · ‖πt(xn, ·)− πt(x, ·)‖TV

and this tends to zero for n→∞, since the transition probabilities πt(x, ·) are continuous
in x with respect to the total variation norm ‖ · ‖TV .
The converse direction follows immediately by the following lemma.

Lemma 1.15. Let X be a Polish space and P,Q be two Markov operators on Bb(X )
that are strong Feller. Then the product PQ is a Markov operator whose transition
probabilities π(x, ·) are continuous in x with respect to the total variation norm ‖·‖TV .

Proof. The proof is an immediate consequence of Theorem B.2 and Lemma B.5 in the
appendix.

1.3 Invariant measures

De�nition 1.16. A Borel probability measure µ on H is called invariant for the (stochas-
tically continuous) Markov semigroup (Pt)t≥0 if∫

H
Ptϕ(x) µ(dx) =

∫
H
ϕ(x) µ(dx) (1.8)

for all ϕ ∈ Bb(H), t ≥ 0. The set of all invariant measures for (Pt)t≥0 is denoted by
J (Pt).

Remark 1.17. J (Pt) is convex: Let µ, ν ∈ J (Pt) and α ∈ [0, 1]. Then∫
H
Ptϕ(x) (αµ+ (1− α)ν) (dx) = α

∫
H
Ptϕ(x) µ(dx) + (1− α)

∫
H
Ptϕ(x) ν(dx)

= α

∫
H
ϕ(x) µ(dx) + (1− α)

∫
H
ϕ(x) ν(dx)

=

∫
H
ϕ(x) (αµ+ (1− α)ν) (dx).

for all ϕ ∈ Bb(H), t ≥ 0. Therefore αµ+ (1− α)ν ∈ J (Pt).
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1.3 Invariant measures

Denote by M(H) the space of all Borel measures on H and de�ne M1(H) :=
{µ ∈M(H) | µ(H) = 1} to be the subspace of all Borel probability measures on H.
Recall that there is a natural embedding of the space of all probability measures on
(H,B(H)) into the space of all continuous linear functionals on Cb(H): M1(H) ↪→
Cb(H)∗. Namely, for any µ ∈M1(H) set

Fµ(ϕ) :=

∫
H
ϕ(x) µ(dx)

for all ϕ ∈ Cb(H). Identifying µ ∈ M1(H) with Fµ ∈ Cb(H)∗, we obtain an alternative
characterization of invariant measures:

Lemma 1.18. Let (Pt)t≥0 be a Feller Markov semigroup on Bb(H). Then µ ∈ J (Pt) if
and only if

P∗t µ = µ (1.9)

for all t ≥ 0, where P∗t is the transpose operator of Pt, de�ned as Cb(H)∗〈P∗t F, ϕ〉Cb(H) =

Cb(H)∗〈F,Ptϕ〉Cb(H) for all ϕ ∈ Cb(H), F ∈ Cb(H)∗.

Proof. First, if µ is invariant for (Pt)t≥0 we have

P∗t µ(ϕ) = P∗t Fµ(ϕ) = Fµ(Ptϕ) =

∫
H
Ptϕ(x) µ(dx) =

∫
H
ϕ(x) µ(dx) = Fµ(ϕ) = µ(ϕ)

for all ϕ ∈ Cb(H) and this is (1.9).

Conversly, suppose (1.9) holds. Changing the order in the above calculation shows
(1.8) for all ϕ ∈ Cb(H). Now a monotone class argument applies in order to show it for
all ϕ ∈ Bb(H).

In particular, if µ ∈M1(H) is invariant for (Pt)t≥0 we have

µ(A) =

∫
H
πt(x,A) µ(dx) (1.10)

for all A ∈ B(H). Equality (1.10) should be interpreted by saying that the µ-mass of A
is given by the spatial µ-average of all πt(x, ·)-masses of A, x ∈ H.
The next theorem is basic to the study of Markov semigroups.

Theorem 1.19. Assume that µ is an invariant Borel probability measure for the (stochas-
tically continuous) Markov semigroup (Pt)t≥0. Then for all t ≥ 0, p ≥ 1 Pt is uniquely
extendible to a linear bounded operator on Lp(H, µ) that we still denote by Pt. Moreover

‖Pt‖L(Lp(H,µ)) ≤ 1 (1.11)

for all t ≥ 0. Finally, (Pt)t≥0 is a strongly continuous semigroup in Lp(H, µ).
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1 Invariant measures for Markov semigroups

Proof. Let ϕ ∈ Cb(H). Using the Hölder inequality we obtain

|Ptϕ(x)|p ≤
∫
H
|ϕ(y)|p πt(x, dy) = Pt(|ϕ|p)(x).

Integrating both sides of this inequality with respect to µ over H yields

‖Ptϕ‖pp =

∫
H
|Ptϕ(x)|p µ(dx) ≤

∫
H
Pt(|ϕ|p)(x) µ(dx) =

∫
H
|ϕ(x)|p µ(dx) = ‖ϕ‖pp

according to the invariance of µ. Since Cb(H) is dense in Lp(H, µ), Pt is uniquely
extendible to Lp(H, µ) and (1.11) follows.
It remains to show that (Pt)t≥0 is strongly continuous in Lp(H, µ). In order to do

so, �rst let ϕ ∈ Cb(H). Since (Pt)t≥0 is stochastically continuous by assumption, we
have that the function t 7→ Ptϕ(x) is continuous for any x ∈ H. Consequently, by the
dominated convergence theorem

lim
t→0

∫
H

(Ptϕ(x))p µ(dx) =

∫
H

lim
t→0

(Ptϕ(x))p µ(dx) =

∫
H

(ϕ(x))p µ(dx),

i.e. Ptϕ → ϕ in Lp(H, µ) as t → 0 for all ϕ ∈ Cb(H). Now let ϕ ∈ Lp(H, µ). Since
Cb(H) ⊂ Lp(H, µ) densely with respect to ‖·‖p, there exists a sequence (ϕn)n∈N, ϕn ∈
Cb(H), such that ‖ϕn − ϕ‖p

n→∞−→ 0. In particular, for ε > 0 we can �nd some index
N(ε) ∈ N such that

‖Ptϕ− Ptϕn‖p = ‖Pt (ϕ− ϕn)‖p ≤ ‖Pt‖L(Lp(H,µ)) · ‖ϕ− ϕn‖p ≤ ‖ϕ− ϕn‖p ≤
ε

3

for all n ≥ N(ε) by choice of the sequence (ϕn)n∈N. Moreover, according to the �rst part
for all n ∈ N there is some δ(n, ε) > 0 such that ‖Ptϕn − ϕn‖p ≤ ε

3
for all t ≤ δ(n, ε).

Alltogether we then have for some (�xed) n ≥ N(ε)

‖Ptϕ− ϕ‖p ≤ ‖Ptϕ− Ptϕn‖p + ‖Ptϕn − ϕn‖p + ‖ϕn − ϕ‖p
≤ ε

3
+
ε

3
+
ε

3
= ε

for all t ≤ δ(n, ε). Therefore (Pt)t≥0 is strongly continuous.

Now suppose that there exists an invariant Borel probability measure µ for the Markov
semigroup (Pt)t≥0. Hence by the previous theorem the Markov semigroup is uniquely
extendible to L2(H, µ) and the following de�nition is meaningful: Denote by Σ the set

Σ := {ϕ ∈ L2(H, µ) : Ptϕ = ϕ µ-a.s. for all t ≥ 0}

of all stationary points of (Pt)t≥0. Note that in the de�nition of Σ the nullset depends
up on t. Furthermore observe that by Remark 1.4(3) 1 ∈ Σ. Moreover every function ϕ
that is µ-a.s. constant is contained in Σ.
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1.3 Invariant measures

Remark 1.20. Σ ⊂ L2(H, µ) is closed; i.e. let (ϕn)n∈N ⊂ Σ such that ‖ϕn − ϕ‖2 → 0
as n → ∞ for some ϕ ∈ L2(H, µ). We have to prove that ϕ ∈ Σ. Let t ≥ 0 be �xed.
Since

‖Ptϕ− ϕ‖2 ≤ ‖Ptϕ− Ptϕn‖2 + ‖Ptϕn − ϕn‖2 + ‖ϕn − ϕ‖2

≤ 2 · ‖ϕn − ϕ‖2 + ‖Ptϕn − ϕn‖2︸ ︷︷ ︸
=0

= 2 · ‖ϕn − ϕ‖2

for all n ∈ N, letting n→∞ yields ‖Ptϕ− ϕ‖2 = 0 according to the choice of (ϕn)n∈N.
Therefore Ptϕ = ϕ µ-a.s. for all t ≥ 0, e.g. ϕ ∈ Σ.

Theorem 1.21 (Von Neumann). For ϕ ∈ L2(H, µ), T > 0 de�ne

M(T )ϕ :=
1

T

∫ T

0

Ptϕ dt.

There exists the limit

M∞ϕ := lim
T→∞

M(T )ϕ (1.12)

in L2(H, µ). Moreover, M∞ is a projection operator on Σ and∫
H
M∞ϕ(x) µ(dx) =

∫
H
ϕ(x) µ(dx). (1.13)

Note that since by Theorem 1.19 the semigroup (Pt)t≥0 is strongly continuous in
L2(H, µ), the term M(T )ϕ above is wellde�ned.

Proof. For any T > 0 we can �nd nT ∈ N0, rT ∈ [0, 1[ such that T = nT +rT . According
to the Fubini theorem we have for ϕ ∈ L2(H, µ)

M(T )ϕ =
1

T

∫ T

0

Psϕ ds

=
1

T

nT−1∑
k=0

∫ k+1

k

Psϕ ds+
1

T

∫ T

nT

Psϕ ds

=
1

T

nT−1∑
k=0

∫ 1

0

Ps+kϕ ds+
1

T

∫ rT

0

Ps+nTϕ ds

=
1

T

nT−1∑
k=0

∫ 1

0

Pk(Psϕ) ds+
1

T

∫ rT

0

PnT (Psϕ) ds

=
1

T

nT−1∑
k=0

∫ 1

0

(∫
X
Psϕ(y) πk(·, dy)

)
ds+

1

T

∫ rT

0

(∫
X
Psϕ(y) πnT (·, dy)

)
ds
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1 Invariant measures for Markov semigroups

=
1

T

nT−1∑
k=0

∫
X

(∫ 1

0

Psϕ(y) ds

)
πk(·, dy) +

1

T

∫
X

(∫ rT

0

Psϕ(y) ds

)
πnT (·, dy)

=
1

T

nT−1∑
k=0

Pk
(∫ 1

0

Psϕ ds
)

(·) +
1

T
PnT

(∫ rT

0

Psϕ ds
)

(·)

=
1

T

nT−1∑
k=0

(P1)k
∫ 1

0

Psϕ ds︸ ︷︷ ︸
=M(1)ϕ

+
rT
T

(P1)nT
1

rT

∫ rT

0

Psϕ ds︸ ︷︷ ︸
=M(rT )ϕ

=
nT
T
· 1

nT

nT−1∑
k=0

(P1)kM(1)ϕ︸ ︷︷ ︸
(∗)

+
rT
T

(P1)nTM(rT )ϕ.

Since limT→∞
nT
T

= 1 and limT→∞
rT
T

= 0, letting T → ∞ the assertion in (1.12)
follows from Theorem 5.11 in [10]. In fact, since supn∈N‖(P1)n‖L(L2(H,µ)) ≤ 1 < ∞ and
M(1)ϕ ∈ L2(H, µ), the assumptions thereby are satis�ed and we thus obtain existence
of the L2-limit of the term (∗) on the right hand side above as T tends to in�nity.
Furthermore the second term is bounded in the L2-norm as it is easily checked.

In order to show that M∞ is a projection operator on Σ, note that

M∞(Ptϕ) = lim
T→∞

M(T )(Ptϕ)

= lim
T→∞

1

T

∫ T

0

Ps(Ptϕ) ds

= lim
T→∞

1

T

∫ T

0

Pt+sϕ ds

= lim
T→∞

1

T

∫ t+T

t

Psϕ ds

= lim
T→∞

1

T

(∫ T

0

Psϕ ds−
∫ t

0

Psϕ ds+

∫ t+T

T

Psϕ ds
)

= lim
T→∞

M(T )ϕ− lim
T→∞

1

T

∫ t

0

Psϕ ds+ lim
T→∞

1

T

∫ t+T

T

Psϕ ds = M∞ϕ

for all ϕ ∈ L2(H, µ) and all t ≥ 0. Hence

M∞Pt = PtM∞ = M∞ (1.14)

for all t ≥ 0 and M∞ϕ ∈ Σ for all ϕ ∈ L2(H, µ) follows. Note that equality in (1.14)
can be checked by a similar calculation. Moreover, using (1.14) we have M∞M(T ) =
M(T )M∞ = M∞, which yields, letting T → ∞, M2

∞ = M∞. Therefore M∞ is a
projection operator on Σ. Again by the Fubini theorem and according to the invariance
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1.3 Invariant measures

of µ the last assertion follows:∫
H
M∞ϕ(x) µ(dx) =

∫
H

lim
T→∞

M(T )ϕ(x) µ(dx)

=

∫
H

lim
T→∞

(
1

T

∫ T

0

Ptϕ(x) dt

)
µ(dx)

= lim
T→∞

1

T

∫ T

0

(∫
H
Ptϕ(x) µ(dx)

)
dt

= lim
T→∞

1

T

∫ T

0

(∫
H
ϕ(x) µ(dx)

)
dt =

∫
H
ϕ(x) µ(dx).

De�nition 1.22. An invariant Borel probability measure µ for (Pt)t≥0 is called ergodic
if

L2- lim
T→∞

1

T

∫ T

0

Ptϕ dt =

∫
H
ϕ(x) µ(dx) (1.15)

for all ϕ ∈ L2(H, µ). Denote by E(Pt) the set of all ergodic measures for (Pt)t≥0.

The identity (1.15) is interpreted in physics by saying that the time average of the
Ptϕ's coincides with the spatial average of ϕ.

Proposition 1.23. Let µ be an invariant Borel probability measure for (Pt)t≥0. Then
µ is ergodic if and only if dim (Σ) = 1.

Proof. Suppose µ ∈ E(Pt) and let ϕ ∈ Σ. Then it follows from (1.15) that ϕ is µ-a.s.
constant. Therefore dim(Σ) = 1.
Conversely, assume that dim(Σ) = 1 and de�ne F ∈ (L2(H, µ))∗ by F (ϕ) := 〈M∞ϕ,1〉Σ

for all ϕ ∈ L2(H, µ). Note that since 1 ∈ Σ and M∞ϕ ∈ Σ for all ϕ ∈ L2(H, µ) by
Theorem 1.21, this is wellde�ned and we have

M∞ϕ = F (ϕ)1. (1.16)

By the Riesz representation theorem there exists a unique element ϕ0 ∈ L2(H, µ) such
that F (ϕ) = 〈ϕ, ϕ0〉L2(H,µ) for all ϕ ∈ L2(H, µ). In order to show that µ is ergodic, we
have to prove that ϕ0 = 1. Integrating (1.16) with respect to µ over H yields

〈ϕ, ϕ0〉L2(H,µ) = F (ϕ)

=

∫
H
F (ϕ)1(x) µ(dx)

=

∫
H
M∞ϕ(x) µ(dx)

=

∫
H
ϕ(x) µ(dx)

=

∫
H
ϕ(x) · 1(x) µ(dx) = 〈ϕ,1〉L2(H,µ)

for all ϕ ∈ L2(H, µ) in view of (1.13). Therefore ϕ0 = 1.
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1 Invariant measures for Markov semigroups

De�nition 1.24. Let µ be an invariant Borel probability measure for the Markov semi-
group (Pt)t≥0. A Borel set Γ ∈ B(H) is said to be invariant for (Pt)t≥0 if its characteristic
function 1Γ ∈ Σ. The set Γ ∈ B(H) is called trivial if µ(Γ) ∈ {0, 1}.

The next aim is to show that µ is ergodic if and only if all invariant sets are trivial.

Proposition 1.25. Let ϕ, ψ ∈ Σ. Then the following statements hold:

(i) |ϕ| ∈ Σ;

(ii) ϕ+, ϕ− ∈ Σ 1;

(iii) ϕ ∨ ψ, ϕ ∧ ψ ∈ Σ;

(iv) For any a ∈ R we have 1{x∈H | ϕ(x)>a} ∈ Σ.

Proof. See Proposition 5.14 in [10].

Theorem 1.26. Let µ be an invariant Borel probability measure for (Pt)t≥0. Then µ is
ergodic if and only if any invariant set is trivial.

Proof. First, let µ ∈ E(Pt) and suppose Γ is invariant, e.g. 1Γ ∈ Σ. Since by Proposition
1.23 dim(Σ) = 1, the function x 7→ 1Γ(x) must be (µ-a.s.) constant. Therefore µ(Γ) ∈
{0, 1}, i.e. Γ is trivial.

Conversely, suppose µ 6∈ E(Pt). Hence according to Proposition 1.23 there exists a
function ϕ0 ∈ Σ that is µ-a.s. not constant. So we can �nd some a0 ∈ R such that
µ({ϕ0 > a0}) 6∈ {0, 1}, i.e. the set {ϕ0 > a0} is not trivial. On the other hand by
Proposition 1.25 (iv) we have 1{ϕ0>a0} ∈ Σ, e.g. {ϕ0 > a0} is invariant. So there exists
some invariant set that is not trivial and the assertion follows by contraposition.

Now we are able to prove a su�cient condition for an invariant Borel probability
measure to be ergodic:

Theorem 1.27. Assume that there is a unique invariant Borel probability measure µ
for (Pt)t≥0. Then µ is ergodic.

Proof. Assume, by contradiction, that µ 6∈ E(Pt). Then by Theorem 1.26 there is a
non-trivial invariant set Γ. Hence de�ne for A ∈ B(H) the Borel probability measure
µΓ by µΓ(A) := 1

µ(Γ)
· µ(A ∩ Γ). We will prove that µΓ ∈ J (Pt). Since µΓ 6= µ, this is a

contradiction to the uniqueness of µ.

Since Γ is invariant for (Pt)t≥0, we have by de�nition 1Γ ∈ Σ, i.e. Pt1Γ = 1Γ µ-
a.s. for all t ≥ 0 and so πt(x,Γ) = 1Γ(x) for µ-a.e. x ∈ H and all t ≥ 0. Similarly,
πt(x,Γ

c) = 1Γc(x) for µ-a.e. x ∈ H and all t ≥ 0. Consequently, for every A ∈ B(H) we

1As usual ϕ+ := ϕ ∨ 0 and ϕ− := (−ϕ) ∨ 0.
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1.3 Invariant measures

obtain πt(x,A ∩ Γ) = 0 for µ-a.e. x ∈ Γc and πt(x,A ∩ Γc) = 0 for µ-a.e. x ∈ Γ for all
t ≥ 0. Hence∫

Γ

πt(x,A) µ(dx) =

∫
Γ

πt(x,A ∩ Γ) µ(dx) +

∫
Γ

πt(x,A ∩ Γc) µ(dx)

=

∫
Γ

πt(x,A ∩ Γ) µ(dx)

=

∫
H
πt(x,A ∩ Γ) µ(dx)

= µ(A ∩ Γ)

for all A ∈ B(H) according to the invariance of µ. Dividing both sides by µ(Γ) 6= 0
yields ∫

H
Pt1A(x) µΓ(dx) =

∫
H
πt(x,A) µΓ(dx) = µΓ(A) =

∫
H

1A(x) µΓ(dx)

for all A ∈ B(H), which means that µΓ is invariant for (Pt)t≥0.

In order to show that the ergodic Borel probability measures for a Markov semigroup
are exactly the extremal points of the set of all invariant measures, we need the following
helping lemma:

Lemma 1.28. Let µ ∈ E(Pt) and ν ∈ J (Pt) such that ν � µ. Then µ = ν.

Proof. Let Γ ∈ B(H). By De�nition 1.22 there exists a sequence (Tn)n∈N, limn→∞ Tn =
∞, such that

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ dt = µ(Γ) µ-a.s. (1.17)

Since ν � µ, identity (1.17) holds also ν-a.s. Now integrating with respect to ν yields∫
H

(
1

Tn

∫ Tn

0

Pt1Γ(x) dt

)
ν(dx) =

1

Tn

∫ Tn

0

(∫
H
Pt1Γ(x) ν(dx)

)
dt = ν(Γ)

for all n ∈ N according to the invariance of ν. Hence letting n → ∞ by Lebesgue and
(1.17)

ν(Γ) = lim
n→∞

∫
H

(
1

Tn

∫ Tn

0

Pt1Γ(x) dt

)
ν(dx) =

∫
H
µ(Γ) ν(dx) = µ(Γ).

Now the assertion follows by the arbitrariness of Γ ∈ B(H).

Theorem 1.29. The set E(Pt) of all ergodic Borel probability measures for (Pt)t≥0

coincides with the set (J (Pt))e of all extremal points of J (Pt): E(Pt) = (J (Pt))e.

Proof. (i) E(Pt) ⊆ (J (Pt))e: Let µ ∈ E(Pt) and assume, by contradiction, that µ 6∈
(J (Pt))e. Then there exist µ1, µ2 ∈ J (Pt) with µ1 6= µ2 and α ∈]0, 1[ such that
µ = αµ1 + (1 − α)µ2. Hence µ1 � µ and µ2 � µ and this is a contradiction
according to Lemma 1.28. Therefore µ ∈ (J (Pt))e.
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1 Invariant measures for Markov semigroups

(ii) E(Pt) ⊇ (J (Pt))e: Conversely, let µ ∈ (J (Pt))e and assume µ 6∈ E(Pt). Then
by Theorem 1.26 there exists a non-trivial invariant set Γ. As in the proof of
Theorem 1.27 one can show that µΓ, µΓc ∈ J (Pt) (with µΓ, µΓc de�ned as thereby).
Since obviously µΓ 6= µΓc and µ = µ(Γ)µΓ + (1 − µ(Γ))µΓc , µ is not extremal, in
contradiction to above.

Theorem 1.30. Let µ and ν, µ 6= ν, be two ergodic Borel probability measures for
(Pt)t≥0. Then µ and ν are singular.

Proof. Let Γ ∈ B(H) such that µ(Γ) 6= ν(Γ). Since µ and ν are ergodic, by De�nition
1.22 there exist a sequence (Tn)n∈N, Tn → ∞, and sets M,N ∈ B(H) with µ(M) =
ν(N) = 1 such that

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x) dt =

∫
H

1Γ(x) µ(dx) = µ(Γ)

for all x ∈M and

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x) dt =

∫
H

1Γ(x) ν(dx) = ν(Γ)

for all x ∈ N respectively. Since µ(Γ) 6= ν(Γ), this implies M ∩ N = ∅ and so µ and ν
are singular.

Corollary 1.31. If the set J (Pt) of invariant Borel probability measures for (Pt)t≥0

contains more than one element, there exist at least two elements µ, ν ∈ E(Pt) ⊆ J (Pt)
such that µ and ν are mutually singular.

Proof. Suppose J (Pt) has at least two elements, λ1, λ2 ∈ J (Pt) with λ1 6= λ2. Then by
Theorem 5.2.16 in [4] there exist probability measures ρλ1 , ρλ2 on E(Pt) such that

λi(·) =

∫
E(Pt)

µ(·) ρλi(dµ)

for i = 1, 2. Assume E(Pt) = {µ}. Then λ1 = µ = λ2, in contradiction to the choice of
λ1, λ2. Therefore E(Pt) must contain at least two elements, µ, ν ∈ E(Pt) with µ 6= ν.
According to Theorem 1.30 µ and ν are mutually singular.

Consequently, if J (Pt) contains more than one element, the state space H can be
partitioned into (at least) two disjoint parts, e.g. H = A ∪̇ B, with the property that
if the Markov process starts in A, then it will stay in A for all times t ≥ 0 almost
surely and the same is true for the complement B. (In particular, the zero-set does
not depend on the point in time t.) The intuition that derives from this consideration,
is that uniqueness of the invariant measure is a consequence of the process visiting a
'su�ciently large' portion of the state space, independently of its initial position.
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1.4 Existence of an invariant measure

In Theorem 1.19 we have seen that, if there exists an invariant measure for the (stochas-
tically continuous) Markov semigroup (Pt)t≥0 on Bb(H), then (Pt)t≥0 can be extended
uniquely to Lp(H, µ), p ≥ 1. So it might be important to ask, whether there exists an
invariant measure. In the literature there is the following well-known result (cf. [10] or
[11]):

Theorem 1.32 (Krylov-Bogoliubov Theorem). Let (Pt)t≥0 be a Feller Markov semi-
group on Bb(H). Assume that there is some µ0 ∈ M1(H) such that the sequence
(P∗t µ0)t≥0 is tight. Then there exists at least one invariant Borel probability measure
µ∗ for (Pt)t≥0.

Proof. Let (µt)t≥0 be the set de�ned by

µt(A) :=
1

t

∫ t

0

(P∗sµ0)(A) ds, A ∈ B(X ).

Since (P∗t µ0)t≥0 is (uniformly) tight by assumption, for every ε > 0 there exists some
compact set Kε such that supt≥0P∗t µ0(Kc

ε) < ε. Taking the same compact set, it is
straightforward to check that (µt)t≥0 is (uniformly) tight as well. Therefore by Prohorov
(cf. [10], Theorem 6.7) there exists a subsequence (µtn)n∈N and a Borel probability
measure µ∗ such that µtn → µ∗ weakly as n → ∞. Let ϕ ∈ Cb(H). Since according to
the Feller property Ptϕ ∈ Cb(H), by weak convergence and Fubini we have

|(P∗t µ∗)(ϕ)− µ∗(ϕ)|
= |(P∗t Fµ∗)(ϕ)− Fµ∗(ϕ)|
= |Fµ∗(Ptϕ)− Fµ∗(ϕ)|

=

∣∣∣∣∫
H
Ptϕ(x) µ∗(dx)−

∫
H
ϕ(x) µ∗(dx)

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
H
Ptϕ(x) µtn(dx)−

∫
H
ϕ(x) µtn(dx)

∣∣∣∣
= lim

n→∞
|µtn(Ptϕ)− µtn(ϕ)|

= lim
n→∞

1

tn

∣∣∣∣∫ tn

0

(P∗sµ0) (Ptϕ) ds−
∫ tn

0

(P∗sµ0) (ϕ) ds

∣∣∣∣
= lim

n→∞

1

tn

∣∣∣∣∫ tn

0

(∫
H
PsPtϕ(x) µ0(dx)

)
ds−

∫ tn

0

(∫
H
Psϕ(x) µ0(dx)

)
ds

∣∣∣∣
= lim

n→∞

1

tn

∣∣∣∣∫
H

(∫ tn

0

Ps+tϕ(x) ds

)
µ0(dx)−

∫
H

(∫ tn

0

Psϕ(x) ds

)
µ0(dx)

∣∣∣∣
= lim

n→∞

1

tn

∣∣∣∣∫
H

(∫ tn+t

t

Psϕ(x) ds

)
µ0(dx)−

∫
H

(∫ tn

0

Psϕ(x) ds

)
µ0(dx)

∣∣∣∣
= lim

n→∞

1

tn

∣∣∣∣∫ tn+t

t

(∫
H
Psϕ(x) µ0(dx)

)
ds−

∫ tn

0

(∫
H
Psϕ(x) µ0(dx)

)
ds

∣∣∣∣
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= lim
n→∞

1

tn

∣∣∣∣∣
∫ tn+t

tn

(∫
H
Psϕ(x) µ0(dx)

)
ds−

∫ t

tn

(∫
H
Psϕ(x) µ0(dx)

)
ds

−
∫ tn

0

(∫
H
Psϕ(x) µ0(dx)

)
ds

∣∣∣∣∣
= lim

n→∞

1

tn

∣∣∣∣∫ tn+t

tn

(∫
H
Psϕ(x) µ0(dx)

)
ds−

∫ t

0

(∫
H
Psϕ(x) µ0(dx)

)
ds

∣∣∣∣
≤ lim

n→∞

2t

tn
· ‖ϕ‖∞

= 0

for all t ≥ 0. Now the conclusion follows according to Lemma 1.18.

1.5 Uniqueness of the invariant measure

In view of Theorem 1.27 we have ergodicity of the system if there is a unique invari-
ant Borel probability measure µ for the (stochastically continuous) Markov semigroup
(Pt)t≥0. Hence it might be useful to look for conditions under which uniqueness of the
invariant measure is guaranteed. It turns out that the combination of the strong Feller
property and irreducibility is the right requirement (cf. Theorem 1.35 below).

Proposition 1.33 (Doob). Let (Pt)t≥0 be a (stochastically continuous) regular Markov
semigroup and µ an invariant Borel probability measure for (Pt)t≥0. Then µ is equivalent
to πt(x, ·) for all x ∈ H, t > 0. Moreover, µ is the unique invariant Borel probability
measure for (Pt)t≥0.

Proof. Let A ∈ B(H) and t > 0 arbitrary. Since µ is an invariant measure for (Pt)t≥0

µ(A) =

∫
H

1A(y) µ(dy) =

∫
H
Pt1A(y) µ(dy) =

∫
H
πt(y, A) µ(dy). (1.18)

Let x ∈ H, t > 0.
First show that µ � πt(x, ·). Let A ∈ B(H) such that πt(x,A) = 0. Since (Pt)t≥0 is

regular by assumption, πt(y, A) = 0 for all y ∈ H. Therefore by (1.18) µ(A) = 0. Hence
µ� πt(x, ·), e.g. µ is absolutely continuous with respect to πt(x, ·).
Conversely take A ∈ B(H) with µ(A) = 0. Again using equation (1.18) gives

πt(y, A) = 0 for µ-a.e. y ∈ H. By the regularity of (Pt)t≥0 we obtain πt(y, A) = 0
for all y ∈ H. In particular, πt(x,A) = 0. Hence πt(x, ·)� µ.
Alltogether we thus have shown that µ is equivalent to πt(x, ·) for arbitrary x ∈ H

and t > 0.
It remains to prove the uniqueness of µ. For this assume that µ and ν, µ 6= ν,

are two ergodic Borel probability measures for (Pt)t≥0. Then µ and ν are singular by
Theorem 1.30. Hence there exist A,B ∈ B(H), A ∩B = ∅, such that µ(A) = ν(B) = 1.
Since it was shown in the �rst part of the proof that µ ≈ πt(x, ·) for all t > 0 and
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x ∈ H, we obtain πt(x,A) = 1 for all t > 0 and x ∈ H. Applying the same argument
for the ergodic measure ν leads πt(x,B) = 1 for all t > 0 and x ∈ H. This implies
πt(x,A∪̇B) = πt(x,A) + πt(x,B) = 1 + 1 = 2 for all t > 0 and x ∈ H, which obviously
contradicts πt(x,H) = 1. Therefore µ is the unique invariant Borel probability measure
for (Pt)t≥0.

Proposition 1.34 (Khasminskii). Let the Markov semigroup (Pt)t≥0 be strong Feller
and irreducible. Then it is regular.

Proof. Let t > 0 and x0 ∈ H be arbitrary and �xed. We have to show that πt(x, ·) ≈
πt(x0, ·) for all x ∈ H, i.e. the null-sets of πt(x, ·) and πt(x0, ·) coincide for all x ∈ H. For
this it would be enough to show: If A ∈ B(H) is taken in a way such that πt(x0, A) > 0,
then πt(x,A) > 0 for all x ∈ H.
Suppose A ∈ B(H) such that πt(x0, A) > 0. Then by (1.1) for any 0 < s < t we have∫

H
πt−s(y, A) πs(x0, dy) = πs+(t−s)(x0, A) = πt(x0, A) > 0.

Therefore there exists at least one y0 ∈ H such that πt−s(y0, A) > 0. Since by (1.4)
πt−s(y0, A) = Pt−s1A(y0) and y 7→ Pt−s1A(y) is continuous (because (Pt)t≥0 is strong
Feller by assumption), there exists r > 0 such that πt−s(y, A) = Pt−s1A(y) > 0 for all
y ∈ B(y0, r). Consequently for arbitrary x ∈ H we obtain

πt(x,A) =

∫
H
πt−s(y, A) πs(x, dy) ≥

∫
B(y0,r)

πt−s(y, A) πs(x, dy) > 0,

because πs(x,B(y0, r)) > 0 according to the irreducibility of (Pt)t≥0. So, πt(x,A) > 0
and we have proved that πt(x, ·) ≈ πt(x0, ·) as required.

Taking Propositions 1.33 and 1.34 together we obtain

Theorem 1.35. Let (Pt)t≥0 be a Markov semigroup that is strong Feller and irreducible.
Then there is at most one invariant Borel probability measure for (Pt)t≥0.

1.6 First step towards the asymptotic strong Feller

property

We conclude the �rst chapter by proving an interesting property of two distinct ergodic
measures concerning their supports if the Markov semigroup is strong Feller. For the
proof we will need the following

Lemma 1.36. Let µ be a probability measure on (H,B(H)). Then

supp(µ) = {x ∈ H | µ(B(x, r)) > 0 ∀ r > 0}. (1.19)

Moreover, if ϕ ∈ Cb(H), ϕ ≥ 0, is such that∫
H
ϕ(x) µ(dx) = 0, (1.20)

then ϕ(x) = 0 for all x ∈ supp(µ).
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Proof. Let x0 ∈ supp(µ) and assume x0 6∈ {x ∈ H | µ(B(x, r)) > 0 ∀ r > 0}. Then
there is some r > 0 such that µ(B(x0, r)) = 0. Hence in view of the de�nition of
the support of a probability measure as the intersection of all closed subsets having
probability 1, x0 6∈ supp(µ), in contradiction to above. Therefore x0 ∈ {x ∈ H |
µ(B(x, r)) > 0 ∀ r > 0}. Conversely, suppose x0 6∈ supp(µ). Then there exists some
r0 > 0 such that µ(B(x0, r0)) = 0 and so x0 6∈ {x ∈ H | µ(B(x, r)) > 0 ∀ r > 0}. Hence
the assertion in (1.19) follows.
Now let ϕ ∈ Cb(H), ϕ ≥ 0, such that

∫
H ϕ(x) µ(dx) = 0. Then ϕ(x) = 0 for µ-

a.e. x ∈ H. Suppose x0 ∈ H such that ϕ(x0) > 0. Since ϕ : H → R is continuous,
there exists some r0 > 0 such that ϕ(x) > 0 for all x ∈ B(x0, r0). According to (1.20)
µ(B(x0, r0)) = 0 then. Therefore by (1.19) x0 6∈ supp(µ). Thus we have shown that
ϕ(x) = 0 for all x ∈ supp(µ).

Proposition 1.37. Let (Pt)t≥0 be a Markov semigroup with the strong Feller property.
Let µ and ν, µ 6= ν, be two ergodic Borel probability measures for (Pt)t≥0. Then supp(µ)∩
supp(ν) = ∅.

Proof. By Theorem 1.30 µ and ν are singular. Hence there are A,B ∈ B(H) such that
A ∩B = ∅ and µ(A) = ν(B) = 1. Then for any t > 0 we have

0 = µ(Ac) =

∫
H

1Ac(x) µ(dx) =

∫
H
Pt1Ac(x) µ(dx) =

∫
H
πt(x,A

c) µ(dx)

and

0 = ν(Bc) =

∫
H

1Bc(x) ν(dx) =

∫
H
Pt1Bc(x) ν(dx) =

∫
H
πt(x,B

c) ν(dx)

respectively. Since (Pt)t≥0 is strong Feller, the functions x 7→ Pt1Ac(x) = πt(x,A
c) and

x 7→ Pt1Bc(x) = πt(x,B
c) are continuous. Hence by Lemma 1.36 we have πt(x,A

c) = 0
for all x ∈ supp(µ) and πt(x,B

c) = 0 for all x ∈ supp(ν) respectively. Assume that
there is some x0 ∈ supp(µ) ∩ supp(ν). Then πt(x0, A) = πt(x0, B) = 1, which implies
πt(x0, A∪̇B) = πt(x0, A) + πt(x0, B) = 1 + 1 = 2. This is a contradiction in comparison
to πt(x,H) = 1. Therefore supp(µ) ∩ supp(ν) = ∅.

Actually, the proof of Proposition 1.37 suggests to introduce the notion of being strong
Feller at some point x ∈ H, e.g. the Markov semigroup (Pt)t≥0 is called strong Feller
at x ∈ H, if the function Ptϕ is continuous at x for all ϕ ∈ Bb(H), t ≥ 0. With this
notation, the same proof as above allows to conclude, that if the Markov semigroup
(Pt)t≥0 is strong Feller at the point x ∈ H, then x can belong to the support supp(µ) of
at most one invariant Borel probability measure µ for (Pt)t≥0. In particular, if (Pt)t≥0 is
strong Feller (at every x ∈ H) and there exists some point x ∈ H such that x ∈ supp(µ)
for every invariant Borel probability measure µ for (Pt)t≥0, then there exists at most one
invariant measure µ.
This idea will be important when deriving uniqueness of the invariant Borel probability

measure from the asymptotic strong Feller property later in this thesis.
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The �eld of mass transference problems and dual representations of it originates in the
1781 formulated Monge problem. Although there had been intensively study in the
following centuries, there are open problems even today. For our purpose it would be
enough to distinguish two main formulations of this famous problem (cf. [12]):

(1) The Monge-Kantorovich problem (One-stage problem). Suppose we are given two
�nite measures µ1 and µ2 on some space X with equal mass, e.g. µ1(X ) = µ2(X ),
describing the masses of A ⊆ X and B ⊆ X respectively. While µ1 is refered to the
initial distribution, µ2 is called the �nal distribution. A transference plan would be a
�nite measure µ on the product space X ×X with marginals µ1 and µ2 respectively.
The set of admissible transference plans is denoted by C(µ1, µ2). The amount of
mass shipped from an in�nitesimal small neighborhood dx of x ∈ X into another
in�nitesimal small neighborhood dy of y ∈ X is then proportional to µ(dx, dy). If
the unit cost of shipment from x to y is denoted by c(x, y), the total cost of shipment
is given by ∫

X 2

c(x, y) µ(dx, dy). (2.1)

To minimize the transportation costs, we have to �nd some optimal transference
plan µ∗ ∈ C(µ1, µ2) for which (2.1) is minimal, e.g.∫

X 2

c(x, y) µ∗(dx, dy) ≤
∫
X 2

c(x, y) µ(dx, dy)

for all µ ∈ C(µ1, µ2). Therefore we will consider the Kantorovich functional :

Kc(µ1, µ2) := inf
µ∈C(µ1,µ2)

∫
X 2

c(x, y) µ(dx, dy). (2.2)

(2) The Kantorovich-Rubinstein problem (Multi-stage problem). Contrary to the above
we consider here the problem of transferring masses in cases where transits are
permitted. Rather than shipping a mass from a certain subset A ⊆ X to another
subset B ⊆ X in just one step, the shipment is made in n stages: Ship A = A1 to
the volume A2 ⊆ X , then transfer A2 ⊆ X to A3 ⊆ X , ..., An−1 ⊆ X to An = B.
Let B(µ1 − µ2) be the space of �nite measures on (X 2,B(X 2)) having marginal
di�erence µ1 − µ2. It can be shown (cf. [12], p. 91-92) that minimization of the
involved transportation costs in this case is equivalent - at least if the in�mum below
is attained - to �nd some optimal transference plan b∗ ∈ B(µ1 − µ2):∫

X 2

c(x, y) b∗(dx, dy) = inf
b∈B(µ1−µ2)

∫
X 2

c(x, y) b(dx, dy) =: Rc(µ1, µ2). (2.3)
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The right hand side in (2.3) is called Kantorovich-Rubinstein functional. If c = d
for some metric d, W (µ1, µ2) := Rd(µ1, µ2) is called the Wasserstein norm of the
measures µ1 and µ2.

Instead of solving the above problems separately, e.g. �nding measures µ∗ and b∗

that realize (2.2) and (2.3) respectively, we aim to formulate dual representations for
both problems respectively. Afterwards it will be shown that the two primal problems
coincide if and only if c is a metric (cf. Theorem 2.18 below). In particular, (2.32),
which means equality of the Monge-Kantorovich problem and the dual problem of the
Kantorovich-Rubinstein problem, holds in case of a metric d.
Before we do so, note that via suitable normalization, e.g. dividing by µ1(X ), it

would be su�cient to consider probability measures P1, P2 on (X ,B(X )) instead of �nite
Borel measures µ1, µ2. Hence the in�ma in the Monge-Kantorovich problem and the
Kantorovich-Rubinstein problem are taken over the sets

C(P1, P2) := {P ∈M1(X 2) | P (A×X ) = P1(A), P (X × A) = P2(A) ∀ A ∈ B(X )}
= {P ∈M1(X 2) | T1P = P1, T2P = P2},

and

B(P1 − P2) := {P ∈M1(X 2) | P (A×X )− P (X × A) = (P1 − P2)(A) ∀ A ∈ B(X )}
= {P ∈M1(X 2) | T1P − T2P = P1 − P2},

respectively, where TiP denotes the i-th marginal of P , i = 1, 2.

2.1 Dual representation for the Monge-Kantorovich

problem

Now we turn to the duality theorem for the Monge-Kantorovich problem (2.2). Let
(X , d) be a separable metric space and de�ne

C := {c : X × X → R+ | ∃ H ∈ H : c(x, y) = H(d(x, y)) ∀ (x, y) ∈ X 2},

where H is given by

H :=

{
H ∈ L(R+,R+) | H(0) = 0, H strictly increasing and convex, sup

t>0

H(2t)

H(t)
<∞

}
.

Here L(R+,R+) denotes the set of all Lipschitz-continuous functions from R+ to R+.
The last condition in the de�nition of H is known as Orlicz' condition. Furthermore
de�ne for c ∈ C

Gc(Y) := {(f, g) | f, g ∈ Ld(Y), f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ Y} (2.4)

for any subset Y ⊆ X .
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Theorem 2.1 (Kantorovich Theorem). Let (X , d) be a separable metric space, c ∈ C
and Pi such that

∫
X c(x, a) Pi(dx) <∞ for some �xed a ∈ X , i = 1, 2. Then

Kc(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy)

= sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
. (2.5)

Moreover, if the Borel probability measures P1, P2 are tight, then the in�mum on the left
hand side is attained.

Proof. Obviously we have∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy) =

∫
X 2

f(x) P (dx, dy) +

∫
X 2

g(y) P (dx, dy)

=

∫
X 2

f(x) + g(y) P (dx, dy)

≤
∫
X 2

c(x, y) P (dx, dy)

for all (f, g) ∈ Gc(X ), P ∈ C(P1, P2). Hence

sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ inf

P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy). (2.6)

It remains to prove the converse inequality. This will be done stepwise with the help of
the following preliminaries.

First part: Separable metric space (X , d) with bounded metric d. Suppose that d is a
bounded metric on X and de�ne for c ∈ C

ρ1(x, x′) := sup
y∈X
|c(x, y)− c(x′, y)|,

ρ2(y, y′) := sup
x∈X
|c(x, y)− c(x, y′)|

for all x, x′ ∈ X and for all y, y′ ∈ X respectively.

Claim 1. ρi is a bounded metric on X for i = 1, 2.

Proof. The assertion will be shown for i = 1 only.

(i) It is clear that ρ1(x, x′) ≥ 0 for all x, x′ ∈ X .

(ii) For x, x′ ∈ X we have

ρ1(x, x′) = 0 ⇔ sup
y∈X
|c(x, y)− c(x′, y)| = 0

⇔ |H(d(x, y))−H(d(x′, y))| = 0 ∀ y ∈ X
⇔ d(x, y) = d(x′, y) ∀ y ∈ X
⇔ x = x′.
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(iii)

ρ1(x, x′) = sup
y∈X
|c(x, y)− c(x′, y)| = sup

y∈X
|c(x′, y)− c(x, y)| = ρ1(x′, x)

for all x, x′ ∈ X .

(iv) For x, x′, x′′ ∈ X we have

ρ1(x, x′) = sup
y∈X
|c(x, y)− c(x′, y)|

≤ sup
y∈X
|c(x, y)− c(x′′, y)|+ sup

y∈X
|c(x′′, y)− c(x′, y)|

= ρ1(x, x′′) + ρ1(x′′, x′).

It remains to show that ρ1 is bounded: Observe that since the metric d is bounded, we
have d(x, y) ≤ K for all x, y ∈ X and some constant K ∈ R+. Hence we receive for all
(x, x′) ∈ X 2

ρ1(x, x′) = sup
y∈X
|c(x, y)− c(x′, y)| = sup

y∈X
|H(d(x, y))−H(d(x′, y))| ≤ 2 ·H(K) <∞.

For c ∈ C and any subset Y ⊆ X de�ne

G ′c(Y) := {(f, g) | f, g ∈ Bb(Y), f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ Y}

and

G ′′c (Y) :=
{

(f, g) ∈ G ′c(Y) | |f(x)− f(x′)| ≤ ρ1(x, x′) ,

|g(y)− g(y′)| ≤ ρ2(y, y′) ∀ x, x′, y, y′ ∈ Y
}
.

Claim 2. For arbitrary c ∈ C and any subset Y ⊆ X we have the chain of inclusions

G ′′c (Y) ⊆ Gc(Y) ⊆ G ′c(Y).

Proof. The second inclusion is obvious by de�nition. To prove the �rst inclusion, it would
be enough to show ρ1(x, x′) ≤ K1 · d(x, x′) for all x, x′ ∈ Y and ρ2(y, y′) ≤ K2 · d(y, y′)
for all y, y′ ∈ Y and suitable constants K1, K2 ∈ R+. But this follows immediately from
the Lipschitz-continuity of H. In fact

ρ1(x, x′) = sup
y∈X
|c(x, y)− c(x′, y)|

= ‖H(d(x, ·))−H(d(x′, ·))‖∞
≤ Lip(H) · ‖d(x, ·)− d(x′, ·)‖∞
≤ K1 · d(x, x′)

for all x, x′ ∈ Y . The assertion for the bounded metric ρ2 follows in the same way.
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We will need the following

Lemma 2.2. If Y ⊆ X such that Pi(Y) = 1 for i = 1, 2, then

sup
(f,g)∈G′c(Y)

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
= sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

(2.7)

Proof. Let (f, g) ∈ G ′c(Y) and de�ne for x ∈ X

f ∗(x) := inf
y∈Y

(c(x, y)− g(y))

and for y ∈ X
g∗(y) := inf

x∈X
(c(x, y)− f ∗(x)) .

Claim 3. (f ∗, g∗) ∈ G ′′c (X ).

Proof. Since c : X 2 → R+ is continuous, f ∗, g∗ : X → R are upper semi-continuous.
Indeed, suppose x ∈ X and (xn)n∈N ⊆ X such that d(xn, x)

n→∞−→ 0. Since

f ∗(xn) = inf
y∈Y

(c(xn, y)− g(y)) ≤ c(xn, y)− g(y)

for all y ∈ Y , n ∈ N, we have

lim sup
n→∞

f ∗(xn) ≤ lim
n→∞

(c(xn, y)− g(y)) = c(x, y)− g(y)

for all y ∈ Y and thus

lim sup
n→∞

f ∗(xn) ≤ inf
y∈Y

(c(x, y)− g(y)) = f ∗(x),

that is f ∗ is upper semi-continuous in x. It is well-known that each upper semi-
continuous function h : X → R is such that h−1((−∞, α)) ⊆ X is open for all α ∈ R.
As result f ∗ and g∗ are Borel measurable. Furthermore

f ∗(x) + g∗(y) = f ∗(x) + inf
x′∈X

(c(x′, y)− f ∗(x′))

≤ f ∗(x) + (c(x, y)− f ∗(x))

= c(x, y)

for all x, y ∈ X . Since the boundedness of f ∗, g∗ is clear according to the choice of
(f, g) ∈ G ′c(Y) and the boundedness of d, we already know that (f ∗, g∗) ∈ G ′c(X ).
In order to prove that (f ∗, g∗) ∈ G ′′c (X ), observe that

f ∗(x)− f ∗(x′) = inf
y∈Y

(c(x, y)− g(y))− inf
y∈Y

(c(x′, y)− g(y))

= inf
y∈Y

(c(x, y)− g(y)) + sup
y∈Y

(g(y)− c(x′, y))

≤ sup
y∈Y

(c(x, y)− c(x′, y))

≤ sup
y∈Y
|c(x, y)− c(x′, y)|

= ρ1(x, x′)
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2 Monge-Kantorovich duality

for all x, x′ ∈ X . Changing the roles of x, x′ and using the symmetry of the metric ρ1

we gain |f ∗(x)− f ∗(x′)| ≤ ρ1(x, x′) for all x, x′ ∈ X . In the same way one can argue for
g∗, e.g. let y, y′ ∈ X . Then

g∗(y)− g∗(y′) = inf
x∈X

(c(x, y)− f ∗(x))− inf
x∈X

(c(x, y′)− f ∗(x))

= inf
x∈X

(c(x, y)− f ∗(x)) + sup
x∈X

(f ∗(x)− c(x, y′))

≤ sup
x∈X

(c(x, y)− c(x, y′))

≤ sup
x∈X
|c(x, y)− c(x, y′)|

= ρ2(y, y′).

Hence we have |g∗(y)− g∗(y′)| ≤ ρ2(y, y′) for all y, y′ ∈ X according to the symmetry of
ρ2. Therefore (f ∗, g∗) ∈ G ′′c (X ).

Since (f, g) ∈ G ′c(Y), we have for �xed x ∈ Y

f(x) ≤ c(x, y)− g(y)

for all y ∈ Y and hence

f(x) ≤ inf
y∈Y

(c(x, y)− g(y)) = f ∗(x).

Similarly, for �xed y ∈ Y we have:

g∗(y) = inf
x∈X

(c(x, y)− f ∗(x))

= inf
x∈X

(
c(x, y)− inf

y′∈Y
(c(x, y′)− g(y′))

)
≥ inf

x∈X
(c(x, y)− c(x, y) + g(y))

= g(y).

Thus f(x) ≤ f ∗(x) for all x ∈ Y and g(y) ≤ g∗(y) for all y ∈ Y . Therefore∫
Y
f(x) P1(dx) ≤

∫
Y
f ∗(x) P1(dx), (2.8)∫

Y
g(y) P2(dy) ≤

∫
Y
g∗(y) P2(dy). (2.9)

Summing up both sides of (2.8) and (2.9) respectively yields∫
Y
f(x) P1(dx) +

∫
Y
g(y) P2(dy) ≤

∫
Y
f ∗(x) P1(dx) +

∫
Y
g∗(y) P2(dy)

for all (f, g) ∈ G ′c(Y). Since P1(X \ Y) = P2(X \ Y) = 0, we can replace Y by X , e.g.∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy) ≤

∫
X
f ∗(x) P1(dx) +

∫
X
g∗(y) P2(dy)

38



2.1 Dual representation for the Monge-Kantorovich problem

for all (f, g) ∈ G ′c(Y). Hence, since as shown above (f ∗, g∗) ∈ G ′′c (X ) for all (f, g) ∈ G ′c(Y),

sup
(f,g)∈G′c(Y)

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

(2.10)
On the other hand, since G ′c(X ) ⊆ G ′c(Y), we have

sup
(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

(f,g)∈G′c(Y)

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
and this yields

sup
(f,g)∈G′c(Y)

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≥ sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
(2.11)

because

sup
(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

Now the assertion follows from (2.10) and (2.11).

We proceed in the proof of Theorem 2.1 by considering di�erent cases for the space
X :
1) Let X be a �nite space. So, there exists some n ∈ N such that X = {x1, ..., xn}.

Then

inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy)

= inf
P (xi1 , xi2) ≥ 0 ∀ i1, i2,∑n

i2=1 P (xi1 , xi2) = P1(xi1) ∀ i1,∑n
i1=1 P (xi1 , xi2) = P2(xi2) ∀ i2

(
n∑

i1=1

n∑
i2=1

c(xi1 , xi2) · P (xi1 , xi2)

)

and according to the duality principle in linear programming this is equal to

sup
f(xi1 )+g(xi2 )≤c(xi1 ,xi2 ) ∀ i1,i2

(
n∑
i=1

(f(xi) · P1(xi) + g(xi) · P2(xi))

)

= sup
(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

Hence by Lemma 2.2 (with Y = X ) we have

inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy) = sup
(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
= sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
,
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2 Monge-Kantorovich duality

because G ′′c (X ) ⊆ Gc(X ). In particular, there exists some Borel probability measure
P ∗ ∈ C(P1, P2) such that∫

X 2

c(x, y) P ∗(dx, dy) = inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy).

2) Let X be a compact set.

Claim 4. For any n ∈ N there exist sets A1, . . . , Amn ∈ B(X ), Ak 6= ∅, diam(Ak) <
1
n

for all k = 1, . . . ,mn and Ak ∩ Al = ∅ for all k 6= l, such that

X =
⋃̇mn

k=1
Ak.

Proof. Let n ∈ N. Suppose (Oi)i∈N is an open cover of X such that diam(Oi) < 1
n

for all i ∈ N. Since X is compact, there exist mn ∈ N and ik, k = 1, . . . ,mn, such

that X ⊆
⋃mn
k=1Oik . For every k ∈ {1, ...,mn} de�ne O

′
ik

:= Oik \
⋃̇k−1

j=1O
′
ij
. Observe

that O′ik , k = 1, . . . ,mn, are disjoint and X ⊆
⋃̇mn

k=1O
′
ik
. De�ning Ak := O′ik ∩ X for

every k = 1, . . . ,mn, we �nally obtain X =
⋃̇mn

k=1Ak.

De�ne a mapping hn : X → Xn := {x1, ..., xmn} ⊆ X by hn(x) := xk if x ∈ Ak for
some xk ∈ Ak, k = 1, . . . ,mn. It is not di�cult to show that hn(x) → x as n → ∞.
Extend the Borel probability measures Pi ◦ h−1

n , i = 1, 2, to X in an obvious way,
namely (Pi ◦ h−1

n )e (A) := (Pi ◦ h−1
n ) (A ∩ Xn) for all A ∈ B(X ). In order to simplify

notation we will not distinguish between (Pi ◦ h−1
n )e and Pi ◦ h−1

n . Note that the
measures P1 ◦h−1

n and P2 ◦h−1
n are completely supported by Xn. Hence using Lemma

2.2 with Y = Xn and the Borel probability measures Pi ◦h−1
n instead of Pi for i = 1, 2

we gain

sup
(f,g)∈G′c(Xn)

(∫
X
f(x)

(
P1 ◦ h−1

n

)
(dx) +

∫
X
g(y)

(
P2 ◦ h−1

n

)
(dy)

)
= sup

(f,g)∈G′′c (X )

(∫
X
f(x)

(
P1 ◦ h−1

n

)
(dx) +

∫
X
g(y)

(
P2 ◦ h−1

n

)
(dy)

)
≤ sup

(f,g)∈Gc(X )

(∫
X
f(x)

(
P1 ◦ h−1

n

)
(dx) +

∫
X
g(y)

(
P2 ◦ h−1

n

)
(dy)

)
= sup

(f,g)∈Gc(X )

(∫
X
f(hn(x)) P1(dx) +

∫
X
g(hn(y)) P2(dy)

)
︸ ︷︷ ︸

=(
R
X f(hn(x))−K

n
P1(dx)+

R
X g(hn(y)) P2(dy))+K

n

,

where we use the transformation theorem for the last equality.
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2.1 Dual representation for the Monge-Kantorovich problem

Let (f, g) ∈ Gc(X ). Denoting by ‖f‖d and ‖g‖d the Lipschitz-constant of f and g
respectively, we then have

f(hn(x)) + g(hn(y)) ≤ |f(hn(x))− f(x)|+ |g(hn(y))− g(y)|+ f(x) + g(y)

≤ ‖f‖d · d(hn(x), x)︸ ︷︷ ︸
< 1
n

+‖g‖d · d(hn(y), y)︸ ︷︷ ︸
< 1
n

+c(x, y)

<
1

n
· (‖f‖d + ‖g‖d) + c(x, y)

=
K

n
+ c(x, y)

for all x, y ∈ X and some constant K ∈ R+ which is independent of n and x, y.
Since, in addition, f ◦ hn and g ◦ hn are Borel measurable and bounded, we have
(f ◦ hn − K

n
, g ◦ hn) ∈ G ′c(X ). Therefore, in order to lose the n-dependence of the

supremum, we �nd

sup
(f,g)∈Gc(X )

(∫
X
f(hn(x))− K

n
P1(dx) +

∫
X
g(hn(y)) P2(dy)

)
+
K

n

≤ sup
(f̃ ,g̃)∈G′c(X )

(∫
X
f̃(x) P1(dx) +

∫
X
g̃(y) P2(dy)

)
+
K

n
. (2.12)

Since Xn is �nite, by 1) there exists a measure P (n) ∈ C(P1 ◦ h−1
n , P2 ◦ h−1

n ) such that∫
X 2

c(x, y) P (n)(dx, dy)

=

∫
X 2
n

c(x, y) P (n)(dx, dy)

= inf
Q∈C(P1◦h−1

n ,P2◦h−1
n )

∫
X 2
n

c(x, y) Q(dx, dy)

= sup
(f,g)∈G′c(Xn)

(∫
X
f(x)

(
P1 ◦ h−1

n

)
(dx) +

∫
X
g(y)

(
P2 ◦ h−1

n

)
(dy)

)
. (2.13)

Claim 5. Pi ◦ h−1
n −→ Pi weakly on X as n→∞ for i = 1, 2.

Proof. Let f ∈ Cb(X ) and i = 1, 2. Applying the transformation theorem and
Lebesgue yields

lim
n→∞

∫
X
f(x)

(
Pi ◦ h−1

n

)
(dx) = lim

n→∞

∫
X
f(hn(x)) Pi(dx)

=

∫
X

lim
n→∞

f(hn(x)) Pi(dx)

=

∫
X
f(x) Pi(dx),

because f is continuous and hn(x) tends to x as n→∞. Therefore Pi◦h−1
n converges

weakly to Pi as n→∞.
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2 Monge-Kantorovich duality

Since Xn ⊆ X for all n ∈ N and X is compact, (Pi ◦ h−1
n )n∈N is uniformly tight. But

X 2 is compact as well and P (n) ∈ C(P1 ◦ h−1
n , P2 ◦ h−1

n ). Hence (P (n))n∈N is uniformly
tight and thus relatively compact. Therefore there exists a Borel probability measure
P ∗ on X 2 and a subsequence (P (nk))k∈N such that P (nk) −→ P ∗ weakly as k → ∞.
Since Pi ◦ h−1

n −→ Pi weakly as n → ∞ for i = 1, 2, a monotone class argument
applies in order to show that P ∗ ∈ C(P1, P2). Hence by (2.13) and (2.12)∫

X 2

c(x, y) P ∗(dx, dy)

= lim
k→∞

∫
X 2

c(x, y) P (nk)(dx, dy)

= lim
k→∞

(
sup

(f,g)∈G′c(Xnk )

(∫
X
f(x)

(
P1 ◦ h−1

nk

)
(dx) +

∫
X
g(y)

(
P2 ◦ h−1

nk

)
(dy)

))

≤ lim
k→∞

(
sup

(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
+
K

nk

)

= sup
(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

Therefore, since P ∗ ∈ C(P1, P2), using Lemma 2.2 with Y = X we obtain

inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy) ≤
∫
X 2

c(x, y) P ∗(dx, dy)

≤ sup
(f,g)∈G′c(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
= sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

Moreover, according to (2.6) the coupling P ∗ ∈ C(P1, P2) is optimal for the primal
problem.

3) Let (X , d) be a separable metric space with bounded metric d, i.e. there exists some
constant K ∈ R+ such that d(x, y) ≤ K for all x, y ∈ X . Since H is Lipschitz-
continuous, it follows∫

X
ρ1(x, a) P1(dx) =

∫
X

sup
y∈X
|c(x, y)− c(a, y)| P1(dx)

=

∫
X

sup
y∈X
|H(d(x, y))−H(d(a, y))| P1(dx)

=

∫
X
‖H(d(x, ·))−H(d(a, ·))‖∞︸ ︷︷ ︸

≤Lip(H)·‖d(x,·)−d(a,·)‖∞

P1(dx)
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2.1 Dual representation for the Monge-Kantorovich problem

≤ Lip(H) ·
∫
X
d(a, x)︸ ︷︷ ︸
≤K

P1(dx)

≤ Lip(H) ·K
< ∞

and in the same way
∫
X ρ2(y, a) P2(dy) <∞ for some �xed a ∈ X .

3.1) First of all, let P1, P2 be tight probability measures on (X ,B(X )). Then for
every n ∈ N there exists a compact set Kn ⊆ X such that

sup
i=1,2

∫
Kc
n

ρi(x, a) Pi(dx) ≤ 1

n
. (2.14)

For A ∈ B(X ) de�ne

Pi,n(A) := Pi(A ∩Kn) + Pi(K
c
n) · δa(A).

Since

Pi,n(Kn ∪ {a}) = Pi((Kn ∪ {a}) ∩Kn) + Pi(K
c
n) · δa(Kn ∪ {a}) = Pi(Kn) + Pi(K

c
n) = 1

for i = 1, 2, according to Lemma 2.2 (applied to Y = Kn ∪ {a} and the Borel
probability measures P1,n, P2,n) we have

sup
(f,g)∈G′c(Kn∪{a})

(∫
X
f(x) P1,n(dx) +

∫
X
g(y) P2,n(dy)

)
= sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1,n(dx) +

∫
X
g(y) P2,n(dy)

)
.

Observe that for the �rst integral on the right hand side we have∫
X
f(x) P1,n(dx) =

∫
Kn

f(x) P1(dx) + P1(Kc
n) ·
∫
X
f(x) δa(dx)

=

∫
X
f(x) P1(dx)−

∫
Kc
n

f(x) P1(dx) + P1(Kc
n) · f(a)

=

∫
X
f(x) P1(dx) +

∫
Kc
n

f(a)− f(x)︸ ︷︷ ︸
≤|f(a)−f(x)|≤ρ1(a,x)

P1(dx)

≤
∫
X
f(x) P1(dx) +

∫
Kc
n

ρ1(a, x) P1(dx)

and analogously for the second integral above∫
X
g(y) P2,n(dy) ≤

∫
X
g(y) P2(dy) +

∫
Kc
n

ρ2(a, y) P2(dy).
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Hence by (2.14)

sup
(f,g)∈G′′c (X )

(∫
X
f(x) P1,n(dx) +

∫
X
g(y) P2,n(dy)

)
≤ sup

(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

+

∫
Kc
n

ρ1(a, x) P1(dx) +

∫
Kc
n

ρ2(a, y) P2(dy)

)

= sup
(f,g)∈G′′c (X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
+

∫
Kc
n

ρ1(a, x) P1(dx)︸ ︷︷ ︸
≤ 1
n

+

∫
Kc
n

ρ2(a, y) P2(dy)︸ ︷︷ ︸
≤ 1
n

≤ sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
+

2

n
, (2.15)

because G ′′c (X ) ⊆ Gc(X ). Since Kn ∪ {a} is compact, according to the case 2) for all
n ∈ N there exists a measure P (n) ∈ C(P1,n, P2,n) such that∫
X 2

c(x, y) P (n)(dx, dy) ≤ sup
(f,g)∈G′c(Kn∪{a})

(∫
X
f(x) P1,n(dx) +

∫
X
g(y) P2,n(dy)

)
. (2.16)

Since each Pi,n, n ∈ N, is tight (as mentioned above Pi,n(Kn∪{a}) = 1 for all n ∈ N)
and Pi,n

n→∞−→ Pi (weakly), where Pi is tight as well by assumption, i = 1, 2, by
Theorem 8 in Appendix III of [2], {Pi,n | n ∈ N} ∪ {Pi} is uniformly tight.

Now analogously to the case 2) we conclude that (P (n))n∈N is uniformly tight and
thus relatively compact. Therefore there exists a measure P ∗ and a subsequence

(P (nk))k∈N such that P (nk) k→∞−→ P ∗ weakly. Since Pi,n converges weakly to Pi, in
order to verify P ∗ ∈ C(P1, P2), we proceed in the same way as in the case 2) above,
e.g. by applying a monotone class argument. Therefore using (2.16) and (2.15) yields∫

X 2

c(x, y) P ∗(dx, dy)

= lim
k→∞

∫
X 2

c(x, y) P (nk)(dx, dy)

≤ lim
k→∞

(
sup

(f,g)∈G′c(Knk∪{a})

(∫
X
f(x) P1,nk(dx) +

∫
X
g(y) P2,nk(dy)

))

≤ lim
k→∞

(
sup

(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
+

2

nk

)

= sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.
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In particular, since P ∗ ∈ C(P1, P2), we have

inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy) ≤
∫
X 2

c(x, y) P ∗(dx, dy)

≤ sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

According to (2.6) the coupling P ∗ ∈ C(P1, P2) is optimal for the primal problem.

3.2) Now let P1, P2 be Borel probability measures on X that are not necessarily tight
and denote by X̄ the completion of X with respect to d. For ε > 0 choose the
largest set A := A(ε) ⊆ X̄ such that d(x, y) ≥ ε

2
for all x, y ∈ A, x 6= y, that is, if

z ∈ Ac, then there exists some x ∈ A such that d(x, z) < ε
2
. The existence of such

a set follows from the Lemma of Zorn (cf. Theorem I.2 in [13]). In fact, let M be
the collection of all subsets of X̄ which ful�ll the distance condition, namely their
elements have distance greater or equal ε

2
. Then M 6= ∅ and it is clear that (M,⊆)

is partially ordered. Furthermore every chain (Mn)n∈N, Mn ⊆ Mn+1 for all n ∈ N,
has an upper bound. (Just take the union M :=

⋃∞
n=1 Mn.) Hence the Lemma of

Zorn is applicable and yields at least one maximal element A ∈ M. Moreover, the
set A is countable. In fact, since X̄ is separable, we can �nd some countable set
{yn | n ∈ N} which is dense in X̄ with respect to d. Hence

(
B̄ ε

4
(yn)

)
n∈N, where

B̄δ(yn) := {x ∈ X̄ | d(x, yn) < δ}, is an open cover of X̄ . Assume, by contradiction,
that A ⊆ X̄ is not countable. Then there is at least some n ∈ N such that the open
ball B̄ ε

4
(yn) contains uncountable many elements of A, in particular more than two.

This contradicts the de�nition of A. Hence the set A must be countable. So, let
A = {xn | n ∈ N}.

For every n ∈ N de�ne Ān ⊆ X̄ by Ān := B̄ ε
2
(xn) \

(⋃n−1
j=1 B̄ ε

2
(xj)

)
and put An :=

Ān ∩ X . Note that Ān ∈ B(X̄ ) for all n ∈ N and Ām ∩ Ān = ∅ for all m 6= n.
Furthermore

⋃∞
n=1 Ān = X̄ . Indeed, suppose there is some x ∈ X̄ \

(⋃∞
n=1 Ān

)
. Hence

x 6∈ Ān for all n ∈ N and consequently x 6∈ B̄ ε
2
(xn) for all n ∈ N, i.e. d(x, xn) ≥ ε

2
for

all n ∈ N, in contradiction to the choice of A. Therefore X̄ ⊆
⋃∞
n=1 Ān. The converse

inclusion is obvious.

Let P̄i be the probability measure on (X̄ ,B(X̄ )) generated by Pi for i = 1, 2, i.e.
P̄i(Ā) = Pi(Ā ∩ X ) for all Ā ∈ B(X̄ ). According to Lemma C.1 in the appendix
P̄1, P̄2 are tight and hence by 3.1) there exists a probability measure P̄ ∈ C(P̄1, P̄2)
(on (X̄ 2,B(X̄ 2)) such that∫

X̄ 2

c(x, y) P̄ (dx, dy) = sup
(f,g)∈Gc(X̄ )

(∫
X̄
f(x) P̄1(dx) +

∫
X̄
g(y) P̄2(dy)

)
. (2.17)

Let Pi,m, i = 1, 2, m ∈ N, be the restriction of the Borel probability measure Pi
to the set Am, i.e. Pi,m(B) := Pi(B ∩ Am) for all B ∈ B(X ). To any dual in-
dex (m1,m2), m1,m2 ∈ N, de�ne the product measure µ(m1,m2) on (X 2,B(X 2)) by
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2 Monge-Kantorovich duality

µ(m1,m2) := c(m1,m2) · (P1,m1 ⊗ P2,m2), where the constant c(m1,m2) is chosen such that
µ(m1,m2)(Am1 × Am2) = P̄ (Ām1 × Ām2). Let Pε :=

∑
(m1,m2) µ(m1,m2). Then for any

B ∈ B(X ) we have

Pε(B ×X )

=
∑

(m1,m2)

µ(m1,m2)(B ×X )

=
∑

(m1,m2)

c(m1,m2) · (P1,m1 ⊗ P2,m2) (B ×X )

=
∑

(m1,m2)

c(m1,m2) · P1,m1(B) · P2,m2(X )

=
∑

(m1,m2)

c(m1,m2) · P1(B ∩ Am1) · P2(X ∩ Am2)

=
∑

(m1,m2)

c(m1,m2) · P1(B ∩ Am1) · P2(Am2)

=
∑

(m1,m2): Pi,mi (Ami )>0 ∀ i=1,2

P̄ (Ām1 × Ām2)

P1,m1(Am1) · P2,m2(Am2)
· P1(B ∩ Am1) · P2(Am2)

=
∑

m1∈N: P1,m1 (Am1 )>0

P̄ (Ām1 ×
(⋃

m2∈N Ām2

)
)

P1,m1(Am1)
· P1(B ∩ Am1)

=
∑

m1∈N: P1,m1 (Am1 )>0

P̄ (Ām1 × X̄ )

P1,m1(Am1)
· P1(B ∩ Am1)

=
∑

m1∈N: P1,m1 (Am1 )>0

P̄1(Ām1)

P1,m1(Am1)
· P1(B ∩ Am1)

= P1

(
B ∩

⋃
m1∈N

Am1︸ ︷︷ ︸
=X

)

= P1(B).

Similarly, one can show
Pε(X ×B) = P2(B)

for all B ∈ B(X ). Therefore Pε ∈ C(P1, P2).

We will prove

lim sup
ε→0

∫
X 2

c(x, y) Pε(dx, dy) ≤ sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
.

In order to achieve this, let α > 0 and observe, that if (y1, y2) ∈ Am1×Am2 such that
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2.1 Dual representation for the Monge-Kantorovich problem

d(y1, y2) > α + 2ε, we have using the triangle inequality d(xm1 , xm2) > α + ε. Hence

Pε(d(y1, y2) > α + 2ε) =
∑

(m1,m2)

µ(m1,m2)({(y1, y2) ∈ Am1 × Am2 | d(y1, y2) > α + 2ε})

≤
∑

(m1,m2): d(xm1 ,xm2 )>α+ε

µ(m1,m2)(Am1 × Am2)︸ ︷︷ ︸
=P̄ (Ām1×Ām2 )

=
∑

(m1,m2): d(xm1 ,xm2 )>α+ε

P̄
(
Ām1 × Ām2

)
.

Applying the triangle inequality a second time, e.g. α+ε < d(xm1 , xm2) ≤ d(xm1 , y1)+
d(y1, y2) + d(y2, xm2) < d(y1, y2) + ε, the right hand side above is less or equal to∑

(m1,m2)

P̄
(
{(y1, y2) ∈ Ām1 × Ām2 | d(y1, y2) > α}

)
= P̄

(
{(y1, y2) ∈ X̄ 2 | d(y1, y2) > α}

)
= P̄ (d(y1, y2) > α).

Therefore Pε(d > α + 2ε) ≤ P̄ (d > α) for all α > 0. Since H : R+ → R+ is strictly
increasing, by the fundamental theorem of calculus and Fubini this implies∫

X 2

c(x, y) Pε(dx, dy)

=

∫
X 2

H(d(x, y)) Pε(dx, dy)

=

∫
X 2

(∫ d(x,y)

0

1 dH(t)

)
︸ ︷︷ ︸
=
R∞
0 1[0,d(x,y)[(t) dH(t)

Pε(dx, dy)

=

∫ ∞
0

∫
X 2

1[0,d(x,y)[(t)︸ ︷︷ ︸
=1{(x,y)∈X2: d(x,y)>t}(x,y)

Pε(dx, dy) dH(t)

=

∫ ∞
0

Pε(d(x, y) > t)︸ ︷︷ ︸
=Pε(d(x,y)+2ε>t+2ε)

dH(t)

≤
∫ ∞

0

P̄ (d(x, y) + 2ε > t)︸ ︷︷ ︸
=P̄ (d(x,y)>t−2ε)

dH(t)

=

∫ ∞
0

P̄ (d(x, y) > t) dH(t+ 2ε) +H(2ε)

=

∫ ∞
0

(∫
X̄ 2

1{(x,y)∈X̄ 2: d(x,y)>t}(x, y)︸ ︷︷ ︸
=1[0,d(x,y)[(t)

P̄ (dx, dy)

)
dH(t+ 2ε) +H(2ε)
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2 Monge-Kantorovich duality

=

∫
X̄ 2

∫ ∞
0

1[0,d(x,y)[(t) dH(t+ 2ε) P̄ (dx, dy) +H(2ε)

=

∫
X̄ 2

∫ d(x,y)

0

1 dH(t+ 2ε) P̄ (dx, dy) +H(2ε)

=

∫
X̄ 2

H(d(x, y) + 2ε)−H(2ε)︸ ︷︷ ︸
≥0

P̄ (dx, dy) +H(2ε)

≤
∫
X̄ 2

H(d(x, y))︸ ︷︷ ︸
=c(x,y)

P̄ (dx, dy) +

∫
X̄ 2

H(d(x, y) + 2ε)−H(d(x, y)) P̄ (dx, dy)

+H(2ε). (2.18)

Consider the second integral on the right hand side:

∫
X̄ 2

H(d(x, y) + 2ε)−H(d(x, y)) P̄ (dx, dy)

=

∫
{(x,y)∈X̄ 2: d(x,y)≤2p}

H(d(x, y) + 2ε)−H(d(x, y)) P̄ (dx, dy)

+

∫
{(x,y)∈X̄ 2: d(x,y)>2p}

H(d(x, y) + 2ε)−H(d(x, y)) P̄ (dx, dy)

≤ sup
t∈[0,2p]

(H(t+ 2ε)−H(t)) +

∫
{(x,y)∈X̄ 2: d(x,y)>2p}

H(d(x, y) + 2ε) P̄ (dx, dy).

Since d(x, y) ≤ d(x, a) + d(y, a) for some �xed a ∈ X , applying two times the Orlicz'
condition and the convexity to the integrand yields

H(d(x, y) + 2ε) ≤ K1 ·H
(

1

2
· d(x, y) +

1

2
· 2ε
)

≤ K1

2
· (H(d(x, y)) +H(2ε))

≤ K1

2
·
(
K2 ·H

(
1

2
· d(x, a) +

1

2
· d(y, a)

)
+H(2ε)

)
≤ K1

2
·
(
K2

2
· (H(d(x, a)) +H(d(y, a))) +H(2ε)

)
=

K1K2

4
· (H(d(x, a)) +H(d(y, a))) +

K1

2
·H(2ε)
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2.1 Dual representation for the Monge-Kantorovich problem

for suitable constants K1, K2 ∈ R+. Hence∫
{(x,y)∈X̄ 2: d(x,y)>2p}

H(d(x, y) + 2ε) P̄ (dx, dy)

≤ K1K2

4

∫
{(x,y)∈X̄ 2: d(x,a)+d(y,a)>2p}

H(d(x, a)) +H(d(y, a)) P̄ (dx, dy) +
K1

2
·H(2ε)

≤ K

(∫
{x∈X̄ : d(x,a)>p}

H(d(x, a)) P̄1(dx) +

∫
{y∈X̄ : d(y,a)>p}

H(d(y, a)) P̄2(dy)

)
+
K1

2
·H(2ε),

because {(x, y) ∈ X̄ 2 : d(x, a)+d(y, a) > 2p} ⊆ {(x, y) ∈ X̄ 2 : d(x, a) > p}∪{(x, y) ∈
X̄ 2 : d(y, a) > p}, where we put K := K1K2

4
. Therefore∫

X̄ 2

H(d(x, y) + 2ε)−H(d(x, y)) P̄ (dx, dy)

≤ sup
t∈[0,2p]

(H(t+ 2ε)−H(t)) +K ·

(∫
X̄
H(d(x, a))1{x∈X̄ : d(x,a)>p}(x) P̄1(dx)

+

∫
X̄
H(d(y, a))1{y∈X̄ : d(y,a)>p}(y) P̄2(dy)

)
+
K1

2
·H(2ε)

for some constants K,K1 > 0 which are independent of ε and p. Therefore letting
�rst ε→ 0 and then p→∞ in (2.18) yields

lim sup
ε→0

∫
X 2

c(x, y) Pε(dx, dy) ≤
∫
X̄ 2

c(x, y) P̄ (dx, dy)

= sup
(f,g)∈Gc(X̄ )

(∫
X̄
f(x) P̄1(dx) +

∫
X̄
g(y) P̄2(dy)

)
≤ sup

(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
according to (2.17) and the fact that Gc(X̄ ) ⊆ Gc(X ). Since Pε ∈ C(P1, P2) for all
ε > 0, the conclusion follows.

Second part: Separable metric space (X , d) with unbounded metric d. Now let (X , d)
be any separable metric space. So in general the metric d is not bounded any more.
As before, �rst suppose P1, P2 to be tight Borel probability measures. For each n ∈ N

de�ne the bounded metric dn : X × X → R+ by

dn(x, y) := d(x, y) ∧ n

for all (x, y) ∈ X 2. Since (X , dn) is a separable metric space with bounded metric dn for
every n ∈ N, by the case 3.1) of the �rst part there exists a measure P (n) ∈ C(P1, P2)
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2 Monge-Kantorovich duality

such that ∫
X 2

H(dn(x, y)) P (n)(dx, dy)

= inf
P∈C(P1,P2)

∫
X 2

H(dn(x, y)) P (dx, dy)

= sup
(f,g)∈Gc((X ,dn))

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
, (2.19)

where Gc((X , dn)) is de�ned in an obvious way, namely as Gc(Y) in (2.4) with dn replacing
the metric d and X replacing Y respectively.

Since (P (n))n∈N is uniformly tight (P (n) ∈ C(P1, P2) for all n ∈ N and the measures
P1, P2 are tight by assumption; the same assertion appears later in this thesis - cf. the
proof of Lemma 3.4 - and the exact 2ε-argument is given there), it is relatively compact
and so there exists a subsequence (P (nk))k∈N and a measure P (0) ∈ C(P1, P2) such that
P (nk) converges weakly to P (0) as k →∞. By the Skorokhod Theorem (cf. [5], Theorem
11.7.2) there is a probability space (Ω, µ) and a sequence (Xk)k∈N of random variables
Xk : Ω→ X 2 such that Xk has distribution P

(nk) for all k ∈ N and Xk −→ X0 µ-a.s. as
k →∞.

Hence using (2.19), the transformation theorem and Fatou yields

lim inf
k→∞

sup
(f,g)∈Gc((X ,dnk ))

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
= lim inf

k→∞

∫
X 2

H(dnk(x, y)) P (nk)(dx, dy)

= lim inf
k→∞

∫
X 2

H(dnk(x, y))
(
µ ◦X−1

k

)
(dx, dy)

= lim inf
k→∞

∫
Ω

H(dnk(Xk(ω))) µ(dω)

= lim inf
k→∞

Eµ[H(dnk(Xk))]

≥ Eµ[lim inf
k→∞

H(dnk(Xk))]

= Eµ[H(d(X0)) + lim inf
k→∞

(H(dnk(Xk))−H(d(X0)))]

= Eµ[H(d(X0))− lim sup
k→∞

(H(d(X0))−H(dnk(Xk)))]

≥ Eµ[H(d(X0))− lim sup
k→∞

|H(d(X0))−H(dnk(Xk))|]

= Eµ[H(d(X0))− lim sup
k→∞

|H(dnk(Xk))−H(d(X0))|]

= Eµ[H(d(X0))]− Eµ[lim sup
k→∞

|H(dnk(Xk))−H(d(X0))|]

= Eµ[H(d(X0))], (2.20)
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2.1 Dual representation for the Monge-Kantorovich problem

because

|H(dnk(Xk))−H(d(X0))|

≤ |H(dnk(Xk))−H(dnk(X0))|︸ ︷︷ ︸
k→∞−→ 0 µ-a.s.

+ |H(dnk(X0))−H(d(X0))|︸ ︷︷ ︸
k→∞−→ 0, because dnk↗d

k→∞−→ 0 µ-a.s.

Furthermore, since Xk
k→∞−→ X0 µ-a.s., by the transformation theorem, the Orlicz' con-

dition and the convexity of H

Eµ

[
lim sup
k→∞

(H(dnk(Xk)) +H(d(X0)))

]
=

∫
Ω

lim sup
k→∞

H(dnk(Xk(ω))) µ(dω) +

∫
Ω

H(d(X0(ω))) µ(dω)

≤
∫

Ω

lim sup
k→∞

H(d(Xk(ω))) µ(dω) +

∫
Ω

H(d(X0(ω))) µ(dω)

= 2 ·
∫

Ω

H(d(X0(ω))) µ(dω)

= 2 ·
∫
X 2

H(d(x, y))︸ ︷︷ ︸
≤K

2
·(H(d(x,a))+H(d(y,a)))

P (0)(dx, dy)

≤ K ·
∫
X 2

H(d(x, a)) +H(d(y, a)) P (0)(dx, dy)

= K ·
(∫
X
H(d(x, a)) P1(dx) +

∫
X
H(d(y, a)) P2(dy)

)
= K ·

(∫
X
c(x, a) P1(dx) +

∫
X
c(y, a) P2(dy)

)
< ∞.

Since Gc((X , dnk)) ⊆ Gc(X ) for all k ∈ N, we have

sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≥ sup

(f,g)∈Gc((X ,dnk ))

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
for all k ∈ N and therefore by (2.20)

sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≥ lim inf

k→∞
sup

(f,g)∈Gc((X ,dnk ))

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≥ Eµ [H(d(X0))]

=

∫
Ω

H(d(X0(ω))) µ(dω)
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2 Monge-Kantorovich duality

=

∫
X 2

H(d(x, y)) P (0)(dx, dy)

=

∫
X 2

c(x, y) P (0)(dx, dy)

≥ inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy).

In particular, according to (2.6) the measure P (0) ∈ C(P1, P2) is optimal for the primal
problem, i.e. ∫

X 2

c(x, y) P (0)(dx, dy) = inf
P∈C(P1,P2)

∫
X 2

c(x, y) P (dx, dy). (2.21)

It remains to show equality (2.5) for not necessarily tight measures P1, P2. Since the
boundedness of the metric d is not used in 3.2) of the �rst part, this could be done
in the same way as thereby with the only exception that the existence of some Borel
probability measure P̄ ∈ C(P̄1, P̄2) such that∫

X̄ 2

c(x, y) P̄ (dx, dy) = sup
(f,g)∈G(X̄ )

(∫
X̄
f(x) P̄1(dx) +

∫
X̄
g(y) P̄2(dy)

)
follows from (2.21) here.

2.2 Dual representation for the

Kantorovich-Rubinstein problem

Similarly as for the Monge-Kantorovich problem, we now go on by proving a dual rep-
resentation for the Kantorovich-Rubinstein problem (2.3).
Let (X , d) be a separable metric space and suppose c : X ×X → R+ and λ : X → R+

to be measurable functions such that

(C1) c(x, y) = 0 if and only if x = y;

(C2) c(x, y) = c(y, x) for all (x, y) ∈ X 2;

(C3) c(x, y) ≤ λ(x) + λ(y) for all x, y ∈ X ;

(C4) λ maps bounded sets to bounded sets, that is diam(λ(B)) := supr,s∈λ(B)|r − s| ≤
Kλ(B) for some constant Kλ(B) ∈ R+ for all sets B ⊆ X with diam(B) :=
supx,y∈B d(x, y) ≤ KB for some constant KB ∈ R+;

(C5)

sup
x,y∈B(a,r): d(x,y)≤δ

c(x, y)
δ→0−→ 0

for each a ∈ X and r > 0, where B(a, r) := {x ∈ X | d(x, a) < r} denotes the
open ball with radius r > 0 centered at a ∈ X .
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Note that any function c ∈ C satis�es (C1) to (C5). In particular, the metric d
satis�es all the above conditions (C1) to (C5) with λ given by λ(x) := d(x, a) for some
�xed a ∈ X .
Denote by Lc(X ,R) the linear space of all c-Lipschitz continuous functions ϕ from X

to R, that is there exists some constant K ∈ R+ such that |ϕ(x) − ϕ(y)| ≤ K · c(x, y)
for all x, y ∈ X , and de�ne ‖·‖c : Lc(X ,R)→ R+ by

‖ϕ‖c := sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

. (2.22)

Note that for ϕ ∈ Lc(X ,R) we have

|ϕ(x)−ϕ(y)| = |ϕ(x)− ϕ(y)|
c(x, y)

·c(x, y) ≤
(

sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

)
·c(x, y) = ‖ϕ‖c·c(x, y)

for all x, y ∈ X , x 6= y. Moreover, ‖ϕ‖c is the smallest such constant K ∈ R+, called the
Lipschitz constant of ϕ. In particular, ‖ϕ‖c <∞. Hence by condition (C5) we conclude
that each ϕ ∈ Lc(X ,R) is continuous (with respect to d) and thus measurable.

Lemma 2.3. ‖ · ‖c is a seminorm on Lc(X ,R).

Proof. For ϕ = 0 ∈ Lc(X ,R) we obtain ‖ϕ‖c = 0.
Let α ∈ R, ϕ ∈ Lc(X ,R). Then

‖αϕ‖c = sup
x,y∈X : x 6=y

|(αϕ)(x)− (αϕ)(y)|
c(x, y)

= sup
x,y∈X : x 6=y

|α(ϕ(x)− ϕ(y))|
c(x, y)

= |α| · sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

= |α| · ‖ϕ‖c.

Let ϕ, ψ ∈ Lc(X ,R). Then

‖ϕ+ ψ‖c = sup
x,y∈X : x 6=y

|(ϕ+ ψ)(x)− (ϕ+ ψ)(y)|
c(x, y)

= sup
x,y∈X : x 6=y

|ϕ(x) + ψ(x)− (ϕ(y) + ψ(y))|
c(x, y)

= sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y) + ψ(x)− ψ(y)|
c(x, y)

≤ sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

+ sup
x,y∈X : x 6=y

|ψ(x)− ψ(y)|
c(x, y)

= ‖ϕ‖c + ‖ψ‖c.
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2 Monge-Kantorovich duality

Since ‖ϕ‖c = 0 if and only if ϕ is constant, ‖ · ‖c is not a norm on Lc(X ,R) at this
stage. To obtain a norm we have to consider equivalence classes with respect to ‖ · ‖c.
For this de�ne

N := {ϕ ∈ Lc(X ,R) | ‖ϕ‖c = 0} = {ϕ ∈ Lc(X ,R) | ∃ u ∈ R : ϕ(x) = u ∀ x ∈ X}

and set
Lc(X ,R) := Lc(X ,R)/N .

Now de�ne ‖·‖c : Lc(X ,R) → R+ by ‖[ϕ]‖c := ‖ϕ‖c where ϕ ∈ [ϕ] is an arbitrary
representative of [ϕ].

Remark 2.4. ‖·‖c : Lc(X ,R) → R+ is wellde�ned, since for ϕ, ψ ∈ [ϕ] two represen-
tatives, there exists some u ∈ R such that ψ(x) = ϕ(x) + u for all x ∈ X and thus we
have

‖ϕ‖c = sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

= sup
x,y∈X : x 6=y

|ϕ(x) + u− (ϕ(y) + u)|
c(x, y)

= sup
x,y∈X : x 6=y

|ψ(x)− ψ(y)|
c(x, y)

= ‖ψ‖c.

Lemma 2.5. ‖·‖c : Lc(X ,R)→ R+ is a norm.

Proof. This is clear, because ‖[ϕ]‖c = 0 if and only if [ϕ] = N = [0].

Although elements of Lc(X ,R) are equivalence classes [ϕ], according to Remark 2.4
and to shorten notation we shall write ϕ instead of [ϕ].
De�ne the linear space

Mλ(X ) :=

{
m is a �nite signed measure on (X ,B(X ))

∣∣∣∣∣ m(X ) = 0,

∫
X λ(x) |m|(dx) <∞

}
,

where |m|(A) := m+(A) + m−(A) (= 2 · ‖m‖TV (A)), A ∈ B(X ), is the total varia-
tion of the �nite signed Borel measure m with Jordan decomposition m = m+ − m−.
Furthermore for m ∈Mλ(X ) set

B(m) := {b ∈M(X 2) | b(X 2) <∞, b(A×X )− b(X × A) = m(A) ∀ A ∈ B(X )}
= {b ∈M(X 2) | b(X 2) <∞, T1b− T2b = m},

where Tib denotes the i-th marginal of b, i = 1, 2.
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Remark 2.6. For each m ∈ Mλ(X ) the corresponding B(m) 6= ∅, because m+⊗m−
m+(X )

∈
B(m). In fact, for A ∈ B(X ) we have

m+ ⊗m−

m+(X )
(A×X )− m+ ⊗m−

m+(X )
(X × A)

=
m+(A) ·m−(X )

m+(X )
− m+(X ) ·m−(A)

m+(X )

= m+(A)−m−(A)

= m(A),

where we use m+(X ) = m−(X ) for the second equality.

Hence the following de�nition is meaningful: let ‖·‖w : Mλ(X )→ R+ be given by

‖m‖w := inf
b∈B(m)

∫
X 2

c(x, y) b(dx, dy). (2.23)

Then by the above remark and (C3) we have

‖m‖w = inf
b∈B(m)

∫
X 2

c(x, y) b(dx, dy)

≤
∫
X 2

c(x, y)

(
m+ ⊗m−

m+(X )

)
(dx, dy)

≤
∫
X 2

(λ(x) + λ(y))

(
m+ ⊗m−

m+(X )

)
(dx, dy)

=

∫
X
λ(x) m+(dx) +

∫
X
λ(y) m−(dy)

=

∫
X
λ(x) |m|(dx)

< ∞

according to the de�nition ofMλ(X ).

Note that for any two Borel probability measures P1, P2 on X with
∫
X λ(x) Pi(dx) <

∞, i = 1, 2, we have P1 − P2 ∈ Mλ(X ). Hence ‖P1 − P2‖w is wellde�ned and the �nal
result of this section (cf. Theorem 2.16 below) claims that

Rc(P1, P2) = ‖P1 − P2‖w = sup
‖ϕ‖c=1

∫
X
ϕ(x) (P1 − P2)(dx).

In order to achieve this dual representation for the Kantorovich-Rubinstein problem, we
start by proving the following

Lemma 2.7. ‖·‖w is a seminorm onMλ(X ).
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2 Monge-Kantorovich duality

Proof. Let m ∈ Mλ(X ). Since by choice c(x, y) ≥ 0 for all (x, y) ∈ X 2 and b is a �nite
Borel measure on X 2, we obviously have ‖m‖w ≥ 0, where equality holds if m = 0.
In order to show ‖α · m‖w = |α| · ‖m‖w for all α ∈ R, we distinguish the two cases

α > 0 and α < 0:
If α > 0 we have

‖α ·m‖w = inf
b∈B(α·m)

∫
X 2

c(x, y) b(dx, dy)

= inf
T1b−T2b=α·m

∫
X 2

c(x, y) b(dx, dy)

= inf
T1( 1

α
b)−T2( 1

α
b)=m

∫
X 2

c(x, y) b(dx, dy)

= α · inf
T1( 1

α
b)−T2( 1

α
b)=m

∫
X 2

c(x, y)

(
1

α
b

)
(dx, dy)

= α · inf
( 1
α
b)∈B(m)

∫
X 2

c(x, y)

(
1

α
b

)
(dx, dy)

= α · ‖m‖w.

Similarly, for α < 0 we have, de�ning the �nite Borel measure b̃ on X 2 by b̃(A1×A2) :=
b(A2 × A1) for all A1, A2 ∈ B(X ) and using the symmetry of c

‖α ·m‖w = inf
b∈B(α·m)

∫
X 2

c(x, y) b(dx, dy)

= inf
T1b−T2b=α·m

∫
X 2

c(x, y) b(dx, dy)

= inf
T1( 1

α
b)−T2( 1

α
b)=m

∫
X 2

c(x, y) b(dx, dy)

= inf
T2(− 1

α
b)−T1(− 1

α
b)=m

∫
X 2

c(x, y) b(dx, dy)

= inf
T1(− 1

α
b̃)−T2(− 1

α
b̃)=m

∫
X 2

c(y, x) b̃(dy, dx)

= |α| · inf
T1(− 1

α
b̃)−T2(− 1

α
b̃)=m

∫
X 2

c(y, x)

(
1

|α|
b̃

)
(dy, dx)

= |α| · inf
T1(− 1

α
b̃)−T2(− 1

α
b̃)=m

∫
X 2

c(y, x)

(
− 1

α
b̃

)
(dy, dx)

= |α| · inf
(− 1

α
b̃)∈B(m)

∫
X 2

c(y, x)

(
− 1

α
b̃

)
(dy, dx)

= |α| · ‖m‖w.

It remains to show the triangle inequality. So, let mi ∈ Mλ(X ) and bi ∈ B(mi) for
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2.2 Dual representation for the Kantorovich-Rubinstein problem

i = 1, 2. Then for b := b1 + b2 we have∫
X 2

c(x, y) b(dx, dy) =

∫
X 2

c(x, y) b1(dx, dy) +

∫
X 2

c(x, y) b2(dx, dy)

and

T1b− T2b = T1 (b1 + b2)− T2 (b1 + b2)

= T1b1 + T1b2 − T2b1 − T2b2

= (T1b1 − T2b1) + (T1b2 − T2b2) .

Therefore

‖m1 +m2‖w

= inf
b∈B(m1+m2)

∫
X 2

c(x, y) b(dx, dy)

= inf
T1b−T2b=m1+m2

∫
X 2

c(x, y) b(dx, dy)

= inf
(T1b1−T2b1)+(T1b2−T2b2)=m1+m2

(∫
X 2

c(x, y) b1(dx, dy) +

∫
X 2

c(x, y) b2(dx, dy)

)
≤ inf

T1b1−T2b1=m1

∫
X 2

c(x, y) b1(dx, dy) + inf
T1b2−T2b2=m2

∫
X 2

c(x, y) b2(dx, dy)

= inf
b1∈B(m1)

∫
X 2

c(x, y) b1(dx, dy) + inf
b2∈B(m2)

∫
X 2

c(x, y) b2(dx, dy)

= ‖m1‖w + ‖m2‖w.

Let m ∈Mλ(X ), ϕ ∈ Lc(X ,R) and a ∈ X �xed. Then

|ϕ(x)| ≤ |ϕ(x)− ϕ(a)|+ |ϕ(a)| ≤‖ϕ‖c·c(x, a) + |ϕ(a)| = K1 · c(x, a) +K2

for all x ∈ X and some constants K1, K2 ∈ R+. Hence by de�nition ofMλ(X )∫
X
|ϕ(x)| |m|(dx) ≤ K1

∫
X
c(x, a) |m|(dx) +K2 · |m|(X )

≤ K1

∫
X
λ(x) |m|(dx) + (K1λ(a) +K2) · |m|(X ) <∞,

i.e. ϕ ∈ Lc(X ,R) is |m|-integrable, and induces a linear form

Fϕ : Mλ(X ) → R

m 7→ Fϕ(m) :=

∫
X
ϕ(x) m(dx).
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2 Monge-Kantorovich duality

Remark 2.8. Suppose that ϕ and ψ are in the same equivalence class [ϕ] of Lc(X ,R).
Then Fϕ = Fψ. In fact, for m ∈Mλ(X ) we have

Fϕ(m) =

∫
X
ϕ(x) m(dx) =

∫
X

(ψ(x) + u) m(dx) = Fψ(m) + u ·m(X ) = Fψ(m).

Hence there is no reason to distinguish Lc(X ,R) and Lc(X ,R) when considering the
functional Fϕ onMλ(X ). Since by de�nition of B(m) the di�erence of the marginals of
b coincides with m, we obtain

|Fϕ(m)| =

∣∣∣∣∫
X
ϕ(x) m(dx)

∣∣∣∣
=

∣∣∣∣∫
X
ϕ(x) (T1b− T2b) (dx)

∣∣∣∣
=

∣∣∣∣∫
X
ϕ(x) (T1b)(dx)−

∫
X
ϕ(y) (T2b)(dy)

∣∣∣∣
=

∣∣∣∣∫
X 2

ϕ(x) b(dx, dy)−
∫
X 2

ϕ(y) b(dx, dy)

∣∣∣∣
=

∣∣∣∣∫
X 2

(ϕ(x)− ϕ(y)) b(dx, dy)

∣∣∣∣
≤

∫
X 2

|ϕ(x)− ϕ(y)| b(dx, dy)

≤ ‖ϕ‖c ·
∫
X 2

c(x, y) b(dx, dy)

for all b ∈ B(m). Hence

|Fϕ(m)| ≤ ‖ϕ‖c · inf
b∈B(m)

∫
X 2

c(x, y) b(dx, dy) = ‖ϕ‖c · ‖m‖w.

Therefore Fϕ : Mλ(X )→ R is a continuous linear functional for each ϕ ∈ Lc(X ,R), i.e.
Fϕ ∈Mλ(X )∗, with dual norm

‖Fϕ‖∗w ≤ ‖ϕ‖c. (2.24)

De�ne the continuous linear transformation

D : (Lc(X ,R), ‖·‖c) → (Mλ(X )∗, ‖·‖∗w)

ϕ 7→ Dϕ = Fϕ.

Lemma 2.9. The transformation D : (Lc(X ,R), ‖·‖c)→ (Mλ(X )∗, ‖·‖∗w) is an isometry,
i.e. ‖ϕ‖c = ‖Fϕ‖∗w for all ϕ ∈ Lc(X ,R).

Proof. For x, y ∈ X set mxy := δx − δy (∈Mλ(X )). Then

‖mxy‖w = inf
b∈B(mxy)

∫
X 2

c(u, v) b(du, dv) ≤
∫
X 2

c(u, v) (δx ⊗ δy)(du, dv) = c(x, y). (2.25)
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Hence for each ϕ ∈ Lc(X ,R)

‖ϕ‖c = sup
x,y∈X : x 6=y

|ϕ(x)− ϕ(y)|
c(x, y)

= sup
x,y∈X : x 6=y

∣∣∫
X ϕ(z) (δx − δy)(dz)

∣∣
c(x, y)

= sup
x,y∈X : x 6=y

|Fϕ(mxy)|
c(x, y)

≤ ‖Fϕ‖∗w · sup
x,y∈X : x 6=y

‖mxy‖w
c(x, y)

≤ ‖Fϕ‖∗w.

Therefore we have ‖ϕ‖c ≤ ‖Fϕ‖∗w and so according to (2.24) ‖ϕ‖c = ‖Fϕ‖∗w, e.g. D is an
isometry.

We now pursue to show that D is an isometric isomorphism between the normed linear
space (Lc(X ,R), ‖·‖c) and the Banach space (Mλ(X )∗, ‖·‖∗w). For this the following
preliminaries will be useful: De�ne

M0(X ) :=
{
m is �nite signed measure on (X ,B(X ))

∣∣∣ ∃ m1,m2 ∈M(X ) �nite

and with bounded supports such that m1(X ) = m2(X ) and m = m1 −m2

}
.

Note that condition (C4) on λ implies thatM0(X ) ⊆Mλ(X ).

Lemma 2.10. M0(X ) ⊆Mλ(X ) is a dense subspace with respect to ‖·‖w.

Proof. Let m ∈ Mλ(X ), m 6= 0, and a ∈ X �xed. De�ne Bn := B(a, n) := {x ∈ X |
d(x, a) < n} for all n ∈ N. Then there exists n0 ∈ N such that m+(Bn) ·m−(Bn) > 0
for all n ≥ n0, where m

+,m− denote as usual the measures of the Jordan decomposition
m = m+ −m− of m. For these n ≥ n0 de�ne

mn : B(X ) → R

A 7→ mn(A) := m+(X ) ·
(
m+(A ∩Bn)

m+(Bn)
− m−(A ∩Bn)

m−(Bn)

)

and set δn := m−(X )
m−(Bn)

− 1 ≥ 0, εn := m+(X )
m+(Bn)

− 1 ≥ 0. Since the open balls Bn exhaust X
as n→∞, we have limn→∞ δn = limn→∞ εn = 0. Note that mn ∈M0(X ) for all n ∈ N.
We will show that (mn)n∈N converges to m with respect to ‖·‖w. First observe that for
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2 Monge-Kantorovich duality

every A ∈ B(X ) we obtain the following expression for (m−mn)(A):

(m−mn)(A)

= m(A)−mn(A)

= m(A)−m+(X ) ·
(
m+(A ∩Bn)

m+(Bn)
− m−(A ∩Bn)

m−(Bn)

)
= m(A)−

(
m+(X )

m+(Bn)
− 1

)
·m+(A ∩Bn)−m+(A ∩Bn)

+

(
m−(X )

m−(Bn)
− 1

)
·m−(A ∩Bn) +m−(A ∩Bn)

= m(A)− εn ·m+(A ∩Bn) + δn ·m−(A ∩Bn)−
(
m+(A ∩Bn)−m−(A ∩Bn)

)
= m(A)− εn ·m+(A ∩Bn) + δn ·m−(A ∩Bn)−m(A ∩Bn)

= m(A \Bn)− εn ·m+(A ∩Bn) + δn ·m−(A ∩Bn).

De�ne µn, νn : B(X )→ R+ by

µn(A) := m+(A \Bn) + δn ·m−(A ∩Bn) (2.26)

and

νn(A) := m−(A \Bn) + εn ·m+(A ∩Bn) (2.27)

respectively. Note that µn, νn are �nite with m −mn = µn − νn. Moreover µn � |m|
and νn � |m|. In fact, for A ∈ B(X ) with 0 = |m|(A) = m+(A) + m−(A) we have
by de�nition of µn and νn, µn(A) = 0 and νn(A) = 0 respectively. Hence the Radon-
Nikodym densities dµn

d|m| and
dνn
d|m| exist. Since m = m+−m− is the Jordan decomposition

of m, we can �nd sets P,N ∈ B(X ) such that P ∪ N = X , P ∩ N = ∅ and m+(N) =
0, m−(P ) = 0. Therefore by (2.26) respectively (2.27) the Radon-Nikodym densities
look like

dµn
d|m|

(x) =


1 if x ∈ P \Bn

δn if x ∈ N ∩Bn

0 if x ∈ (N \Bn) ∪ (Bn \N) = N∆Bn

dνn
d|m|

(y) =


1 if y ∈ N \Bn

εn if y ∈ P ∩Bn

0 if y ∈ (P \Bn) ∪ (Bn \ P ) = P∆Bn

.

Next we claim that bn := µn⊗νn
µn(X )

∈ B(m−mn) for each n ∈ N. In fact, for A ∈ B(X )
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2.2 Dual representation for the Kantorovich-Rubinstein problem

we have

bn(A×X )− bn(X × A) =
µn ⊗ νn
µn(X )

(A×X )− µn ⊗ νn
µn(X )

(X × A)

=
µn(A) · νn(X )

µn(X )
− µn(X ) · νn(A)

µn(X )

= µn(A)− νn(A)

= (µn − νn)(A)

= (m−mn)(A),

where we use µn(X ) = νn(X ) for the third equality. (This can be shown by an elementary
calculation.)
Noting that

νn(X ) = µn(X ) = m+(X \Bn) +
(
m−(X )−m−(Bn)

)
= |m|(X \Bn) = |m|(Bc

n),

we de�ne the Radon-Nikodym derivative

fn(x, y) :=
dbn

d(|m| ⊗ |m|)
(x, y) =

1

|m|(Bc
n)
· dµn
d|m|

(x) · dνn
d|m|

(y).

Claim 6. The function g(x, y) := (supn∈N fn(x, y)) · c(x, y) is |m| ⊗ |m|-integrable.

Proof. It will be shown that the function g is |m| ⊗ |m|-integrable over various disjoint
subsets of X × X .

(i) g is |m| ⊗ |m|-integrable over P ×N : Suppose (x, y) ∈ P ×N . Then

g(x, y) =

(
sup
n∈N

fn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m|(Bc
n)
· dµn
d|m|

(x) · dνn
d|m|

(y)

)
· c(x, y)

=

(
sup
n∈N

c(x, y)

|m|(Bc
n)
· 1Bcn×Bcn(x, y)

)
=

(
sup
n∈N

c(x, y)

|m|(Bc
n)
· 1Ṡ∞

i=n(Bci×Bci )\(Bci+1×Bci+1)(x, y)

)
=

(
sup
n∈N

c(x, y)

|m|(Bc
n)︸ ︷︷ ︸

≤ c(x,y)
|m|(Bc

i
)
∀ i≥n

·
∞∑
i=n

1(Bci×Bci )\(Bci+1×Bci+1)(x, y)

)

≤

(
sup
n∈N

∞∑
i=n

c(x, y)

|m|(Bc
i )
· 1(Bci×Bci )\(Bci+1×Bci+1)(x, y)

)

=
∞∑
i=1

c(x, y)

|m| (Bc
i )
· 1Ci(x, y),

61



2 Monge-Kantorovich duality

where Ci := (Bc
i ×Bc

i )\
(
Bc
i+1 ×Bc

i+1

)
. According to Levi's monotone convergence

theorem we obtain∫
P×N

g(x, y) (|m| ⊗ |m|) (dx, dy)

≤
∫
P×N

∞∑
i=1

c(x, y)

|m| (Bc
i )
· 1Ci(x, y) (|m| ⊗ |m|) (dx, dy)

=
∞∑
i=1

1

|m| (Bc
i )

∫
P×N

c(x, y) · 1Ci(x, y) (|m| ⊗ |m|) (dx, dy)

≤
∞∑
i=1

1

|m| (Bc
i )

∫
Ci

(λ(x) + λ(y)) (|m| ⊗ |m|) (dx, dy)

≤
∞∑
i=1

2

|m| (Bc
i )

∫
(Bci \Bci+1)×Bci

λ(x) (|m| ⊗ |m|) (dx, dy)

= 2 ·
∞∑
i=1

∫
Bci \Bci+1

λ(x) |m|(dx)

= 2 ·
∫
Bc1

λ(x) |m|(dx)

≤ 2 ·
∫
X
λ(x) |m|(dx)

< ∞,
because m ∈Mλ(X ).

(ii) g is |m|⊗ |m|-integrable over P ×P : show that g(x, y) ≤ 1
m+(B1)

· c(x, y) on P ×P .
Suppose (x, y) ∈ P × P . Then

g(x, y) =

(
sup
n∈N

fn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m| (Bc
n)
· dµn
d|m|

(x) · dνn
d|m|

(y)

)
· c(x, y)

=

(
sup
n∈N

1

|m| (Bc
n)
· 1 · εn · 1Bcn×Bn(x, y)

)
· c(x, y)

≤ sup
n∈N

εn · c(x, y)

|m|(Bc
n)

= sup
n∈N

(
c(x, y)

m+(Bn)
· (m+(X )−m+(Bn)) · 1

|m|(Bc
n)

)
= sup

n∈N

(
m+(Bc

n)

|m|(Bc
n)︸ ︷︷ ︸

≤1

· c(x, y)

m+(Bn)

)

≤ c(x, y)

m+(B1)
.
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Hence

∫
P×P

g(x, y) (|m| ⊗ |m|) (dx, dy)

≤ 1

m+(B1)
·
∫
P×P

c(x, y) (|m| ⊗ |m|) (dx, dy)

≤ 1

m+(B1)
·
∫
X 2

λ(x) + λ(y) (|m| ⊗ |m|) (dx, dy)

=
|m|(X )

m+(B1)
·
(∫
X
λ(x) |m|(dx) +

∫
X
λ(y) |m|(dy)

)
< ∞,

because m ∈Mλ(X ).

(iii) g is |m|⊗|m|-integrable over N×N : show that g(x, y) ≤ 1
m−(B1)

·c(x, y) on N×N .

Let (x, y) ∈ N ×N . Then

g(x, y) =

(
sup
n∈N

fn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m| (Bc
n)
· dµn
d|m|

(x) · dνn
d|m|

(y)

)
· c(x, y)

=

(
sup
n∈N

1

|m| (Bc
n)
· δn · 1 · 1Bn×Bcn(x, y)

)
· c(x, y)

≤ sup
n∈N

δn · c(x, y)

|m|(Bc
n)

=

(
sup
n∈N

c(x, y)

m−(Bn)
· (m−(X )−m−(Bn)) · 1

|m|(Bc
n)

)
=

(
sup
n∈N

m−(Bc
n)

|m|(Bc
n)︸ ︷︷ ︸

≤1

· c(x, y)

m−(Bn)

)

≤ c(x, y)

m−(B1)
.

Now the assertion follows in the same way as in (ii).

(iv) g is |m| ⊗ |m|-integrable over N ×P : show that g(x, y) ≤ m+(Bc1)

m−(B1)·m+(B1)
· c(x, y) on
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2 Monge-Kantorovich duality

N × P . Let (x, y) ∈ N × P . Then

g(x, y)

=

(
sup
n∈N

fn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m| (Bc
n)
· dµn
d|m|

(x) · dνn
d|m|

(y)

)
· c(x, y)

=

(
sup
n∈N

1

|m|(Bc
n)
· δn · εn · 1Bn×Bn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m|(Bc
n)
·
(
m−(X )

m−(Bn)
− 1

)
·
(
m+(X )

m+(Bn)
− 1

)
· 1Bn×Bn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m|(Bc
n)
· 1

m−(Bn)
·
(
m−(X )−m−(Bn)

)
· 1

m+(Bn)
·
(
m+(X )−m+(Bn)

)
· 1Bn×Bn(x, y)

)
· c(x, y)

=

(
sup
n∈N

1

|m|(Bc
n)
· m

−(Bc
n)

m−(Bn)
· m

+(Bc
n)

m+(Bn)
· 1Bn×Bn(x, y)

)
· c(x, y)

≤ sup
n∈N

m+(Bc
n)

m−(Bn) ·m+(Bn)
· c(x, y)

=
m+(Bc

1)

m−(B1) ·m+(B1)
· c(x, y)

and the assertion follows as above.

Combining (i) to (iv) establishes the claim.

Since bn ∈ B(m−mn),

‖m−mn‖w = inf
b∈B(m−mn)

∫
X 2

c(x, y) b(dx, dy)

≤
∫
X 2

c(x, y) bn(dx, dy)

=

∫
X 2

c(x, y)fn(x, y) (|m| ⊗ |m|)(dx, dy).

Since fn(x, y)
n→∞−→ 0 for all (x, y) ∈ X 2 (to see this, recall that limn→∞ δn = limn→∞ εn =

0), applying Lebesgue's dominated convergence theorem yields

lim
n→∞
‖m−mn‖w ≤ lim

n→∞

∫
X 2

c(x, y)fn(x, y) (|m| ⊗ |m|)(dx, dy)

=

∫
X 2

c(x, y) · lim
n→∞

fn(x, y) (|m| ⊗ |m|)(dx, dy)

= 0.

So we have shown thatM0(X ) ⊆Mλ(X ) densely with respect to ‖·‖w.
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2.2 Dual representation for the Kantorovich-Rubinstein problem

De�nition 2.11. A signed measure m on (X ,B(X )) is called simple if there exist N ∈
N, α1, . . . , αN ∈ R and x1, . . . , xN , y1, . . . , yN ∈ X such that m =

∑N
i=1 αi (δxi − δyi).

Denote by S(X ) the set of all simple measures on (X ,B(X )).

Lemma 2.12. S(X ) ⊆Mλ(X ).

Proof. Let m ∈ S(X ). Then by de�nition of a simple measure there exist N ∈ N,
α1, . . . , αN ∈ R and x1, . . . , xN , y1, . . . , yN ∈ X such thatm =

∑N
i=1 αi (δxi − δyi). Hence

m(X ) =

(
N∑
i=1

αi (δxi − δyi)

)
(X ) =

N∑
i=1

αi (δxi − δyi) (X ) =
N∑
i=1

αi (δxi(X )− δyi(X )) = 0

and since mxiyi = δxi − δyi ∈Mλ(X ) for all i = 1, . . . , N ,∫
X
λ(x) |m|(dx) =

∫
X
λ(x)

∣∣∣∣∣
N∑
i=1

αi (δxi − δyi)

∣∣∣∣∣ (dx)

≤
∫
X
λ(x)

(
N∑
i=1

|αi| · |δxi − δyi︸ ︷︷ ︸
=mxiyi

|

)
(dx)

=
N∑
i=1

|αi|
∫
X
λ(x) |mxiyi |(dx)

< ∞,

that is, m ∈Mλ(X ). Since m ∈ S(X ) arbitrary, S(X ) ⊆Mλ(X ).

In order to prove that the simple measures are dense in Mλ(X ), we will need the
following

Theorem 2.13. Let (X , d) be a separable metric space and suppose P , Pn, n ∈ N, to
be Borel probability measures on X such that Pn

n→∞−→ P weakly. Then for all ε > 0,
δ > 0 there exists N(ε) ∈ N such that for all n ≥ N(ε) exists a probability measure bn
on (X 2,B(X 2)) with marginals Pn and P , e.g. bn ∈ C(Pn, P ), such that

bn
(
{(x, y) ∈ X 2 | d(x, y) > δ}

)
< ε.

Proof. Since π metrizes the weak topology inM1(X ) (cf. [5], Theorem 11.3.3), for all
ε > 0 we can �nd some N(ε) ∈ N such that π(Pn, P ) < ε for all n ≥ N(ε). Let n ≥ N(ε)
�xed. Observe that it would be enough to show

bn
(
{(x, y) ∈ X 2 | d(x, y) > ε}

)
< ε. (2.28)

In [12], Corollary 7.4.2, it is shown that the Prohorov metric π is minimal with respect to
the Ky Fan metric K, that is π(Q1, Q2) = infQ∈C(Q1,Q2){K(Q)}, where K(Q) := inf{ε >
0 | Q({(x, y) ∈ X 2 : d(x, y) > ε}) < ε}. Hence

inf
b̃n∈C(Pn,P )

K(b̃n) < ε.
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2 Monge-Kantorovich duality

Therefore we can �nd some bn ∈ C(Pn, P ) such that K(bn) < ε. Let η ∈]0, ε−K(bn)
2

[.
Since K(bn) + η < ε, there exists ε(η) < ε− η such that

bn
(
{(x, y) ∈ X 2 | d(x, y) > ε(η)}

)
< ε(η).

According to ε(η) < ε the inequality in (2.28) follows.

Lemma 2.14. S(X ) ⊆ Mλ(X ) densely with respect to ‖·‖w, i.e. the simple measures
are dense in (Mλ(X ), ‖·‖w).

Proof. Let m ∈ Mλ(X ) be arbitrary and �xed. According to Lemma 2.10 without loss
of generality take m ∈ M0(X ), e.g. m = m1 − m2 for m1,m2 two �nite measures
on (X ,B(X )) with m1(X ) = m2(X ), whose supports supp(m1), supp(m2) ⊆ X0 for
some bounded subset X0 ⊆ X . In fact, (via suitable normalization) take m1,m2 to be
Borel probability measures. Then by the Varadarajan theorem (cf. [5], Theorem 11.4.1)

there exist probability measures m
(n)
1 ,m

(n)
2 , n ∈ N, on (X ,B(X )) such that m

(n)
1 (X0) =

m
(n)
2 (X0) = 1, m

(n)
1 −m

(n)
2 ∈ S(X ) for all n ∈ N and m

(n)
1

n→∞−→ m1 respectively m
(n)
2

n→∞−→
m2 weakly. (Let (Ω,A, P ) be a probability space and Xj, j ∈ N, independent random
variables with values in X0 and distribution m1. De�ne m

(n)
1 (·)(ω) := 1

n
·
∑n

j=1 δXj(ω)(·)
for every ω ∈ Ω. In this situation the Varadarajan theorem states that, for P -a.e. ω ∈ Ω,
m

(n)
1 (·)(ω) converges weakly to m1 as n→∞. Hence take one of this "good" ω's and put

m
(n)
1 := m

(n)
1 (·)(ω). Analogously one can �nd Borel probability measures m

(n)
2 , n ∈ N,

converging weakly to m2. Obviously, m
(n)
1 −m

(n)
2 ∈ S(X ) for all n ∈ N.) To prove the

lemma it would be enough to show that ‖m(n)
1 −m1‖w

n→∞−→ 0, cause then by the triangle

inequality we have ‖
(
m

(n)
1 −m

(n)
2

)
−(m1 −m2)︸ ︷︷ ︸

=m

‖w ≤ ‖m(n)
1 −m1‖w+‖m(n)

2 −m2‖w
n→∞−→ 0.

Let ε > 0. Since X0 is bounded, according to condition (C5) we can �nd δ > 0 such
that c(x, y) < ε

2
for all x, y ∈ X0 with d(x, y) ≤ δ. De�ne C := sup{λ(x) | x ∈ X0}. By

Theorem 2.13 there isN(ε) ∈ N such that for all n ≥ N(ε) exists a probability measure bn
on (X 2,B(X 2)) with marginals m

(n)
1 and m1 such that bn ({(x, y) ∈ X 2 | d(x, y) > δ}) <

ε
4C
. Set A := {(x, y) ∈ X 2 | d(x, y) > δ}. Then using (C3) we get

‖m(n)
1 −m1‖w = inf

b∈B
“
m

(n)
1 −m1

”
∫
X 2

c(x, y) b(dx, dy)

≤
∫
X 2

c(x, y) bn(dx, dy)

=

∫
A

c(x, y) bn(dx, dy) +

∫
Ac
c(x, y) bn(dx, dy)

≤
∫
A

(λ(x) + λ(y)) bn(dx, dy) +
ε

2

≤ 2C · bn(A) +
ε

2
< ε

for all n ≥ N(ε).

66



2.2 Dual representation for the Kantorovich-Rubinstein problem

Lemma 2.15. The linear transformation D : (Lc(X ,R), ‖·‖c) → (Mλ(X )∗, ‖·‖∗w) is an
isometric isomorphism.

Proof. According to Lemma 2.9 it is enough to show that D is an isomorphism. To
do so, �rst observe that D is injective: Let ϕ, ψ ∈ Lc(X ,R) such that Dϕ = Dψ, e.g.
Fϕ(m) = Fψ(m) for all m ∈ Mλ(X ). Without loss of generality assume that there is
some a ∈ X such that ϕ(a) = 0. Then ϕ(x) = ϕ(x) − ϕ(a) =

∫
X ϕ(u) (δx − δa) (du) =

Fϕ(δx − δa) = Fψ(δx − δa) =
∫
X ψ(u) (δx − δa) (du) = ψ(x)− ψ(a) for all x ∈ X . Since

ψ(a) is constant, ϕ and ψ belong to the same equivalence class of Lc(X ,R), i.e. ϕ = ψ,
and this means that D is injective. Hence it remains to prove that D is surjective. So,
let F ∈ Mλ(X )∗, i.e. F : Mλ(X ) → R is continuous and linear. Fix a ∈ X and de�ne
ϕ : X → R by ϕ(x) := F (δx − δa) = F (mxa). Then for any x, y ∈ X using (2.25) we
gain

|ϕ(x)− ϕ(y)| = |F (δx − δa)− F (δy − δa)|
= |F (δx − δy)|
≤ ‖F‖∗w · ‖δx − δy‖w
= ‖F‖∗w · ‖mxy‖w
≤ ‖F‖∗w · c(x, y).

Since ‖ϕ‖c is the smallest such constant, we conclude that ‖ϕ‖c ≤ ‖F‖∗w < ∞, e.g.
ϕ ∈ Lc(X ,R). A straightforward calculation shows F (m) = Fϕ(m) for m = δx − δy
and therefore F (m) = Fϕ(m) for all m ∈ S(X ) and by the previous Lemma 2.14 for all
m ∈Mλ(X ). Hence by de�nition of D, F = Dϕ and so D is surjective.

Since D is surjective, for F ∈ Mλ(X )∗ we can �nd some ϕ ∈ Lc(X ,R) such that
F = Dϕ = Fϕ. Hence

‖m‖w = sup
‖F‖∗w=1

|F (m)| = sup
‖Fϕ‖∗w=1

|Fϕ(m)| = sup
‖ϕ‖c=1

∣∣∣∣∫
X
ϕ(x) m(dx)

∣∣∣∣ .
Theorem 2.16. Let m ∈Mλ(X ). Then

‖m‖w = sup
‖ϕ‖c=1

∫
X
ϕ(x) m(dx).

In particular, for P1, P2 two Borel probability measures on X such that
∫
X λ(x) Pi(dx) <

∞, i = 1, 2, we have

Rc(P1, P2) = ‖P1 − P2‖w = sup
‖ϕ‖c=1

∫
X
ϕ(x) (P1 − P2)(dx).

We now show that the supremum in Theorem 2.16 is attained for some optimal ϕ.

Theorem 2.17. Let m ∈ Mλ(X ). Then there is some ϕ ∈ Lc(X ,R) with ‖ϕ‖c = 1
such that ‖m‖w =

∫
X ϕ(x) m(dx).

Proof. Using the Hahn-Banach theorem, choose a linear functional F ∈ Mλ(X )∗ with
‖F‖∗w = 1 such that F (m) = ‖m‖w. By Lemma 2.15 we have F = Fϕ for some
ϕ ∈ Lc(X ,R) with ‖ϕ‖c = ‖Fϕ‖∗w = ‖F‖∗w = 1.
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2 Monge-Kantorovich duality

2.3 Link between the functionals Kc and Rc

Since C(P1, P2) ⊆ B(P1 − P2) only, we already know that Kc(P1, P2) ≥ Rc(P1, P2). In
order to obtain the �nal result (2.32) - equality of the Monge-Kantorovich problem
(primal problem) and the dual problem of the Kantorovich-Rubinstein problem - in case
of a separable metric space (X , d), we have to verify that

Kd(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy)

= inf
b∈B(P1−P2)

∫
X 2

d(x, y) b(dx, dy) = Rd(P1, P2).

This will be guaranteed by the following

Theorem 2.18 (Neveu and Dudley). Let (X , d) be a separable metric space and c ∈ C.
Then

Kc(P1, P2) = Rc(P1, P2) (2.29)

for all Borel probability measures P1, P2 on X with
∫
X c(x, a) Pi(dx) <∞ for some �xed

a ∈ X , i = 1, 2, if and only if c is a metric.
In particular, equality (2.29) holds if H is the identity, i.e. c = d.

Proof. Suppose (2.29) holds and put P1 := δx, P2 := δy for some x, y ∈ X . Then
C(P1, P2) = {δ(x,y)}, i.e. the set of all laws P on (X 2,B(X 2)) with marginals P1 and P2

only contains the dirac-measure in (x, y). Hence by Theorem 2.16

c(x, y) =

∫
X 2

c(u, v) δ(x,y)(du, dv)

= inf
P∈C(P1,P2)

∫
X 2

c(u, v) P (du, dv)

= Kc(P1, P2)

= Rc(P1, P2)

= sup
‖ϕ‖c=1

∫
X
ϕ(u) (P1 − P2) (du)

= sup
‖ϕ‖c=1

(ϕ(x)− ϕ(y))

≤ sup
‖ϕ‖c=1

|ϕ(x)− ϕ(y)|

≤ sup
‖ϕ‖c=1

|ϕ(x)− ϕ(z)|+ sup
‖ϕ‖c=1

|ϕ(z)− ϕ(y)|

≤ c(x, z) + c(z, y)

for all x, y, z ∈ X . Furthermore, since c ∈ C, there is some H ∈ H such that c(x, y) =
H(d(x, y)) for all (x, y) ∈ X 2, and so we have

c(x, y) = 0⇐⇒ H(d(x, y)) = 0⇐⇒ d(x, y) = 0⇐⇒ x = y
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and

c(x, y) = H(d(x, y)) = H(d(y, x)) = c(y, x)

for all x, y ∈ X . Therefore c is a metric.
To show the converse, �rst recall that

Gc(X ) = {(f, g) | f, g ∈ Ld(X ), f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X}.

Suppose c is a metric and let (f, g) ∈ Gc(X ). De�ne a function h : X → R by

h(x) := inf
y∈X

(c(x, y)− g(y)) .

Then

h(x)− h(y) = inf
v∈X

(c(x, v)− g(v))− inf
v∈X

(c(y, v)− g(v))

= inf
v∈X

(c(x, v)− g(v)) + sup
v∈X

(g(v)− c(y, v))

≤ sup
v∈X

(c(x, v)− g(v) + g(v)− c(y, v))

= sup
v∈X

(c(x, v)− c(y, v))

≤ c(x, y)

for all x, y ∈ X and according to the symmetry of c we thus have ‖h‖c ≤ 1.
Since for �xed y ∈ X the function c(x, y)−g(y) is continuous in x ∈ X , h is upper semi-

continuous. (This can be seen in the same way as in the proof of Claim 3.) Moreover
f(x) ≤ h(x) ≤ −g(x) for all x ∈ X . In fact, since (f, g) ∈ Gc(X ), we know f(x) ≤
c(x, y)− g(y) for all x, y ∈ X which implies f(x) ≤ infy∈X (c(x, y)− g(y)) = h(x) for all
x ∈ X . By de�nition of h we have h(x) = infy∈X (c(x, y)− g(y)) ≤ c(x, x)−g(x) = −g(x)
for all x ∈ X . Hence for any two Borel probability measures P1, P2 on X satisfying∫
X c(x, a) P1(dx) <∞ respectively

∫
X c(y, a) P2(dy) <∞ for some �xed a ∈ X we have∫

X
f(x) P1(dx) +

∫
X
g(y) P2(dy) =

∫
X
f(x)︸︷︷︸
≤h(x)

P1(dx)−
∫
X
−g(y)︸ ︷︷ ︸
≥h(y)

P2(dy)

≤
∫
X
h(x) P1(dx)−

∫
X
h(y) P2(dy)

=

∫
X
h(x) (P1 − P2) (dx)

so that according to Theorem 2.1 and Theorem 2.16 it follows

Kc(P1, P2) = sup
(f,g)∈Gc(X )

(∫
X
f(x) P1(dx) +

∫
X
g(y) P2(dy)

)
≤ sup

‖h‖c≤1

∫
X
h(x) (P1 − P2) (dx) = Rc(P1, P2).

Therefore Kc(P1, P2) = Rc(P1, P2).
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2 Monge-Kantorovich duality

Corollary 2.19. Let (X , d) be a separable metric space and a ∈ X . Let P1, P2 be two
Borel probability measures on X such that

∫
X d(x, a) Pi(dx) <∞ for i = 1, 2. Then

inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy) = sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2) (dx). (2.30)

Moreover, the supremum is attained for some optimal ϕ∗ with ‖ϕ∗‖d = 1.
If P1, P2 are tight, there are some P ∗ ∈ C(P1, P2) and ϕ∗ : X → R with ‖ϕ∗‖d = 1

such that

Kd(P1, P2) =

∫
X 2

d(x, y) P ∗(dx, dy) =

∫
X
ϕ∗(x) (P1 − P2) (dx),

where ϕ∗(x)− ϕ∗(y) = d(x, y) for P ∗-a.e. (x, y) ∈ X 2.

Proof. Choose c = d and recall that for this choice the conditions (C1) to (C5) are
satis�ed with λ(x) = d(x, a) for some �xed a ∈ X . Hence Theorem 2.16 is applicable
and we get

W (P1, P2) = Rd(P1, P2) = sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2) (dx).

Already by de�nition we have

Kd(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy).

Since d is a metric, Theorem 2.18 yields the assertion, namely

inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy) = sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2) (dx).

The existence of some ϕ∗ follows from Theorem 2.17.
If P1 and P2 are tight, then by Theorem 2.1 there exists P ∗ ∈ C(P1, P2) such that

Kd(P1, P2) =

∫
X 2

d(x, y) P ∗(dx, dy),

i.e. P ∗ is optimal for the Monge-Kantorovich problem. Integrating both sides of the
inequality ϕ∗(x)− ϕ∗(y) ≤ d(x, y) with respect to P ∗ yields∫

X
ϕ∗(x) (P1 − P2) (dx) ≤

∫
X 2

d(x, y) P ∗(dx, dy).

However, since P ∗ and ϕ∗ are optimal for the primal and the dual problem respec-
tively, we know from the �rst part of the proof that we have equality of these integrals.
Therefore ϕ∗(x)− ϕ∗(y) = d(x, y) for P ∗-a.e. (x, y) ∈ X 2.
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2.4 The Monge-Kantorovich duality in case of a pseudo-metric d

2.4 The Monge-Kantorovich duality in case of a

pseudo-metric d

Here we slightly generalize Corollary 2.19 by replacing the metric thereby by a pseudo-
metric.

De�nition 2.20. A function d : X 2 → R+ is called a pseudo-metric if

(i) x = y =⇒ d(x, y) = 0,

(ii) d(x, y) = d(y, x) for all (x, y) ∈ X 2,

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Remark 2.21. Note that the only di�erence to a metric is the missing converse direction
in (i).

So, let d be a pseudo-metric on X . Similarly to section 2.2 denote by Ld(X ,R)
the linear space of all d-Lipschitz continuous functions ϕ from X to R and de�ne the
seminorm ‖ · ‖d : Ld(X ,R)→ R+ by

‖ϕ‖d := sup
x,y∈X : x6=y

|ϕ(x)− ϕ(y)|
d(x, y)

. (2.31)

Again for ϕ ∈ Ld(X ,R) we have |ϕ(x)− ϕ(y)| ≤ ‖ϕ‖d · d(x, y) for all x, y ∈ X . In order
to obtain a norm, set

Ld(X ,R) := Ld(X ,R)/N ,

where

N := {ϕ ∈ Ld(X ,R) | ‖ϕ‖d = 0} = {ϕ ∈ Ld(X ,R) | ∃ u ∈ R : ϕ(x) = u ∀ x ∈ X}.

De�ne ‖·‖d : Ld(X ,R) → R+ by ‖[ϕ]‖d := ‖ϕ‖d, where ϕ ∈ [ϕ] is an arbitrary
representative of [ϕ]. Analogously to section 2.2 one can show that ‖·‖d is wellde�ned
and a norm on Ld(X ,R). Again use ϕ and [ϕ] interchangeable, emphasizing that the
latter is an equivalence class of Lipschitz functions rather than a single function.

As the �nal result of this chapter we formulate:

Theorem 2.22. Let X be a Polish space and d : X 2 → R+ a (continuous) pseudo-metric.
Let P1, P2 be two probability measures on (X ,B(X )) such that

∫
X d(x, a) Pi(dx) <∞ for

i = 1, 2 and some �xed a ∈ X . Then

Kd(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy) = sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2) (dx). (2.32)
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2 Monge-Kantorovich duality

Proof. If (X , d) is a separable metric space, the assertion is just part of Corollary 2.19.
Now consider the case where d is an arbitrary (continuous) pseudo-metric. De�ne an

equivalence relation on X by

x ∼ y :⇔ d(x, y) = 0.

and set Xd := X/ ∼. Notice that elements of Xd are equivalence classes [x]. Then d is
de�ned on Xd in an obvious way, e.g. d([x], [y]) := d(x, y) where x ∈ [x], y ∈ [y] are
arbitrary representatives. It is clear that d is well-de�ned. Observe that (Xd, d) is a
separable metric space (although it may no longer be complete). Hence the assertion is
right for (Xd, d). De�ning the map π : X → Xd by π(x) := [x], the result follows from
the Monge-Kantorovich duality in (Xd, d) and the fact that both sides of (2.32) do not
change if the Borel probability measures Pi are replaced by Pi ◦ π−1:

Kd(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy)

= inf
P∈C(P1,P2)

∫
X 2

d(π(x), π(y)) P (dx, dy)

= inf
Q∈C(P1◦π−1,P2◦π−1)

∫
X 2
d

d(x, y) Q(dx, dy)

= sup
‖ϕ‖d=1

∫
Xd
ϕ(x)

(
P1 ◦ π−1 − P2 ◦ π−1

)
(dx)

= sup
‖ϕ‖d=1

∫
Xd
ϕ(x)

(
(P1 − P2) ◦ π−1

)
(dx)

= sup
‖ϕ‖d=1

∫
X
ϕ(π(x)) (P1 − P2) (dx)

= sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2) (dx).
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3 Asymptotic strong Feller property

This chapter is an extended version of chapter 3 in [7].

3.1 Totally separating systems

Let X be a Polish space, i.e. X is metrizable, complete and separable.

De�nition 3.1. A (pseudo-)metric d2 is said to be larger than d1 if d2(x, y) ≥ d1(x, y)
for all (x, y) ∈ X 2. A sequence (dn)n∈N of (pseudo-)metrics is called increasing if dn+1

is larger than dn for all n ∈ N.

Consider the (trivial) metric dTV given by

dTV (x, y) :=

{
1 if x 6= y

0 if x = y
. (3.1)

This is a metric that totally separates the points of X and therefore loses completely all
information about the topology of X .

De�nition 3.2. An increasing sequence (dn)n∈N of (pseudo-)metrics on a Polish space
X is called a totally separating system of (pseudo-)metrics for X if limn→∞ dn(x, y) = 1
for all (x, y) ∈ X 2, x 6= y, i.e. (dn)n∈N converges pointwisely to the (trivial) metric dTV .

In the next section we will see how to use such a totally separating system of pseudo-
metrics in order to approximate the total variation distance of two Borel probability
measures by a sequence of their Wasserstein distances. Before we do so, let us give few
examples of totally separating systems of (pseudo-)metrics:

Example 3.3. Let (an)n∈N, an ∈ R+, be an increasing sequence such that limn→∞ an =
∞.

(1) Let X be a Polish space and d : X 2 → R+ an arbitrary metric on X . For every
n ∈ N de�ne dn(x, y) := 1∧ an · d(x, y). Then (dn)n∈N is a totally separating system
of metrics for X .

(2) Let X := C0(R) be the space of continuous functions x on R such that lim|s|→∞ x(s) =
0. Since (Cb(R), ‖·‖∞) is a Banach space and C0(R) ⊆ Cb(R) is closed with respect to
‖·‖∞ (cf. [14], p. 6), X is complete. Furthermore one can show that X is separable.
For any x, y ∈ X set dn(x, y) := 1 ∧

(
an · sups∈[−n,n] |x(s)− y(s)|

)
. Then (dn)n∈N is

a totally separating system of metrics for X .
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3 Asymptotic strong Feller property

(3) Let X := l2(R), i.e.
∑∞

k=1|xk|2 < ∞ for all sequences x = (xk)k∈N ∈ X . First of
all, X is separable by example 2.17.2 in [1] and complete with respect to the norm

‖x‖l2 := (
∑∞

k=1|xk|2)
1
2 (cf. [1], 0.18.4). For n ∈ N de�ne dn(x, y) := 1 ∧ an ·∑n

k=1|xk − yk|2 for any two x, y ∈ X . Then (dn)n∈N is a totally separating system
of metrics for X .

3.2 The key lemma

Let d be a bounded and continuous pseudo-metric. For clarity we do not overtake the
(topic speci�c) notation from chapter 2, but simply set

‖P1 − P2‖d := Kd(P1, P2) = inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy) (3.2)

for the Wasserstein distance of the Borel probability measures P1, P2 on X and

‖|P1 − P2|‖d := sup
‖ϕ‖d=1

∫
X
ϕ(x) (P1 − P2)(dx) (3.3)

for the seminorm of their di�erence on the spaceMλ(X ) with λ given by λ(·) = d(·, a)
for some �xed a ∈ X .
The following lemma is crucial to the approach of the asymptotic strong Feller prop-

erty, introduced in the next section.

Lemma 3.4. Let (dn)n∈N be a bounded and increasing sequence of continuous pseudo-
metrics on a Polish space X . De�ne d(x, y) := limn→∞ dn(x, y) for all (x, y) ∈ X 2. Let
P1, P2 be two probability measures on (X ,B(X )). Then

lim
n→∞

‖P1 − P2‖dn = ‖P1 − P2‖d.

Proof. By assumption the sequence (dn)n∈N of pseudo-metrics on X is bounded and
increasing, i.e. there exists K ∈ R+ such that dn(x, y) ≤ K and dn(x, y) ≤ dn+1(x, y)
for all (x, y) ∈ X 2, n ∈ N. Therefore the limit d(x, y) := limn→∞ dn(x, y) exists for all
(x, y) ∈ X 2. Since

‖P1 − P2‖dn = inf
P∈C(P1,P2)

∫
X 2

dn(x, y) P (dx, dy)

≤ inf
P∈C(P1,P2)

∫
X 2

dn+1(x, y) P (dx, dy) = ‖P1 − P2‖dn+1

for all n ∈ N, the sequence (‖P1 − P2‖dn)n∈N is increasing. Furthermore for arbitrary
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n ∈ N

‖P1 − P2‖dn = inf
P∈C(P1,P2)

∫
X 2

dn(x, y) P (dx, dy)

≤ K · inf
P∈C(P1,P2)

∫
X 2

P (dx, dy)

= K · inf
P∈C(P1,P2)

P (X 2)

= K · P1(X )

= K

< ∞.

Thus the sequence (‖P1 − P2‖dn)n∈N is bounded. Hence the limit L := limn→∞ ‖P1 −
P2‖dn exists. It remains to show that L = ‖P1 − P2‖d.

(1) L ≤ ‖P1 − P2‖d: For each n ∈ N

‖P1 − P2‖dn = inf
P∈C(P1,P2)

∫
X 2

dn(x, y) P (dx, dy)

≤ inf
P∈C(P1,P2)

∫
X 2

d(x, y) P (dx, dy) = ‖P1 − P2‖d.

Hence L = limn→∞ ‖P1 − P2‖dn ≤ ‖P1 − P2‖d.

(2) L ≥ ‖P1 − P2‖d: For arbitrary n ∈ N let P (n) ∈ C(P1, P2) such that

‖P1 − P2‖dn =

∫
X 2

dn(x, y) P (n)(dx, dy),

i.e. P (n) realizes (3.2) for the continuous pseudo-metric dn. Such a measure is
shown to exist in Corollary 2.19. (Recall that since X is Polish, by Lemma C.1 in
the appendix the Borel probability measures P1 and P2 are tight.)

The sequence (P (n))n∈N is tight, since its marginals P1 and P2 are constant. In fact,
let ε > 0. Since P1 and P2 are tight, there exist compact sets K1(ε), K2(ε) ⊆ X such
that P1(K1(ε)c) < ε

2
and P2(K2(ε)c) < ε

2
. Hence for all n ∈ N

P (n)((K1(ε)×K2(ε))c) ≤ P (n)(K1(ε)c ×X ) + P (n)(X ×K2(ε)c)

= P1(K1(ε)c) + P2(K2(ε)c)

<
ε

2
+
ε

2
= ε.

Therefore by Prohorov (cf. [10], Theorem 6.7) there exists a subsequence {P (nk) |
k ∈ N} ⊆ {P (n) | n ∈ N} such that P (nk) → P∞ weakly as k → ∞ for some
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3 Asymptotic strong Feller property

P∞ ∈ C(P1, P2). Furthermore for arbitrary l ≥ k it follows dnk(x, y) ≤ dnl(x, y) for
all (x, y) ∈ X 2 and thus∫

X 2

dnk(x, y) P (nl)(dx, dy) ≤
∫
X 2

dnl(x, y) P (nl)(dx, dy) = ‖P1 − P2‖dnl ≤ L

for all l ≥ k by choice of P (n) and because (‖P1 − P2‖dn)n∈N is increasing. Hence,
since dnk : X 2 → R+ is bounded and continuous, by weak convergence∫

X 2

dnk(x, y) P∞(dx, dy) = lim
l→∞

∫
X 2

dnk(x, y) P (nl)(dx, dy) ≤ L

for all k ∈ N. Finally letting k →∞ and using Lebesgue yields∫
X 2

d(x, y) P∞(dx, dy) = lim
k→∞

∫
X 2

dnk(x, y) P∞(dx, dy) ≤ L.

Since P∞ ∈ C(P1, P2), this implies ‖P1 − P2‖d ≤ L.

In order to approximate the total variation distance of two Borel probability measures
on X by a sequence of their Wasserstein distances corresponding to a totally separating
system of pseudo-metrics, recall the following

De�nition 3.5. Let µ be a �nite signed measure on (X ,B(X )) with Jordan decomposi-
tion µ = µ+ − µ−. Then the total variation norm of µ is given by

‖µ‖TV :=
1

2
·
(
µ+(X ) + µ−(X )

)
.

Remark 3.6. The factor 1
2
is chosen in order to guarantee that the total variation

distance of two mutually singular Borel probability measures is normalized to 1.

With this notion at hand we receive:

Corollary 3.7. Let (dn)n∈N be a totally separating system of continuous pseudo-metrics
for the Polish space X and P1, P2 two probability measures on (X ,B(X )). Then

‖P1 − P2‖TV = lim
n→∞
‖P1 − P2‖dn .

Proof. By de�nition the totally separating system of continuous pseudo-metrics (dn)n∈N
is bounded (by 1) and increasing. According to the previous Lemma 3.4 it therefore
su�ces to show that ‖P1 − P2‖TV = ‖P1 − P2‖dTV with dTV given by (3.1). In fact, by
Corollary 2.19 we have

‖P1 − P2‖dTV = inf
P∈C(P1,P2)

∫
X 2

dTV (x, y) P (dx, dy)

= sup
‖ϕ‖dTV =1

∫
X
ϕ(x) (P1 − P2)(dx)

= sup
‖ϕ‖∞=1

∫
X
ϕ(x) (P1 − P2)(dx) = ‖P1 − P2‖TV .
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To stress the main part of the proof, notice that the total variation distance of the
two Borel probability measures P1 and P2 is given by the Wasserstein distance of these
measures corresponding to the trivial metric dTV .

3.3 De�nition and classi�cation

Now we introduce the asymptotic strong Feller property which instead of prescribing
a smoothing property at some �xed time t > 0, prescribes some kind of smoothing
property 'at time ∞'.

De�nition 3.8. Let X be a Polish space and denote by Ux the collection of all open sets
U ⊆ X containing x. A Markov semigroup (Pt)t≥0 on Bb(X ) is called asymptotically
strong Feller at x ∈ X if there exist a totally separating system of continuous pseudo-
metrics (dn)n∈N for X and a nondecreasing sequence (tn)n∈N, tn > 0, such that

inf
U∈Ux

lim sup
n→∞

sup
y∈U
‖πtn(x, ·)− πtn(y, ·)‖dn = 0. (3.4)

It is called asymptotically strong Feller if it is asymptotically strong Feller at every
x ∈ X .

Remark 3.9. Let d be some metric de�ning the topology of X . (Such a metric exists,
because X is a Polish space, so in particular metrizable.) De�ne B(x, γ) := {y ∈ X |
d(x, y) < γ}, e.g. B(x, γ) denotes the open ball of radius γ > 0 centered at x ∈ X . Then
it is immediate that (3.4) is equivalent to

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

‖πtn(x, ·)− πtn(y, ·)‖dn = 0. (3.5)

Proposition 3.10. Suppose the Markov semigroup (Pt)t≥0 is asymptotically strong Feller
at x ∈ X and tn = t in (3.4) for all n ∈ N and some �xed t > 0. Then the Markovian
transition kernel (πt(x, ·))x∈X is continuous in x in the total variation norm ‖·‖TV .

Proof. Let t > 0 and (xk)k∈N ⊆ X with limk→∞ d(xk, x) = 0. Then

‖πt(x, ·)− πt(xl, ·)‖dn ≤ sup
k≥l
‖πt(x, ·)− πt(xk, ·)‖dn

for all l, n ∈ N. Hence letting n→∞ by Corollary 3.7

‖πt(x, ·)− πt(xl, ·)‖TV = lim
n→∞
‖πt(x, ·)− πt(xl, ·)‖dn ≤ lim sup

n→∞
sup
k≥l
‖πt(x, ·)− πt(xk, ·)‖dn .

for all l ∈ N. Therefore letting l→∞

lim
l→∞
‖πt(x, ·)− πt(xl, ·)‖TV ≤ lim

l→∞
lim sup
n→∞

sup
k≥l
‖πt(x, ·)− πt(xk, ·)‖dn .

Since by assumption the right hand side is equal to 0, the assertion follows, e.g. the
Markovian transition kernel (πt(x, ·))x∈X is continuous in x in the total variation norm
‖·‖TV .
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3 Asymptotic strong Feller property

Remark 3.11. If (Pt)t≥0 is asymptotically strong Feller and tn = t in (3.4) for all n ∈ N
and some �xed t > 0, according to the previous proposition and Theorem 1.14 (Pt)t≥0 is
strong Feller at time t and therefore by Remark 1.9 strong Feller for all times s ≥ t.

The following proposition states the converse in some sense:

Proposition 3.12. Let X be a Polish space and (Pt)t≥0 a Markov semigroup on Bb(X )
that is strong Feller. Then (Pt)t≥0 is asymptotically strong Feller.

Proof. Let x ∈ X arbitrary and �xed. Let (dn)n∈N be a totally separating system of
continuous pseudo-metrics for X , in particular dn converges pointwisely to the trivial
metric dTV as n → ∞. Suppose the sequence (tn)n∈N is given by tn = t for some �xed
t > 0 and all n ∈ N. Then applying Corollary 3.7 yields

‖πt(x, ·)− πt(y, ·)‖dn ≤ ‖πt(x, ·)− πt(y, ·)‖dTV = ‖πt(x, ·)− πt(y, ·)‖TV

for all n ∈ N, y ∈ X . Therefore

sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖dn ≤ sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖TV

for all γ > 0, n ∈ N. Hence letting n→∞

lim sup
n→∞

sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖dn ≤ sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖TV

for all γ > 0. Finally, letting γ → 0 gives

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖dn ≤ lim
γ→0

sup
y∈B(x,γ)

‖πt(x, ·)− πt(y, ·)‖TV . (3.6)

Since P t
2
is strong Feller, by Lemma 1.15 the transition probabilities πt(x, ·), x ∈ X , are

continuous in x in the total variation norm ‖·‖TV . Hence the right hand side of (3.6)
equals 0. So (Pt)t≥0 is asymptotically strong Feller at x ∈ X . Since x ∈ X arbitrary,
the assertion follows.

3.4 Su�cient condition

Another way of seeing the connection to the strong Feller property, is to recall that a
standard criterion for (Pt)t≥0 to be strong Feller is given in Proposition 1.13. A su�cient
condition of similar type for a Markov semigroup (Pt)t≥0 to be asymptotically strong
Feller is given by

Theorem 3.13. Let H be a separable Hilbert space. Let (tn)n∈N and (δn)n∈N be two
positive sequences such that tn ≤ tn+1 for all n ∈ N and limn→∞ δn = 0. If for all
functions ϕ ∈ C1

b (H)

|Ptnϕ(x)− Ptnϕ(y)| ≤ C(‖x‖ ∨ ‖y‖) · (‖ϕ‖∞ + δn · ‖∇ϕ‖∞) · ‖x− y‖ (3.7)

for all x, y ∈ H, n ∈ N, where C : R+ → R is a �xed nondecreasing function, then the
semigroup (Pt)t≥0 is asymptotically strong Feller.
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Remark 3.14. In applications one typically has limn→∞ tn =∞.

For the proof we will need the following two Lemmas.

Lemma 3.15. Let ϕ ∈ C1
b (H). Then

‖∇ϕ‖∞ = ‖ϕ‖d

with d given by d(x, y) := ‖x− y‖ for all x, y ∈ H.

Proof. De�ne a function g : [0, 1]→ H by g(s) := y+ s · (x− y). Using the fundamental
theorem of calculus, the chain rule and the Cauchy-Schwartz inequality we have for all
x, y ∈ H

|ϕ(x)− ϕ(y)| = |ϕ(g(1))− ϕ(g(0))|

=

∣∣∣∣∫ 1

0

d

ds
ϕ (g(s)) ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

Dϕ(g(s))g′(s) ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈∇ϕ (y + s · (x− y)) , x− y〉 ds
∣∣∣∣

≤
∫ 1

0

|〈∇ϕ (y + s · (x− y)) , x− y〉| ds

≤
∫ 1

0

‖∇ϕ (y + s · (x− y))‖ · ‖x− y‖ ds

≤ ‖∇ϕ‖∞ · ‖x− y‖
= ‖∇ϕ‖∞ · d(x, y),

where the term Dϕ(g(s))g′(s) should be interpreted as the Frechet derivative of ϕ at
the point g(s) ∈ H applied to the element g′(s) = x− y ∈ H. Hence

|ϕ(x)− ϕ(y)|
d(x, y)

≤ ‖∇ϕ‖∞

for all x, y ∈ H, x 6= y, and therefore

‖ϕ‖d = sup
x,y∈H: x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)

≤ ‖∇ϕ‖∞.

To show the converse inequality, let x, v ∈ H with ‖v‖ = 1 and (hn)n∈N a sequence
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converging to 0. Then

|〈∇ϕ(x), v〉| =

∣∣∣∣ lim
n→∞

ϕ(x+ hnv)− ϕ(x)

hn

∣∣∣∣
= lim

n→∞

|ϕ(x+ hnv)− ϕ(x)|
|hn|

≤ sup
n∈N

|ϕ(x+ hnv)− ϕ(x)|
|hn|

= sup
n∈N

|ϕ(x+ hnv)− ϕ(x)|
|hn| · ‖v‖

= sup
n∈N

|ϕ(x+ hnv)− ϕ(x)|
‖(x+ hnv)− x‖

≤ sup
x,y∈H: x 6=y

|ϕ(x)− ϕ(y)|
‖x− y‖

= sup
x,y∈H: x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)

= ‖ϕ‖d.

In particular, for v = ∇ϕ(x)
‖∇ϕ(x)‖

‖∇ϕ(x)‖ =
1

‖∇ϕ(x)‖
· |〈∇ϕ(x),∇ϕ(x)〉| = |〈∇ϕ(x),

∇ϕ(x)

‖∇ϕ(x)‖
〉| ≤ ‖ϕ‖d

for all x ∈ H. Therefore

‖∇ϕ‖∞ = sup
x∈H
‖∇ϕ(x)‖ ≤ ‖ϕ‖d.

Lemma 3.16. Let ϕ ∈ Ld(H). Then there exists a sequence (ϕm)m∈N, ϕm ∈ C∞b (H),
such that

(i) ϕm
m→∞−→ ϕ pointwisely,

(ii) ‖ϕm‖∞ ≤ ‖ϕ‖∞ for all m ∈ N,

(iii) ‖ϕm‖d ≤ ‖ϕ‖d for all m ∈ N.

Proof. Let ϕ ∈ Ld(H) and {ei}i∈N be an orthonormal basis of H. For m ∈ N de�ne
orthogonal projections

Pm : H → Pm(H) = span{e1, . . . em}

x 7→ Pmx :=
m∑
i=1

〈x, ei〉 · ei
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and corresponding bijections

Jm : Pm(H) → Rm

m∑
i=1

〈x, ei〉 · ei 7→ (〈x, e1〉, . . . , 〈x, em〉) .

Note that ϕ ◦ J−1
m ∈ Ld(Rm) with Lipschitz constant ‖ϕ ◦ J−1

m ‖d ≤ ‖ϕ‖d for all m ∈ N.
Hence by Lemma A.1 in the appendix, for everym ∈ N there exists a sequence (fm,k)k∈N,

fm,k ∈ C∞b (Rm), such that fm,k(x)
k→∞−→ (ϕ◦J−1

m )(x) for all x ∈ Rm, ‖fm,k‖∞ ≤ ‖ϕ◦J−1
m ‖∞

and ‖fm,k‖d ≤ ‖ϕ ◦ J−1
m ‖d for all k ∈ N. Replacing x by Jm(x) yields (fm,k ◦ Jm)(x)

k→∞−→
ϕ(x) for all x ∈ Pm(H). Cosequently (fm,k ◦ Jm ◦Pm)(x)

k→∞−→ (ϕ ◦Pm)(x) for all x ∈ H.
Moreover ‖fm,k◦Jm◦Pm‖∞ ≤ ‖ϕ◦Pm‖∞ and ‖fm,k◦Jm◦Pm‖d ≤ ‖ϕ◦Pm‖d for all k ∈ N.
Since ϕ ◦ Pm

m→∞−→ ϕ pointwisely, ‖ϕ ◦ Pm‖∞ ≤ ‖ϕ‖∞ and ‖ϕ ◦ Pm‖d ≤ ‖ϕ‖d, a diagonal
argument applies in order to obtain a subsequence (ϕm)m∈N, ϕm := fm,m ◦ Jm ◦ Pm ∈
C∞b (H), such that ϕm(x)

m→∞−→ ϕ(x) for all x ∈ H, ‖ϕm‖∞ ≤ ‖ϕ‖∞ and ‖ϕm‖d ≤ ‖ϕ‖d
for all m ∈ N.

Now we turn to the proof of Theorem 3.13.

Proof. For ε > 0 de�ne on H the metric

dε : H×H → R+

(w1, w2) 7→ dε(w1, w2) := 1 ∧ 1

ε
· ‖w1 − w2‖.

It is clear that this is a metric on H. In fact, the triangle inequality follows from
(1∧ a) + (1∧ b) ≥ 1∧ (a+ b) for all a, b ≥ 0. Denote by ‖·‖ε := ‖·‖dε the corresponding
seminorms on functions and on measures given by (2.31) and (3.2) respectively. Since
(δn)n∈N converges to 0 from above, extracting a subsequence if necessary, we have δn ≥
δn+1 for all n ∈ N. Then (dδn)n∈N is a totally separating system of continuous metrics
for H: �rst, dδn(w1, w2) = 1∧ 1

δn
· ‖w1−w2‖ ≤ 1∧ 1

δn+1
· ‖w1−w2‖ = dδn+1(w1, w2) for all

(w1, w2) ∈ H2, n ∈ N. Furthermore, limn→∞ dδn(w1, w2) = limn→∞ 1 ∧ 1
δn
· ‖w1 − w2‖ =

1 for all (w1, w2) ∈ H2, w1 6= w2. Hence (dδn)n∈N is a totally separating system of
continuous metrics for H.
Since

‖ϕ‖d =
1

ε
· sup
x,y∈H: x 6=y

|ϕ(x)− ϕ(y)|
ε−1 · d(x, y)

≤ 1

ε
· sup
x,y∈H: x 6=y

|ϕ(x)− ϕ(y)|
1 ∧ ε−1 · d(x, y)︸ ︷︷ ︸

=dε(x,y)

=
1

ε
· ‖ϕ‖ε,

it follows immediately from (3.7) and Lemma 3.15 that for every Frechet di�erentiable
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3 Asymptotic strong Feller property

function ϕ : H → R we have∣∣∣∣∫
H
ϕ(w) (πtn(w1, dw)− πtn(w2, dw))

∣∣∣∣
= |Ptnϕ(w1)− Ptnϕ(w2)|
≤ C(‖w1‖ ∨ ‖w2‖) · (‖ϕ‖∞ + δn · ‖∇ϕ‖∞) · ‖w1 − w2‖
= C(‖w1‖ ∨ ‖w2‖) · (‖ϕ‖∞ + δn · ‖ϕ‖d) · ‖w1 − w2‖

≤ C(‖w1‖ ∨ ‖w2‖) ·
(
‖ϕ‖∞ +

δn
ε
· ‖ϕ‖ε

)
· ‖w1 − w2‖. (3.8)

Now take a dε-Lipschitz continuous function ϕ : H → R with ‖ϕ‖ε ≤ 1. Without loss
of generality assume ‖ϕ‖∞ ≤ 1. Then by Lemma 3.16 there exists a sequence (ϕm)m∈N of
Frechet di�erentiable functions ϕm : H → R such that ϕm −→ ϕ pointwisely as m→∞,
‖ϕm‖∞ ≤ ‖ϕ‖∞ ≤ 1 and ‖ϕm‖ε ≤ ‖ϕ‖ε ≤ 1 for all m ∈ N. Therefore by the dominated
convergence theorem and (3.8)∣∣∣∣∫

H
ϕ(w) (πtn(w1, dw)− πtn(w2, dw))

∣∣∣∣
= lim

m→∞

∣∣∣∣∫
H
ϕm(w) (πtn(w1, dw)− πtn(w2, dw))

∣∣∣∣
≤ lim

m→∞
C(‖w1‖ ∨ ‖w2‖) ·

(
‖ϕm‖∞ +

δn
ε
· ‖ϕm‖ε

)
· ‖w1 − w2‖

≤ C(‖w1‖ ∨ ‖w2‖) ·
(
‖ϕ‖∞ +

δn
ε
· ‖ϕ‖ε

)
· ‖w1 − w2‖

≤ C(‖w1‖ ∨ ‖w2‖) ·
(

1 +
δn
ε

)
· ‖w1 − w2‖.

Hence

‖|πtn(w1, ·)− πtn(w2, ·)|‖ε = sup
‖ϕ‖ε=1

∣∣∣∣∫
H
ϕ(w) (πtn(w1, dw)− πtn(w2, dw))

∣∣∣∣
≤ C(‖w1‖ ∨ ‖w2‖) ·

(
1 +

δn
ε

)
· ‖w1 − w2‖.

Applying Corollary 2.19 yields

‖πtn(w1, ·)− πtn(w2, ·)‖ε ≤ C(‖w1‖ ∨ ‖w2‖) ·
(

1 +
δn
ε

)
· ‖w1 − w2‖.

Choosing ε = an =
√
δn, we obtain

‖πtn(w1, ·)− πtn(w2, ·)‖an ≤ C(‖w1‖ ∨ ‖w2‖) · (1 + an) · ‖w1 − w2‖,

for all n ∈ N, which in turn implies that (Pt)t≥0 is asymptotically strong Feller, since
an → 0 for n→∞.
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3.5 Examples

The following two examples will demonstrate the powerness of the asymptotic strong
Feller property even in the �nite-dimensional setting.

Example 3.17. Consider the two-dimensional SDE(
dx(t)

dy(t)

)
= −

(
1 0
0 1

)(
x(t)

y(t)

)
dt+

(
1 0
0 0

)
dW (t) (3.9)

with initial condition (
x(0)

y(0)

)
=

(
x0

y0

)
where

W (t) =

(
W (1)(t)

W (2)(t)

)
is a two-dimensional real-valued Wiener process on some probability space (Ω,F , P ).
The solution is given by(

x(t, x0)

y(t, y0)

)
=

(
e−tx0 +

∫ t
0
e−(t−s) dW (1)(s)

e−ty0

)
.

Note that the �rst component is an Ornstein-Uhlenbeck process.
We claim that the corresponding Markov semigroup (Pt)t≥0, de�ned by

Ptϕ
((

x0

y0

))
:= E

[
ϕ

((
x(t, x0)

y(t, y0)

))]
for all ϕ ∈ Bb(R2), (x0, y0) ∈ R2, t ≥ 0, is not strong Feller but asymptotically strong
Feller.
To see that Pt is not strong Feller, let ϕ : R2 → R be given by

ϕ

((
x

y

))
= sgn(y) :=

{
1 if y ≥ 0

−1 if y < 0

and observe that for this choice we obtain

Ptϕ
((

x0

y0

))
= E

[
ϕ

((
x(t, x0)

y(t, y0)

))]
= E

[
ϕ

((
e−tx0 +

∫ t
0
e−(t−s) dW (1)(s)

e−ty0

))]
= E

[
sgn(e−ty0)

]
= sgn

(
e−ty0

)
= sgn(y0)

= ϕ

((
x0

y0

))
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3 Asymptotic strong Feller property

for all (x0, y0) ∈ R2, t ≥ 0. Since ϕ ∈ Bb(R2) but ϕ 6∈ Cb(R2), the system is not strong
Feller.
Denote by

(
u(t)
v(t)

)
the linearization of equation (3.9), that is du(t) = −u(t)dt and dv(t) =

−v(t)dt with initial conditions u(0) = ξ1 and v(0) = ξ2 respectively. As before, de�ne a
function g : [0, 1]→ R2 by

g(s) :=

(
x(t, x0)

y(t, y0)

)
+ s ·

(
u(t, ξ1)

v(t, ξ2)

)
.

In order to show that the system is asymptotically strong Feller, observe that for any
di�erentiable function ϕ : R2 → R and any direction ξ = (ξ1, ξ2) ∈ R2 with ‖ξ‖ = 1 we
have, using the fundamental theorem of calculus, the chain rule and the Cauchy-Schwartz
inequality ∣∣∣∣Ptϕ((x0 + ξ1

y0 + ξ2

))
− Ptϕ

((
x0

y0

))∣∣∣∣
=

∣∣∣∣E [ϕ((x(t, x0 + ξ1)

y(t, y0 + ξ2)

))]
− E

[
ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
=

∣∣∣∣E [ϕ((x(t, x0 + ξ1)

y(t, y0 + ξ2)

))
− ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
=

∣∣∣∣E [ϕ((x(t, x0) + u(t, ξ1)

y(t, y0) + v(t, ξ2)

))
− ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
=

∣∣∣∣E [ϕ((x(t, x0)

y(t, y0)

)
+

(
u(t, ξ1)

v(t, ξ2)

))
− ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
= |E [ϕ (g(1))− ϕ (g(0))]|

=

∣∣∣∣E [∫ 1

0

d

ds
ϕ (g(s)) ds

]∣∣∣∣
=

∣∣∣∣E [∫ 1

0

(
∂

∂x
ϕ(g(s)),

∂

∂y
ϕ(g(s))

)
· g′(s) ds

]∣∣∣∣
=

∣∣∣∣E [∫ 1

0

〈∇ϕ
((

x(t, x0)

y(t, y0)

)
+ s ·

(
u(t, ξ1)

v(t, ξ2)

))
,

(
u(t, ξ1)

v(t, ξ2)

)
〉 ds

]∣∣∣∣
≤ E

[∫ 1

0

∣∣∣∣〈∇ϕ((x(t, x0)

y(t, y0)

)
+ s ·

(
u(t, ξ1)

v(t, ξ2)

))
,

(
u(t, ξ1)

v(t, ξ2)

)
〉
∣∣∣∣ ds]

≤ E
[∫ 1

0

∥∥∥∥∇ϕ((x(t, x0)

y(t, y0)

)
+ s ·

(
u(t, ξ1)

v(t, ξ2)

))∥∥∥∥ · ∥∥∥∥(u(t, ξ1)

v(t, ξ2)

)∥∥∥∥ ds

]
≤ ‖∇ϕ‖∞ · E

[∥∥∥∥(u(t, ξ1)

v(t, ξ2)

)∥∥∥∥]
= ‖∇ϕ‖∞ ·

∥∥∥∥(e−t · u(0)

e−t · v(0)

)∥∥∥∥
= ‖∇ϕ‖∞ ·

∣∣e−t∣∣ · ∥∥∥∥(ξ1

ξ2

)∥∥∥∥
= ‖∇ϕ‖∞ · e−t.
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Let (tn)n∈N be a positive nondecreasing sequence with limn→∞ tn = ∞ and de�ne δn :=
e−tn for all n ∈ N. Then the conclusion follows by Theorem 3.13 taking the function C
to be constant and equal 1.

Example 3.18. Now consider the two-dimensional SDE(
dx(t)

dy(t)

)
=

[(
1 0
0 −1

)(
x(t)

y(t)

)
−
(
x(t)3

0

)]
dt+

(
1 0
0 0

)
dW (t) (3.10)

with initial condition (
x(0)

y(0)

)
=

(
x0

y0

)
where again

W (t) =

(
W (1)(t)

W (2)(t)

)
is a two-dimensional real-valued Wiener process on some probability space (Ω,F , P ).
Again denote by

(
u(t)
v(t)

)
the linearization of equation (3.10).

As before the function ϕ(
(
x
y

)
) = sgn(y) is invariant under Pt, implying that the system

is not strong Feller. However, in the contrast to the previous example, it is not globally
contractive. Therefore the situation is in some kind a little delicate and we will need the
following fact (cf. Lemma 4.10 in [9]):∣∣∣∣ ∂∂xPtϕ

((
x0

y0

))∣∣∣∣ ≤ C(|x0|) · ‖ϕ‖∞

for some nondecreasing function C : R+ → R and all t ≥ 1.
Hence applying the mean value theorem to both variables respectively we gain∣∣∣∣Ptϕ((x0 + ξ1

y0 + ξ2

))
− Ptϕ

((
x0

y0

))∣∣∣∣
=

∣∣∣∣E [ϕ((x(t, x0 + ξ1)

y(t, y0 + ξ2)

))
− ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
=

∣∣∣∣E [ϕ(( x(t, x0 + ξ1)

y(t, y0) + v(t, ξ2)

))
− ϕ

((
x(t, x0)

y(t, y0)

))]∣∣∣∣
=

∣∣∣∣∣E
[
ϕ

((
x(t, x0 + ξ1)

y(t, y0) + v(t, ξ2)

))
− ϕ

((
x(t, x0 + ξ1)

y(t, y0)

))]

+ E
[
ϕ

((
x(t, x0 + ξ1)

y(t, y0))

))
− ϕ

((
x(t, x0)

y(t, y0)

))] ∣∣∣∣∣
=

∣∣∣∣∣E
[∫ 1

0

∂

∂y
ϕ

((
x(t, x0 + ξ1)

y(t, y0) + s · v(t, ξ2)

))
ds · v(t, ξ2)

]

+ Ptϕ
((

x0 + ξ1

y0

))
− Ptϕ

((
x0

y0

)) ∣∣∣∣∣
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=

∣∣∣∣∣E
[∫ 1

0

∂

∂y
ϕ

((
x(t, x0 + ξ1)

y(t, y0) + s · v(t, ξ2)

))
ds · v(t, ξ2)

]

+

∫ 1

0

∂

∂x
Ptϕ

((
x0 + r · ξ1

y0

))
dr · ξ1

∣∣∣∣∣

≤ E

[∫ 1

0

∣∣∣∣ ∂∂yϕ
((

x(t, x0 + ξ1)

y(t, y0) + s · v(t, ξ2)

))∣∣∣∣︸ ︷︷ ︸
≤‖∇ϕ‖∞

ds · |v(t, ξ2)|

]

+

∫ 1

0

∣∣∣∣ ∂∂xPtϕ
((

x0 + r · ξ1

y0

))∣∣∣∣︸ ︷︷ ︸
≤C(|x0+r·ξ1|)·‖ϕ‖∞≤C(|x0|+1)·‖ϕ‖∞

dr · |ξ1|

≤ ‖∇ϕ‖∞ · E [|v(t, ξ2)|] + C(|x0|+ 1) · ‖ϕ‖∞
= ‖∇ϕ‖∞ · e−t · |ξ2|+ C(|x0|+ 1) · ‖ϕ‖∞
≤ (C(|x0|+ 1) + 1) ·

(
‖ϕ‖∞ + e−t · ‖∇ϕ‖∞

)
.

Taking a positive nondecreasing sequence (tn)n∈N with limn→∞ tn = ∞ and de�ning
δn := e−tn for all n ∈ N, the assertion follows by Theorem 3.13.

3.6 Uniqueness of the invariant measure

We conclude this chapter by proving in some sense the analogue of Proposition 1.37.

Theorem 3.19. Let X be a Polish space, (Pt)t≥0 a Markov semigroup on Bb(X ) and
µ, ν, µ 6= ν, two ergodic Borel probability measures for (Pt)t≥0. If (Pt)t≥0 is asymptoti-
cally strong Feller at x ∈ X , then x 6∈ supp(µ) ∩ supp(ν).

Proof. First of all µ and ν are singular by Theorem 1.30. Hence we obtain for their
di�erence the total variation

‖µ− ν‖TV =
1

2
·
(
(µ− ν)+ (X ) + (µ− ν)− (X )

)
=

1

2
· (µ(X ) + ν(X )) = 1.

For every A ∈ B(X ), t > 0 and every pseudo-metric d on X with d ≤ 1 the triangle
inequality for ‖·‖d implies

‖µ− ν‖d ≤ 1−min{µ(A), ν(A)} ·
(

1− max
y,z∈A

‖πt(z, ·)− πt(y, ·)‖d
)
. (3.11)

To see this, set α := min{µ(A), ν(A)} and distinguish the following two cases:
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Case 1 (α = 0): For α = 0 we obtain by de�nition of the Wasserstein distance

‖µ− ν‖d = inf
η∈C(µ,ν)

∫
X 2

d(x, y) η(dx, dy)

≤ inf
η∈C(µ,ν)

∫
X 2

1 η(dx, dy)

≤
∫
X 2

1 (µ⊗ ν)(dx, dy)

= (µ⊗ ν)(X 2)

= µ(X ) · ν(X )

= 1

= 1− α ·
(

1− max
y,z∈A

‖πt(z, ·)− πt(y, ·)‖d
)
.

Case 2 (α > 0): Clearly, there exist probability measures µA, µ̄, νA, ν̄ on (X ,B(X ))
with νA(A) = µA(A) = 1 such that µ = (1−α)·µ̄+α·µA and ν = (1−α)·ν̄+α·νA. In fact,
without loss of generality assume α = µ(A) and take, e.g. µA(B) := µ(B∩A)

α
, µ̄(B) :=

µ(B∩Ac)
1−α , νA(B) := ν(B∩A)

ν(A)
and ν̄(B) := ν(B)−α·νA(B)

1−α for all B ∈ B(X ). From the invariance
of the measures µ and ν and the triangle inequality this implies

‖µ− ν‖d
= ‖P∗t µ− P∗t ν‖d
= ‖P∗t ((1− α) · µ̄+ α · µA)− P∗t ((1− α) · ν̄ + α · νA)‖d
= ‖(1− α) · P∗t µ̄+ α · P∗t µA − (1− α) · P∗t ν̄ − α · P∗t νA‖d
= ‖(1− α) · (P∗t µ̄− P∗t ν̄) + α · (P∗t µA − P∗t νA)‖d
≤ (1− α) · ‖P∗t µ̄− P∗t ν̄‖d + α · ‖P∗t µA − P∗t νA‖d

≤ (1− α) + α ·
∥∥∥∥∫
X
πt(z, ·) µA(dz)−

∫
X
πt(y, ·) νA(dy)

∥∥∥∥
d

= (1− α) + α ·
∥∥∥∥∫

A

πt(z, ·) µA(dz)−
∫
A

πt(y, ·) νA(dy)

∥∥∥∥
d

= (1− α) + α ·
∥∥∥∥∫∫

A×A
πt(z, ·) µA(dz) νA(dy)−

∫∫
A×A

πt(y, ·) µA(dz) νA(dy)

∥∥∥∥
d

= (1− α) + α ·
∥∥∥∥∫∫

A×A
πt(z, ·)− πt(y, ·) µA(dz) νA(dy)

∥∥∥∥
d

≤ (1− α) + α ·
∫∫

A×A
‖πt(z, ·)− πt(y, ·)‖d µA(dz) νA(dy)

≤ 1− α ·
(

1− max
y,z∈A

‖πt(z, ·)− πt(y, ·)‖d
)
.

Continuing with the proof of the theorem, we see that, by de�nition of the asymptotic
strong Feller property, there exist a constant N > 0, a totally separating system (dn)n∈N
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of continuous pseudo-metrics and an open set U containing x such that ‖πtn(z, ·) −
πtn(y, ·)‖dn ≤ 1

2
for every n > N and every y, z ∈ U . (Note that by de�nition of a totally

separating system, the pseudo-metrics dn are less or equal 1.)
Assume, by contradiction, that x ∈ supp(µ)∩supp(ν). Hence α = min{µ(U), ν(U)} >

0 according to (1.19). Taking A = U, d = dn and t = tn in (3.11), we then get ‖µ−ν‖dn ≤
1− α

2
for every n > N . Therefore ‖µ− ν‖TV ≤ 1− α

2
by Corollary 3.7, in contradiction

to ‖µ− ν‖TV = 1.

As an immediate consequence we have

Corollary 3.20. Let (Pt)t≥0 be an asymptotically strong Feller Markov semigroup on
Bb(X ) and assume that there exists a point x ∈ X such that x ∈ supp(µ) for every
invariant Borel probability measure µ for (Pt)t≥0. Then there exists at most one invariant
Borel probability measure µ for (Pt)t≥0.

Proof. Suppose there is more than one invariant Borel probability measure for the
Markov semigroup (Pt)t≥0. Then by Corollary 1.31 there exist at least two distinct
ergodic Borel probability measures µ and ν for (Pt)t≥0. Since (Pt)t≥0 is asymptotically
strong Feller (at every x ∈ X ), by the previous Theorem 3.19 x /∈ supp(µ)∩ supp(ν) for
all x ∈ X , i.e. supp(µ)∩ supp(ν) = ∅. Hence, if there exists a point x as required in the
formulation of the corollary, e.g. x ∈ supp(µ) for every invariant probability measure µ,
then there is at most one invariant Borel probability measure µ for (Pt)t≥0.

Remark 3.21. According to Theorem 1.27 µ is ergodic then.
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4 Application to stochastic

di�erential equations with

Lipschitz nonlinearities

The following situation is treated in [9].
We are given two real separable Hilbert spaces H and U . Suppose {ek}k∈N is an

orthonormal basis in U and {βk}k∈N is a sequence of mutually independent real-valued
standard Brownian motions on a �xed probability space (Ω,F , P ). Let (Ft)t≥0 be a
�ltration such that Ft is generated by βk(s), s ≤ t, k ∈ N.
We consider the SDE

dX(t) = (AX(t) + F (X(t))) dt+B dW (t) (4.1)

X(0) = x

where A : D(A) ⊂ H → H and B : U → H are linear operators, F : H → H is a
nonlinear function and W is a cylindrical Wiener process in U , formally de�ned by

W (t) =
∞∑
k=1

βk(t)ek, t ≥ 0.

From now on we assume the following two Hypothesis (cf. Hypothesis 2.1 and 3.1 in
[9]):

Hypothesis 4.1. (i) A : D(A) ⊂ H → H is the in�nitesimal generator of a strongly
continuous semigroup

(
etA
)
t≥0

.

(ii) B ∈ L(U,H).

(iii) For any t > 0 the linear operator Qt, de�ned as

Qtx =

∫ t

0

esACesA
∗
x ds, x ∈ H,

where C = BB∗, is of trace class.

By the Hille-Yosida theorem it follows that there exist M ≥ 0 and ω ∈ R such that

‖etA‖L(H) ≤Meωt

for all t ≥ 0.
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4 Application to stochastic di�erential equations with Lipschitz nonlinearities

Hypothesis 4.2. F is Lipschitz continuous: There exists some constant K > 0 such
that ‖F (x)− F (y)‖ ≤ K · ‖x− y‖ for all x, y ∈ H.

Denote by CW ([0, T ];H) the space of all continuous, (Ft)-adapted mappings Z : [0, T ]→
L2(Ω,F , P ;H). Observe that CW ([0, T ];H) endowed with the norm ‖·‖CW ([0,T ];H) given
by

‖Z‖CW ([0,T ];H) :=

(
sup
t∈[0,T ]

E[|Z(t)|2]

) 1
2

is a Banach space. It is called the space of all mean square continuous adapted processes
on [0, T ] taking values in H.

De�nition 4.1. By a mild solution of problem (4.1) on [0, T ] we mean a stochastic
process X ∈ CW ([0, T ];H) such that

X(t) = etAx+

∫ t

0

e(t−s)AF (X(s)) ds+

∫ t

0

e(t−s)AB dW (s)

for all t ∈ [0, T ].

It is well known that there exists a unique mild solution to (4.1), provided that Hy-
potheses 4.1 and 4.2 hold (cf. Theorem 3.2 in [9]). Moreover, if in addition F ∈ C2

b (H,H),
the mild solution X(t, x) of (4.1) is di�erentiable with respect to the initial condition x
P -a.s. and for any h ∈ H we have DX(t, x)h = ηh(t, x) P -a.s. where ηh(t, x) is the mild
solution of the equation

d

dt
ηh(t, x) = Aηh(t, x) +DF (X(t, x))ηh(t, x)

ηh(0, x) = h,

that is, ηh(t, x) is the solution of the integral equation

ηh(t, x) = etAh+

∫ t

0

e(t−s)ADF (X(s, x))ηh(s, x) ds, t ≥ 0 (4.2)

(cf. Theorem 3.6 in [9]).
Denote by (Pt)t≥0 the Markov semigroup corresponding to the SDE in (4.1), e.g.
Ptϕ(x) = E[ϕ(X(t, x))] for all ϕ ∈ Bb(H), x ∈ H, t ≥ 0.

Lemma 4.2. Assume that Hypothesis 4.1 holds for some ω < −MK ≤ 0 and let
F ∈ C2

b (H,H). Then the Markov semigroup (Pt)t≥0 is asymptotically strong Feller.

Proof. According to (4.2) we have

‖ηh(t, x)‖ ≤Meωt‖h‖+MK

∫ t

0

eω(t−s)‖ηh(s, x)‖ ds,
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which is equivalent to

e−ωt‖ηh(t, x)‖ ≤M‖h‖+MK

∫ t

0

e−ωs‖ηh(s, x)‖ ds.

Hence by the Gronwall lemma

e−ωt‖ηh(t, x)‖ ≤M‖h‖ · eMKt,

i.e.
‖ηh(t, x)‖ ≤M‖h‖ · eMKteωt = Me(ω+MK)t‖h‖. (4.3)

In order to show that the Markov semigroup (Pt)t≥0 is asymptotically strong Feller,
by Theorem 3.13 we have to �nd two positive sequences (tn)n∈N and (δn)n∈N, tn ≤ tn+1

for all n ∈ N and limn→∞ δn = 0, such that

|Ptnϕ(x)− Ptnϕ(y)| ≤ C(‖x‖ ∨ ‖y‖) · (‖ϕ‖∞ + δn · ‖∇ϕ‖∞) · ‖x− y‖ (4.4)

for all ϕ ∈ C1
b (H), x, y ∈ H, n ∈ N and some �xed nondecreasing function C : R+ → R.

First of all note that by (4.3) for any h, z ∈ H we have ‖DX(t, z)h‖ = ‖ηh(t, z)‖ ≤
Me(ω+MK)t‖h‖ P -a.s. for all t ≥ 0. Hence ‖DX(t, z)‖L(H) ≤ Me(ω+MK)t P -a.s. for all
t ≥ 0 and all z ∈ H. Therefore

|Ptϕ(x)− Ptϕ(y)|
≤ E [|ϕ(X(t, x))− ϕ(X(t, y))|]
≤ ‖∇ϕ‖∞ · E [‖X(t, x)−X(t, y)‖]

≤ ‖∇ϕ‖∞ · E

[
sup
α∈[0,1]

‖DX(t, y + α(x− y))‖L(H)

]
· ‖x− y‖

≤ ‖∇ϕ‖∞ ·Me(ω+MK)t · ‖x− y‖ (4.5)

for all ϕ ∈ C1
b (H), x, y ∈ H, t ≥ 0. Now let (tn)n∈N be a positive nondecreasing sequence

such that limn→∞ tn =∞ and de�ne δn := e(ω+MK)tn for all n ∈ N. Since ω < −MK ≤ 0,
we conclude δn

n→∞−→ 0 and inequality (4.4) is valid taking the function C to be constant
and equal M .

Our next aim is to show that the Lemma remains valid when weaken the assumption
F ∈ C2

b (H,H), e.g. taking F just Lipschitz continuous. To this purpose set FN(x) :=
F (x)∧N for all x ∈ H, N ∈ N and introduce a regularization FN

β of FN by setting, for
any h ∈ H,〈

FN
β (x), h

〉
=

∫
H

〈
FN

(
eβSx+ y

)
, eβSh

〉
N 1

2
S−1(e2βS−1)(dy), β > 0,

where S : D(S) ⊂ H → H is a given self-adjoint, negative de�nite operator such that S−1

is of trace class. Note that the de�nition of FN
β corresponds to an Ornstein-Uhlenbeck

semigroup (Ut)t≥0, given by

Utϕ(x) =

∫
H

ϕ(etSx+ y) N 1
2
S−1(e2tS−1)(dy)
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4 Application to stochastic di�erential equations with Lipschitz nonlinearities

for all ϕ ∈ Bb(H), x ∈ H, t > 0. Since in particular Tr[1
2
S−1(e2tS−1)] <∞ (cf. Theorem

VI.19 in [13]), Hypothesis 4.1 is ful�lled and so by Proposition 2.17(iv) in [9] we know
that the mapping [0, T ] × H → R, (t, x) 7→ Utϕ(x) is continuous for all ϕ ∈ Cb(H).

Furthermore, according to Remark 2.25 in [9] we have etS(H) ⊂ (1
2
S−1(e2tS − 1))

1
2 (H)

for all t > 0. Hence in view of Proposition 2.28 in [9], Utϕ ∈ C∞b (H) for all ϕ ∈ Bb(H).
Concerning the properties of FN

β this means

lim
β→0

FN
β (x) = FN(x)

for all x ∈ H and
FN
β ∈ C∞b (H,H) (4.6)

for all N ∈ N, β > 0.
Furthermore we have

Lemma 4.3. FN
β is Lipschitz continuous with Lipschitz constant K(N, β) ≤ K.

Proof. Let x, y ∈ H and β > 0. Then we have∥∥FN
β (x)− FN

β (y)
∥∥2

=
∣∣〈FN

β (x)− FN
β (y), FN

β (x)− FN
β (y)〉

∣∣
≤

∫
H

∣∣〈FN
(
eβSx+ z

)
− FN

(
eβSy + z

)
, eβS

(
FN
β (x)− FN

β (y)
)
〉
∣∣︸ ︷︷ ︸

≤‖FN(eβSx+z)−FN(eβSy+z)‖·‖eβS‖
L(H)
‖FNβ (x)−FNβ (y)‖

N 1
2
S−1(e2βS−1)(dz)

≤ K
∥∥eβS∥∥2

L(H)
· ‖x− y‖ ·

∥∥FN
β (x)− FN

β (y)
∥∥

according to the Lipschitz continuity of FN . Dividing both sides by
∥∥FN

β (x)− FN
β (y)

∥∥
yields the �rst assertion. Moreover, since S is a self-adjoint, negative de�nite operator,
from [8] we know that ‖eβS‖L(H) ≤ 1. Hence K(N, β) ≤ K.

Now let N ∈ N, β > 0. Similarly as above one can show that the problem

dXN
β (t) =

(
AXN

β (t) + FN
β (XN

β (t))
)
dt+B dW (t)

XN
β (0) = x

has a unique mild solution XN
β (t, x). Moreover, it is not di�cult to check that

lim
N→∞

lim
β→0

XN
β (t, x) = X(t, x) (4.7)

for all x ∈ H, t > 0.
De�ning

PN,βt ϕ(x) := E[ϕ(XN
β (t, x))]

for all ϕ ∈ Bb(H), according to (4.7) and Lebesgue we receive

lim
N→∞

lim
β→0
PN,βt ϕ(x) = lim

N→∞
lim
β→0

E[ϕ(XN
β (t, x))] = E[ϕ(X(t, x))] = Ptϕ(x) (4.8)

for all ϕ ∈ Cb(H), x ∈ H, t > 0.
By the help of these preparations we are able to prove the �nal result of this chapter:
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Theorem 4.4. Assume that Hypothesis 4.1 holds for some ω < −MK ≤ 0 and Hy-
pothesis 4.2 is ful�lled. Then the Markov semigroup (Pt)t≥0 is asymptotically strong
Feller.

Proof. Let N ∈ N, β > 0. Since according to (4.6) FN
β ∈ C2

b (H,H), by Lemma 4.2 the

assertion follows for (PN,βt )t≥0. In particular, observe that the sequence (tn)n∈N in (4.5)
(and consequently the sequence (δn)n∈N) can be chosen independently of N ∈ N and
β > 0. Since K(N, β) ≤ K, we achieve

|PN,βtn ϕ(x)− PN,βtn ϕ(y)| ≤ ‖∇ϕ‖∞ ·M · δn · ‖x− y‖ (4.9)

for all ϕ ∈ C1
b (H), x, y ∈ H, n ∈ N with δn given as in the proof of Lemma 4.2. Since

the right hand side in (4.9) is independent of N ∈ N and β > 0, letting �rst β → 0 and
then N →∞ the assertion for (Pt)t≥0 follows immediately from (4.8).

Remark 4.5. Observe that we can dispense with the assumption that B is continuously
invertible, which is needed in [9] in order to show that (Pt)t≥0 is strong Feller (cf. The-
orem 3.11). In particular, we do not apply the Bismut-Elworthy formula. Unfortunately
we have to take ω < −MK ≤ 0.
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A Approximation via convolution

Let η ∈ C∞0 (Rm) such that η ≥ 0 and
∫

Rm η(x) dx = 1. De�ne a sequence (ηε)ε>0 by

ηε(x) :=
1

εm
· η
( x
εm

)
.

Note that via the substitution y := x
εm

we have∫
Rm

ηε(x) dx =

∫
Rm

1

εm
· η
( x
εm

)
dx =

∫
Rm

η(y) dy = 1

and moreover for every ρ > 0∫
Rm\Bρ(0)

ηε(x) dx
ε→0−→ 0.

In particular, for ε = 1
n
we obtain with δn := η 1

n∫
Rm

δn(x) dx = 1

and ∫
Rm\Bρ(0)

δn(x) dx
n→∞−→ 0 (A.1)

for all ρ > 0.
Let f ∈ Lp(Rm). The convolution of f and δn is de�ned by

(f ? δn) (x) :=

∫
Rm

f(z)δn(x− z) dz =

∫
Rm

f(x− z)δn(z) dz.

Now we are able to prove the following

Lemma A.1. Let f ∈ Ld(Rm). Then there exists a sequence
(
fn
)
n∈N, fn ∈ C

∞
b (Rm),

such that

(i) fn
n→∞−→ f pointwisely,

(ii) ‖fn‖∞ ≤ ‖f‖∞ for each n ∈ N,

(iii) ‖fn‖d ≤ ‖f‖d for each n ∈ N.
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A Approximation via convolution

Proof. Let f ∈ Ld(Rm) and de�ne functions fn : Rm → R by fn(x) := (f ? δn) (x).
Let x ∈ Rm. Observe that using the substitution z := x− v we have

(f ? δn) (x)− f(x) =

∫
Rm

f(z)δn(x− z) dz − f(x)

=

∫
Rm

f(z)δn(x− z) dz − f(x) ·
∫

Rm
δn(x− z) dz

=

∫
Rm

(f(z)− f(x)) δn(x− z) dz

=

∫
Rm
− (f(x− v)− f(x)) δn(v) dv

=

∫
Rm

(f(x)− f(x− v)) δn(v) dv.

Hence

|fn(x)− f(x)|
= |(f ? δn) (x)− f(x)|

≤

∣∣∣∣∣
∫
Bρ(0)

(f(x)− f(x− v)) · δn(v) dv

∣∣∣∣∣+

∣∣∣∣∣
∫

Rm\Bρ(0)

(f(x)− f(x− v)) · δn(v) dv

∣∣∣∣∣
≤

(∫
Bρ(0)

δn(v) dv

)
︸ ︷︷ ︸

≤1

· sup
‖v‖≤ρ
|f(x)− f(x− v)|

+

(∫
Rm\Bρ(0)

δn(v) dv

)
· sup
v∈Rm
|f(x)− f(x− v)|︸ ︷︷ ︸
≤2·‖f‖∞<∞

for all ρ > 0. Therefore, letting �rst n→∞ and then ρ→ 0 yields

lim
n→∞

fn(x) = f(x)

for all x ∈ Rm according to (A.1) and the continuity of f , i.e. fn converges pointwisely
to f as n tends to in�nity.
Furthermore, since

|fn(x)| =

∣∣∣∣∫
Rm

f(z)δn(x− z) dz

∣∣∣∣
≤

∫
Rm
|f(z)|δn(x− z) dz

≤ ‖f‖∞ ·
∫

Rm
δn(x− z) dz

= ‖f‖∞
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for all x ∈ Rm, n ∈ N, we have ‖fn‖∞ ≤ ‖f‖∞ for all n ∈ N and this is (ii).
Similarly,

|fn(x)− fn(y)| ≤
∫

Rm
|f(x− z)− f(y − z)| · δn(z) dz

≤ ‖f‖d ·
∫

Rm
δn(z) dz · ‖x− y‖

= ‖f‖d · ‖x− y‖.

Hence fn ∈ Ld(Rm) and ‖fn‖d ≤ ‖f‖d for all n ∈ N.
It remains to show fn ∈ C∞b (Rm) for all n ∈ N. Observe that δn ∈ C∞0 (Rm) and for

v ∈ Rm we have

∂

∂v
(f ? δn) (x0)

= lim
h→0

1

h
· ((f ? δn) (x0 + hv)− (f ? δn) (x0))

= lim
h→0

1

h
·
∫

Rm
(δn(x0 + hv − z)− δn(x0 − z)) · f(z) dz

=

∫
Rm

lim
h→0

1

h
· (δn((x0 − z) + hv)− δn(x0 − z)) · f(z) dz

=

∫
Rm

∂

∂v
δn(x0 − z) · f(z) dz

=

(
f ?

(
∂

∂v
δn

))
(x0).

By iterating this argument the assertion follows.

In the same way one can prove:

Lemma A.2. Let f ∈ Cb(Rm). Then there exists a sequence (fn)n∈N , fn ∈ C2
b (Rm), such

that ‖fn‖∞ ≤ ‖f‖∞ for all n ∈ N and fn −→ f pointwisely as n→∞.
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B Regularization of Markovian

kernels by composition

The following results are taken from chapter IX.1 in [3].
Let (E,B(E)), (F,B(F )) and (G,B(G)) be measurable spaces, M : Bb(F ) → Bb(E),

N : Bb(G)→ Bb(F ) Markov operators and πM , πN the corresponding Markovian kernels
from (E,B(E)) to (F,B(F )) respectively from (F,B(F )) to (G,B(G)). It is clear, that
P de�ned by P := MN is a Markov operator from Bb(G) to Bb(E) and πP := πNπM

the corresponding Markovian kernel from (E,B(E)) to (G,Bb(G)).

De�nition B.1. A kernel κ from (E,B(E)) to (F,B(F )) is called basic if there exists
some Borel probability measure µ on F such that κ(x, ·) � µ(·) for all x ∈ E. In this
case the Borel probability measure µ is called the base.

Theorem B.2. Let E be metrizable, M : Bb(F ) → Bb(E) strong Feller and πN basic.
Then the kernel πP from (E,B(E)) to (G,Bb(G)) is continuous in x in the total variation
norm, that is ‖πP (xn, ·)− πP (x, ·)‖TV

n→∞−→ 0 for every sequence (xn)n∈N with xn
n→∞−→ x.

Moreover, if E is compact, P is compact as well.

Proof. It is su�cient to check that if (E, dE) is a compact metric space, then P = MN is
compact and its transition probabilities πP (x, ·) are continuous in x in the total variation
norm, cause then the assertion follows for every compact subset K ⊆ E. Applying this
to the compact subset K = {xn | n ∈ N} ∪ {x} formed by the convergent sequence
(xn)n∈N with limit x, the assertion follows for E.
Let U := N(BBb(G)(0, 1)) ⊆ Bb(F ), where BBb(G)(0, 1) := {g ∈ Bb(G) | ‖g‖∞ ≤

1} denotes the closed unit ball in Bb(G), and V := M(U) ⊆ Bb(E). Hence V =
MN(BBb(G)(0, 1)) = P (BBb(G)(0, 1)). In order to prove that P : Bb(G) → Bb(E) is
compact, we have to show that V ⊆ Bb(E) is relatively compact for the topology of
uniform convergence on E.
So, let (en)n∈N ⊆ V . By de�nition of V there exist fn ∈ U such that en = Mfn for all

n ∈ N. According to Remark B.4 below there exist a subsequence (fnk)k∈N and f ∈ U
such that fnk(y)

k→∞−→ f(y) for all y ∈ F . Now it su�ces to show that (enk)k∈N converges

uniformly to e = Mf , that is ‖enk − e‖∞
k→∞−→ 0. Without loss of generality take f = 0,

e.g. f(y) = 0 for all y ∈ F . Hence Mf = 0.
De�ne hk(y) := supl≥k|fnl(y)| for all y ∈ F . Obviously (hk(y))k∈N is monotonically

decreasing and converges to f(y) = 0 for all y ∈ F , because fnl(y) → f(y) = 0 for all
y ∈ F as l tends to in�nity. Since hk ∈ Bb(F ) for all k ∈ N and M : Bb(F ) → Bb(E) is
strong Feller by assumption, we haveMhk ∈ Cb(E) for all k ∈ N. Moreover the sequence
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B Regularization of Markovian kernels by composition

(Mhk(x))k∈N is monotonically decreasing for all x ∈ E, because

Mhk+1(x) =

∫
F

hk+1(y) πM(x, dy) ≤
∫
F

hk(y) πM(x, dy) = Mhk(x)

for all k ∈ N and all x ∈ E. Since Mhk(x) ≥ 0 for all k ∈ N, x ∈ E and (Mhk(x))k∈N is
monotonically decreasing for all x ∈ E, we have: infk∈NMhk(x) exists for all x ∈ E and
infk∈NMhk(x) = limk→∞Mhk(x) = Mf(x) = 0 for all x ∈ E. Furthermore the function
Mf = 0 is continuous.
Therefore all assumptions of Dini's theorem are satis�ed and so we get that (Mhk)k∈N

converges uniformly to Mf = 0, i.e. ‖Mhk − 0‖∞
k→∞−→ 0. But

|Mfnk(x)| =

∣∣∣∣∫
F

fnk(y) πM(x, dy)

∣∣∣∣
≤

∫
F

|fnk(y)| πM(x, dy)

≤
∫
F

hk(y) πM(x, dy)

= Mhk(x)

for all k ∈ N and all x ∈ E, thus ‖Mfnk‖∞ ≤ ‖Mhk‖∞ for all k ∈ N. So, ‖enk − 0‖∞ =

‖Mfnk − 0‖∞
k→∞−→ 0. Hence V is relatively compact and therefore P : Bb(G) → Bb(E)

is a compact operator.
Since V ⊆ Bb(E) is relatively compact, we further conclude by Arzela-Ascoli's theorem

that V is equicontinuous, i.e.

∀ ε > 0 ∀ x ∈ E ∃ δ = δ(x, ε) > 0 : ∀ x′ ∈ E :

dE(x, x′) < δ =⇒ sup
e∈V
|e(x)− e(x′)| ≤ ε. (B.1)

But by the de�nition of V we can choose some function g ∈ BBb(G)(0, 1) such that
e = Pg. Therefore (B.1) could be written as

∀ ε > 0 ∀ x ∈ E ∃ δ = δ(x, ε) > 0 : ∀ x′ ∈ E :

dE(x, x′) < δ =⇒ sup
g∈BBb(G)(0,1)

|Pg(x)− Pg(x′)| ≤ ε.

In particular, since g = 1A ∈ BBb(G)(0, 1) for arbitrary A ∈ B(G), we obtain

|P1A(x)− P1A(x′)| ≤ ε.

Therefore

‖πP (x, ·)− πP (x′, ·)‖TV = sup
A∈B(G)

|πP (x,A)− πP (x′, A)| ≤ ε. (B.2)
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To complete the proof of the above theorem, it remains to prove the existence of some
subsequence (fnk)k∈N.

Lemma B.3. Suppose πN is basic. Then U := N(BBb(G)(0, 1)) is compact for the topol-
ogy of pointwise convergence. Moreover, if in addition the σ-algebra B(G) is separable,
U is compact metrizable.

Proof. Since πN is basic, there exists some probability measure µ on (G,B(G)) (the
base) such that πN(y, ·)� µ(·) for all y ∈ F .
First of all, N de�nes a bounded operator from L∞(G, µ) to Bb(F ). In fact, let

g, g̃ ∈ Bb(G) with g(z) = g̃(z) for µ-a.e. z ∈ G. Since πN(y, ·) � µ(·) for all y ∈ F , we
have g(z) = g̃(z) for πN(y, ·)-a.e. z ∈ G for all y ∈ F . Hence

Ng(y) =

∫
G

g(z) πN(y, dz) =

∫
G

g̃(z) πN(y, dz) = Ng̃(y)

for all y ∈ F . Therefore Ng only depends on the equivalence class [g] ∈ L∞(G, µ) of g.
Furthermore, since g ∈ Bb(G) we gain

|Ng(y)| ≤
∫
G

|g(z)| πN(y, dz) ≤ ‖g‖∞ · πN(y,G) = ‖g‖∞

for all y ∈ F and thus ‖Ng‖∞ ≤ ‖g‖∞. So, ‖N‖L(L∞(G,µ),Bb(F )) ≤ 1, e.g. N is a bounded
operator from L∞(G, µ) to Bb(F ) (even a contraction).
Denote by B the unit ball in L∞(G, µ). Since πN(y, ·) � µ(·) for all y ∈ F , by the

Radon-Nikodym theorem there exists some density ρy ∈ L1(G, µ), ρy ≥ 0, such that∫
A
ρy(z) µ(dz) = πN(y, A) for all A ∈ B(G), y ∈ F . Hence N : L∞(G, µ) → Bb(F ) is

continuous with respect to the weak topology σ(L∞, L1) on L∞(G, µ) and the topology
of pointwise convergence on Bb(F ). In fact, for gn

n→∞−→ g with respect to σ(L∞, L1), that
is
∫
G
gn(z)h(z) µ(dz)

n→∞−→
∫
G
g(z)h(z) µ(dz) for all h ∈ L1(G, µ), we receive

lim
n→∞

Ngn(y) = lim
n→∞

∫
G

gn(z) πN(y, dz)

= lim
n→∞

∫
G

gn(z)ρy(z) µ(dz)

=

∫
G

g(z)ρy(z) µ(dz)

=

∫
G

g(z) πN(y, dz)

= Ng(y)

for all y ∈ F .
By the Banach-Alaoglu theorem (cf. [1], p. 215) the ball B is compact for the

topology σ(L∞, L1). Since N is continuous with respect to the topologies mentioned
above, U = N(B) is compact for the topology of pointwise convergence.
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B Regularization of Markovian kernels by composition

Moreover, if B(G) is separable, B is metrizable and so is U . In fact, if B(G) is
separable, L1(G, µ) is separable and so there exists a countable dense subset {hi | i ∈ N}.
Without loss of generality assume hi 6= 0 for all i ∈ N and set h̃i := hiR

G|hi| dµ
. Consider

the map

T : B ⊆ L∞(G, µ) → [−1,+1]N

g 7→
(∫

G

g(z)h̃i(z) µ(dz)

)
i∈N

.

Claim 7. T is injective.

Proof. Let g, g̃ ∈ B such that T (g) = T (g̃). Then∫
G

(g(z)− g̃(z)) h̃i(z) µ(dz) = 0

for all i ∈ N. Multiplying both sides of the above equality with
∫
G
|hi| dµ yields∫

G

(g(z)− g̃(z))hi(z) µ(dz) = 0

for all i ∈ N. Since {hi | i ∈ N} ⊆ L1(G, µ) densely,∫
G

(g(z)− g̃(z))h(z) µ(dz) = 0

for all h ∈ L1(G, µ). Therefore g(z) = g̃(z) for µ-a.e. z ∈ G, e.g. g and g̃ form the same
equivalence class in B with respect to µ.

Claim 8. T is continuous with respect to the topology σ(L∞, L1) on L∞ and the product
topology on [−1,+1]N.

Proof. First observe that it would be enough to show the assertion for each coordinate.
But this is clear according to the de�nition of convergence with respect to the topology
σ(L∞, L1).

Combining both claims we receive that T : B → T (B) ⊆ [−1,+1]N is homeomorphic.
Therefore, since [−1,+1]N is a metric space, T (B) is a metric space and thus also B.
Furthermore the same is true for its image U under the continuous map N . (Note that
N : B → U is bijective.)

Remark B.4. Let (fn)n∈N ⊆ U . Then there exists a sequence (gn)n∈N, gn ∈ BBb(G)(0, 1),
such that fn = Ngn for all n ∈ N. Consider the probability measures πN(y, ·), y ∈ F,
only on σ(gn | n ∈ N) ⊆ B(G). Since πN is basic and σ(gn | n ∈ N) is separable,
according to Lemma B.3 {fn | n ∈ N} = {Ngn | n ∈ N} ⊆ U is compact for the topology
of pointwise convergence and metrizable. Therefore we can �nd a subsequence (fnk)k∈N

of (fn)n∈N and some f ∈ U such that fnk(y)
k→∞−→ f(y) for all y ∈ F .
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For the application in chapter 1 we further need the following relation between strong
Feller and basic Markov operators:

Lemma B.5. Let X be separable and let N be a strong Feller Markov operator on Bb(X ).
Then πN is basic.

Proof. Since X is separable, there exists a countable dense subset {xk | k ∈ N} ⊆ X . It
would be enough to show

πN(x, ·)�
∞∑
k=1

1

2k
· πN(xk, ·) =: µ(·) (B.3)

for all x ∈ X .
So, �x x ∈ X and let A ∈ B(X ) such that µ(A) =

∑∞
k=1

1
2k
· πN(xk, A) = 0. Hence

N1A(xk) = πN(xk, A) = 0 for all k ∈ N. Since 1A ∈ Bb(X ) and N is strong Feller, we get
N1A ∈ Cb(X ). Since x ∈ X and {xk | k ∈ N} ⊆ X is dense, there exists a subsequence

(xkl)l∈N such that xkl
l→∞−→ x. Therefore we conclude

πN(x,A) = N1A(x) = lim
l→∞

N1A(xkl) = 0,

i.e. πN(x, ·)�
∑∞

k=1
1
2k
· πN(xk, ·) = µ(·).
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B Regularization of Markovian kernels by composition
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C Probability measures on Polish

spaces

The following result is well-known (cf. Theorem 1.4 in [2]):

Lemma C.1. Let (X , d) be a complete and separable metric space. Then any probability
measure P on (X ,B(X )) is tight.

Proof. Since X is separable there exists a countable dense subset {xi | i ∈ N}. For any
x ∈ X and δ > 0 denote by B(x, δ) := {y ∈ X | d(x, y) ≤ δ} the closed ball with center
x and radius δ > 0.
Let ε > 0. For each n ∈ N choose in ∈ N such that P (X \ (

⋃
i≤in B(xi,

1
n
))) < ε

2n
.

De�ne K :=
⋂
n∈N

⋃
i≤in B(xi,

1
n
). It is clear that K is closed and totally bounded. In

fact, for given ε > 0 there exists n(ε) ∈ N such that 1
n(ε)

< ε. HenceK ⊆
⋃
i≤in(ε)

B(xi, ε).

Since X is complete and K ⊆ X is closed, K is complete. Therefore by Theorem 2.3.1
in [5] K is compact. But

P (Kc) = P

(⋃
n∈N

(⋃
i≤in

B

(
xi,

1

n

))c)
≤

∞∑
n=1

P

((⋃
i≤in

B

(
xi,

1

n

))c)
<
∞∑
n=1

ε

2n
= ε

and so the assertion follows.

Remark C.2. While the assumption of completeness could be weakened to topological
completeness, e.g. there exists an equivalent metric d̃ on X such that X is complete with
respect to d̃, the separability could be replaced by the reqirement that P has separable
support (cf. [2], p. 234).
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C Probability measures on Polish spaces
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