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Introduction

In the study of stochastic differential equations the questions of existence and uniqueness
of an invariant measure for the associated Markov semigroup are crucial:

(1) If there exists an invariant measure p for the Markov semigroup (P;):>o, the semi-
group can be extended uniquely to the space LP(H, u), p > 1.

(2) If, in addition, the invariant measure y is unique, the dynamical system is ergodic.

Hence it might be important to look for conditions under which existence respectively
uniqueness of an invariant measure follows. Concerning the first there is the much cele-
brated theorem of Krylov and Bogoliubov, stating that existence of an invariant measure
is a consequence of the Markov semigroup having the Feller property and fulfilling some
tightness assumption. On the other hand uniqueness of the invariant measure is of-
ten derived from results due to Khasminskii and Doob, stating that the strong Feller
property together with some irreducibility condition ensure uniqueness of the invariant
measure.

The present work focuses on the first property. While in finite dimensions there is a
sufficient condition for the strong Feller property to hold, e.g. Hérmander’s Theorem
(cf. Theorem 8.1 in [6]), in infinite-dimensional spaces no corresponding theorem is
known. Moreover the strong Feller property often fails to hold in infinite-dimensional
spaces. Only if the forcing noise is sufficiently rough, e.g. the covariance of the noise is
nondegenerate, the Bismut-Elworthy formula allows to show the strong Feller property
for a class of semilinear parabolic SPDE’s with infinite-dimensional state space. But in
cases where the noise is very weak, even this is not applicable.

Therefore it would be extremely convenient to have a weaker property that still allows
to conclude uniqueness of the invariant Borel probability measure. This idea is pursued in
|7] by introducing the ’asymptotic strong Feller property’. In fact, there is the following
main result (cf. Corollary 3.20 below): if the Markov semigroup (P;):> is asymptotically
strong Feller and there exists some point x which belongs to the support of every invariant
Borel probability measure for (P;):>o, then there is at most one invariant measure for
this Markov semigroup.

How should one define this asymptotic strong Feller property? Since for a Markov
semigroup (P;)i>0 on a Polish space X' the strong Feller property is equivalent to the
continuity of the function = — m;(z,-) on X in the total variation norm (cf. Theorem
1.14 below), a suitable approach would be to find another (semi-)norm that generates a
weaker topology on the space of all Borel probability measures on X'. Furthermore it is
known that for any separable metric space the Wasserstein distance metrizes the weak
topology (cf. [5], Theorem 11.3.3). Hence it should be at least plausible to work with



Contents

the Wasserstein distance. And in fact, it turns out that this is the right choice, since the
Wasserstein distances corresponding to an increasing sequence of (continuous) pseudo-
metrics less or equal 1 (called a totally separating system of (continuous) pseudo-metrics)
converge to the total variation distance. This leads to the definition of the asymptotic
strong Feller property (cf. Definition 3.8 below).

Let us now give an overview of the structure of this Diploma Thesis:

In Chapter 1 we first introduce well-known concepts for Markov semigroups, e.g. ir-
reducibility, (strong) Feller property, regularity and ergodicity. Afterwards we will see
that the combination of regularity properties (Feller property respectively strong Feller
property) and topological concepts (compactness respectively irreducibility) guarantees
existence (cf. Theorem 1.32 below) respectively uniqueness (cf. Theorem 1.35 below)
of an invariant Borel probability measure for the Markov semigroup (P;):>o. As a first
step towards the above mentioned Corollary 3.20, in section 1.6 we present another way
on how to derive uniqueness of the invariant measure.

Chapter 2 deals with finding a dual representation for the Wasserstein distance in
terms of Lipschitz continuous functions. There we work - leaded by the book of Rachev
- in a much more general framework than it is required by the application in chap-
ter 3. More precisely, we first prove dual representations for the Monge-Kantorovich
and the Kantorovich-Rubinstein problem respectively, meaning that the cost function
is not neccessarily a metric. Then in section 2.3 we link both problems by showing
that they coincide in case of a metric taking the role of the cost function. In particu-
lar, the Monge-Kantorovich problem equals the dual representation of the Kantorovich-
Rubinstein problem when the cost function is a metric. Section 2.4 slightly generalizes
this for a pseudo-metric. At this point it should be mentioned that chapter 2 is inde-
pendent of the rest of this thesis and worth reading in its own. Unequivocal Rachev’s
book is a standard reference in the field of optimal transportation. In particular one
is often refered to it for the proof of the (multi-dimensional) Kantorovich Theorem (cf.
Theorem 5.2.1 in [12]). Nevertheless this proof is done quite rough and many details are
left to the reader. So we decided to work out this part of his monograph in all details
at least for the two-dimensional case (cf. Theorem 2.1 below).

The main content of Chapter 3 is to introduce the asymptotic strong Feller property
and to give a sufficient condition. As a basic preparation it is shown in Corollary 3.7 that
the total variation distance of two Borel probability measures is the limit of a sequence of
their Wasserstein distances corresponding to a totally separating system of (continuous)
pseudo-metrics. Having this in mind, we can define what we mean by saying that a
Markov semigroup is asymptotically strong Feller. While the rest of section 3.3 examines
the relation to the strong Feller property, Theorem 3.13 provides a sufficient condition for
the asymptotic strong Feller property to hold. Afterwards the power of the asymptotic
strong Feller property is shown even in the finite-dimensional setting by considering two
quite simple examples of stochastic differential equations whose Markov semigroups are
asymptotically strong Feller but not strong Feller. As the final result of this chapter it is
shown in Corollary 3.20 that the asymptotic strong Feller property combined with some
kind of irreducibility condition implies the uniqueness of the invariant Borel probability
measure for the Markov semigroup (P;)¢>o-
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Finally, in Chapter 4 we show the asymptotic strong Feller property for (Markov
semigroups associated to) stochastic differential equations of type

dX(t) = (AX(t)+ F(X(t))) dt + BdW(t)
X(00) = =z

on a real separable Hilbert space, where F' is assumed to be Lipschitz (cf. Theorem 4.4
below). Contrary to former works proving the strong Feller property for such equations
we do not impose the operator B to be continuously invertible in order to apply the
Bismut-Elworthy formula. Unfortunately we have to require that A is of (sufficiently
large) negative type. Nonetheless this is a quite large class of semilinear SPDE’s. For
example A can be chosen to be the Laplacian A.

Note that usually the asymptotic strong Feller property is shown by transforming a
regularity problem into a linear control problem via techniques from Malliavin calculus,
see e.g. [7]. A very similar situation to the above is treated in [6]. Since even there
the asymptotic strong Feller property is shown in that way, we have good reason to
conjecture that at least the idea of our proof is entirely new. In particular, we do not
use tools from Malliavin calculus in order to show the asymptotic strong Feller property.
However the considerations in this chapter are meant to be of an exemplary character
so that even more applications are expected.
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1 Invariant measures for Markov
semigroups

This chapter is a slightly modificated composition of chapters 2.1, 3, 4 in [11], chapters
5 and 7 in [10] as well as chapters 6 and 7 in [6].

1.1 Markov semigroups

Let H be a real separable Hilbert space and denote by B(H) its Borel field. Let B,(H) be
the space of all bounded, Borel measurable functions ¢: H — R and denote by C,(H) the
subspace of all continuous and bounded functions on H with values in R. Furthermore
L(By(H)) denotes the space of all linear bounded operators from B,(H) into itself.

Definition 1.1. A function xk: H x B(H) — [0,00[ is called a transition kernel on

(H,B(H)) if
(i) x+— k(x, A) is measurable for every A € B(H) and
(ii)) A k(z,A) is a measure on (H,B(H)) for every x € H.

The transition kernel k is said to be Markovian if k(x, H) =1 for all x € H, e.g. r(x,")
is a probability measure on (H,B(H)) for every x € H.

So a Markovian transition kernel x on the measurable space (H,B(H)) could be
thought as a family (k(z,-)),s of probability measures on (H,B(H)) which is mea-
surable in the parameter z € H. If there is a (Markovian) transition kernel 7, for each
time ¢t > 0, we introduce the following

Definition 1.2. A family (m¢)>0 of (Markovian) transition kernels on (H,B(H)) is
called a (Markovian) semigroup of transition kernels on (H, B(H)) if w5 = mms for all
t,s € 10,00][, i.e.

7Tt+s(x7A> :/ 7Ts(y7A) ﬂ-t(xvdy) (11)
H
forallt,s >0,z € H and A € B(H).

Equation (1.1) is called Chapman-Kolmogorov equation. A heuristic interpretation of
this equality is given by: the probability for a particle starting at time 0 in z € H to
be in A C H at time ¢ + s (left hand side) is equal to the probability the particle starts
at time 0 in © € H and being in some infinitesimal small volume dy at time ¢ and then
starting new in y € H at time ¢ and being in the subset A at time ¢ 4 s integrated over
all 'intermediate points’ y € H (right hand side).

13



1 Invariant measures for Markov semigroups

Definition 1.3. A family (P:)i>0 of linear bounded operators on By(H) is called a
Markov semigroup if

(i) Po=1;
(ZZ) Pt—l—s = P{PS fOT all t, S 2 0,’

(111) For any t > 0 and x € H there exists a probability measure m(x,-) on (H,B(H))
such that

Peta) = [ oto) m(o.dy) (1.2
for all p € By(H).
If, in addition, for any ¢ € Co(H) and = € 'H the mapping
t — Pp(z) (1.3)

is continuous on [0, 00[, the Markov semigroup is said to be stochastically continuous.

Remark 1.4. (1) Fort =0 (1.2) yields mo(x,-) = 0,(-). Furthermore by (1.2) it follows
that for any A € B(H)
Pla(x) = m(x, A) (1.4)

forallt >0,z € H.

(2) Since for arbitrary A € B(H)

7Tt+s(x7 A) - Pt—i—s]-A(x) - PtpslA('r) - ,Ptﬂ-s('ﬂ A)(LL’) - /Hﬂs(% A) 7Tt(.%’, dy)

for all t,s > 0, the probability measures m,(x,-), x € H, t > 0, realizing (1.2) will
in fact form a Markovian semigroup of transition kernels. Hence (iii) in the above
definition could be reformulated as:

(i11’) There exists a Markovian semigroup of transition kernels, (m;)¢>0, on the
measurable space (H,B(H)) such that

ﬂw@=wam@@)

for all p € By(H) and for any t > 0, x € H.

(8) For any t > 0 the operator P, preserves positivity, i.e. Pyp > 0 for all ¢ > 0. In
particular, Pyl =1 for all t > 0.

(4) Let ¢ € By(H). Since by definition of the supremum norm |o(x)| < ||¢llec for all
x € H, we have |Pyp(z)| < ||¢lleo for all x € H,t > 0. Hence the operator norm

| Pelles,ryy < 1 for all t > 0, that is (Py)is0 is a semigroup of contractions on
By(H).

14



1.1 Markov semigroups

Let d be some metric generating the topology of H and denote by B(z,0) :={y € H |
d(z,y) < 0} the open ball of radius 6 > 0 centered at x € H. Furthermore let UCy(H)
(respectively L4(H)) be the space of all bounded and uniformly continuous (respectively
d-Lipschitz-continuous) functions on H with values in R.

Lemma 1.5. A Markov semigroup (P;)i>o0 s stochastically continuous if and only if one
of the following equivalent conditions holds:

(1) limy_om(z, B(z,8)) =1 for allx € H, § > 0;
(i1) limy_o Prp(z) = @(z) for all o € UCL(H), x € H;
(1ii) limy o Prp(z) = p(x) for all ¢ € L4(H), x € H.

Proof. Obviously, (1.3) implies (ii) and (ii) implies (iii). So it is enough to show that
(iii) implies (i) and (i) implies (1.3).
Let ¢ € Cy(H), © € H. Then for each 6 > 0 we have

Prole) — ()
[ o)~ pte) me.
H

1/ <ww—w@»muﬂw+/ (o) — olx)) m(zdy)
B(z,0)

(B(z,6))°

< EsBu(1>6)\90(y) — @) + 2 [l¢lle - (1 = m(2, B(x,0))).

Since by (i) limy_o m(z, B(x,d)) = 1, the second summand tends to 0 for t — 0. Fur-
thermore, letting § — 0 the first summand vanishes because ¢ € Cp(H). Hence the
continuity of ¢t — P;p(x) in zero is proved and by a straightforward computation using
the semigroup property we gain the continuity for an arbitrary time ¢t > 0. Therefore
(i) implies (1.3).

To show that (iii) implies (i), first note that if ¢, ¢ € L4(H) then also ¢, o V¢ €
L4(H) for all ¢ € R. For arbitrary € H and § > 0 define

1— 42 if oy e B(x,d) 1

ply) == {0 ’ i ye(Blro) 3 ((6 —d(y,x)) v 0).

Then ¢ € L4(H) and
p(x) = Pp(z) = 1- /Hsz?(y) mi(z, dy)

=1—A¥mﬂwm®ﬂw21—mm3®ﬁ»

Consequently (iii) implies (i), because the right hand side is greater or equal 0. O

15



1 Invariant measures for Markov semigroups

For the rest of the chapter (P;);>¢ is assumed to be a stochastically continuous Markov
semigroup.

Definition 1.6. The Markov semigroup (P;)i>o is called

(i) regular at time t > 0 if all probability measures m(x,-), © € H, are mutually
equivalent. It is called regular if it is reqular at all times t > 0.

(i1) Feller at time t > 0 if Pyp € Co(H) for any ¢ € Co(H). It is called Feller if it is
Feller at all times t > 0.

(iii) irreducible at time ¢ > 0 if Pylp(y, s (x) > 0 for all x,20 € H, § > 0. It is called
irreducible if it is irreducible at all times t > 0.

Remark 1.7. (1) Note that the definitions in (ii) and (iii) depend on the topology of
H.

(2) If the Markov semigroup (Py)e>o is reqular at time s > 0, i.e. the probability measures
ms(x,-), © € H, are mulually equivalent, then it is regular for all times u > s.
Moreover, all probability measures m,(z,-), © € H, u > s, are mutually equivalent.

Clearly, it would be enough to show the last assertion. So, let x,y € H and first
suppose ms(x, A) = 0 for some A € B(H). Then using (1.1)

mu(y, A) = 7T(u—s)+s(?/a A) = / ms(2, A) Tu_s(y,dz) = 0,
H

because my(z,-) ~ ws(x,-) for all z € H. Hence m4(x,-) > m,(y, ). Now take
A € B(H) such that m,(y, A) = 0. Then from the above equality we conclude that
ms(z, A) = 0 for my_s(y,)-a.e. z € H. Butl m5(z,-), z € H, are mutually equivalent
and thus ws(z, A) = 0 for every z € H. In particular, ns(x, A) = 0, that is ws(x, ) K
Ty, ). Alltogether we have shown that 7s(x, ) ~ m,(y,-) for all x,y € H, u > s.

(3) If the Markov semigroup (Pi)i>o is irreducible at time s, i.e. Pslp(z, s (x) > 0 for
all x,xg € H, 0 > 0, then it is irreducible for all times u > s: for x,xg € H, 6 > 0
and uw > s we obtain

,PulB(xo,ﬁ)(x) = P(u—s)—&—slB(zoﬁ)(x)
= Pu—spslB(a:o,(s)(x)

= /Ps]-B(xo,é)(y) ﬂ-u—s(xvdy)
7t 0
>

> 0,

because (Pr)i>o 15 irreducible at time s.

16



1.2 Strong Feller property

1.2 Strong Feller property

Since it is not true in general to have uniqueness of the invariant Borel probability
measure from topological irreducibility combined with the Feller property - the coun-
terexmaple is the Ising model (cf. [6], Example 7.4) - we have to replace the latter by
a stronger regularity property. The right choice will be the strong Feller property (cf.
Theorem 1.35 below).

Definition 1.8. A Markov semigroup (Py)i>o is called strong Feller at time ¢ > 0 if
Pip € Co(H) for any ¢ € By(H). It is called strong Feller if it is strong Feller at all
times t > 0.

Remark 1.9. If the Markov semigroup (Py)i>o is strong Feller at time s, i.e. Psp €
Co(H) for all ¢ € By(H), then it is strong Feller for all times v > s. In fact, by the
semigroup property for arbitrary ¢ € By(X) we have

PuQO - Ps—i—(u—s)gp = 7Ds (PU—SSO)

and this function is continuous, because Py_sp € By(H) and (Pi)i>o is strong Feller at
time s.

Definition 1.10. Let p be a finite signed measure on (H,B(H)) with Jordan decompo-
sition = put — p~. Then the total variation norm of u is given by

lillry o= 5 - (u* () + (M)

In order to prove a sufficient condition for the strong Feller property, we need the
following approximation result for continuous functions by twice continuously Frechet
differentiable functions:

Lemma 1.11. Let p € Co(H). Then there exists a sequence (¢m),,cx » ©m € Cp(H), such
that ||pmllee < ¢lle for all m € N and ¢, "= ¢ pointwisely.

Proof. Let ¢ € Cy(H) and {e;}ieny be an orthonormal basis of H. For m € N define
orthogonal projections

P,:H — P,(H)=span{e,...,en}

m

r +— P,r:i= E (x,e;) - e
i=1
and corresponding functions

Jm: Pu(H) — R™

A (x,e;)-e; — ((z,e1),....{(x,en)),

17



1 Invariant measures for Markov semigroups

which are bijections.
Note that o J 1 € C(R™) for all m € N. Hence by Lemma A.2 in the appendix, for

every m € N there exists a sequence ([ r)ken, fmxr € CE(R™), such that f, () ooy

(o 1)(x) for all z € R™ and || frnk|loo < [0} || for all k € N. Replacing x by J,, ()
yields (fx o Jm)(x) i o(x) for all z € P,,(H). Consequently (fyx0 Jmo Pp)(x) i
(poPy,)(z) for all x € H. Moreover || fi k0 Jpm © Pnlloc < || 0 Pyl for all & € N. Since
¢ o P, = ¢ pointwisely and [|¢ 0 P, [oc < [|¢]|so for all m € N, a diagonal argument

applies in order to obtain a subsequence (¢ )men; Pm = fmm © Jm © P € CZ(H), such
that o, (7) — ¢(z) for all # € H and |[@mle < ||¢]leo for all m € N. O

Theorem 1.12. Let (Py)i>0 be a Markov semigroup on By(H) and let ¢ > 0 and t > 0
be fixed. Then the following conditions are equivalent:

(i) For all p € C2(H) |Prp(x) — Pep(y)| < ¢+ |¢lloo - 1z — yl| for all z,y € H, that is
Pup(+) is Lipschitz continuous for all p € CZ(H).

(ii) For all o € By(H) |Pro(x) — Pro(y)| < ¢ ¢l * |z — yl| for all z,y € H, that is
Pyp(+) is Lipschitz continuous for all ¢ € By(H).

(iii) ||me(z,-) =7 (y, - )|lrv < 5-llz—yl| for all x,y € H, that is the Markovian transition
kernel m; s Lipschitz continuous in the first parameter with respect to the total

variation norm ||-||7v .

In particular, if one of the above conditions holds (for all t > 0), the Markov semigroup
(Pi)e>o is strong Feller.

Proof. (iti) = (i1): Let ¢ € By(H) and z,y € H. Then

Peo(x) — Pero(y)| =

/H P(e) mi(o,d2) — [ p(a) mily. d2)

H

/H o(2) (mi(x. dz) — m(y, dz))
/ 0(2)] Im(e, dz) — mi(y, dz)|
H

< 24 l@llos - llmelz, ) = mi(y, ) lv
< ¢ |lello - lz =yl

IN

(i1) = (i): Obvious, because CZ(H) C By(H).
(1) = (4i7): Define
Ki:={p e C(H) | llellw <1}

and

Ky = {p € C;(H) | llollo < 1}

18



1.2 Strong Feller property

Obviously, Ky € Ky and therefore sup ¢, | Pr(7) = Pro(y)| < sup,ex, | Pro(w) —Prp(y)|-
But by Lemma 1.11 for each ¢ € K; there exists a sequence (¢, )nen, @n € Ko, such that
©n —3 ¢ pointwisely. Hence by Lebesgues dominated convergence theorem

Pro(x) — Pro(y)| =

/H o(2) (m(z,dz) — m(y, d2))

/H lim ¢, (2) (m(z,dz) — m(y, dz))‘

n—oo

= lim

n—oo

[ on(e) (o) = mta )|
JEEJ?%@n(z)_'¢%¢n(yﬂ
iléglpﬁn(ﬂf) — Pron(y)|

IN

IN

sup |Prp(x) — Pro(y)|
PpEKs

forall z,y € H and any ¢ € K;. Therefore sup,¢x, 1Pyo(x)—Pro(y)| < Supc,oeic2|73t90($)—
Pio(y)| for all x,y € H and alltogether

sup [Pup(x) — Pro(y)| = sup [Prp(x) — Pro(y)] (1.5)
peEK] PEKS

for all x,y € H. Furthermore, as a simple consequence of the Hahn-Banach theorem we
have

sup [Prp(x) — Prp(y)| = 2 [[m(z, ) — me(y, -)llzv- (1.6)
peK
Combining (1.5) and (1.6) and applying (i), the assertion in (iii) follows. O

In order to compare the later introduced asymptotic strong Feller property with the
strong Feller property, we stress the following proposition, which is in fact part of the
previous theorem:

Proposition 1.13. Let H be a separable Hilbert space and (Pi)i>0 a Markov semigroup
on By(H). If for all functions ¢ € By(H)

Pip(x) = Pip(y)] < Clll v 1yl) - lelloo - l2 =yl (1.7)

forallz,y € H,t > 0, where C: Ry — R is a fized nondecreasing function, then (Pi)i>o
s strong Feller.

Note that the equivalence of (ii) and (iii) in Theorem 1.12 remains valid for a Pol-
ish space X. In particular we have the following characterization of the strong Feller
property, which will be needed in chapter 3:

Theorem 1.14. Let X be a Polish space and (Pi)i>0 a Markov semigroup on By(X).
Then (Py)i>o is strong Feller if and only if for allt > 0 the transition probabilities m(x, -)
are continuous in the parameter x with respect to the total variation norm || - ||7v.

19



1 Invariant measures for Markov semigroups

Proof. Let t > 0 and z € X fixed.
First assume that the transition probabilities 7 (z, -) are continuous in x with respect

to the total variation norm || - ||zy. Let ¢ € By(X) and take a sequence (z,)peny € X
such that d(z,,z) — 0 as n — oco. Then
Pestan) = Pue@] = | [ o) mlandy) ~ [ o) m(aay)
x x

= | [ o) (mlansdy) = mla, )|
< /X o) 72 dy) — my(a, dy)|

< ¢l / (i, dy) — o, dy)|
X
= 2 Il - Ien, ) — 7ol Yoy

and this tends to zero for n — oo, since the transition probabilities m;(z, -) are continuous
in « with respect to the total variation norm || - ||7y.
The converse direction follows immediately by the following lemma. O

Lemma 1.15. Let X be a Polish space and P,Q be two Markov operators on B,(X)
that are strong Feller. Then the product PQ) is a Markov operator whose transition
probabilities 7(x,-) are continuous in x with respect to the total variation norm ||-||rv.

Proof. The proof is an immediate consequence of Theorem B.2 and Lemma B.5 in the
appendix. O

1.3 Invariant measures

Definition 1.16. A Borel probability measure p on 'H is called invariant for the (stochas-
tically continuous) Markov semigroup (Py)i>o if

| Peoto) ) = [ ola) i) (18)
H

H

for all ¢ € By(H), t > 0. The set of all invariant measures for (Py)i>o is denoted by
T (Py).

Remark 1.17. J(P;) is convex: Let p,v € J(P;) and o € [0,1]. Then
| Pet@) (et (1= i) (@) = a [ Ppla) uldo) + (1= a) [ Pupla) i)
H H H
— o [ @) uldn) + (1 =) [ pla) vido
H H
_ /ng(x) (i + (1 — ) (da).

for all p € By(H), t > 0. Therefore ap+ (1 —a)v € T(Py).

20



1.3 Invariant measures

Denote by M(H) the space of all Borel measures on H and define M;(H) :=
{ne M(H) | p(H) =1} to be the subspace of all Borel probability measures on H.
Recall that there is a natural embedding of the space of all probability measures on
(H,B(H)) into the space of all continuous linear functionals on Cy(H): M;i(H) —
Cy(H)*. Namely, for any u € M;(H) set

awwaﬂwwmm>

for all ¢ € Cy(H). Identifying u € M;(H) with F,, € C,(H)*, we obtain an alternative
characterization of invariant measures:

Lemma 1.18. Let (P;);>o be a Feller Markov semigroup on By(H). Then u € J(Py) if
and only of

Pip=p (1.9)

for all t > 0, where Py is the transpose operator of Py, defined as ¢, (1)« (PyF, @),y =
Cy(H)* <F, ,PtSD>Cb(H) for all p e Cb(H), Fe Cb(H)*

Proof. First, if p is invariant for (P;);>o we have

ﬁwwzwaw=am@=Lﬂwmw@=Lﬂwwm=&w:mw

for all ¢ € Cy(H) and this is (1.9).

Conversly, suppose (1.9) holds. Changing the order in the above calculation shows
(1.8) for all ¢ € Cy(H). Now a monotone class argument applies in order to show it for
all p € By(H). O

In particular, if u € M;(H) is invariant for (P;):>o we have

m®=Lm@AHM@ (1.10)

for all A € B(H). Equality (1.10) should be interpreted by saying that the py-mass of A
is given by the spatial u-average of all m,(z, -)-masses of A, © € H.
The next theorem is basic to the study of Markov semigroups.

Theorem 1.19. Assume that u is an invariant Borel probability measure for the (stochas-

tically continuous) Markov semigroup (Py)i>o. Then for allt > 0, p > 1 Py is uniquely
extendible to a linear bounded operator on LP(H, ) that we still denote by P,. Moreover

I Pell ey <1 (1.11)

for allt > 0. Finally, (Py)i>0 is a strongly continuous semigroup in LP(H, ).
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1 Invariant measures for Markov semigroups
Proof. Let ¢ € Cy(H). Using the Holder inequality we obtain

|Prp(a)]” < /HISO(y)I” m(x, dy) = Pi(ll?)(x).

Integrating both sides of this inequality with respect to u over H yields

1Puollt = /H Prp(a)l? ulde) < /H Pul|l?) () puldr) = /H p(@)P p(dz) = |||l

according to the invariance of p. Since Cy(H) is dense in LP(H,u), Py is uniquely
extendible to LP(H, ) and (1.11) follows.

It remains to show that (P;):>o is strongly continuous in LP(H, u). In order to do
so, first let ¢ € Cp(H). Since (P;)i>o is stochastically continuous by assumption, we
have that the function ¢ — Pyp(x) is continuous for any = € H. Consequently, by the
dominated convergence theorem

iy [ (Puol@)” i) = [l (Puo(a))” ldo) = | (ola))" nldo)
H H H

ie. P — @in LP(H,pu) as t — 0 for all ¢ € Co(H). Now let ¢ € LP(H,u). Since

Co(H) C LP(H, p) densely with respect to ||-||,, there exists a sequence (¥ )nen, @n €

Cy(H), such that ||, — ¢ll, — 0. In particular, for ¢ > 0 we can find some index
N(e) € N such that

[GSERO)

|Pro = Peonlly = 1P (0 = @u)llp < N1Pellowrim) - lle — @ally < Nl — @nllp <

for all n > N (e) by choice of the sequence (¢,,)nen. Moreover, according to the first part
for all n € N there is some §(n,e) > 0 such that ||Pyp, — @nll, < § for all t < 0(n,¢).
Alltogether we then have for some (fixed) n > N(¢)

[P — el < [[Pre = Prpnllp + 1Peon — @nllp + llon — ¢l
E € €
< 14z
- 3 * 3 + 3
= ¢

for all t < §(n,e). Therefore (P;)i> is strongly continuous. O

Now suppose that there exists an invariant Borel probability measure p for the Markov
semigroup (P;)i>0. Hence by the previous theorem the Markov semigroup is uniquely
extendible to L?(H, i) and the following definition is meaningful: Denote by ¥ the set

Yi={pc L*(H,p) : Pyp = ¢ p-as. forall t >0}

of all stationary points of (P;);>0. Note that in the definition of ¥ the nullset depends
up on t. Furthermore observe that by Remark 1.4(3) 1 € X. Moreover every function ¢
that is p-a.s. constant is contained in ..
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1.3 Invariant measures

Remark 1.20. ¥ C L*(H, p) is closed; i.e. let (on)neny C 2 such that || o, — @ll2 — 0
as n — oo for some ¢ € L*(H, ). We have to prove that ¢ € ¥.. Let t > 0 be fized.
Since

[Pip— ol < [P — Prgnllz + [Peon — @ullz + lon — ©ll2
< 2-lon = @lla + | Prgn — nll2
T
= 2 [lon — ¢l

for all n € N, letting n — oo yields |Pyp — ¢||2 = 0 according to the choice of (¢n)nen-
Therefore Pyp = ¢ p-a.s. for allt >0, e.g. p € X.

Theorem 1.21 (Von Neumann). For ¢ € L*(H,pn), T > 0 define

1 T

There exists the limit
My := lim M(T)y (1.12)

T—o0

in L?(H, p). Moreover, My, is a projection operator on ¥ and

[ Maola) uldo) = [ o(a) (o) (1.13)
H H

Note that since by Theorem 1.19 the semigroup (P;);>o is strongly continuous in
L*(H, p), the term M(T)p above is welldefined.

Proof. For any T' > 0 we can find ny € Ny, rp € [0, 1] such that T' = np+rp. According
to the Fubini theorem we have for ¢ € L*(H, u1)

1 T
M(T)y = ?/ Pso ds
0
nr—l okt

X

1 np—1

= 7 Z
k=0

1 nr—1

= = Z
k=0

YLT—I

1
— Tz
k=0

1 T
Psp ds + — / Psp ds
T Jour
1 1 rr
/ ,Perk:SO ds =+ T / ,PernTQD ds
0 0

1 1 rT
/ Pr(Psp) ds + —/ Py (Psp) ds
0 T Jo

[ ([ rectimean) ass 1 [7( [ Picto) mus ) s
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1 Invariant measures for Markov semigroups
1 np—1
T Z
k=0

/X(/Olpsso(y) ds) m(.,dy)+%/x (/OT Pso(y) ds) T (- dy)

- > P (/0177590 ds) () + 7P (/OT P ds) )

TLT—I

1 v [t rr I
- T;(Pl)/opsgods—l—T(Pl) fT/O Psgodi

———
=M(1)p =M(rr)e

np—1

(P ML)+ (P M(rr)e.

nr 1
T nr

-~

(%)

Since limy_.o % = 1 and limp_ & = 0, letting T — oo the assertion in (1.12)

follows from Theorem 5.11 in [10]. In fact, since sup,en||(P1)" || L2y < 1 < 0o and
M(1)¢ € L*(H, ), the assumptions thereby are satisfied and we thus obtain existence
of the L2Ilimit of the term () on the right hand side above as T tends to infinity.
Furthermore the second term is bounded in the L?-norm as it is easily checked.

In order to show that M, is a projection operator on 3, note that
Moo (Prp) = lim M(T)(Prip)

1 (T
= lim —/ Ps(Prp) ds
0

1 T
= lim T/(; PH_SQO ds

1 t+T
= jm oz / Pup ds

1 T t T
= lim —(/ Psgods—/ Psgods—l—/ Psg0d5>
T—oo T\ Jo 0 T
1 t+T

! 1
= J Mo Jin 7 [ Pupds+ Ji g [ P ds = M

for all ¢ € L*(H, i) and all t > 0. Hence

for all t > 0 and My p € X for all ¢ € L*(H, p) follows. Note that equality in (1.14)
can be checked by a similar calculation. Moreover, using (1.14) we have M, M (T) =
M(T)M,, = M,, which yields, letting T — oo, M2 = M,,. Therefore M, is a
projection operator on X. Again by the Fubini theorem and according to the invariance
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1.3 Invariant measures

of 1 the last assertion follows:

[ Maola) utdo) = [ Jim M(T)(0) ptd)
H H

O
Definition 1.22. An invariant Borel probability measure p for (Pi)i>o is called ergodic
if
1 [T
L*- lim —/ Prp dt = / o(z) p(dx) (1.15)
T—oo T J H

for all p € L*(H, ). Denote by E(P;) the set of all ergodic measures for (Py)eo-

The identity (1.15) is interpreted in physics by saying that the time average of the
Po’s coincides with the spatial average of ¢.

Proposition 1.23. Let u be an invariant Borel probability measure for (Pi)i>o. Then
w is ergodic if and only if dim (X) = 1.

Proof. Suppose u € E(P;) and let ¢ € ¥. Then it follows from (1.15) that ¢ is u-a.s.
constant. Therefore dim(X) = 1.

Conversely, assume that dim(X) = 1 and define F' € (L*(H, p))* by F(p) := (Mwp, 1)s
for all ¢ € L*('H,u). Note that since 1 € ¥ and My p € X for all ¢ € L*(H, u) by
Theorem 1.21, this is welldefined and we have

Myp = F(p)1. (1.16)

By the Riesz representation theorem there exists a unique element ¢y € L*(H, i) such
that F'(¢) = (@, o) 12, for all ¢ € L*(H, ). In order to show that p is ergodic, we
have to prove that ¢y = 1. Integrating (1.16) with respect to u over H yields

<907900>L2(H,u) = F((’D)
- /H F(o)1(2) p(de)

- /H Mp(x) u(da)

- / () u(d)

p(dr) = (o, 1) L2 ()
H

for all ¢ € L*(H, ) in view of (1.13). Therefore ¢y = 1. O
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1 Invariant measures for Markov semigroups

Definition 1.24. Let p be an invariant Borel probability measure for the Markov semi-
group (Py)i>o. A Borel setT' € B(H) is said to be invariant for (Py)i>o if its characteristic
function 1p € 3. The set I' € B(H) is called trivial if p(I") € {0, 1}.

The next aim is to show that p is ergodic if and only if all invariant sets are trivial.
Proposition 1.25. Let p, v € 3. Then the following statements hold:
(i) el € %
(ii) ¢*, = €T L
(111) V1, o N € 3;
(iv) For any a € R we have 1ize | pz)>a} € 2.
Proof. See Proposition 5.14 in [10]. O

Theorem 1.26. Let ;1 be an invariant Borel probability measure for (Py)i>o. Then p is
ergodic if and only iof any invariant set is trivial.

Proof. First, let € £(P;) and suppose I is invariant, e.g. 1r € 3. Since by Proposition
1.23 dim(X) = 1, the function x — 1p(x) must be (p-a.s.) constant. Therefore u(T") €
{0,1}, i.e. ' is trivial.

Conversely, suppose ¢ E(P;). Hence according to Proposition 1.23 there exists a
function ¢y € X that is p-a.s. not constant. So we can find some ay € R such that
w({po > ao}) & {0,1}, i.e. the set {¢g > ag} is not trivial. On the other hand by
Proposition 1.25 (iv) we have 1i, 54 € X, €.8. {@o > ao} is invariant. So there exists
some invariant set that is not trivial and the assertion follows by contraposition. O]

Now we are able to prove a sufficient condition for an invariant Borel probability
measure to be ergodic:

Theorem 1.27. Assume that there is a unique invariant Borel probability measure
Jor (Py)>0. Then p is ergodic.

Proof. Assume, by contradiction, that pu ¢ £(P;). Then by Theorem 1.26 there is a
non-trivial invariant set I'. Hence define for A € B(H) the Borel probability measure
pr by pur(A) = /%F) -u(ANT). We will prove that ur € J(P;). Since ur # u, this is a
contradiction to the uniqueness of p.

Since I' is invariant for (P;):>0, we have by definition 1pr € ¥, ie. Plr = 1p p-
a.s. for all ¢t > 0 and so m(z,[") = 1p(x) for p-a.e. x € H and all ¢ > 0. Similarly,
(2, 1) = 1re(x) for p-a.e. € H and all ¢ > 0. Consequently, for every A € B(H) we

LAs usual pt := V0 and ¢~ := (—¢p) V0.
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1.3 Invariant measures

obtain m(x, ANT) = 0 for p-a.e. z € I' and m(z, ANT) =0 for p-a.e. z €T for all
t > 0. Hence

/F (@, A) pldz) = /F (@, ANT) p(de) + /F ro(w, ANT) u(da)
_ /Fﬂt(x,AﬂF) u(dz)

_ /H (e, ANT) u(de)
= p(ANnT)

for all A € B(H) according to the invariance of p. Dividing both sides by u(I') # 0
yields

[ Petate) ete) = [ e A) () = ar(4) = [ L) (o)

H H H

for all A € B(H), which means that pr is invariant for (P;);>o. O
In order to show that the ergodic Borel probability measures for a Markov semigroup

are exactly the extremal points of the set of all invariant measures, we need the following
helping lemma:

Lemma 1.28. Let € E(P;) and v € J(P;) such that v < p. Then pp = v.

Proof. Let T" € B('H). By Definition 1.22 there exists a sequence (T,)nen, lim, o, 1), =
o0, such that

1 Tn
lim —/ Plr dt = u(I')  p-as. (1.17)
0

n—oo n

Since v < p, identity (1.17) holds also v-a.s. Now integrating with respect to v yields

/H(Tin OTn Pelr(z) dt) u(daz):Tin/oTn (/Hmp(x) y(dx)) dt = v(T)

for all n € N according to the invariance of v. Hence letting n — oo by Lebesgue and
(1.17)

/0 = Jim | (Tin /0  pn() dt> v(dw) = /H (1) v(de) = u(T).

Now the assertion follows by the arbitrariness of I' € B(H). O

Theorem 1.29. The set E(P;) of all ergodic Borel probability measures for (Pi)i>o
coincides with the set (J(Py)), of all extremal points of T (Py): E(Pr) = (T (Py)),.-

Proof. (i) E(P,) C (J(Py)),.: Let p € E(P,) and assume, by contradiction, that p ¢
(J(P)),.. Then there exist py, o € J(Py) with p4 # po and a €]0, 1] such that
uw = au; + (1 — a)us. Hence py < p and py < p and this is a contradiction
according to Lemma 1.28. Therefore p € (J(Py)),.
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1 Invariant measures for Markov semigroups

(ii) E(Py) 2 (J(Py)).: Conversely, let pn € (J(P;)), and assume p & E(P;). Then
by Theorem 1.26 there exists a non-trivial invariant set I'. As in the proof of
Theorem 1.27 one can show that ur, ure € J(P;) (with pr, ure defined as thereby).
Since obviously pr # pre and g = p(I)pr + (1 — w(I')) pere, 1 is not extremal, in
contradiction to above.

O

Theorem 1.30. Let p and v, u # v, be two ergodic Borel probability measures for
(Pt)i>0. Then p and v are singular.

Proof. Let I' € B(H) such that u(I") # v(I'). Since p and v are ergodic, by Definition
1.22 there exist a sequence (T},)nen, T, — 00, and sets M, N € B(H) with u(M) =
v(N) =1 such that

lin / P dt = /H 1r(2) p(dz) = p(T)

n—oo n

for all x € M and

Tn

nh—{goin i Pilr(z) dt = /Hlp(x) v(dzx) = v(T)

for all x € N respectively. Since u(I') # v(T'), this implies M N N = () and so p and v
are singular. O

Corollary 1.31. If the set J(P;) of invariant Borel probability measures for (Pi)i>o
contains more than one element, there exist at least two elements p,v € E(Py) C T (P)
such that p and v are mutually singular.

Proof. Suppose J(P;) has at least two elements, A, \y € J(P;) with A; # Ay. Then by
Theorem 5.2.16 in [4] there exist probability measures py,, pa, on E(P;) such that

() = / ) o)

for i = 1,2. Assume E(P;) = {u}. Then Ay = p = Ao, in contradiction to the choice of
A1, A2. Therefore £(P;) must contain at least two elements, u,v € E(P;) with pu # v.
According to Theorem 1.30 x4 and v are mutually singular. O

Consequently, if J(P;) contains more than one element, the state space H can be
partitioned into (at least) two disjoint parts, e.g. H = A U B, with the property that
if the Markov process starts in A, then it will stay in A for all times £ > 0 almost
surely and the same is true for the complement B. (In particular, the zero-set does
not depend on the point in time ¢.) The intuition that derives from this consideration,
is that uniqueness of the invariant measure is a consequence of the process visiting a
‘sufficiently large’ portion of the state space, independently of its initial position.
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1.4 Existence of an invariant measure

1.4 Existence of an invariant measure

In Theorem 1.19 we have seen that, if there exists an invariant measure for the (stochas-
tically continuous) Markov semigroup (P;):>o on By(H), then (P;)i>o can be extended
uniquely to LP(H, u), p > 1. So it might be important to ask, whether there exists an
invariant measure. In the literature there is the following well-known result (cf. [10] or

11]):

Theorem 1.32 (Krylov-Bogoliubov Theorem). Let (Py)i>o be a Feller Markov semi-
group on By(H). Assume that there is some pg € Mq(H) such that the sequence
(P po)i>o is tight. Then there exists at least one invariant Borel probability measure

s for (Pe)ezo-
Proof. Let (u:)¢>0 be the set defined by

t
wld) =4 [ (Prua)(a) ds, A€ B),
Since (P po)i>o is (uniformly) tight by assumption, for every € > 0 there exists some
compact set K. such that sup,~,P;uo(KS) < . Taking the same compact set, it is
straightforward to check that (p);o is (uniformly) tight as well. Therefore by Prohorov
(cf. [10], Theorem 6.7) there exists a subsequence (i, )neny and a Borel probability
measure i, such that p,, — p, weakly as n — oo. Let ¢ € Cy(H). Since according to
the Feller property Pip € Cy(H), by weak convergence and Fubini we have

[(Pf 1) (@) — pa(0)]
= (P FL.L)(p) = Fu.(¥)]
= |Fu.(Pwp) = Fu.(9)|

[ Puta) (o) - /H () p(de)

= lim

dm | | Pro(@) p, (de) = /H () 1, (d)

= m f, (Pe) — ()

= | [P o) ds— [ (P ) s
- /Ot"(/mso(m)( )ds—/o ([ Puste) ulae)) s
([ o) i i) i
fn+t
([ i) [ 50 i
1 tn+t tn
~ i | (/ <>uo<dx) i | (/ uo<da:>) ds
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1 Invariant measures for Markov semigroups

tntt t
= lim — / (/ Pso(x) uo(dx)> ds—/ </ Pso(x) ,uo(dx)) ds
=0 ln | Sy, H tn \JH
tn
[ ([ Peete) ata)) s
0 H
1 tn+t t
= lim — / (/ Pso(x) uo(dx)> ds—/ </ Pso(x) ,uo(dx)) ds
=00 by |, H 0 H
.2t
=0
for all £ > 0. Now the conclusion follows according to Lemma 1.18. O]

1.5 Uniqueness of the invariant measure

In view of Theorem 1.27 we have ergodicity of the system if there is a unique invari-
ant Borel probability measure u for the (stochastically continuous) Markov semigroup
(P¢)t>0- Hence it might be useful to look for conditions under which uniqueness of the
invariant measure is guaranteed. It turns out that the combination of the strong Feller
property and irreducibility is the right requirement (c¢f. Theorem 1.35 below).

Proposition 1.33 (Doob). Let (P;)i>o be a (stochastically continuous) reqular Markov
semigroup and p an invariant Borel probability measure for (Pi)i>o0. Then w is equivalent
to m(x,-) for all x € H,t > 0. Moreover, i is the unique invariant Borel probability
measure for (Pg)i>o-

Proof. Let A € B(H) and t > 0 arbitrary. Since p is an invariant measure for (P;);>o

H(A) = /H 1a(y) puldy) = /H PiLa(y) pldy) = /H mi(y, A) pldy). (1.18)

Let x € H, t > 0.

First show that u < m(z,-). Let A € B(H) such that m(x, A) = 0. Since (Pi)>o is
regular by assumption, m(y, A) = 0 for all y € H. Therefore by (1.18) u(A) = 0. Hence
p < m(z,-), e.g. pis absolutely continuous with respect to m(x, ).

Conversely take A € B(H) with u(A) = 0. Again using equation (1.18) gives
m(y,A) = 0 for p-a.e. y € H. By the regularity of (P;);>o we obtain m(y, A) = 0
for all y € H. In particular, m(z, A) = 0. Hence m(z, ) < p.

Alltogether we thus have shown that p is equivalent to m(z,-) for arbitrary x € H
and t > 0.

It remains to prove the uniqueness of u. For this assume that p and v, u # v,
are two ergodic Borel probability measures for (P;)i>o. Then p and v are singular by
Theorem 1.30. Hence there exist A, B € B(H), AN B = 0, such that u(A) =v(B) = 1.
Since it was shown in the first part of the proof that u ~ m(z,-) for all £ > 0 and
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1.6 First step towards the asymptotic strong Feller property

x € H, we obtain m(x,A) = 1 for all ¢ > 0 and x € H. Applying the same argument
for the ergodic measure v leads m;(z, B) = 1 for all ¢ > 0 and = € H. This implies
m(z, AUB) = m(z,A) + m(x,B) =1+ 1 =2for all t > 0 and = € H, which obviously
contradicts m;(z,H) = 1. Therefore yu is the unique invariant Borel probability measure
for (Pt)t20~ O

Proposition 1.34 (Khasminskii). Let the Markov semigroup (Pi)i>o be strong Feller
and wrreducible. Then it is reqular.

Proof. Let t > 0 and xy € H be arbitrary and fixed. We have to show that m(x,-) ~
(o, -) for all z € H, i.e. the null-sets of m,(x, ) and m;(zo, -) coincide for all x € H. For
this it would be enough to show: If A € B(H) is taken in a way such that m(zg, A) > 0,
then m(x, A) > 0 for all x € H.

Suppose A € B(H) such that 7 (zo, A) > 0. Then by (1.1) for any 0 < s < ¢t we have

/ tes(ys A) (20, dy) = Toros) (20, A) = mo(0, A) > 0.
H

Therefore there exists at least one yo € H such that m_s(yo, A) > 0. Since by (1.4)
Te—s(Yo, A) = Pi_s1a(yo) and y — Pr_s14(y) is continuous (because (P;):>o is strong
Feller by assumption), there exists > 0 such that m_(y, A) = Pi_s1a(y) > 0 for all
y € B(yo,r). Consequently for arbitrary x € H we obtain

me )= [ me ) mlod) = [ mefn ) o) >0
H B(yo,r)
because 7s(x, B(yo,7)) > 0 according to the irreducibility of (P;);>0. So, m(z, A) > 0
and we have proved that m(z, ) ~ m(xo, ) as required. O

Taking Propositions 1.33 and 1.34 together we obtain

Theorem 1.35. Let (P;)i>0 be a Markov semigroup that is strong Feller and irreducible.
Then there is at most one invariant Borel probability measure for (Py)i>o-

1.6 First step towards the asymptotic strong Feller
property

We conclude the first chapter by proving an interesting property of two distinct ergodic
measures concerning their supports if the Markov semigroup is strong Feller. For the
proof we will need the following

Lemma 1.36. Let p be a probability measure on (H,B(H)). Then
supp(p) ={x € H | w(B(x,r)) >0 ¥V r >0} (1.19)
Moreover, if o € Co(H), ¢ >0, is such that

/H () pldz) = 0, (1.20)

then @(x) =0 for all x € supp(p).
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1 Invariant measures for Markov semigroups

Proof. Let xy € supp(p) and assume zo € {x € H | p(B(z,r)) > 0 Vr > 0}. Then
there is some r > 0 such that u(B(xg,r)) = 0. Hence in view of the definition of
the support of a probability measure as the intersection of all closed subsets having
probability 1, xy & supp(u), in contradiction to above. Therefore xy € {x € H |
w(B(xz,r)) >0 Vr > 0}. Conversely, suppose zo ¢ supp(u). Then there exists some
ro > 0 such that p(B(zg,70)) =0 and so g € {x € H | u(B(x,7r)) >0 V r > 0}. Hence
the assertion in (1.19) follows.

Now let ¢ € Cy(H), ¢ > 0, such that [, ¢(z) p(dx) = 0. Then p(z) = 0 for p-
a.e. x € H. Suppose zg € H such that p(zg) > 0. Since ¢: H — R is continuous,
there exists some 79 > 0 such that p(x) > 0 for all z € B(xg,79). According to (1.20)
pu(B(xg,r9)) = 0 then. Therefore by (1.19) xy & supp(x). Thus we have shown that
o(x) = 0 for all x € supp(u). O

Proposition 1.37. Let (P;)i>0 be a Markov semigroup with the strong Feller property.
Let o and v, u # v, be two ergodic Borel probability measures for (Py)i>o. Then supp(p)N

supp(v) = 0.

Proof. By Theorem 1.30 1 and v are singular. Hence there are A, B € B(H) such that
ANB=(and u(A) =v(B) = 1. Then for any ¢t > 0 we have

0 = p(A°) = / 1ae () pu(d) / Pae () ulde) = /H o, A%) p(de)
and
0= v(B) = / 15 (2) v(dz) / Pl e () v(dz) /H (. BY) v(dz)

respectively. Since (P;):>o is strong Feller, the functions = — Pl c(x) = m(x, A°) and
x +— Plpe(x) = m(x, B®) are continuous. Hence by Lemma 1.36 we have 7, (z, A°) =0
for all x € supp(p) and m(z, B¢) = 0 for all © € supp(v) respectively. Assume that
there is some x¢ € supp(u) Nsupp(v). Then m(xg, A) = m(xg, B) = 1, which implies
7 (xo, AUB) = m,(xg, A) + m(z9, B) = 1+ 1 = 2. This is a contradiction in comparison
to m(x, H) = 1. Therefore supp(p) Nsupp(v) = 0. O

Actually, the proof of Proposition 1.37 suggests to introduce the notion of being strong
Feller at some point z € H, e.g. the Markov semigroup (P;):>o is called strong Feller
at © € H, if the function Pyp is continuous at z for all ¢ € By(H), t > 0. With this
notation, the same proof as above allows to conclude, that if the Markov semigroup
(Py)e>0 is strong Feller at the point € H, then z can belong to the support supp(u) of
at most one invariant Borel probability measure u for (P;);>0. In particular, if (P;);>0 is
strong Feller (at every x € H) and there exists some point € H such that = € supp(u)
for every invariant Borel probability measure p for (P;)i>0, then there exists at most one
invariant measure /.

This idea will be important when deriving uniqueness of the invariant Borel probability
measure from the asymptotic strong Feller property later in this thesis.
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2

Monge-Kantorovich duality

The field of mass transference problems and dual representations of it originates in the
1781 formulated Monge problem. Although there had been intensively study in the
following centuries, there are open problems even today. For our purpose it would be
enough to distinguish two main formulations of this famous problem (cf. [12]):

(1)

The Monge-Kantorovich problem (One-stage problem). Suppose we are given two
finite measures p; and ps on some space X' with equal mass, e.g. (X)) = po(X),
describing the masses of A C X and B C X respectively. While p; is refered to the
initial distribution, ps is called the final distribution. A transference plan would be a
finite measure p on the product space X x X with marginals p; and py respectively.
The set of admissible transference plans is denoted by C(uq,p2). The amount of
mass shipped from an infinitesimal small neighborhood dx of x € X into another
infinitesimal small neighborhood dy of y € X is then proportional to u(dz,dy). If
the unit cost of shipment from z to y is denoted by ¢(z, y), the total cost of shipment
is given by

/){2 c(x,y) p(de, dy). (2.1)

To minimize the transportation costs, we have to find some optimal transference
plan p* € C(p, p2) for which (2.1) is minimal, e.g.

/)(2 c(z,y) p*(dz, dy) < / c(x,y) p(dz, dy)

X2

for all pu € C(uq, p2). Therefore we will consider the Kantorovich functional:

K.(p1, po) :=  inf /X2 c(x,y) p(de, dy). (2.2)

weC(p1,p2)

The Kantorovich-Rubinstein problem (Multi-stage problem). Contrary to the above
we consider here the problem of transferring masses in cases where transits are
permitted. Rather than shipping a mass from a certain subset A C X to another
subset B C X in just one step, the shipment is made in n stages: Ship A = A; to
the volume A, C X, then transfer Ay C X to A3 C X, ..., A,_1 C X to A, = B.
Let B(up — pe) be the space of finite measures on (X2 B(X?)) having marginal
difference p; — po. It can be shown (cf. [12], p. 91-92) that minimization of the
involved transportation costs in this case is equivalent - at least if the infimum below
is attained - to find some optimal transference plan b* € B(py — p2):

[ e ptnay = it [ o) bdndg) = Rlm). @23

bEB (11 —p2)
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2 Monge-Kantorovich duality

The right hand side in (2.3) is called Kantorovich-Rubinstein functional. If ¢ = d
for some metric d, W (pq, u2) := Ra(p1, po) is called the Wasserstein norm of the
measures 1 and .

Instead of solving the above problems separately, e.g. finding measures u* and b*
that realize (2.2) and (2.3) respectively, we aim to formulate dual representations for
both problems respectively. Afterwards it will be shown that the two primal problems
coincide if and only if ¢ is a metric (cf. Theorem 2.18 below). In particular, (2.32),
which means equality of the Monge-Kantorovich problem and the dual problem of the
Kantorovich-Rubinstein problem, holds in case of a metric d.

Before we do so, note that via suitable normalization, e.g. dividing by u(X), it
would be sufficient to consider probability measures Py, P, on (X, B(X)) instead of finite
Borel measures g, pto. Hence the infima in the Monge-Kantorovich problem and the
Kantorovich-Rubinstein problem are taken over the sets

C(P,Py) :={Pec M(X?) | P(AxX)=Pi(A), P(X x A) = P,(A)V A€ B(X)}
={Pc M(X* | 'P=P, TP =P},

and

B(P,— P):={Pec Mi(X?*) | P(AxX)—PX xA)=(P—PR)(A)V AcB(X)}
={Pec M(X? | T\P—-ToP =P — P},

respectively, where T; P denotes the ¢-th marginal of P, i =1, 2.

2.1 Dual representation for the Monge-Kantorovich
problem

Now we turn to the duality theorem for the Monge-Kantorovich problem (2.2). Let
(X, d) be a separable metric space and define

C={c:XxX >R, | IHeH : cla,y) = H(d(z,y)) ¥V (z,y) € X},

where H is given by

H(2t
H = {H € LR, Ry) | H(0) =0, H strictly increasing and convex, sup H((t)) < oo} :
>0

Here L(R,,R,) denotes the set of all Lipschitz-continuous functions from R, to R,.
The last condition in the definition of H is known as Orlicz’ condition. Furthermore
define for c € C

Ge(Y) :=A{(f,9) | frg€ La(Y), f(x)+g(y) <clz,y) ¥V z,y €V} (2.4)

for any subset Y C X.
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2.1 Dual representation for the Monge-Kantorovich problem

Theorem 2.1 (Kantorovich Theorem). Let (X, d) be a separable metric space, ¢ € C
and P; such that [, c(z,a) Pi(dx) < oo for some fired a € X, i =1,2. Then

K(PLP) = i /c( y) Pdz, dy)

PEC Py, P2

- fg53£X>(/ flw) Pildz) + / <y>Pz<dy)>. (2.5)

Moreover, if the Borel probability measures Py, Py are tight, then the infimum on the left
hand side is attained.

Proof. Obviously we have
[ @ Ao+ [ g Ptin) = [ s Pasdn + [ o) Plasdy
= | 1) +9(0) Plds.dy)
< | clo.y) Pldo.ay)
for all (f,g) € G.(X), P € C(P,, P,). Hence

s ([ 1 o+ [ o ran) < int | oo Pldedy). (26

It remains to prove the converse inequality. This will be done stepwise with the help of
the following preliminaries. [

First part: Separable metric space (X, d) with bounded metric d. Suppose that d is a
bounded metric on X and define for ¢ € C

pr(z,2") = sup|c(z,y) — c(a’,y)],
yeX

p2(y,y) = SHEIC(x,y)—C(x,y’)!
xTEe

for all z, 2’ € X and for all y,y’ € X respectively.
Claim 1. p; is a bounded metric on X fori=1,2.
Proof. The assertion will be shown for i = 1 only.

(i) It is clear that py(z,2") > 0 for all z,2’ € X.

(ii) For z,2' € X we have

pi(z,2) =0 & suple(r,y) —c(a’,y)| =0
yeX
& [H(d(z,y)) — H(d(z",y))| =0V yeX
& dz,y)=dx,y)Vye X
& x=2a.
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2 Monge-Kantorovich duality

(iii)

pi(z,a) = suple(z,y) — c(', y)| = sup|c(z, y) — c(z,y)| = p1(2', z)
yeX yeX

for all x,2' € X.
(iv) For z,a',2” € X we have
pi(z,2') = suple(z,y) — c(a’,y)|
yeX

< suple(z,y) — c(z”, y)| + suplc(z”,y) — (@', y)|
yeX yeX

= M ({E, ‘T”) + p1 ([E//’ xl)'

It remains to show that p; is bounded: Observe that since the metric d is bounded, we
have d(z,y) < K for all z,y € X and some constant K € R,. Hence we receive for all

(z,2') € X*?

pi(x, ") = 31615\6(96,@/) — (@, y)| = EEE’H(W’@/)) — H(d(2',y))| <2- H(K) < oo.

For ¢ € C and any subset ) C X define

GY)=A{(f.9) | f,9 € B (), f(z)+g(y) <cz,y) VYa,yeV}

and

Gl(Y) ={(f,9) € G| f(2) = f(=)] < pa(z,2)
9(y) — 9| < paly,y) Y, 7' y,y € V]

Claim 2. For arbitrary ¢ € C and any subset Y C X we have the chain of inclusions

G (V) CG.(Y) CG.().

Proof. The second inclusion is obvious by definition. To prove the first inclusion, it would
be enough to show p;(z,2’) < K - d(x,2’) for all z,2" € Y and p2(y,y") < Ky - d(y,y')
for all y, 1y’ € Y and suitable constants K7, Ky € R,. But this follows immediately from
the Lipschitz-continuity of H. In fact

pi(z,2') = suple(z,y) —c(a’,y)]
yeX

[H(d(z,-)) = H(d(z', )]l
Lip(H) - [|d(z,-) — d(2', )|l
K -d(x,x)

IA A

for all x, 2’ € ). The assertion for the bounded metric p; follows in the same way. [
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2.1 Dual representation for the Monge-Kantorovich problem

We will need the following
Lemma 2.2. If Y C X such that P;(Y) =1 fori=1,2, then

o (00 i) = e ([ 0001+ o)

2.7
Proof. Let (f,g) € G/(Y) and define for z € X Y
(@) = Inf (c(z,y) — g(y))
and fory e X
9" (y) = nf (c(z,y) - f*(2)).
Claim 3. (f*,¢%) € G"(X).

Proof. Since c: X? — R, is continuous, f* g*: X — R are upper semi-continuous.
Indeed, suppose € X and (2, )neny € X such that d(z,,z) —> 0. Since

f(an) = tnfe(zn, y) — 9(y) < c(@n.y) — 9(y)
for all y € Y, n € N, we have

lim sup f*(z,) < hm ( (Tn,y) —9()) = clz,y) — 9(y)

n—oo

for all y € YV and thus
lim sup f*(z) < inf (c(z,) — 9(y)) = f*(2),

n—oo

that is f* is upper semi-continuous in z. It is well-known that each upper semi-
continuous function h: X — R is such that h™((—o0,a)) C X is open for all a € R.
As result f* and ¢* are Borel measurable. Furthermore

f@)+g°(y) = f(2)+ inf (c(2',y) = [7(2)
< ff(@) + (e, y) — fr(x)
= c(z,y)

for all z,y € X. Since the boundedness of f* g* is clear according to the choice of
(f,g9) € G.(¥) and the boundedness of d, we already know that (f*, g*) € G.(X).
In order to prove that (f*,g*) € G/(X), observe that

frx) = fr () = ;g)f, (c(z,y) —9(y)) — ;g, (c(z’,y) — g(w))
= ;g)f, (clz,y) —g(y)) + sup (9(y) —c(@',y))

< sup (c(z,y) — c(a',y))
yey

< suple(x,y) — c(a',y)|
yey

= p1($,xl)
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2 Monge-Kantorovich duality

for all x, 2’ € X. Changing the roles of z, 2" and using the symmetry of the metric p;
we gain |f*(z) — f*(2)| < p1(z,2’) for all z,2" € X. In the same way one can argue for
g%, e.g. let y,y/ € X. Then

9 =g"(y) = inf (c(z,y) = [*(2)) = nf (e(z,y) = [*(2))

reX

inf (c(x,y) — f*(x)) +sup (f*(x) — c(x,y))

s (c(z,y) = c(z,y))

< suple(z,y) — c(z, )]
xeX

IN

= pa(y,y).

Hence we have |g*(y) — ¢*(v)| < p2(y,v') for all y, 3/ € X according to the symmetry of
p2. Therefore (f*,g*) € G/(X). O

Since (f,g) € G.(Y), we have for fixed x € Y
fx) < clz,y) — g(y)

for all y € Y and hence
f(z) < inf (c(z,y) — g(y)) = [*(2).

yey

Similarly, for fixed y € ) we have:
9°(y) = inf (c(z,y) — f*(x))

= it (etep) = int (clo) ~ o)
> nf (e(z,y) — e(z,y) + 9(y))
= 9(y).
Thus f(z) < f*(z) for all x € Y and ¢(y) < ¢*(y) for all y € Y. Therefore

[ 1@ Pty < [ @) Ao, (28)
Y Y

/ 9(y) Pa(dy) < / 9" (y) Pa(dy). (2.9)
Yy Y

Summing up both sides of (2.8) and (2.9) respectively yields
[ @ P+ [ ) P < [ 1) tiny + [ 50) Pota)
for all (f,g) € G.(Y). Since P;(X \ V) = Po(X \ V) = 0, we can replace ) by X, e.g.

/X [(@) Pi(de) + /X 9(y) Paldy) < /X [*(2) Py(dz) + /X g (4) Pa(dy)
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2.1 Dual representation for the Monge-Kantorovich problem

for all (f,g) € G.(Y). Hence, since as shown above (f*, g*) € G/(X) for all (f,g) € G.(),

=N ([ p+ [ rian) < s ([ 56 o+ [ o) raia).

(f,9)€G¢(X)

(2.10)
On the other hand, since G/(X') C G.(}), we have

fgsélgff(x ( / f(x) Pi(dz) + / 9(y) P2(dy)) sup < / f(x) Py(dv) + / 9(y) pQ(dy)>

(f9)€ge(Y
and this yields

(Lo ran - [ ) = ([ rmte+ o )

(f.9)€GY (X)
(2.11)
because
i (/f ) Pr(dz) + /(y)Pz(dy)) . (/f ) Pri(dz) + /(y)Pz(dy)>-

Now the assertion follows from (2.10) and (2.11). O

We proceed in the proof of Theorem 2.1 by considering different cases for the space
X

1) Let X be a finite space.

So, there exists some n € N such that X = {z,...,z,}.
Then

inf P(dz,d
PGCl(IllJl,Pz) /XQ C($7y> ( “ y)

= inf C(xi y Ly ) : P(xinxi )
Pz, i) > 0V iy, o, (ZZ o ’

i1=1iy=1
Z%:l P(Qiil,xi2) = P1($i1> i i.17
Zilzl P(xi17 Iiz) - PQ(Z’Z‘Q) A 19

and according to the duality principle in linear programming this is equal to

sup Z (f(zi) - Pr(@s) + g(@i) - Pa(z))
f(mll)—l—g x12 )<c( (Ezl :EZQ) Y 11,12 i

i=1

T e (/ J (@) Pr(de) + / (?J)P2(dy)).

Hence by Lemma 2.2 (with ) = X) we have

inf P = ) P
peddf /){2 c(z,y) P(dx,dy) sup (/ f(z) Pi(dz) +

(f9)€gu(x

= sup (/ f(x) Pi(dz) +
(f.9)€g (X

< sup (/f ) Pi(dz) +
(f,9)€Gc(X

o(0) Pl )
o(0) Pola))

><\><\><\

o(0) Pola)).
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2 Monge-Kantorovich duality

40

because G”(X) C G.(X). In particular, there exists some Borel probability measure
P* € C(Py, P,) such that

/)(2 c(x,y) P*(dx,dy) = inf / c(x,y) P(dz,dy).

PGC(Pl ,PQ) X2

Let X be a compact set.

Claim 4. For anyn € N there exist sets Ay, ..., Apm, € B(X), Ax # 0, diam(A) <
forallk=1,...,m, and A, N A, =0 for all k # 1, such that

X = UZlAk'

Proof. Let n € N. Suppose (O;);en is an open cover of X’ such that diam(O;) < %

for all 7+ € N. Since X is compact, there exist m, € N and 7;,, K = 1,...,m,, such
/ c k= ’

that X C (J;2 O;,. For every k € {1,...,m,} define O; := O;, \ szll(’)ij. Observe

that OW k=1,...,m,, are disjoint and X 'QmUZ:l(’);k. Defining A;, := O;k N X for

every k = 1,...,m,, we finally obtain X = (J,_, As. O

Define a mapping h,: X — X, .= {z1, ..., } C X by h,(z) := zy if x € Ay for
some x € Ag, k= 1,...,m,. It is not difficult to show that h,(z) — = as n — oc.
Extend the Borel probability measures P; o h,' i = 1,2, to X in an obvious way,
namely (P, oh,"), (A):= (P,oh,") (AN X,) for all A € B(X). In order to simplify
notation we will not distinguish between (P;oh,'), and P, o h,'. Note that the
measures Pyoh ! and Pyoh, ! are completely supported by X,,. Hence using Lemma
2.2 with ) = X, and the Borel probability measures P;oh. ! instead of P, for i = 1,2
we gain

sup ( (z) (Prohy')(dz) + /Xg(y) (Proh,t) (dy))

(fg Eg (Xn

=, o ( (P oh;, )(dx)+/xg(y) (P2ohyt) (dy)>

(f,9)€G¢ (X

< sup < (Prohyt) (dz) + / 9(y) (Paohyt) (dy))
(fg egC(X X
= Sllp <

(fg eg(,(X

) P+ | gl (v) P2<dy>),

-~

F(hn (@)= Py (dz)+ [ g(hn(y)) Pa(dy))+5%

where we use the transformation theorem for the last equality.



2.1 Dual representation for the Monge-Kantorovich problem

Let (f,g) € G.(X). Denoting by ||f|la and ||g||s the Lipschitz-constant of f and ¢
respectively, we then have

f(ha(@)) + g(hn(y)) < [f(hn(2)) = F@@)] + lg(hn(y)) = 9(y) + f(z) + 9(y)
< [ flla- dlhn(x), ) +llglla - dhn(y), y) +c(2,y)
%/_/ ——

1

1
n

< —-(Iflla+llglla) + c(z,y)

=3 =

= g +C(l’,y)

for all z,y € X and some constant K € R, which is independent of n and x,y.
Since, in addition, f o h, and g o h, are Borel measurable and bounded, we have
(foh, =% goh,) € G.(X). Therefore, in order to lose the n-dependence of the
supremum, we find

(o) (/ () = 2 Pi) + /X 9(ha(v)) P2<dy>) il

< s (/f Py(da) + /(y)Pg(dy))—F%. (2.12)

Since &, is finite, by 1) there exists a measure P™ € C(P, o h;', Pyo h;') such that
/ c(z,y) P"(dx, dy)
X2
= / c(x,y) P"(dx, dy)
7
= inf / c(z,y) Q(dz,dy)

QeC(Prohyt Pyohyh)

= sw ([ @) (o) o)+ [ ) (Rron) (@) 213
(f,9)€GL(Xn) X
Claim 5. P;oh,' — P, weakly on X as n — oo fori=1,2.

Proof. Let f € Cp(X) and ¢« = 1,2. Applying the transformation theorem and
Lebesgue yields

lim [ f(e) (Poh,')(dz) = lim | f(ha(x)) P(de)

_ /X lim f(ho(z)) Pi(dz)

n—oo

_ /Xf(x)P iz

because f is continuous and h,(z) tends to x as n — oo. Therefore P;oh ' converges
weakly to P; as n — oo. O
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3)

42

Since X, C X for all n € N and X is compact, (P; o h,'), . is uniformly tight. But
X? is compact as well and P € C(P,oh; ', Pyoh'). Hence (P™),cy is uniformly
tight and thus relatively compact. Therefore there exists a Borel probability measure
P* on X? and a subsequence (P")),cy such that P"™) — P* weakly as k — oo.
Since P; o h,! — P, weakly as n — oo for ¢ = 1,2, a monotone class argument
applies in order to show that P* € C(Py, P»). Hence by (2.13) and (2.12)

/)(2 c(x,y) P*(dz,dy)

= lim c(z,y) P (dzx, dy)

k—o0 X2

_ JE&( o ( / f(z) (Prohsl) (do) + /X g(y) (Prohi) (dy))>
'}Lrg°<f9§£ () (/ f(w) Pi(dr) + / 9(y )Pz(dy)> + %)
T e </X f(z) Pr(de) + /X 9(y) PQ(dy)).

Therefore, since P* € C(P;, P;), using Lemma 2.2 with J) = X we obtain

IN

inf /X2 c(x,y) P(dz,dy) < / c(x,y) P*(dz,dy)

PeC(Py,P2)
< s (/f ) Pi(dx) + /(y)Pz(dy))
o (L i)
< fgsggpp (/f ) Pi(dx) + /(y)Pz(dy)>-

Moreover, according to (2.6) the coupling P* € C(Py, P») is optimal for the primal
problem.

Let (X,d) be a separable metric space with bounded metric d, i.e. there exists some
constant K € R, such that d(z,y) < K for all z,y € X. Since H is Lipschitz-
continuous, it follows

/X pr(x,a) Py(dz) = /X suple(z, y) — c(a,y)| Pi(dx)

yeX

_ / sup|H (d(z,y)) — H(d(a,y))| P(dz)

[l
=
=

(d(z,-)) — H(d(a,"))| Pi(dz)

<Lip(H)-[ld(z,)—d(a,)]




2.1 Dual representation for the Monge-Kantorovich problem

< Lip(i)- | da.z) Pi(ds)
< Lip(H)-K

< o0

and in the same way [ p2(y,a) Pa(dy) < oo for some fixed a € X.

3.1) First of all, let Pj, P» be tight probability measures on (X, B(X)). Then for
every n € N there exists a compact set K,, C X such that

sup /C pi(x,a) Py(dr) < l (2.14)

i=1,2

3

For A € B(X) define
Pon(A) = PANK,) + PAKS) - 8,(A).
Since
Poal(K, U{a}) = P(K, U{a}) N K,) + PAKS) - 8,(K, U fa}) = P(K,) + P(KS) = 1

for i = 1,2, according to Lemma 2.2 (applied to YV = K, U {a} and the Borel
probability measures P ,,, P»,) we have

sup (/ f Pln dl’ / (y) PQ,n(dy))
(f.9)€GL(KnU{a})

" o ([ 1) Prntae) + [ at0) Puntan).

Observe that for the first integral on the right hand side we have
[ @ Patdn) = [ @) Ptdn) + (i) - [ fo) autas)
X K, X
= [ pan - [ g P+ R s

_ / f(2) Py(dx) + / @S R)

" <If(a)—f(@)|<p1(asz)

< / f(z) Py(dx) + / p1(a, ) Pi(dx)
X K¢
and analogously for the second integral above

/X 9(y) Pay(dy) < /X 9(y) Pa(dy) + / sz(cuy) Py(dy).
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Hence by (2.14)

IN

sup
(f.9)€6¢ (X

< Xf ) Pi(dz) + /X 9(y) Px(dy)

/K pi(a,z) Py(dz) + /ﬁpQ(a,y) Pz(dy)>

=  sup ( f(z) Pi(dz) + /Xg(y)Pz(dy))

sup ( f(x) Py, (dx) + / 9(y) Pz,n(dy)>
(F9)egr(x) \Ja x
+

(f,9)eg2(x X
+/ p1(a, z) P(d )+/ pa2(a,y) Pa(dy)
KC

< S (/f /Xg(y) Pz(dy)) +%, (2.15)

because G”(X) C G.(&X). Since K U {a} is compact, according to the case 2) for all
n € N there exists a measure P™ ¢ C(Pi, Py) such that

/X2 c(x,y) P (dz,dy) < sup (/ f(z) Py y(dz) + / g(y) Pg’n(dy)> .(2.16)

(£,9)EGL(KnU{a})
Since each P;,,n € N, is tight (as mentioned above P,, (K, U{a}) =1 for all n € N)
and P;,, "= P; (weakly), where P; is tight as well by assumption, i = 1,2, by
Theorem 8 in Appendix III of [2], {P,,, | n € N} U{P,} is uniformly tight.
Now analogously to the case 2) we conclude that (P™),cy is uniformly tight and
thus relatively compact. Therefore there exists a measure P* and a subsequence

(P )) e such that P 3% o pr weakly. Since P, converges weakly to P;, in
order to verify P* € C(Py, P»), we proceed in the same way as in the case 2) above,
e.g. by applying a monotone class argument. Therefore using (2.16) and (2.15) yields

| el Pao.an)

= lim c(x,y) P (dx, dy)

k—oo X2

lim P1 nk dl‘ PZ,nk d

< lm ((fg o (1 Pt + [ o) Pot y>)>
. 2

< lim (fgsggrz (/ f(z) Pi(dr) + / 9y )Pz(dy)> +n—k>

= o (s i+ [ o) rn).



2.1 Dual representation for the Monge-Kantorovich problem

In particular, since P* € C(Py, P,), we have

inf /X2 c(x,y) Pldz,dy) < / c(x,y) P*(dz,dy)

PEC(Pl,PQ)
< sup (/ f(z) Pi(dx) + / 9(y) Pz(dy)) :
(fg ch

According to (2.6) the coupling P* € C(Py, P») is optimal for the primal problem.

3.2) Now let P;, P, be Borel probability measures on X that are not necessarily tight
and denote by X the completion of X with respect to d. For ¢ > 0 choose the
largest set A := A(e) C X such that d(z,y) > sforall z,y € A, & # y, that is, if
z € A°, then there exists some x € A such that d(z,z) < 5. The existence of such
a set follows from the Lemma of Zorn (cf. Theorem 1.2 in [13]). In fact, let M be
the collection of all subsets of X which fulfill the distance condition, namely their
elements have distance greater or equal 5. Then M # () and it is clear that (M, C)
is partially ordered. Furthermore every chain (M,),en, M, C M, for all n € N,
has an upper bound. (Just take the union M := |J ~, M,.) Hence the Lemma of
Zorn is applicable and yields at least one maximal element A € M. Moreover, the
set A is countable. In fact, since X is separable, we can find some countable set
{yn | n € N} which is dense in X with respect to d. Hence (B (yn))n6 , where
Bs(yy) == {x € X | d(x,y,) < 6}, is an open cover of X. Assume, by contradiction,
that A C X is not countable. Then there is at least some n € N such that the open
ball B: (y,) contains uncountable many elements of A, in particular more than two.
This contradicts the definition of A. Hence the set A must be countable. So, let
A={z,|neN}/L

For every n € N define A, C X by A, := ( 2)\ (U” ' B: e ( )) and put A, =
A, N X. Note that A, € B(X) for all n € N and 4,, N A4, = 0 for allm # n.
Furthermore [ J;” | 4, = X. Indeed, suppose there is some z € X'\ (I~ A,). Hence

x g A, for alln E N and consequently = ¢ B (x,) for all n € N, i.e. d(x T,) > § for
all n € N, in contradiction to the choice of A. Therefore X C |J>7, A,,. The converse
inclusion is obvious.

Let P; be the probability measure on (X, B(X)) generated by P, for i = 1,2, i.e.
P(A) = P(ANX) for all A € B(X). According to Lemma C.1 in the appendix
Py, P, are tight and hence by 3.1) there exists a probability measure P € C(Py, P,)
(on (X2, B(X?)) such that

/XQC(?C,Z/)p(d:C,dy) fgsgglzx)(/f ) Py(dx) + /()Pz(dy)). (2.17)

Let P;,,,© = 1,2, m € N, be the restriction of the Borel probability measure P,
to the set A,,, ie. P,,(B) := P(BNA,) for al B € B(X). To any dual in-
dex (mq,ms), my,my € N, define the product measure fi(y, m,) on (X% B(X?)) by
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2 Monge-Kantorovich duality

K(mimsz) “= Clmy,ma) * (P my @ Pa,), where the constant C(mi,ms) 18 chosen such that

f(my o) (Amy X Apy) = P(Ap, x Ap,). Let P o= E(ml’m) (my,mz)- Then for any
B € B(X) we have

P.(B x X)
- Z M(mhmz)(B x X)
(m1,m2)
= Z Cm1m2 P1m1®P2m2>(BXX)
(m1,ma2)
- Z C(m1,ma) Pi i, (B) « Poyny (X)
(m1,m2)
- Z c(mhmz)'Pl(BmAml)'PZ(XﬂAmz)
(m1,m2)
= > Clmima PUB N An) - Pa(Any)
(m17m2)
_ flm
- Z (1(4 MI.XP 2<)A ) 'Pl(BmAml)'PQ(Anm)
(ma1,m2): Pim,(Am;)>0 ¥V i=1,2 Lma \2m 2,m2\£ima
P(A,,, % A,
_ Z ( 1 (UmgeN 2)) 'P1<B ﬂAml)
Pl mi (Aml)
m1€EN: P17m1 (Am1)>0 ’
P(A,,, x X
- 3 % P(BNA,)
M1EN: Py (Apmy)>0 L (Amy)
Pl(Aml)
= ——— P (BNA,)
Z Pl,ml (Am1>

m1EN: Pp g (Amy)>0

- P1<Bﬂ U Am)

m1€EN

=X

= Pi(B).

Similarly, one can show

P.(X x B) = P»(B)
for all B € B(X). Therefore P. € C(Py, ).
We will prove

lir?jélp /2(2 c(x,y) P(dx,dy) < fgsgg;z (/ f(x) P (dz) + / 9(y) Pg(dy)) :

In order to achieve this, let a > 0 and observe, that if (y;,y2) € A, X A, such that
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2.1 Dual representation for the Monge-Kantorovich problem

d(y1,y2) > a + 2¢, we have using the triangle inequality d(z,,,, Tm,) > « + . Hence

Pe(d(yr,y2) > a+22) = Z Hmma) ({ (Y1, 92) € Ay X Ay | d(y1,52) > a4 2e})

(m1,m2)

< Z g(m1,m2)(Am1 X Amzz

(m1,m2): d(Tmq,Tmg)>ate . -

= Z P (A, x Apy) .

(ml 7m2): d(mml »Tmg ) >a+te

Applying the triangle inequality a second time, e.g. a+e < d(Tpmy, Timy) < ATy, Y1)+
d(y1,y2) + d(y2, Tm,) < d(y1,y2) + €, the right hand side above is less or equal to

Z P ({(y1,10) € Ay X Ay, | d(y1,y2) > })

(m1,m2)

P ({(Z/byz) € X2 | d(y1,y2) > Oé})

= P(d(y1,y2) > ).

Therefore P.(d > o +2¢) < P(d > a) for all a > 0. Since H: R, — R, is strictly
increasing, by the fundamental theorem of calculus and Fubini this implies

/X2 c(x,y) P.(dx,dy)

X?

_ /X 2 ( /0 d(x’y)mH(t)) P.(dx, dy)

N J/

-

=15" Lj0,d(z,y)[(t) dH(t)

- / / Loawy((t) — Pe(dz,dy) dH(t)
0 X2 N———
:1{(557.1!)6/\’2: d(w,y)>t}(xyy)

_ / " Pd(ey) > 1) dH()
0 ———

=P (d(z,y)+2e>t+2¢)

< /Oof(d(x, y)+2e >t) dH(t)

J

-~

=P(d(z,y)>t—2¢)
0
B /o (/Xz L@y)e? dwy> (T Y) P(dx,dy)> dH(t + 2€) + H(2¢)

S/

-~

=1(0,d(z,y)[(t)
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2 Monge-Kantorovich duality

= /222 / ]-[O,d(z,y)[(t) dH(t + 25) p(dl‘, dy) + H(2€)

(z,y) _
= / / 1 dH(t + 2¢) P(dz,dy) + H(2¢)
X2

= H(d(z,y) + 2¢) — H(2¢) P(dx,dy) + H(2¢)

>0

< / H(d(r.y)) P(de,dy) + | H(d(r.y) +22) = H(d(r.v) Pldr.dy)
7c(zy

FH(2¢). (2.18)

Consider the second integral on the right hand side:

/)(2 H(d(x,y) + 2¢) — H(d(x,y)) P(dx, dy)

/o H(d(w, ) +22) — H(d(z.9)) Plde, dy)
{(zy)ex?: d(z,y)<2p}

T / f H(d(z,y) + 22) — H(d(x,y)) P(de, dy)
{(z,y)eX?: d(z,y)>2p}

< sup (H(t+2)—H(t))+ / ) H(d(x,y) + 2¢) P(dz,dy).
{(z,y)ex?: d(z,y)>2p}

te[0,2p]

Since d(x,y) < d(z,a) + d(y, a) for some fixed a € X, applying two times the Orlicz’
condition and the convexity to the integrand yields

H(d(z,y) +2) < Kl-H<%-d(x,y)+1-2a>

2
< b (H(dle) + HE2))
< Igl (K2 H( d(x a)+1 d(y, ))+H(25))
< 5 (%t + ) + )
= B (H () + Hdy,0)) + 5 H2)
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2.1 Dual representation for the Monge-Kantorovich problem

for suitable constants K, Ko € R,. Hence

/| H(d(x,y) + 2¢) P(dz.dy)
{(z,y)eX2: d(z,y)>2p}

KK, /
N 4 {(z,y)€X2?: d(z,a)+d(y,a)>2p}

i ( /{ s Hldr0) () + /{ () P )

K
—1—71 - H(2¢),

H(d(z,a)) + H(d(y,a)) P(dz,dy) + % - H(2¢)

IN

because {(z,y) € X? : d(z,a)+d(y,a) > 2p} C {(x,y) € X? : d(x,a) > p}U{(z,y) €
X?%:d(y,a) > p}, where we put K := £52 Therefore

H(d(x,y) + 2¢) — H(d(z,y)) P(dz,dy)

X2
< mup (H(t+26) = H(o) + K- ( [ G ) st () Prld)
t€|0,2p X

+ [ @) Les.ayaron ) P2<dy>> + 5L m (e

for some constants K, K; > 0 which are independent of € and p. Therefore letting
first ¢ — 0 and then p — oo in (2.18) yields

lim sup / c(x,y) P.(dv,dy) < / c(z,y) P(dz,dy)
X2

e—0

= ([ 0 P+ [ o) i)
(f,9)€Gc(X) X X
< sw ([ s@ran+ [ o) e
(f:9)€Ge(X) X X
according to (2.17) and the fact that G.(X) C G.(X). Since P. € C(Py, P,) for all

g > 0, the conclusion follows.

Second part: Separable metric space (X, d) with unbounded metric d. Now let (X, d)
be any separable metric space. So in general the metric d is not bounded any more.
As before, first suppose P;, P, to be tight Borel probability measures. For each n € N

define the bounded metric d,,: X x X — Ry by

dy(z,y) == d(z,y) An

for all (z,y) € X?. Since (X,d,) is a separable metric space with bounded metric d,, for
every n € N, by the case 3.1) of the first part there exists a measure P™ € C(Py, P;)
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2 Monge-Kantorovich duality

such that

H(dy(z,y)) P™ (dz, dy)

X2

= f H P
podtf [ H( () P(de.dy)

< (Lwms [arw). o

where G.((X,d,,)) is defined in an obvious way, namely as G.()) in (2.4) with d,, replacing
the metric d and X replacing Y respectively.

Since (P™),cy is uniformly tight (P™ € C(Py, ) for all n € N and the measures
Py, P, are tight by assumption; the same assertion appears later in this thesis - cf. the
proof of Lemma 3.4 - and the exact 2e-argument is given there) it is relatively compact
and so there exists a subsequence (P™)).cy and a measure P®) € C(Py, P,) such that
P() converges weakly to P(*) as k — oco. By the Skorokhod Theorem (cf. [5], Theorem
11.7.2) there is a probability space (€2, 1) and a sequence (Xj)ren of random variables
X0 Q — X2 such that X, has distribution P for all k € N and X, — X, p-a.s. as
k — oo.

Hence using (2.19), the transformation theorem and Fatou yields

lim inf sup (/ f(z) P(dx) + / 9(y) P2(d?/))
k—o0 (fg Egc X dnk)
= liminf [ H(d,, (z,y)) P (dz,dy)

k—>oo XQ

= liminf H(d,, (x,y)) (poXk_l) (dz, dy)

k—oo X2

hm 1nf H<dnk (Xi(w))) p(dw)
hmme W H(dy, (X))
(

> E [llmlnf ;. (X1))]

= Eu[H(d(Xo)) +liminf (H (dn, (X)) = H(d(Xo)))]

= Eu[H(d(X0)) — limsup (H (d(Xo)) = H(dn, (X))

> Eu[H(d(Xo)) — lim sup| H(d(Xo)) = H (dn, (Xy))l]

= Eu[H(d(Xo)) - llgisogle( n (Xk)) — H(d(Xo))[]

= Eu[H(d(X0))] = Ey[lim sup|H (dn, (Xi)) = H(d(Xo))]]

= Eu[H(d(X0))], (2-20)
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2.1 Dual representation for the Monge-Kantorovich problem

because
| H (dn, (Xk)) — H(d(X0))|
< H(d (X0)) = H{dy, (X)) + [ H(d, (X0)) — HA(X0)| =5 0 peas.

> (.
v~ N~

k=oeg [-8.8. ki’»“o, because dn, /d

Furthermore, since X} pmicy Xo p-a.s., by the transformation theorem, the Orlicz’ con-
dition and the convexity of H

B, [t sup (H(d,, (X)) + H(d(CXa)|

k—o0

= /hmsupH(dnk(Xk p(dw) + /H (Xo(w))) p(dw)
Q

k—o0

< /limsupH(d(Xk p(dw) + /H (Xo(w))) p(dw)
Q k—oo

- / H(d(Xo(w))) p(dw)

_ / H(d(z,y)) PO (dx,dy)
X2 —

<& (H(d(z,a))+H(d(y,a)))

< K- | H(d(z,a)) + H(d(y,a)) P (dr,dy)

(o

= K- (/X

e G.(.d) € 9.0 o ll € 1, e e
et ([ 1) pitae) + [ 9t0) patan)

= areoneine) ([ 1@ pian+ [ o) paa)

for all £ € N and therefore by (2.20)

(1)) (/ f(@) Pi(dz) + / 9(y) p2<dy>>

> hl?iglf(fg egscugcdn (/ f(z) Pi(dz) + / 9(y) P2(dy)>
> (d(Xo))] '

_ / H(d(Xo(w))) p(dw)

H(d(z,a)) Py(dz) + /H (y,a dy))
c(

x,a) Py(dx) + /X c(y,a) Pz(dy))

ol



2 Monge-Kantorovich duality

— [ H(d(z,y)) PO(dx,dy)

X2

- / c(z,y) PO (dz, dy)
X2
> inf )/ c(x,y) P(dz,dy).
2

PGC(P17P2

In particular, according to (2.6) the measure P) € C(P;, P,) is optimal for the primal
problem, i.e.

/X2 c(x,y) PO(dx,dy) = inf /X2 c(x,y) P(dz,dy). (2.21)

PGC(Pl,PQ)

It remains to show equality (2.5) for not necessarily tight measures P;, P,. Since the
boundedness of the metric d is not used in 3.2) of the first part, this could be done
in the same way as thereby with the only exception that the existence of some Borel
probability measure P € C(Py, P,) such that

[ e sy = s ([ s6o) Bt + [ o) Pran)

follows from (2.21) here.

2.2 Dual representation for the
Kantorovich-Rubinstein problem

Similarly as for the Monge-Kantorovich problem, we now go on by proving a dual rep-

resentation for the Kantorovich-Rubinstein problem (2.3).

Let (X,d) be a separable metric space and suppose ¢: X x X — R, and A: X — R,
to be measurable functions such that

(C1) ¢(z,y) =0 if and only if z = y;
(C2) c(x,y) = c(y, ) for all (z,y) € X%
(C3) c(z,y) < AMz) + A(y) for all z,y € &
(C4)

C4) A maps bounded sets to bounded sets, that is diam(A(B)) := sup, sexp) |7 — 5|
Ky for some constant Kypy € Ry for all sets B C X with diam(B)
sup, ,ep d(z,y) < Kp for some constant Kp € Ry;

(C5)

A

sup cz,y) =20
z,y€B(a,r): d(z,y)<d

for each a € X and r > 0, where B(a,r) := {z € X | d(z,a) < r} denotes the
open ball with radius r > 0 centered at a € X.
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Note that any function ¢ € C satisfies (C1) to (C5). In particular, the metric d
satisfies all the above conditions (C1) to (C5) with A given by A(z) := d(z,a) for some
fixed a € X.

Denote by L.(X,R) the linear space of all ¢-Lipschitz continuous functions ¢ from X
to R, that is there exists some constant K € R, such that |p(z) — ¢(y)| < K - ¢(z,y)
for all z,y € X, and define ||-||.: L.(X,R) — Ry by

s le@) el
lelle == I I vy (2.22)
Note that for ¢ € L.(X,R) we have
B _ lel@) =l S (G 2 )| A YT,
)=t = Oy < (s D= ) = et

for all z,y € X, © # y. Moreover, ||¢||. is the smallest such constant K € R, called the
Lipschitz constant of . In particular, ||¢||. < co. Hence by condition (C5) we conclude
that each ¢ € L.(X,R) is continuous (with respect to d) and thus measurable.

Lemma 2.3. || - ||. is a seminorm on L.(X,R).

Proof. For p =0 € L.(X,R) we obtain ||¢]|. = 0.
Let a € R, p € L(X,R). Then

L a9 - (e)w)
HOZQOHC - x,yEX:px;ﬁy C(l’,y)

Let ¢,v € L.(X,R). Then

lo+¢le =  sup i

= llelle + 11l
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2 Monge-Kantorovich duality

Since [|¢||. = 0 if and only if ¢ is constant, || - || is not a norm on L.(X,R) at this
stage. To obtain a norm we have to consider equivalence classes with respect to || - ||
For this define

N i={pe L(X,R) | llolle =0} ={p € L(X,R) [T ueR:p@)=uV zeX}

and set
L (X, R) := L(X,R)/N.

Now define |||, : L.(X,R) — Ry by [|[¢]lle := ||¢llc where ¢ € [¢] is an arbitrary
representative of [p].

Remark 2.4. ||-||. : L.(X,R) — R, is welldefined, since for o, € [p] two represen-
tatives, there exists some u € R such that 1(x) = p(z) + u for all x € X and thus we
have

lolle = sup
Ie! TYEX: xFy c(x,y)

= sup
T,YEX: x#y C(LU, y)
o @0
z,YeX: zH#yY C<I7 y)
= [[¥]le.

Lemma 2.5. ||| : L.(X,R) — R, is a norm.
Proof. This is clear, because ||[¢]||. = 0 if and only if [¢] = N = [0]. O

Although elements of L.(X,R) are equivalence classes [p], according to Remark 2.4
and to shorten notation we shall write ¢ instead of [p].
Define the linear space

My(X) = {m is a finite signed measure on (X, B(X)) m(X) =0,

Sy M) [m|(dx) < oo},

where |m|(A) := mT(A) + m~(A) (= 2 ||m]|lrv(A)), A € B(X), is the total varia-
tion of the finite signed Borel measure m with Jordan decomposition m = m*™ — m™.
Furthermore for m € M, (X) set

B(m) = {be M(X?) | b(X?) <o, b(AxX)—bX x A)=m(A) ¥V AcB(X)}
= {be M(X?) | b(X?) < oo, Tib—Tob=m},

where T;b denotes the i-th marginal of b, + = 1, 2.

o4



2.2 Dual representation for the Kantorovich-Rubinstein problem

Remark 2.6. For each m € M,(X) the corresponding B(m) # (), because ";:fz(’g; €
B(m). In fact, for A € B(X) we have

mt®@m” mt®@m”

Ty Ny

m(A)-m=(X) m(X)-m(4)
mH(X) m*(X)

m*t(A) —m~(A)

m(A),

where we use m*(X) =m™(X) for the second equality.

Hence the following definition is meaningful: let ||-||,,: M)(X) — R be given by

|m||w := inf /X2 c(z,y) b(dx,dy). (2.23)

beB(m)

Then by the above remark and (C3) we have

[[772] |

= inf / c(z,y) b(dzx, dy)
X2

beB(m)
< /X c(ay) (%) (da, dy)
< [ 0@+ (28 (@nay)
- /X)\(x) m+(d$)+/x>\(y) m”(dy)
= [ @) pml(as)
< o0

according to the definition of M, (X).
Note that for any two Borel probability measures Py, P, on X with [, A(z) P;(dx) <

o0, 1 = 1,2, we have P, —

Py € M,(X). Hence ||P; — P||, is welldefined and the final

result of this section (cf. Theorem 2.16 below) claims that

R(Pi.Py) = P — Pyl = sup /X o(x) (P, — Py)(do).

lplle=1

In order to achieve this dual representation for the Kantorovich-Rubinstein problem, we
start by proving the following

Lemma 2.7. ||-||, is a seminorm on M)(X).
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2 Monge-Kantorovich duality

Proof. Let m € M(X). Since by choice c(x,y) > 0 for all (z,y) € X? and b is a finite
Borel measure on X2, we obviously have ||m/||, > 0, where equality holds if m = 0.

In order to show ||« - m|, = |a| - ||m]|, for all & € R, we distinguish the two cases
a>0and a <0:

If o > 0 we have

la-ml, = inf / e(z, y) b(dz, dy)
X2

beB(a-m)

= inf / c(x,y) b(dx, dy)
X2

Tib—Tob=a-m

- inf c(x,y) b(dz,d
Tl(ib)Tz(;b):m/XQ (z,y) b(dx, dy)

- a.(ébj)rég(m) /X2 c(z,y) (éb) (dx, dy)

= - [jmll.

Similarly, for & < 0 we have, defining the finite Borel measure b on X2 by l;(Al X Ag) ==
b(Ay x Ay) for all Ay, Ay € B(X) and using the symmetry of ¢

la-mlle = inf / (x,y) bldz, dy)
XQ

beB(a-m)

= inf / c(z,y) b(dzx, dy)
X2

Ti1b—Tob=a-m

= inf c(x,y) b(dx,d
Tl(;b)TQ(;b):m/Xg (z,y) b(dz, dy)
et s s 0
= inf c(y, z) b(dy, dz

Tl(;é)n(;g):m/)ﬂ (v, x) b(dy, dx)

= lof 'TI(;g)irTf(;z;):m/Xa v 7) (M%lg) (a4, dz)
= ol ‘Tl(féé)firTlgf(féf))zm /xz v ) (_ég) (dy, d)

B |a\-(£§1§mm)/){2 ) (_ég) e

= lal-[[m]lu.

It remains to show the triangle inequality. So, let m; € M, (X) and b; € B(m;) for
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2.2 Dual representation for the Kantorovich-Rubinstein problem
1 =1,2. Then for b := by + by we have

[ e sdn.dy) = [ et bidody)+ [ ey oo, dy

and
le - sz == T1 (bl -+ bg) - TQ (bl + bg)
= Thby +Tiby — T5by — Toby
= (lel — T2b1> + (leg - Tgbg) .
Therefore

|11 + M|

= inf / c(z,y) b(dzx, dy)
X2

beB(m1+ms2)

= inf / c(x,y) b(dz, dy)
X2

T1b—Tob=m1+mo

= (T1b17T2b1)+(T111blgf7Tgb2):m1+m2 <L2 C(J}, y) bl (dﬁ, dy) + /X? C('Iu y) bg(dl', dy))

< inf / c(x,y) by(dx,dy) + inf / c(x,y) be(dx, dy)
X2 X2

T1b1—T2b1=my T1ba—Toba=ma2

=  inf /c(m,y) bi(dz,dy) + inf /c(x,y) by (dx, dy)
X2 X2

b1 EIB(ml) bQE]B(mQ)
= lmallw + [[maflw.

Let m € My(X), ¢ € L(X,R) and a € X fixed. Then
[o(@)] < lelz) = ea)| + |p(a)| <[l@lle-c(z, a) + @(a)| = Ky - ez, a) + K>
for all z € X and some constants K, K» € Ry. Hence by definition of M, (X)
Jle@l mltde) < Ky [ el lml(de) + Ko ml )
< K [ Ma) nl(da) + (K@) + ) - ] () < .
ie. p € L(X,R) is |m|-integrable, and induces a linear form
Fo: My(X) — R

m — F,(m) ::/Xgp(a:) m(dz).
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2 Monge-Kantorovich duality

Remark 2.8. Suppose that ¢ and ¢ are in the same equivalence class [¢] of L.(X,R).
Then F, = Fy. In fact, for m € M\(X) we have

Fom) = [ ola) mide) = [ (0(a) + ) m(de) = Fy(m) +w-m(X) = Fo(m)
x X

Hence there is no reason to distinguish £.(X,R) and L.(X,R) when considering the
functional F, on M,(X). Since by definition of B(m) the difference of the marginals of
b coincides with m, we obtain

[Ep(m)] = p(x) m(dz)

p(z) (Tyb — Tyb) (dr)

() (Tub)(dr) /

o) (TQb)(dy)‘

I
T e

() b{d, dy) — /

X2

¢(y) b(dz, dy)‘

2

— | et = et vla )

< [ Jet@) = el b dy)

< el [ elann) bido,dy

for all b € B(m). Hence

[Fo(m)| < lelle - inf /XQ c(z,y) b(dr, dy) = [[@lle - [lm]w-

beB(m)

Therefore F,,: M,(X) — R is a continuous linear functional for each ¢ € L.(X,R), i.e.
F, € M,(X)", with dual norm
1E N < llelle- (2.24)

Define the continuous linear transformation

D: (Le(X,R), [Ile) —  (MA(X)S 1)
¢ — Dp=1F,

Lemma 2.9. The transformation D: (L.(X,R),||||c) — (Mx(X)",||||%) is an isometry,
i.e. ||@lle = [|[Fplli for all ¢ € Lo(X,R).

Proof. For x,y € X set myy := 0, — d, (€ M(X)). Then

|mayllw = inf /X2 c(u,v) b(du, dv) < / c(u,v) (0, ® 0,)(du, dv) = c(x,y). (2.25)

beB(mx'y) X2
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Hence for each ¢ € L.(X,R)

lolle = sup
TYeX: xFy c(x,y)

z,yeX: Ty ¢

sup ————
z,YeX: xFty C(J:,y)

[
|- sup lavllw
|| <P||w X oty C(l’,y)

< [[Fll-

IN

Therefore we have ¢l < ||F,||}, and so according to (2.24) [|¢|l. = || Fy,ll%, e.g. D is an
isometry. O

We now pursue to show that D is an isometric isomorphism between the normed linear
space (L.(X,R),|||.) and the Banach space (My(X)",|||%,). For this the following
preliminaries will be useful: Define

Mo(X) = {m is finite signed measure on (X, B(X)) | 3 my, mg € M(X) finite

and with bounded supports such that m;(X) = mqo(X) and m =m; — mg}.
Note that condition (C4) on A implies that Mo(X) C M, (X).
Lemma 2.10. My(X) C M, (X) is a dense subspace with respect to ||-|],-

Proof. Let m € My(X), m # 0, and a € X fixed. Define B, := B(a,n) := {zr € X |
d(x,a) < n} for all n € N. Then there exists ny € N such that m*(B,) - m~(B,) > 0
for all n > ng, where m™*, m~ denote as usual the measures of the Jordan decomposition
m =m" —m~ of m. For these n > ny define

my: B(X) — R

—om — () - m*(ANB,) m (ANDB,)
A H(A) = mH () ( B e )

and set d,, ;= nT:((J;iL)) —1>0,¢,:= TT:((;L)) — 1> 0. Since the open balls B,, exhaust X
as n — 00, we have lim, ., 9, = lim,, ., £, = 0. Note that m,, € My(X) for all n € N.

We will show that (m,,),en converges to m with respect to ||||.,. First observe that for
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2 Monge-Kantorovich duality

every A € B(X') we obtain the following expression for (m — m,,)(A):

(m —mn)(A)
N m*t(AN B, m- (AN B,
— m(A) — m(X) -m™T —m?"
— m(A) <m+<Bn> 1) (AN By) —m" (AN By)
m~(X) _ cm= m-
+<m‘(Bn) 1) AN B AR B
+

= m(A)—e,-m"(ANB,) + 6, - m (ANB,) — (m*"(ANB,) —m (AN B,))
= m(A)—¢e, - m"(ANB,) + 6, -m (AN B,) —m(ANB,)
= m(A\ B,) —e, - m" (AN B,) +6,-m (AN B,).

Define pi,, v, B(X) — R, by
pn(A) :==m*(A\ B,) +6,-m (AN B,) (2.26)

and

Vn(A) :=m (A\ B,) +e,-m (AN B,) (2.27)

respectively. Note that p,, v, are finite with m —m,, = u, — v,,. Moreover p, < |m|
and v, < |m|. In fact, for A € B(X) with 0 = |m|(A) = mT(A) + m~(A) we have
by definition of yu, and v,, p,(A) = 0 and v,(A) = 0 respectively. Hence the Radon-
Nikodym densities 5{% and j";’;‘ exist. Since m = m™ —m~ is the Jordan decomposition
of m, we can find sets P, N € B(X) such that PUN =X, PN N = () and m*(N) =
0, m~(P) = 0. Therefore by (2.26) respectively (2.27) the Radon-Nikodym densities
look like

p 1 if zeP\B,

d’/;;| (x)=16, if e NNB,
(0 if 2 € (N\B,)U(B,\N)=NAB,
(1 if ye N\ B,

dvy, .

d|m|(y) =<¢e, fye PNB, .
0 if ye (P\B,)U(B,\P)=PAB,

Next we claim that b, := ‘;Z?;*)L € B(m — m,,) for each n € N. In fact, for A € B(X)
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2.2 Dual representation for the Kantorovich-Rubinstein problem

we have
Hn @ Vp Hn @ Vp
bn(AX X) —b,(X x A) = 1 () (AxX) () (X x A)
_ fin(A) - v (X) _ fin(X) - v (A)
,un<X> Nn(X)
= pn(A) — vn(A)
= (o —vn)(4)
= (m—my)(A),

where we use i, (X) = v, (X) for the third equality. (This can be shown by an elementary
calculation.)
Noting that

Vn(X) = pa(X) = m (X \ By) + (m(X) —m™ (By)) = [m|(X\ By) = [m|(By),
we define the Radon-Nikodym derivative

. dby o) = 1 ‘ dpiy, 2. dv,
P = il T Y Tl (Bl ]

n

Claim 6. The function g(x,y) := (Sup,en fu(z,vy)) - c(z,y) is |m| @ |m|-integrable.

Proof. Tt will be shown that the function g is |m| ® |m|-integrable over various disjoint
subsets of X x X.

(i) gis |m|® |m|-integrable over P x N: Suppose (z,y) € P x N. Then

g(z,y) = (supfn(:ay))C(x,y)

neN

djip dv,, )
su . x) - cc(x,
Sup ,m‘ Bc d,m‘( ) d|m|(y) (z,9)

= . 1 c c
(e o Bc )

ilelg |m| Bc '1Uz n(BEXBE\(BS 1><Bl+1)($’y))

\_/3

= (sup |m| BC 21(3 ex BO\(BE,  x B, )( a?/)>

neN

) Y i>n

clzy)
m| Bc) Lmpxp\Be x B (1)

Z ml {Bc> Haln)
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2 Monge-Kantorovich duality

where C; := (B¢ x Bf)\ (Bf,, x Bf,;). According to Levi’s monotone convergence
theorem we obtain

/ o(z.) (Im| ® |m]) (dz, dy)

< [t (ol i i)
Y T o 0 e5) il o . )
< it O30 b .

S D 5 Ly ) (1 ) 0.

_ 9. Z/ z) [m](dz)

i=1 Y BB,

_ 9. / &) [m](dz)

< 2. [ Aw) jml(a2

< o0, i
because m € M, (X).

(ii) g is |m|® |ml-integrable over P x P: show that g(z,y) < m -c(z,y) on P x P.
Suppose (z,y) € P x P. Then

9(z,y) = (supfn(ay))-f:(fv,y)

neN
1 djin dv,, )
= su . xT) - - Clo,
(5o gy ) ) e
1

= (Sup il (BD) 1-e,- 1ngBn($,y)> -, y)

neN

En* C(.Z’, y)

IN
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Hence

/P g(z,y) (Im| ® |m]) (dx, dy)

il
< g o clew) (ml @ o) (drdy)

1
< g L A@ A6 (ml @ ) (. dy)
_ Iml) s .
- 2 (/XA V@) + [ X)) )
< o0,

because m € M, (X).

(iii) gis |[m|®|m|-integrable over N x N: show that g(x,y) < #Bl)-c(x,y) on N x N.
Let (z,y) € N x N. Then

g(z,y) = (SUan(af,y))dx,y)

= |su 1 .dunm‘d’/n Colx
1
(

— - .5.-1-1 o (z, e,
(iﬁ%@ ] (B2) x5 (7 y)) (@)

sup

( m—<B:;§ c(a.y) )

IN

Now the assertion follows in the same way as in (ii).

m* (BY)

(iv) gis |m|® |m|-integrable over N x P: show that g(z,y) < =B B c(x,y) on
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2 Monge-Kantorovich duality

N x P. Let (:B,y) € N x P. Then

sup fo(z y) c(r,y)

neN

1 djty, dv,, )
sup cc(x,
g myyery d|m|() d|m|(y) (z,9)

1
1

e
e
(o

_ (i‘éﬁ? Tttt an~1anBn(x,y)) e, )
(
(

) (:fl(ﬁ)) DA GRD R RE
neN \m!B “m~(By)

- (m”(X) —m(By))

e ) = (B) L (00)) - clo)
= su 1 -m_( rcl)m—i_(BC €T - C\T
- (p l(Be) m(Ba) mt(B,) Pl y)) (:9)
mrt (B2)
S S By m By (Y
m*(BY)

m— (Bl) -mt (Bl
and the assertion follows as above.

Combining (i) to (iv) establishes the claim.
Since b, € B(m —m,,),
— Mpllw = inf , b(d ,d
o =mall =it [ clay) b ay)

/X2 c(x,y) by(dx, dy)
_ /X @,y fule,y) (m] @ [m])(do, dy).

IN

n—oo

Since f,(x,y) — 0 for all (z,y) € X? (to see this, recall that lim,, ., §,, = lim,, .o, &, =

0), applying Lebesgue’s dominated convergence theorem yields

lim = malle < Tim [ @, y)fale,y) (Iml @ m])(dz, dy)

n—oo n—oo [ v2
= [ elw) lim fulay) (] m (. dy)
X n—oo
= 0.

So we have shown that M(X) C M, (X) densely with respect to ||-|.-
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Definition 2.11. A signed measure m on (X, B(X)) is called simple if there exist N €
N, ai,...,ay € R and x1,...,25, y1,...,yn € X such that m = Zf\ilai (0, — Oy, )-
Denote by S(X) the set of all simple measures on (X, B(X)).

Lemma 2.12. S(X) C M, (X).

Proof. Let m € S(X). Then by definition of a simple measure there exist N € N,
ay,...,ay € Randzq,..., 2N, y1,...,yy € X such that m = Zf;l @; (04, — dy,). Hence

(Zaz = i><x>=zai (82 = 8,) (X) = D7 0 (0 (%) = 8, (1)) = 0

and since mg,,, = 0;, — 0y, € My(X) foralli=1,... N,

A i) = [ x@

)| (dz)

CEZ'_

< Mz a;| - |0z, — 6y,] | (dx
—L”(;' N y|)< )

- |az| / ) (02

<
that is, m € M, (&X). Since m € S(X) arbitrary, S(X) C M, (&X). O

In order to prove that the simple measures are dense in M, (X), we will need the
following

Theorem 2.13. Let (X,d) be a separable metric space and suppose P, P,, n € N, to
be Borel probability measures on X such that P, == P weakly. Then for all ¢ > 0,
d > 0 there exists N(¢) € N such that for all n > N(e) exists a probability measure by,
on (X% B(X?)) with marginals P, and P, e.g. b, € C(P,, P), such that

by ({(z,y) € X* | d(z,y) > 6}) <e.

Proof. Since 7 metrizes the weak topology in My (X) (cf. |5], Theorem 11.3.3), for all
e > 0 we can find some N(¢) € N such that 7(P,, P) <eforalln > N(e). Let n > N(¢)
fixed. Observe that it would be enough to show

by ({(z,y) € X* | d(z,y) > e}) <e. (2.28)

In [12], Corollary 7.4.2, it is shown that the Prohorov metric 7 is minimal with respect to
the Ky Fan metric K, that is 7(Q1, Q2) = infoec(,,0,){ K (Q)}, where K(Q) := inf{e >
0] Q({(z,y) € X?:d(x,y) > €}) < e}. Hence

~inf  K(b,) <e
bn€C(Pn,P)
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2 Monge-Kantorovich duality

Therefore we can find some b, € C(P,, P) such that K(b,) < . Let n €]0, LQ(I’)[
Since K (b,) +n < e, there exists () < & — n such that

bn ({(z,y) € X% [ d(2,y) > e(n)}) < e(n).
According to (1) < € the inequality in (2.28) follows. O

Lemma 2.14. S(&X) C M, (&X) densely with respect to |||y, i.e. the simple measures
are dense in (Mx(X), |||lw)-

Proof. Let m € M,(X) be arbitrary and fixed. According to Lemma 2.10 without loss
of generality take m € My(X), e.g. m = my — my for my, ms two finite measures
on (X,B(X)) with my(X) = mo(X), whose supports supp(m,), supp(ms) C Xj for
some bounded subset Xy C X. In fact, (via suitable normalization) take m, ms to be
Borel probability measures. Then by the Varadarajan theorem (cf. [5], Theorem 11.4.1)

there exist probability measures m{™ m{"”. n € N, on (X, B(X)) such that m{" (X,) =

mi (X)) =1, m{” =m{” € S(X) for all n € N and m{™ "=% m, respectively m{® "=
my weakly. (Let (Q, A, P) be a probability space and X, j € N, independent random
variables with values in Xy and distribution my. Define mgn)(-)(w) =1 > 1 0% ()
for every w € (). In this situation the Varadarajan theorem states that, for P-a.e. w € €,
mgn)(~)(w) converges weakly to m; as n — oo. Hence take one of this "good" w’s and put
m{" := m{"™(-)(w). Analogously one can find Borel probability measures m{"”, n € N,
converging weakly to my. Obviously, m™ — m{" € S(X) for all n € N.) To prove the

lemma it would be enough to show that ngn) —my|lw —> 0, cause then by the triangle

n—oo

inequality we have || (mﬁ”) — mgn)) —(my —ma)||w < ngn)—mlHw—l-Hmén)—mgHw =0.
——

Let ¢ > 0. Since A&} is bounded, accor:ding to condition (C5) we can find § > 0 such
that c(z,y) < § for all z,y € Ay with d(z,y) < 0. Define C' := sup{\(z) | * € Ay}. By
Theorem 2.13 there is N (¢) € Nsuch that for all n > N(e) exists a probability measure b,
on (X2, B(X?)) with marginals m{™ and m; such that b, ({(z,y) € X? | d(z,y) > 6}) <
. Set A:={(x,y) € X*| d(x,y) > 0}. Then using (C3) we get

m® —mille = inf / e(z,y) b(dz, dy)
bEB(m(ln)fml) X2

< /X2 c(x,y) by(dz, dy)
= /Ac(x,y) by (dx, dy) + /cc(x,y) bn(diz, dy)

< [ @ A0 bl dy) + 5

< QC'bn(A)-i-g
< €

for all n > N(e). O
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2.2 Dual representation for the Kantorovich-Rubinstein problem

Lemma 2.15. The linear transformation D: (L.(X,R), |||lc) — (Mx(X)" |I-|I%) is an
isometric isomorphism.

Proof. According to Lemma 2.9 it is enough to show that D is an isomorphism. To
do so, first observe that D is injective: Let ,1 € L.(X,R) such that Dy = D1, e.g.
F,(m) = Fy(m) for all m € M,(X). Without loss of generality assume that there is
some a € X such that ¢(a) = 0. Then o(x) = p(z) —p(a) = [, o) (0, —da) (du) =
Fy(0p — 04) = Fy(0y — 0a) = [ th(u) (05 — da) (du) = 9(x) — ¢ (a) for all z € X. Since
Y(a) is constant, ¢ and 1/1 belong to the same equivalence class of L.(X,R), i.e. p =1,
and this means that D is injective. Hence it remains to prove that D is surjective. So,
let F € My(X)", i.e. F: My(X) — R is continuous and linear. Fix a € X and define
¢: X — R by p(x) := F (6, —0a) = F (my,). Then for any z,y € X using (2.25) we
gain

IF (8, — 0a) — F (8, — 64)|
= [F (3, —4,)|

1F]7 - 162 = Oyl

1% - My w

< |FI% - ez, y)-

[p(z) — o(y)]

IN

Since ||¢||. is the smallest such constant, we conclude that ||¢|. < ||[F|f < oo, e.g.
¢ € L.(X,R). A straightforward calculation shows F'(m) = F,(m) for m = 6, — 6,
and therefore F(m) = F,(m) for all m € S(X') and by the previous Lemma 2.14 for all
m € M (X). Hence by definition of D, F' = Dy and so D is surjective. O

Since D is surjective, for F' € M, (X)* we can find some ¢ € L.(X,R) such that

F =Dy = F,. Hence
lmllw = sup [F(m)| = sup |Fy(m)|= sup /w(fﬂ) m(dz)| .
X

1F]1%=1 1Fo =1 lleolle=1

Theorem 2.16. Let m € My(X). Then

Il = sup /X o(z) m(dz).

lelle=1

In particular, for Py, Py two Borel probability measures on X such that [, N(x) P;(dzx) <
o0, © = 1,2, we have

Ro(Po,Ps) = | P, — Pyflw = sup /X o(z) (P, — Py)(dz).

llelle=1
We now show that the supremum in Theorem 2.16 is attained for some optimal ¢.

Theorem 2.17. Let m € M(X). Then there is some ¢ € L.(X,R) with ||o|. =1
such that ||m||, = [, ¢(x) m(dx

Proof. Using the Hahn-Banach theorem, choose a linear functional F € M (X)" with
|F||z, = 1 such that F(m) = ||m|l,. By Lemma 2.15 we have F' = F, for some
¢ € L(X,R) with [lgll. = [ ], = |l = 1. -
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2 Monge-Kantorovich duality

2.3 Link between the functionals K, and R,

Since C(Py, P5) C B(P, — P») only, we already know that K.(Pi, P») > R.(P, P,). In
order to obtain the final result (2.32) - equality of the Monge-Kantorovich problem
(primal problem) and the dual problem of the Kantorovich-Rubinstein problem - in case
of a separable metric space (X, d), we have to verify that

Kd(PbPQ) = PECI(ElDf,Pg) \/X? d($7y> P(dl’,dy)

= inf / d(z,y) b(dz,dy) = Ry(P1, P).
PQ) X2

beB(P1—
This will be guaranteed by the following

Theorem 2.18 (Neveu and Dudley). Let (X, d) be a separable metric space and ¢ € C.
Then

K (P, ) = R(P1, P») (2.29)

for all Borel probability measures Py, Py on X with [, c(x,a) P(dx) < oo for some fized
a€ X,i=1,2, if and only if c is a metric.
In particular, equality (2.29) holds if H is the identity, i.e. ¢ = d.

Proof. Suppose (2.29) holds and put P, := §,, P» = ¢, for some z,y € X. Then
C(P1, Py) = {0(s)}, i-e. the set of all laws P on (X2, B(X?)) with marginals P, and P
only contains the dirac-measure in (x,y). Hence by Theorem 2.16

clx,y) = / c(u, v) Oz (du, dv)

= inf / c(u,v) P(du,dv)
PeC(Py1,P2) X2

= K.(P, )
= R.(P, )

= sup /ch(u) (P — P,) (du)

lolle=1
= sup (p(r) —¢(y))

llelle=1

“Sﬁl‘gl\w(x) —o(y)|

< HSﬁllil\s&(ﬂ«“) —p(2)| + ”SFI;W(Z) —(y)|

< oz, z) +c(2,y)

IN

for all x,y,z € X. Furthermore, since ¢ € C, there is some H € H such that c(z,y) =
H(d(z,y)) for all (z,y) € X%, and so we have

c(x,y) =0<= H(d(z,y)) =0<=d(z,y) =0<= =y
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2.3 Link between the functionals K. and R,

and

c(x,y) = H(d(x,y)) = H(d(y, z)) = c(y, )

for all z,y € X. Therefore c is a metric.
To show the converse, first recall that

Ge(X) ={(f,9) | f,9 € La(X), f(x) +9(y) < c(x,y) V 2,y € X}
Suppose c is a metric and let (f,g) € G.(X). Define a function h : X — R by

h(x) = yig)f( (c(z,y) —g(y)) .

Then
h(z) =hly) = mf (c(z,v) = g(v)) - inf (c(y, v) = g(v))
= nf (c(z,v) = g(v)) + Sup (9(v) = c(y, v))
< sup (c(z,v) = g(v) + g(v) — c(y, v))
= sup (c(z,v) = c(y,v))
< c(z,y)

for all z,y € X and according to the symmetry of ¢ we thus have ||h|. < 1.

Since for fixed y € X the function ¢(x, y)—g(y) is continuous in z € X, h is upper semi-
continuous. (This can be seen in the same way as in the proof of Claim 3.) Moreover
f(z) < h(z) < —g(x) for all z € X. In fact, since (f,g) € G.(X), we know f(z) <
c(z,y) — g(y) for all z,y € X which implies f(z) < infex (c(x,y) — g(y)) = h(x) for all
x € X. By definition of h we have h(z) = inf cx (c(z,y) — 9(v)) < c(z,z)—g(x) = —g(z)
for all x € X. Hence for any two Borel probability measures P, P, on X satisfying
[ c(z,a) Py(dz) < oo respectively [, c(y,a) Pa(dy) < oo for some fixed a € X we have

[ 1@ Ptdo)+ [ ) Pan) = [ jlo) i)~ [ —ot0) Py
<h(x)

>h(y)

- /X h(z) Py(dz) — /X h(y) Pa(dy)
_ /X h(z) (P — Py) (dx)

so that according to Theorem 2.1 and Theorem 2.16 it follows

K(RP) = s ([ ) P+ [ oto) ptan)

(f.9)€6.

< sup /Xh(x) (P, — Py) (dz) = R.(Py, Py).

[[hlle<1

Therefore K .(Py, Py) = R.(Py, Py). O
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2 Monge-Kantorovich duality

Corollary 2.19. Let (X,d) be a separable metric space and a € X. Let Py, Py be two
Borel probability measures on X such that [, d(x,a) Pi(dx) < oo fori=1,2. Then

inf d(z,y) P(dx,dy) = su 2) (P — P,) (dz). 9 30
PEC(Pl,Pg)/XQ (,9) P( v) l@dzl/XQO( ) (P — P) (dz) (2.30)

Moreover, the supremum is attained for some optimal p* with ||¢*||q = 1.
If Py, Py are tight, there are some P* € C(Py, P2) and ¢*: X — R with ||¢*|la = 1
such that

Ky(Py, Py) = /

X2

d(z,y) P*(de, dy) = / o () (P — Py) (da).

x
where o*(x) — ¢*(y) = d(z,y) for P*-a.e. (x,y) € X2

Proof. Choose ¢ = d and recall that for this choice the conditions (C1) to (Cb) are
satisfied with A(z) = d(z,a) for some fixed a € X. Hence Theorem 2.16 is applicable
and we get

W(Pl,P2>:Rd(P1,P2) = sup /Xgp(x) (Pl—PQ) (dlE)

llella=1

Already by definition we have

Ko(Pr, ) = Peci(rg F) /X2 d(z,y) P(dz,dy).

Since d is a metric, Theorem 2.18 yields the assertion, namely

inf /X2 d(x,y) P(dz,dy) = sup /Xgp(x) (P — P) (dx).

PEC(Py,Py) lella=1

The existence of some ¢* follows from Theorem 2.17.
If P, and P, are tight, then by Theorem 2.1 there exists P* € C(P;, P,) such that

Ku(Py, Py) = / d(x,y) P*(dz, dy),
X2

i.,e. P* is optimal for the Monge-Kantorovich problem. Integrating both sides of the
inequality ¢*(z) — ¢*(y) < d(z,y) with respect to P* yields

¢ (=P an) < [ dta) (e,

However, since P* and ¢* are optimal for the primal and the dual problem respec-
tively, we know from the first part of the proof that we have equality of these integrals.
Therefore o*(x) — ¢*(y) = d(z,y) for P*-a.e. (z,y) € X2 O
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2.4 The Monge-Kantorovich duality in case of a pseudo-metric d

2.4 The Monge-Kantorovich duality in case of a
pseudo-metric d

Here we slightly generalize Corollary 2.19 by replacing the metric thereby by a pseudo-
metric.

Definition 2.20. A function d: X? — R, is called a pseudo-metric if
(i) =y = d(z,y) =0,

(1) d(z,y) = d(y,z) for all (z,y) € X2,

(111) d(xz,y) < d(z,z) +d(z,y) for all x,y,z € X.

Remark 2.21. Note that the only difference to a metric is the missing converse direction

So, let d be a pseudo-metric on X. Similarly to section 2.2 denote by L;(X,R)
the linear space of all d-Lipschitz continuous functions ¢ from X to R and define the
seminorm || - ||4: L4(X,R) — Ry by

lella == sup (2.31)

T,YeX: zH#yY d(&l, y) .

Again for ¢ € L4(X,R) we have |p(x) — o(y)| < |l¢lla - d(z,y) for all z,y € X. In order
to obtain a norm, set

Lqa(X,R) = L4(X,R)/N,

where
N={pecLiX,R)||¢lla=0} ={p € Lo(X,R) |FuecR:p(x)=uV zeci}

Define ||-]|q : Lag(X,R) — Ry by ||[¢llla := |¢lla, where ¢ € [¢] is an arbitrary
representative of [p]. Analogously to section 2.2 one can show that ||-||4 is welldefined
and a norm on L4(X,R). Again use ¢ and [p] interchangeable, emphasizing that the
latter is an equivalence class of Lipschitz functions rather than a single function.

As the final result of this chapter we formulate:

Theorem 2.22. Let X be a Polish space and d: X* — R a (continuous) pseudo-metric.

Let Py, Py be two probability measures on (X, B(X)) such that [, d(z,a) Py(dx) < oo for
1=1,2 and some fized a € X. Then

K4(P, P,) =  inf /)(2 d(xz,y) P(dz,dy) = sup /Xgp(ac) (P, — Pp) (dz). (2.32)

PeC(Pr,p) lplla=1
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2 Monge-Kantorovich duality

Proof. 1f (X, d) is a separable metric space, the assertion is just part of Corollary 2.19.
Now consider the case where d is an arbitrary (continuous) pseudo-metric. Define an
equivalence relation on X by

r~y:ed(zy) =0.

and set Xy := X'/ ~. Notice that elements of X; are equivalence classes [x]. Then d is
defined on X, in an obvious way, e.g. d([z],[y]) := d(x,y) where z € [z], y € [y] are
arbitrary representatives. It is clear that d is well-defined. Observe that (X, d) is a
separable metric space (although it may no longer be complete). Hence the assertion is
right for (X, d). Defining the map 7: X — & by w(x) := [z], the result follows from
the Monge-Kantorovich duality in (X, d) and the fact that both sides of (2.32) do not
change if the Borel probability measures P; are replaced by P o 7w~}

Ky(P, Py) = inf /d(x,y) P(dzx,dy)
X?

PEC(Pl,PQ)

_ i /X d(m(2), 7(y)) P(dr, dy)

PEC(Pl,Pg)

= inf )/Xd2 d(z,y) Q(dz, dy)

QeC(Pror—1,Pyor—1

= sup / o(x) (Prom ' = Pyor ') (dz)

llella=1

= sup / o(x — Py)or ) (d)
llella=1

= sup /(p — Py) (dx)
lella=1J X

= su dx
||<p||dp1/XgO B) (da).
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3 Asymptotic strong Feller property

This chapter is an extended version of chapter 3 in [7].

3.1 Totally separating systems

Let X be a Polish space, i.e. X is metrizable, complete and separable.

Definition 3.1. A (pseudo-)metric dy is said to be larger than dy if do(x,y) > di(x,y)
for all (z,y) € X?. A sequence (d,)nen of (pseudo-)metrics is called increasing if d,, .y
is larger than d,, for alln € N.

Consider the (trivial) metric dyy given by

1if zy

3.1
0if z=y (3:1)

dry(z,y) == {

This is a metric that totally separates the points of X and therefore loses completely all
information about the topology of X.

Definition 3.2. An increasing sequence (d,)nen of (pseudo-)metrics on a Polish space
X is called a totally separating system of (pseudo-)metrics for X if lim,, o d,(z,y) =1
for all (z,y) € X2, x # y, i.e. (dn)nen converges pointwisely to the (trivial) metric dry.

In the next section we will see how to use such a totally separating system of pseudo-
metrics in order to approximate the total variation distance of two Borel probability
measures by a sequence of their Wasserstein distances. Before we do so, let us give few
examples of totally separating systems of (pseudo-)metrics:

Example 3.3. Let (a,)nen, an € Ry, be an increasing sequence such that lim,, .. a, =
0.

(1) Let X be a Polish space and d: X* — R, an arbitrary metric on X. For every
n € N define d,,(x,y) :=1Na,-d(z,y). Then (d,)nen is a totally separating system
of metrics for X.

(2) Let X := Co(R) be the space of continuous functions x on R such that limy o x(s) =
0. Since (Co(R), |||loc) is a Banach space and Co(R) C Cp(R) is closed with respect to
I'lo (cf- [14], p. 6), X is complete. Furthermore one can show that X is separable.
For any z,y € X set dn(z,y) == 1A (a, - SUDse[—nn) |7(8) — y(s)]). Then (dy)nen is
a totally separating system of metrics for X.

73



3 Asymptotic strong Feller property

(3) Let X = 1*(R), i.e. > oo |zk]® < oo for all sequences © = (xy)ren € X. First of
all, X is separable by example 2.17.2 in [1] and complete with respect to the norm
1
Nzl == O pelzkl®)? (ef. [1], 0.18.4). For n € N define d,(x,y) == 1A a, -
Sor_ilze — yl?® for any two x,y € X. Then (d,)nen is a totally separating system
of metrics for X.

3.2 The key lemma

Let d be a bounded and continuous pseudo-metric. For clarity we do not overtake the
(topic specific) notation from chapter 2, but simply set

| P — Palg = Ka(Pr, P2) = PECI(I}Df,Pg) /X2 d(x,y) P(dz,dy) (3.2)

for the Wasserstein distance of the Borel probability measures P;, P, on X and

1Py~ Pllla = sup /X o(x) (P, — Py)(da) (3.3)

llella=1

for the seminorm of their difference on the space M, (X') with A given by A(-) = d(-, a)
for some fixed a € X.

The following lemma is crucial to the approach of the asymptotic strong Feller prop-
erty, introduced in the next section.

Lemma 3.4. Let (d,)nen be a bounded and increasing sequence of continuous pseudo-
metrics on a Polish space X. Define d(x,y) := lim, .o d,(z,y) for all (z,y) € X?. Let
Py, Py be two probability measures on (X,B(X)). Then

Tim ([P = Polla, = [Py = Polla-

Proof. By assumption the sequence (d,),en of pseudo-metrics on X is bounded and
increasing, i.e. there exists K € R, such that d,(z,y) < K and d,(z,y) < dpi1(z,y)
for all (z,y) € X?, n € N. Therefore the limit d(z,y) := lim, .o d,(z,y) exists for all
(z,y) € X2 Since

1= Palla, = jn | duly) Pldo.dy)
X

PEC(Pl,Pg)
< 1 f dn , P d ’d _ P B P
- PECl(I}Dl,PQ)/XQ w1z, y) Pldz,dy) = || P 2 ds s

for all n € N, the sequence ([P, — Px||4, )nen is increasing. Furthermore for arbitrary
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3.2 The key lemma

neN

P —Pls =  inf d(z,y) P(dz,d
IP= Pl =, nf [ (o) Plde.dy)

< K- inf / P(dz, dy)
X2

PeC(Py1,P2)

— K- inf PX?
PEC(P17P2)

K- Pi(X)
K

< 0o0.

Thus the sequence (||Py — P||a,),cy is bounded. Hence the limit L := lim, . ||P —
Pyl|4, exists. It remains to show that L = [|P — P[4

(1) L <||P, — P||q: For each n € N

Pi—Pls =  inf d,(z,y) P(dz,d
1P~ Pl = it o) Pdedy)

< if / d(z) P(dr, dy) = |, — Pl
X

PeC(Py,P2)
Hence L = lim,, .« [|P1 — Pslla, < ||P1 — Psl|a-

(2) L > ||P, — Py||4: For arbitrary n € N let P™ € C(P,, P,) such that
1P~ Palla, = [ dale) P ()
X2

i.e. P realizes (3.2) for the continuous pseudo-metric d,. Such a measure is
shown to exist in Corollary 2.19. (Recall that since X" is Polish, by Lemma C.1 in
the appendix the Borel probability measures P; and P, are tight.)

The sequence (P™),cy is tight, since its marginals P, and P, are constant. In fact,
let € > 0. Since P, and P, are tight, there exist compact sets K (g), K»(¢) C X such
that P (K(g)°) < 5 and Py(K>3(¢)¢) < 5. Hence for all n € N

PU((Ky(g) x Ky(e))9) < P™(K;(2)° x X) + PM(X x Ky(e)")
= Pi(Ki(e)) + Pa(Ka(e) )
g g
< 5 -+ 5

Therefore by Prohorov (cf. [10], Theorem 6.7) there exists a subsequence {P(™) |
k € N} C {P™ | n € N} such that P(™) — P> weakly as k — oo for some
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3 Asymptotic strong Feller property

P> e C(Py, P»). Furthermore for arbitrary [ > k it follows d,, (z,y) < d,,(x,y) for
all (z,y) € X? and thus

/ dp, (z,y) P (dz, dy) < / dy, (2,y) P"(dx,dy) = ||Py = Pylla, < L
X2 x2

for all [ > k by choice of P™ and because (|P; — Psl|a, )nen is increasing. Hence,
since d,, : X? — R, is bounded and continuous, by weak convergence

/XQ du(2,y) P (de,dy) = lim | do, (z.y) P (dx,dy) < L
for all k£ € N. Finally letting k¥ — oo and using Lebesgue yields
/X? d(z,y) P>*(dx,dy) = leIgO . dp, (,y) P(dz,dy) < L.
Since P> € C(Py, P,), this implies ||P, — Ps|lqa < L.
[

In order to approximate the total variation distance of two Borel probability measures
on X by a sequence of their Wasserstein distances corresponding to a totally separating
system of pseudo-metrics, recall the following

Definition 3.5. Let p be a finite signed measure on (X,B(X)) with Jordan decomposi-
tion p = put — u~. Then the total variation norm of p is given by

lillry = 5 (" () + (X))

Remark 3.6. The factor % 15 chosen in order to guarantee that the total variation

distance of two mutually singular Borel probability measures is normalized to 1.
With this notion at hand we receive:

Corollary 3.7. Let (d,)nen be a totally separating system of continuous pseudo-metrics
for the Polish space X and Py, Py two probability measures on (X,B(X)). Then

||P1 - P2”TV = T}ggOHPl - P2Hdn'

Proof. By definition the totally separating system of continuous pseudo-metrics (d,,)nen
is bounded (by 1) and increasing. According to the previous Lemma 3.4 it therefore
suffices to show that ||Py — Ps||lrv = ||P1 — Psllap, With dry given by (3.1). In fact, by
Corollary 2.19 we have

1P~ Pallary = inf [ et P dy)
— e / () (P — Py)(da)
lellap, =1 Jx
— s / (@) (P — Py)(dx) = | P, — Pyllry.
HQO”oozl X

76



3.3 Definition and classification

To stress the main part of the proof, notice that the total variation distance of the
two Borel probability measures P, and P, is given by the Wasserstein distance of these
measures corresponding to the trivial metric dpy .

3.3 Definition and classification

Now we introduce the asymptotic strong Feller property which instead of prescribing
a smoothing property at some fixed time ¢ > 0, prescribes some kind of smoothing
property ’at time oco’.

Definition 3.8. Let X’ be a Polish space and denote by U, the collection of all open sets
U C X containing ©. A Markov semigroup (Pi)i>o on By(X) is called asymptotically
strong Feller at x € X if there exist a totally separating system of continuous pseudo-
metrics (dp)nen for X and a nondecreasing sequence (t,)nen, tn > 0, such that
inf limsupsup |7, (x,-) — 7, (y,)|lq, = 0. (3.4)
Uz p—oo yeU

It is called asymptotically strong Feller if it is asymptotically strong Feller at every
reX.

Remark 3.9. Let d be some metric defining the topology of X. (Such a metric exists,
because X is a Polish space, so in particular metrizable.) Define B(x,v) == {y € X |
d(z,y) <7}, e.g. B(x,v) denotes the open ball of radius v > 0 centered at x € X. Then
it is immediate that (3.4) is equivalent to

limlimsup sup |7, (7,-) — 7, (¥, )lla, = 0. (3.5)
775 n—oo yeB(z)y)

Proposition 3.10. Suppose the Markov semigroup (P;)i>o is asymptotically strong Feller
atx € X and t, =t in (3.4) for all n € N and some fized t > 0. Then the Markovian
transition kernel (my(z,+))zex 08 continuous in x in the total variation norm ||-||rv.

Proof. Let t > 0 and (zg)keny € X with limy_ d(zg, ) = 0. Then
Ime(, ) = w1, ) [la, < sup Ime(, ) = me(w )l
5>
for all [,n € N. Hence letting n — oo by Corollary 3.7

e, ) = melwr, )llry = lim [lwe(w, ) = @, g, < limsupsup iz, <) = 7(@k, )l
- >

n—oo

for all [ € N. Therefore letting [ — oo

lim ||my(x, ) — (2, ) ||rv < lim limsup sup ||m(z, -) — m(xg, )| 4, -
1—00 =00 pooo k>l

Since by assumption the right hand side is equal to 0, the assertion follows, e.g. the
Markovian transition kernel (m(z,+))zcx is continuous in x in the total variation norm
-llzv- O
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3 Asymptotic strong Feller property

Remark 3.11. If (P;)i>0 is asymptotically strong Feller and t,, =t in (3.4) for alln € N
and some fized t > 0, according to the previous proposition and Theorem 1.14 (Pi)i>o is
strong Feller at time t and therefore by Remark 1.9 strong Feller for all times s > t.

The following proposition states the converse in some sense:

Proposition 3.12. Let X' be a Polish space and (Pi)i>o a Markov semigroup on By(X)
that is strong Feller. Then (Pi)i>o is asymptotically strong Feller.

Proof. Let x € X arbitrary and fixed. Let (d,)n,en be a totally separating system of
continuous pseudo-metrics for X', in particular d, converges pointwisely to the trivial
metric dry as n — oo. Suppose the sequence (t,)nen is given by ¢, = t for some fixed
t > 0 and all n € N. Then applying Corollary 3.7 yields

e, ) = mys Ma, < iz, -) = m(y, Mlary = Im(z,-) = m(y, llrv

for all n € N, y € X. Therefore

sup |[|m(,-) = m(y, e, < sup [|mi(x, ) = mly, )llrv
yEB(z,7) yEB(z,7)
for all v > 0, n € N. Hence letting n — oo

limsup sup ||m(z,-) = m(y, e, < sup [|m(z,-) —m(y,-)llrv
n—oo yeB(z,y) yEB(x,7)

for all v > 0. Finally, letting v — 0 gives

limlimsup sup ||z, ) — mu(y, Mo, <l sup |ime, ) — muly, Nov.  (36)
770 n—oo yeB(zy) TV yeB(z,)
Since 77% is strong Feller, by Lemma 1.15 the transition probabilities m(z, ), z € X, are

continuous in z in the total variation norm ||-||7y. Hence the right hand side of (3.6)
equals 0. So (P;)i>o is asymptotically strong Feller at x € X. Since x € X arbitrary,
the assertion follows. O

3.4 Sufficient condition

Another way of seeing the connection to the strong Feller property, is to recall that a
standard criterion for (P;);>o to be strong Feller is given in Proposition 1.13. A sufficient
condition of similar type for a Markov semigroup (P;);>o to be asymptotically strong
Feller is given by

Theorem 3.13. Let H be a separable Hilbert space. Let (tp)nen and (0n)nen be two
positive sequences such that t, < t, 1 for alln € N and lim,, .., 9, = 0. If for all
functions ¢ € C}(H)

Prop() = Pro)] < CUl2l V[l - (lelloe +0n - IVelloo) - llz =yl (3.7)

for all x,y € H,n € N, where C: R, — R s a fired nondecreasing function, then the
semigroup (Pr)eso s asymptotically strong Feller.
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3.4 Sufficient condition
Remark 3.14. In applications one typically has lim, . t, = 0.
For the proof we will need the following two Lemmas.
Lemma 3.15. Let p € C}(H). Then
Vel = llella
with d given by d(z,y) = ||z — y|| for all z,y € H.

Proof. Define a function g: [0,1] — H by g(s) :==y+s- (x —y). Using the fundamental
theorem of calculus, the chain rule and the Cauchy-Schwartz inequality we have for all
r,y €H

o(@) — o) = le(a(1) — o(g(0))]
- /’i¢@<»ds

:/Dgp /(s) ds

= /0<V90(y+8( —y)),r—y)ds

1
g‘/HVw@+s%x—w%w—yH®
0
1
< /HV¢@+s«x—wm-W—yn@
0
< IVelw-llz -yl
= Vel - diz, ),

where the term Dg(g(s))g'(s) should be interpreted as the Frechet derivative of ¢ at
the point g(s) € H applied to the element ¢'(s) =z —y € H. Hence

[p(z) — o(y)|
——— < IV¢[ls

10y) IVell
for all z,y € H, x # y, and therefore

lp(z) — p(y)]

)
lplla = sup < Vel
T, y€H: z#y d(l‘, y)
To show the converse inequality, let z,v € H with ||v|| = 1 and (h,)nen @ sequence
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3 Asymptotic strong Feller property

converging to 0. Then

p(x + hav) — o()

[(Ve(e),v)] = | lim -
— lim lo(x + hnv) — o(z)]
n—oo |hn|
< swp lo(x + hnv) — ()]
neN |hn|
h _
_ sup [PE A n0) — o(z)]
neN gl

o + hnv) — ()]

= sup
neN ||(x + hnv) - 17”
< sw lp(z) — (y)|
z,yEH: z#y HLL‘ - yH
— suwp o(z) — o(y)]
z,yeH: x#y d(xu y)
= |l
In particular, for v = Hgi%i;”
1 V()
[Vo@)|| = o7 - Vo), Vo(r))| = (Ve(r), =) < llelld

V()]
for all x € ‘H. Therefore

V()]

IVolloo = sup||Ve(z)|| < [[ol]a-
zeH

]

Lemma 3.16. Let ¢ € L4(H). Then there exists a sequence (©m)men, Ym € Ci°(H),
such that

(i) om —3 @ pointwisely,
(ii) lemlloe < [|@lloc for all m €N,

(iii) |lemlla < ll@lla for all m € N.

Proof. Let ¢ € L4(H) and {e;}ien be an orthonormal basis of H. For m € N define
orthogonal projections

P,:H — P,(H)=span{e;,...en}

m

r +— P,r:= Z(CL’,Q) e

=1
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and corresponding bijections

Tt Pu(H) — R™
' (x,e;)-e; — ((z,e1),...,(x,en)).

Note that p o J 1 € L4(R™) with Lipschitz constant ||¢ o J |4 < ||pllq for all m € N.
Hence by Lemma A.1 in the appendix, for every m € N there exists a sequence (fi, i )ken,
Frk € C*(R™), such that f,,(x) = (p0.J,,)(x) for all 2 € R™, | fuilloc < [0 loc

k—o00

and || frxlla < |loo J, 4 for all & € N. Replacing = by J,,,(z) yields (fx 0 Jm)(x) —

k—o0

(x) for all x € P,,(H). Cosequently (fpx0 Jmo Pp)(x) — (po Py,)(z) for all z € H.
Moreover || fi 10 Jmo Pulloo < |0 Pulloco and || frn k0 Jm o Pulla < ||@o P |la for all £ € N.
Since @ o P,, "% ¢ pointwisely, ||¢ 0 Pnlles < ||¢lloe and || o Pp|la < |l¢|l4. a diagonal
argument applies in order to obtain a subsequence (¥, )men; Pm = fmm © Jm © Py €

m—00

Cp°(H), such that ¢y, (r) — @(x) for all 2 € H, [|pmllec < llplloc and [[omlla < [[#]la

for all m € N. O

Now we turn to the proof of Theorem 3.13.

Proof. For ¢ > 0 define on H the metric

dooHxH — R,

1
(w1, ws) +  de(wy,wy) :=1A - ||wy — ws|.

It is clear that this is a metric on H. In fact, the triangle inequality follows from
(LAa)4+ (LAb) > 1A (a+b) for all a,b > 0. Denote by ||-||c := ||-||s. the corresponding
seminorms on functions and on measures given by (2.31) and (3.2) respectively. Since
(0n)nen converges to 0 from above, extracting a subsequence if necessary, we have §,, >
Ons1 for all n € N. Then (ds, )nen is a totally separating system of continuous metrics
for H: first, ds, (w1, wy) = 1A é JJwy —we]] < TA ﬁ Nwy —wsl| = ds,, ., (w1, w,) for all
(w1, ws) € H% n € N. Furthermore, lim,, .o, ds, (w1, w) = lim,, o 1 A 6% Nwy = ws| =
1 for all (wy,we) € H? wy # woe. Hence (ds,)nen is a totally separating system of
continuous metrics for H.

Since
1 lp(x) —py)] 1 lp(x) —p(y)| 1
lolla==- sup “—F———<—- sup - == |l¢lle,
€ zyeM:iaty € ’ d(l’, y) € azyeH: J:;éy} NE . d(l’, y)j e
:d:(;,y)

it follows immediately from (3.7) and Lemma 3.15 that for every Frechet differentiable
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3 Asymptotic strong Feller property

function ¢: H — R we have

[ o) (roon, ) = 7, )|

= |Prp(wr) = Prp(ws)]
< Clwill v llwall) - (lelloo +0n - IVelloo) - lwr — ws|

= Cllwnl) v llwall) - (elloo + 80 - Iplla) - leon = sl
On
Ol ) - (el + 2 el ) - s = ) (33)

IN

Now take a d.-Lipschitz continuous function ¢: H — R with [|¢||. < 1. Without loss
of generality assume ||¢||oc < 1. Then by Lemma 3.16 there exists a sequence (¢, )men of
Frechet differentiable functions ¢,,: H — R such that ¢,, — ¢ pointwisely as m — oo,
lomlloo < @l < 1 and [|omlle < |l¢|le <1 for all m € N. Therefore by the dominated

convergence theorem and (3.8)

/;¢mu»<w%<wbduo——w%cwmduoﬂ

= lim

m—00

];¢mxuo<w%cwhduo-—w%<w%duoﬁ

. On
< i CClull v )« (el + 2 -l ) -l el
On
< v sl - (el + 22l ) - oy = sl
On,
< Ol v fual) - (122 oy = .
Hence
menwmm%wk:”m>/ﬂmmmmmwmm%mw
2 e=1 H

IA

On
Cllunllv el - (14 %2 ) s = wal.
Applying Corollary 2.19 yields
On,
WMM&-MWwMSCWMVMWMO+;)Wm—ww

Choosing ¢ = a,, = v/0,,, we obtain
17, (w1, -) = 1, (w2, ) a, < C(Jwr]| V llwall) - (14 an) - [Jwr — wal],

for all n € N, which in turn implies that (P;):>o is asymptotically strong Feller, since
a, — 0 for n — oo. O
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3.5 Examples

3.5 Examples

The following two examples will demonstrate the powerness of the asymptotic strong
Feller property even in the finite-dimensional setting.

Example 3.17. Consider the two-dimensional SDE
dx(t)\ 1 0\ [x(t) 10
() == o 1) G+ (o o) aweo (3

0= (o)

is a two-dimensional real-valued Wiener process on some probability space (2, F, P).
The solution 1s given by

() = (7, ),

Note that the first component is an Ornstein-Uhlenbeck process.
We claim that the corresponding Markov semigroup (Py)i>o, defined by

e () =2 [ (G

for all p € By(R?), (z0,y0) € R t > 0, is not strong Feller but asymptotically strong
Feller.
To see that P, is not strong Feller, let : R? — R be given by

(W) R A

and observe that for this choice we obtain
T z(t, x
Pe(() = =l ()]
Yo y(t, yo)
etwg + fi e dW D (s)
4 ety

= E[sgn(e”"yo)]
= sgn(e_tyo)

= sgn(yo)

- +(())

where

= E
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3 Asymptotic strong Feller property

Jor all (zo,yo) € R%, t > 0. Since p € By(R?) but ¢ & Cy(R?), the system is not strong
Feller.
Denote by ( ) the linearization of equation (3.9), that is du(t) = —u(t)dt and dv(t) =

—v(t)dt with mztml conditions u(0) = & and v(0) = & respectively. As before, define a
function g: [0,1] — R? by

95(@%)) <u(tafl)>

qg(s) = +s- .

(5) <y(t,y0) v(t, &)

In order to show that the system is asymptotically strong Feller, observe that for any

differentiable function ¢: R* — R and any direction & = (&1,&) € R? with ||€]| = 1 we
have, using the fundamental theorem of calculus, the chain rule and the Cauchy-Schwartz

inequality
Pe((nie)) P ()
= e (Gimren) =Gl
= El(Gamre) - (Gl
= El (Gl - (G
= e (e + () o ()|
= |E[§0(9(1))—s0(9(0))]|

I
=
O\HI

VAN
=
O\H

A
<
AH
2

=
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3.5 Examples

Let (t,)nen be a positive nondecreasing sequence with lim,, . t, = oo and define 0, =
e~ for all n € N. Then the conclusion follows by Theorem 3.13 taking the function C
to be constant and equal 1.

Example 3.18. Now consider the two-dimensional SDE
() =16 %) G -8
with initial condition
(o) = ()
o (o)

is a two-dimensional real-valued Wiener process on some probability space (2, F, P).
Again denote by ( (t)) the linearization of equation (3.10).

dt + (é 8) aw (1) (3.10)

where again

As before the function go((y)) = sgn(y) is invariant under Py, implying that the system
15 not strong Feller. However, in the contrast to the previous example, it is not globally
contractive. Therefore the situation is in some kind a little delicate and we will need the

following fact (cf. Lemma 4.10 in [9]):

%Ptgo ((zz))‘ < C(|zol) - [0

for some nondecreasing function C': R, — R and all t > 1.
Hence applying the mean value theorem to both variables respectively we gain

Pe(re)) e ()

< (G o)) - (Gl

- [l (Gemren) = (Gl

= el (e tea)) =2 (™))
2ot = (G|

[ (o o) e

pe (1)) -7 (1)

8
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3 Asymptotic strong Feller property

8 [/01 5%%0 ((y(taq?;t()iio:fz;, §2)>> ds - U(tafz)]
L g ) s
e (G o)) e

9 s
Pk ((xo ' &))’ dr - |6
x Yo

<[IVelleo
<C(lzot+r-&1)-lelloo <C(lzol+1)- el 0o

E

/

1
+/
0

< IVelleo - EfJo(t, &2)[] + C(lzol + 1) - loll
= Vel e [&] + Cllzo] + 1) - @l
< (C(zol + 1)+ 1) (el + e - [Vello) -

Taking a positive nondecreasing sequence (t,)neny with lim, . t, = oo and defining
0, == et for all n € N, the assertion follows by Theorem 3.183.

3.6 Uniqueness of the invariant measure

We conclude this chapter by proving in some sense the analogue of Proposition 1.37.
Theorem 3.19. Let X be a Polish space, (P:)i>0 a Markov semigroup on By(X) and
W, v, i # v, two ergodic Borel probability measures for (Pi)i>o. If (Pi)io0 is asymptoti-
cally strong Feller at v € X, then x & supp(p) N supp(v).

Proof. First of all u and v are singular by Theorem 1.30. Hence we obtain for their
difference the total variation

() + (X)) = 1.

DO | —

(=) (X)) + (n—v) (X)) =

N | —

| — vy =

For every A € B(X), t > 0 and every pseudo-metric d on X with d < 1 the triangle
inequality for ||-||4 implies

y,2€A

= vl 1= min{u(4). ()} - (1= mox ) = mla) . @1

To see this, set o := min{u(A), v(A)} and distinguish the following two cases:
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3.6 Uniqueness of the invariant measure

Case 1 (w = 0): For a = 0 we obtain by definition of the Wasserstein distance

lu—vlle = inf / d(z,y) n(dz, dy)
XZ

n€eC(p,v)

inf /177(dx,dy)
X2

n€eC(p,v)

< /le(u®V)(dI,dy)
= (nev)(x?)

= (&) - v(X)

=1

= 1-a (1= maylnG) - mn )

y,z€A

IN

Case 2 (a > 0): Clearly, there exist probability measures pa, fi,v4,7 on (X,B(X))
with v4(A) = pa(A) = Lsuch that p = (1—a)-fi+a-ps and v = (1—a)-v+a-v4. In fact,
without loss of generality assume o = p(A) and take, e.g. pa(B) := @, a(B) =
“(%mjc), va(B) == % and 7(B) := w for all B € B(X). From the invariance
of the measures p and v and the triangle inequality this implies

[ —vlla

1P} 1 — Pl

[P (1—a) - fit+a-pa) =P (1—a) v+a- va)ld
= |(0—a) Piap+a Plusa—(1—a) Pv—a Pl
= [1-a) - (P/p—P/v)+a- (Piua—Piva)la

< (1-a) |Pii— Piolla+ - |Piua — Pivalla
—a)+a- m(z, - dz) — | m(y, ) vald

< (1-a)t /X< ) pa(d2) /X () malty)|

- (l-a)+a- / 72, ) paldz) — / ) valdy) |

= oo | [ mo wat) va) = [ mi) pata) vaay

d

— (1-a)ta- // (=) = 7o) palde) valdy)

d

< (1—a)ta- / / () = 7o ) wa(l)

y,z€EA

< 1o (1o max ) - m )

Continuing with the proof of the theorem, we see that, by definition of the asymptotic
strong Feller property, there exist a constant N > 0, a totally separating system (d,,)nen
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3 Asymptotic strong Feller property

of continuous pseudo-metrics and an open set U containing x such that ||m, (z,-) —
7, (Y ) g, < % for every n > N and every y, z € U. (Note that by definition of a totally
separating system, the pseudo-metrics d,, are less or equal 1.)

Assume, by contradiction, that = € supp(u)Nsupp(v). Hence o« = min{p(U),v(U)} >
0 according to (1.19). Taking A =U, d = d, and t = t,, in (3.11), we then get ||u—v/||q, <
1 — § for every n > N. Therefore || — v||ry <1 —§ by Corollary 3.7, in contradiction
to [|[u—v|rv =1 O

As an immediate consequence we have

Corollary 3.20. Let (Pi)i>0 be an asymptotically strong Feller Markov semigroup on
By(X) and assume that there exists a point x € X such that x € supp(u) for every
invariant Borel probability measure p for (Py)i>0. Then there exists at most one invariant
Borel probability measure pu for (Py)i>o-

Proof. Suppose there is more than one invariant Borel probability measure for the
Markov semigroup (P;):>o. Then by Corollary 1.31 there exist at least two distinct
ergodic Borel probability measures p and v for (P;);>o. Since (Py)i>o is asymptotically
strong Feller (at every x € X'), by the previous Theorem 3.19 = ¢ supp(u) Nsupp(v) for
all z € X, i.e. supp(p) Nsupp(v) = 0. Hence, if there exists a point = as required in the
formulation of the corollary, e.g. x € supp(u) for every invariant probability measure p,
then there is at most one invariant Borel probability measure p for (P;)i>o. O

Remark 3.21. According to Theorem 1.27 i is ergodic then.
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4 Application to stochastic
differential equations with
Lipschitz nonlinearities

The following situation is treated in [9].

We are given two real separable Hilbert spaces H and U. Suppose {ey},.y is an
orthonormal basis in U and {3}, .y is a sequence of mutually independent real-valued
standard Brownian motions on a fixed probability space (2, F,P). Let (F;),5, be a
filtration such that F; is generated by fx(s), s <t, k € N. -

We consider the SDE

dX(t) = (AX(t)+ F(X(t))) dt + BdW(t) (4.1)
X(0) = =z

where A: D(A) C H — H and B: U — H are linear operators, F': H — H is a
nonlinear function and W is a cylindrical Wiener process in U, formally defined by

W(t) = Bi(t)ex, t > 0.

From now on we assume the following two Hypothesis (cf. Hypothesis 2.1 and 3.1 in
[9]):

Hypothesis 4.1. (i) A: D(A) C H — H is the infinitesimal generator of a strongly
continuous Semigroup (etA)t>O.

(i) B € L(U, H).

(iii) For any t > 0 the linear operator @y, defined as
t
Qix = / e v ds, © € H,
0

where C' = BB*, is of trace class.
By the Hille-Yosida theorem it follows that there exist M > 0 and w € R such that
||€tA||L(H) S Mewt

for all ¢ > 0.
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4 Application to stochastic differential equations with Lipschitz nonlinearities

Hypothesis 4.2. F is Lipschitz continuous: There erists some constant K > 0 such
that |F(z) — F(y)|| < K - ||l —y|| for all z,y € H.

Denote by Cy ([0, T']; H) the space of all continuous, (F;)-adapted mappings Z: [0,7] —
L*(Q,F, P; H). Observe that Cy ([0,T]; H) endowed with the norm |||y, (fo.r1:1) given
by

%
12l cw (o/mm) = (SUP E[!Z(t)|2]>
te€[0,7)

is a Banach space. It is called the space of all mean square continuous adapted processes
on [0, 7] taking values in H.

Definition 4.1. By a mild solution of problem (4.1) on [0,T] we mean a stochastic
process X € Cw ([0,T]; H) such that

t t
X(t) = ez + / IAR(X (5)) ds + / e=AB qW (s)
0 0

for all t € [0,T].

It is well known that there exists a unique mild solution to (4.1), provided that Hy-
potheses 4.1 and 4.2 hold (cf. Theorem 3.2 in [9]). Moreover, if in addition F' € CZ(H, H),
the mild solution X (¢, ) of (4.1) is differentiable with respect to the initial condition x
P-as. and for any h € H we have DX (t,7)h = n"(t,z) P-a.s. where (¢, z) is the mild
solution of the equation

%nh(t, x) = An'(t,x)+ DF(X(t,x))n"(t,z)

n"(0,z) = h,

that is, n"(¢,x) is the solution of the integral equation
t
n'(t,z) = e'h +/ IADE(X (s, 2))n" (s, x) ds, t >0 (4.2)
0

(cf. Theorem 3.6 in [9]).
Denote by (P¢)i>o the Markov semigroup corresponding to the SDE in (4.1), e.g.
Pip(z) = E[p(X(t,2))] for all ¢ € By,(H), x € H, t > 0.

Lemma 4.2. Assume that Hypothesis 4.1 holds for some w < —MK < 0 and let
F € C3(H,H). Then the Markov semigroup (Py)i>o is asymptotically strong Feller.

Proof. According to (4.2) we have

t
o) < M)+ ME [P (s,2)] s,
0
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which is equivalent to
t
el < Mbl + ME [ e (s, ds.
0

Hence by the Gronwall lemma,
(1, 2] < MJh] - M
ie.
I (¢, )| < MI|R]| - et = MO p). (4.3)

In order to show that the Markov semigroup (P;);>o is asymptotically strong Feller,
by Theorem 3.13 we have to find two positive sequences (t,)neny and (6,)nen, tn < tni1
for all n € N and lim,,_,, 9, = 0, such that

Prp(@) = Pro()] < CUlzl V Iyl - (lelloo + 0n - IVelloo) - [l =yl (4.4)

for all p € C}(H), x,y € H, n € N and some fixed nondecreasing function C: R, — R.

First of all note that by (4.3) for any h,z € H we have |[DX (¢, 2)h| = ||[n"(t, 2)|| <
Me@HMEX || P-a.s. for all t > 0. Hence |DX (¢, 2)|| ) < Me@HME) Poas. for all
t > 0 and all z € H. Therefore

Prp(z) — Prp(y)]

E[[p(X(t,2)) — @(X(t,y))]]

IVolloo - B[ X (¢, 2) — X (2 y)ll]

< VY|l - E zl[lopl DX (t,y + a(x =yl | -z —yl

IVplloo - MeHHO -z — ]| (4.5)

IN

for all ¢ € C}(H), z,y € H, t > 0. Now let (t,)nen be a positive nondecreasing sequence
such that lim,,_.~ t, = 0o and define 6, := e MKt for alln € N. Sincew < —MK < 0,
we conclude 6, "> 0 and inequality (4.4) is valid taking the function C to be constant
and equal M. O]

Our next aim is to show that the Lemma remains valid when weaken the assumption
F € C}(H,H), e.g. taking F just Lipschitz continuous. To this purpose set FV(z) :=
F(z) AN forall z € H, N € N and introduce a regularization Fj of F' by setting, for
any h € H,

(Fj'(x) / (FY (e™z+y), ePh) Nigiians_y)(dy), B>0,
where S: D(S) C H — H is a given self-adjoint, negative definite operator such that S—*

is of trace class. Note that the definition of Fé\f corresponds to an Ornstein-Uhlenbeck
semigroup (U;)i>o, given by

Uigla) = [ (el + ) Nygosons ()
H
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4 Application to stochastic differential equations with Lipschitz nonlinearities

forall o € By(H), z € H, t > 0. Since in particular Tr[157!(e** —1)] < oo (cf. Theorem
VI.19 in [13]), Hypothesis 4.1 is fulfilled and so by Proposition 2.17(iv) in [9] we know
that the mapping [0,7] x H — R, (t,x) — Upp(x) is continuous for all ¢ € C,(H).

1

Furthermore, according to Remark 2.25 in [9] we have e"¥(H) C (357!(e*¥ — 1))2(H)
for all ¢ > 0. Hence in view of Proposition 2.28 in [9], Uyp € C;°(H) for all ¢ € B,(H).
Concerning the properties of FBN this means

}}{r(l)FﬁN(x) = FN(2)
for all x € H and
Fy € C*(H, H) (4.6)
forall N e N, g > 0.

Furthermore we have
Lemma 4.3. Fév is Lipschitz continuous with Lipschitz constant K (N, ) < K.
Proof. Let x,y € H and > 0. Then we have
2
175" () = F5' )
= [(F5'(x) = F5'(y). F5 (x) — F5' ()|

< [ FY (P4 2) = FY (ePy + 2) 7 (Fy'(0) = F'(9)))] Nyg(eans 1y (d2)
HN ~ o 2
<[l (e#Sate) =i (SSytz) ||| 2] g |5 @)= W]
< K)oy -l = ull - 1FY (0 — EY W)

according to the Lipschitz continuity of F. Dividing both sides by ||F} (z) — FJ (y)||
yields the first assertion. Moreover, since S is a self-adjoint, negative definite operator,
from [8] we know that ||e”]|1) < 1. Hence K(N, 3) < K. O

Now let N € N, § > 0. Similarly as above one can show that the problem
dXF(t) = (AXF () + FY (X)) dt + BdW(t)

X)) = =
has a unique mild solution Xév(t, x). Moreover, it is not difficult to check that
lim lim X} =X 4,
Alm lim X' (¢, z) = X (2, ) (4.7)

forall x € H, t > 0.
Defining

;P o(a) = Elp(XF (t,2)]
for all p € B,(H), according to (4.7) and Lebesgue we receive

lim lim P Pp(x) = lim lim Elp(X) (t,2))] = Elp(X (t, z))] = Pup(x) (4.8)

N—oo —0 N—o0 f—0

for all p € Co(H), x € H, t > 0.
By the help of these preparations we are able to prove the final result of this chapter:
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Theorem 4.4. Assume that Hypothesis 4.1 holds for some w < —MK < 0 and Hy-
pothesis 4.2 is fulfilled. Then the Markov semigroup (Pi)i>o is asymptotically strong
Feller.

Proof. Let N € N, > 0. Since according to (4.6) Fév € C}(H,H), by Lemma 4.2 the

assertion follows for (P;'"”);>¢. In particular, observe that the sequence (f,)nen in (4.5)
(and consequently the sequence (d,)nen) can be chosen independently of N € N and
B > 0. Since K(N, ) < K, we achieve

P (@) = PoPo(y)] < IVellos - M -8y - o —y] (4.9)

for all ¢ € C}(H), z,y € H, n € N with §, given as in the proof of Lemma 4.2. Since
the right hand side in (4.9) is independent of N € N and 3 > 0, letting first § — 0 and
then N — oo the assertion for (P;):>o follows immediately from (4.8). O

Remark 4.5. Observe that we can dispense with the assumption that B is continuously
invertible, which is needed in [9] in order to show that (Py)i>o is strong Feller (cf. The-
orem 3.11). In particular, we do not apply the Bismut-FElworthy formula. Unfortunately
we have to take w < —MK < 0.
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A Approximation via convolution

Let n € C3°(R™) such that n > 0 and [, 7(x) dz = 1. Define a sequence

Ne(x) = eim-n (?n)

Note that via the substitution y := =% we have

and moreover for every p > 0

/ ne(z) dx =10.
R™\ B, (0)

In particular, for e = % we obtain with ¢, := 11

[ ey

and

/ Sn(z) dov =30
R™\B,(0)
for all p > 0.

Let f € LP(R™). The convolution of f and &, is defined by

(776)5>0 by

(f *0p) (z) := f(2)on(x —2) dz = flz —2)0n(2) dz.

Rm Rm

Now we are able to prove the following

Lemma A.l. Let f € Ly(R™). Then there exists a sequence (f,)
such that

neN’

(i) f, == f pointwisely,
(ii) [[falls < I flloc for each n € N,

(151) || fulla < || flla for each n € N.

fo € GE(R™),
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A Approximation via convolution

Proof. Let f € L4(R™) and define functions f,: R™ — R by f.(x) := (f % d,) (z).
Let x € R™. Observe that using the substitution z := r — v we have

(f%0n) (2) = fl2) = | f(2)oulz = 2)dz— f(2)

_ / F(2)on(x — 2 dz—f(x)-/Rmén(x—z)dz
= [ 0 - )2 d

_ / (= v) — f(2)) 6, (v) du

R™

_ / Fla— )6, (v) dv.

R™

Hence

() = [ ()]
= [(f%0n) (z) = f(=)]

émﬁﬂ@—fw—vﬁﬁdwm)+

IA

/’ (f(2) — fla —0)) - 6,(v)
™\ B, (0)

On(v) dv | - su z)— flx —v
< (éw)()d>lvgf() fo—v)
On(v) dv | - su z)— flx —v
+<4mm® (v) ) sup @) = fle =)

~
<2 flloo <00

for all p > 0. Therefore, letting first n — oo and then p — 0 yields

lim f,(z) = f(z)

n—oo

for all z € R™ according to (A.1) and the continuity of f, i.e. f, converges pointwisely
to f as n tends to infinity.
Furthermore, since

()] =

- f(2)on(x — 2) dz

| sta =2 a:

[flloo = [ On(z = 2) dz
Rm
= [l

IN

IN
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for all z € R™, n € N, we have || f,]|cc < ||f]loo for all n € N and this is (ii).
Similarly,

[fu(z) = fuly)| < [f(z —2) = fly —2)| - 0n(2) dz

RTW/
< Iflle- / 5.() dz - | — ]
T

Hence f,, € L4(R™) and || fn|la < || f]la for all n € N.
It remains to show f, € C;°(R™) for all n € N. Observe that §,, € C°(R™) and for
v € R™ we have

0

5y (f *0) (20)
i L (5 00) ) = () 2
- flg(l)% ' / (6n(z0 + hv — 2) = bn(0 — 2)) - f(2) d2

By iterating this argument the assertion follows. O]
In the same way one can prove:

Lemma A.2. Let f € C,(R™). Then there exists a sequence (fn),cn» o € CE(R™), such
that || fulleo < || fllee for alln € N and f,, — f pointwisely as n — oo.
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B Regularization of Markovian
kernels by composition

The following results are taken from chapter IX.1 in [3].

Let (E,B(E)), (F,B(F)) and (G,B(G)) be measurable spaces, M: B,(F) — By(E),
N: By(G) — By(F) Markov operators and 7 7 the corresponding Markovian kernels
from (E,B(F)) to (F,B(F)) respectively from (F,B(F)) to (G, B(G)). It is clear, that
P defined by P := MN is a Markov operator from B,(G) to By(FE) and 7¥ := 7N¥gM
the corresponding Markovian kernel from (E, B(E)) to (G, By(G)).

Definition B.1. A kernel k from (E,B(E)) to (F,B(F)) is called basic if there exists
some Borel probability measure p on F such that k(x,-) < p(-) for all x € E. In this
case the Borel probability measure p is called the base.

Theorem B.2. Let E be metrizable, M : By(F) — By(E) strong Feller and 7 basic.
Then the kernel ©¥ from (E, B(E)) to (G, By(Q)) is continuous in x in the total variation
norm, that is |77 (z,,-) — 78 (2, )||ry == 0 for every sequence (o, )ney with x, —> x.
Moreover, if E is compact, P is compact as well.

Proof. Tt is sufficient to check that if (£, dg) is a compact metric space, then P = M N is
compact and its transition probabilities 7' (z, -) are continuous in z in the total variation
norm, cause then the assertion follows for every compact subset K C E. Applying this
to the compact subset K = {z,, | n € N} U {z} formed by the convergent sequence
(Tn)nen with limit x, the assertion follows for FE.

Let U := N(Bg,)(0,1)) € By(F), where Bg,)(0,1) := {g € By(G) | [|g9]|oc <
1} denotes the closed unit ball in B,(G), and V := M(U) C By(F). Hence V =
MN (Bg,)(0,1)) = P(Bg,)(0,1)). In order to prove that P: B,(G) — By(E) is
compact, we have to show that V' C B,(FE) is relatively compact for the topology of
uniform convergence on F.

So, let (e,)neny € V. By definition of V' there exist f,, € U such that e, = M f,, for all
n € N. According to Remark B.4 below there exist a subsequence (f,, )reny and f € U

[

k—oo

such that f,, (v) — f(y) for all y € F. Now it suffices to show that (e,, )ren converges

k—o0

uniformly to e = M f, that is ||e,,, — €|lcc — 0. Without loss of generality take f =0,
e.g. f(y)=0forally e F. Hence M f = 0.

Define hy(y) := sup;si|fu,(y)| for all y € F. Obviously (hx(y))ren is monotonically
decreasing and converges to f(y) = 0 for all y € F, because f,,(y) — f(y) = 0 for all
y € F as [ tends to infinity. Since hy € B,(F) for all k € N and M : By(F) — By(F) is
strong Feller by assumption, we have Mhy, € C,(E) for all k£ € N. Moreover the sequence
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B Regularization of Markovian kernels by composition

(Mhy(x))ken is monotonically decreasing for all x € E, because

M (a) = [

[ hua(y) ) < / haly) 7 (2, dy) = Mhy(2)

for all k € Nand all x € E. Since Mhy(z) > 0 for all k € N, x € F and (Mhy(x))gen is
monotonically decreasing for all z € E, we have: infyey Mhy(z) exists for all x € E and
infreny Mhy(x) = limy_,oo Mhy(z) = M f(x) = 0 for all x € E. Furthermore the function
M f = 0 is continuous.

Therefore all assumptions of Dini’s theorem are satisfied and so we get that (M hy)ren

k—o00

converges uniformly to M f =0, i.e. ||[Mhy — 0]l — 0. But

Mo (2)] = /F fun () 7 (2, dy)
< / o ()] 7 (2, dy)

< /F hi(y) ™ (z, dy)
= th(:v)

for all k € N and all z € E, thus | M f,, |l < ||Mhi]|s for all k € N. So, ||e,, — 0]|oc =

k—oo

|M fr, — Ol — 0. Hence V is relatively compact and therefore P: By(G) — By(E)
is a compact operator.

Since V' C B,(FE) is relatively compact, we further conclude by Arzela-Ascoli’s theorem
that V' is equicontinuous, i.e.

Ve>0VezeFE 3d=6(x,e)>0: V' €eFE:
dp(z,2') <6 = suple(z) —e(2)] <e. (B.1)
ecV
But by the definition of V' we can choose some function g € Bg,()(0,1) such that

e = Pg. Therefore (B.1) could be written as

Ve>0VrxeFE 36=6(x,e)>0: Va' e E:

dp(r,2") <6 = sup [Pg(z) - Pg(z')] <e.
9€Bs,(c)(0,1)

In particular, since g = 14 € Bp,()(0, 1) for arbitrary A € B(G), we obtain
|P14(z) — Pla(2)] <e.
Therefore

|7 (x,) — 7P (', )||lrv = ASEFG)MP(LA) — P A)| < e. (B.2)
€

]
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To complete the proof of the above theorem, it remains to prove the existence of some
subsequence (f,, )ken-

Lemma B.3. Suppose 7 is basic. Then U := N(Bg,(0,1)) is compact for the topol-
ogy of pointwise convergence. Moreover, if in addition the o-algebra B(G) is separable,
U s compact metrizable.

Proof. Since 7V is basic, there exists some probability measure p on (G, B(G)) (the
base) such that 7™ (y, ) < pu(-) for all y € F.

First of all, N defines a bounded operator from L*(G,u) to By(F). In fact, let
9,39 € By(G) with g(2) = g(z) for p-a.e. z € G. Since 7V (y,) < () for all y € F, we
have g(z) = g(z) for 7V (y,)-a.e. 2z € G for all y € F. Hence

No(y) = /G g(2) 7 (y, dz) = /G 3(z) 7 (y,dz) = Nii(y)

for all y € F. Therefore Ng only depends on the equivalence class [g] € L (G, u) of g.
Furthermore, since g € By(G) we gain

INg(y)| < /Glg(Z)! ™ (y,dz) < |lglloe - ™ (4, G) = l|glloe

for all y € F" and thus [[Ng|le < [|9]loc- SO, | Nl £(z (G p0),8,(F)) < 1, e.g. N is a bounded
operator from L*(G, p) to By(F') (even a contraction).

Denote by B the unit ball in L>®(G, ). Since 7™ (y,-) < u(-) for all y € F, by the
Radon-Nikodym theorem there exists some density p, € L'(G,u), p, > 0, such that
Japy(2) p(dz) = 7N (y, A) for all A € B(G),y € F. Hence N: L™(G, 1) — By(F) is
continuous with respect to the weak topology o(L>°, L') on L*>(G, 1) and the topology
of pointwise convergence on By(F ) In fact, for g, "—> g with respect to o(L>, L'), that

is [, gn(2)h(2) = [, 9(2) dz) for all h € LY(G, p), we receive
lim Ng,(y) = lim [ gu(2) 7" (y,d2)

= lim [ g.(2)py(z) p(dz)
G

n—oo

- /G 9(2)py(2) (dz)

_ / g(2) 7 (y, d2)
G
= Nyg(y)

forall y € F.

By the Banach-Alaoglu theorem (cf. [1], p. 215) the ball B is compact for the
topology o(L>,L'). Since N is continuous with respect to the topologies mentioned
above, U = N(B) is compact for the topology of pointwise convergence.
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Moreover, if B(G) is separable, B is metrizable and so is U. In fact, if B(G) is
separable, L'(G, i) is separable and so there exists a countable dense subset {h; | i € N}.
Without loss of generality assume h; # 0 for all 7 € N and set hy - Consider
the map

fG|hi| dp’

T:BC LG, — [-1,+1"
s ([ a0 “(dZ)LN‘

Claim 7. T is injective.

Proof. Let g,g € B such that T(g) = T(g). Then

/G (9(2) — (=) Fu(2) pldz) =

for all i € N. Multiplying both sides of the above equality with [,,|h;| dp yields

/G (9(2) — (=) ha(2) pldz) = 0

for all i € N. Since {h; | i € N} C L'(G, u) densely,

/G (9(2) — §(2)) h(2) p(dz) = 0

for all h € L'(G, ). Therefore g(z) = g(z) for p-a.e. z € G, e.g. g and g form the same
equivalence class in B with respect to p. O

Claim 8. T is continuous with respect to the topology o(L>, L') on L™ and the product
topology on [—1,+1]N.

Proof. First observe that it would be enough to show the assertion for each coordinate.
But this is clear according to the definition of convergence with respect to the topology
o(L>, LY. m

Combining both claims we receive that T': B — T(B) C [—1,+1]" is homeomorphic.
Therefore, since [—1,+1]" is a metric space, T(B) is a metric space and thus also B.

Furthermore the same is true for its image U under the continuous map N. (Note that
N: B — U is bijective.) O

Remark B.4. Let (fy)nen € U. Then there exists a sequence (gn)nen, 9n € Ba,c)(0,1),
such that f, = Ng, for all n € N. Consider the probability measures ©(y,-), y € F,
only on o(g, | n € N) C B(GQ). Since 7 is basic and o(g, | n € N) is separable,
according to Lemma B.3 {f, | n € N} = {Ng, | n € N} C U is compact for the topology
of pointwise convergence and metrizable. Therefore we can find a subsequence (fn,)pey

of (fn)nen and some f € U such that f,, (y) i f(y) forally € F.
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For the application in chapter 1 we further need the following relation between strong
Feller and basic Markov operators:

Lemma B.5. Let X be separable and let N be a strong Feller Markov operator on By(X).
Then 7 is basic.

Proof. Since X is separable, there exists a countable dense subset {z} | k € N} C X. It
would be enough to show

) € 3 e 7V (o) = () (B.3)

for all z € X.

So, fix € X and let A € B(X) such that pu(A) = > 77, 5% - @ (x4, A) = 0. Hence
N1(zg) = 7V (zg, A) = 0 for all k € N. Since 14 € B,(X) and N is strong Feller, we get
N1, € Cy(X). Since v € X and {z), | k € N} C X is dense, there exists a subsequence

(@K, )ien such that zy, =% 1. Therefore we conclude

oV (x, A) = N1y(z) = llim N1y(zy,) =0,

Le. ¥ (z,-) < Dop, o5 - (@, -) = p(). O
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C Probability measures on Polish
spaces

The following result is well-known (cf. Theorem 1.4 in [2]):

Lemma C.1. Let (X, d) be a complete and separable metric space. Then any probability
measure P on (X,B(X)) is tight.

Proof. Since X is separable there exists a countable dense subset {z; | i € N}. For any
r € X and § > 0 denote by B(z,6) :={y € X | d(x,y) < 6} the closed ball with center
x and radius 6 > 0.

Let ¢ > 0. For each n € N choose i, € N such that P(X \ (U, B(zi,2))) < =

ﬁ.
Define K := (,cny Ui<;, B2, +). It is clear that K is closed and totally bounded. In

fact, for given € > 0 there exists n(e) € Nsuch that % < ¢e. Hence K C Uigiw) B(z;,¢€).
Since X is complete and K C X is closed, K is complete. Therefore by Theorem 2.3.1
in [5] K is compact. But

ro=r(Q(Ye) ) =5 (o) ) <5

i<in n=1

and so the assertion follows. O

Remark C.2. While the assumption of completeness could be weakened to topological
completeness, e.g. there exists an equivalent metric d on X such that X 1s complete with
respect to d, the separability could be replaced by the reqirement that P has separable

support (cf. [2], p. 234).

105



C Probability measures on Polish spaces

106



Bibliography

[1] H. W. Alt. Lineare Funktionalanalysis. Springer, 1999.

[2] P. Billingsley. Convergence of Probability Measures. Wiley, 1968.

[3] C. Dellacherie and P.-A. Meyer. Probabilities and Potential C. North-Holland, 1988.
[4] J.-D. Deuschel and D. Stroock. Large Deviations. Academic Press, 1989.

[5] R. M. Dudley. Real Analysis and probability. Chapman and Hall, 1989.

[6] M. Hairer. Ergodic theory for Stochastic PDEs. Unpublished lecture notes. 2008.
http://www.hairer.org/notes/Imperial.pdf.

[7] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier-Stokes equations with
degenerate stochastic forcing. Annals of Mathematics, 2007.

[8] Z.-M. Ma and M. Rockner. Introduction to the Theory of (Non-Symmetric) Dirichlet
Forms. Springer, 1992.

[9] G. Da Prato. Kolmogorov Equations for Stochastic PDFEs. Birkhduser, 2004.
|10] G. Da Prato. An Introduction to Infinite-Dimensional Analysis. Springer, 2006.

[11] G. Da Prato and J. Zabezyk. Ergodicity for Infinite Dimensional Systems. Cam-
bridge University Press, 1996.

[12] S. T. Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley,
1991.

[13] M. Reed and B. Simon. Methods of Modern Mathematical Physics. Volume I Func-
tional Analysis. Academic Press, 1980.

[14] D. Werner. Funktionalanalysis. Springer, 2000.

107



