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Introduction

Consider the Rd-valued stochastic di�erential equation

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dW (t),

X(0) = ξ,
(SDE)

where
(
W (t)

)
t≥0

is a d1-dimensional Wiener process with respect to a normal �ltration

(Ft)t≥0 and ξ is an F0-measurable random vector. Let b and σ be Borel-measurable

functions mapping from R+ × Rd into Rd and Rd×d1 , respectively.

Then there exist well-known results about the existence and uniqueness of strong so-

lutions of the equation (SDE) under certain additional assumptions on the coe�cients.

For example, D. W. Stroock and S. R. S. Varadhan state such a theorem in [SV79]

(cf. Chapter 5.1 starting on page 124) under the further assumptions that b(t, x) and

σ(t, x) are Lipschitz continuous in x and bounded by a constant. In [Kry99] the results

(cf. Theorem 1.2 on page 2) are heavily based on the also well-known local weak mo-

notonicity and weak coercivity assumptions on the coe�cients b and σ. By assuming

the continuity of b(t, x) and σ(t, x) in x as well as an integrability criterion in addition,

N. V. Krylov proves existence and uniqueness in that case.

In applications, for example in mathematical biology and �nancial mathematics, it is

often necessary to consider stochastic di�erential equations in a certain domain instead

of the whole space Rd. Therefore, we have to introduce so-called non-explosion criteria

by which we can exclude that an explosion occurs, i.e. that a solution leaves the domain

in �nite time.

The aim of this thesis is to present a more elaborate version of the article �Existence of

strong solutions for Itô's stochastic equations via approximations� written by I. Gyöngy

and N. V. Krylov and published in the journal �Probability Theory and Related Fields�

in 1996 (see [GK96]), which concentrates on the study of the equation (SDE) in a

domain D ⊆ Rd using the concept of Lyapunov functions as a condition to ensure

non-explosion.

The study of Lyapunov functions in the context of stochastic di�erential equations

in �nite dimensions goes, among others, back to R. Khaminskii who considered the

stability of �nite-dimensional stochastic di�erential equations in [Kha80] (in particular

Chapter 5.4. and 3.4). This book had originally been published in 1969 in Russian.

Part I: Assumptions and results

In the �rst part of the thesis we introduce the three assumptions A1), A2) and A3),

which are of main importance for the further considerations and are slightly modi�ed

in comparision to [GK96].

First of all, we assume that for some χ > 0 the coe�cients b and σ are bounded

by non-random locally L1+χ-integrable functions Mk : R+ −→]0,∞[ on the sets Dk

belonging to an exhausting sequence (Dk)k∈N of bounded domains. Namely,
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A1) There exists a sequence of bounded domains (Dk)k∈N ⊆ Rd such that

• Dk ⊆ Dk+1 for all k ∈ N and
∪
k∈N

Dk = D,

• sup
x∈Dk

∥b(t, x)∥Rd ≤Mk(t) and sup
x∈Dk

∥σ(t, x)∥2L2
≤Mk(t) for all k ∈ N, t ∈ [0, k].

Besides, we suppose in the crucial assumptionA2) the existence of a Lyapunov function

V , which is the main condition to ensure that a solution of the stochastic di�erential

equation never leaves the domain D.

A2) There exists a non-negative function V ∈ C1,2
(
R+ ×D;R

)
such that

• LV (t, x) ≤M(t)V (t, x) for all t ≥ 0, x ∈ D,

• inf
x∈∂Dk
t∈[0,T ]

V (t, x) −−−→
k→∞

∞ for all T <∞.

Here, L is the di�erential operator associated with (SDE), which is given by

L :=
∂

∂t
+

d∑
i=1

bi(t, x)
∂

∂xi
+

1

2

d∑
i,j=1

(σσT )ij(t, x)
∂2

∂xi∂xj
,

and M is locally in L1+χ
(
R+; ]0,∞[

)
. In addition, the initial value of the equation

(SDE) should be P -a.s. in D, i.e. we assume that

A3) P
[
ξ ∈ D

]
= 1

holds.

Except for the Borel-measurability of the coe�cients b and σ we also have to make

two other additional assumptions in order to prove existence and uniqueness of a strong

solution of (SDE). We assume that b(t, x) and σ(t, x) are continuous in x ∈ D as well

as that pathwise uniqueness holds. The pathwise uniqueness, which holds e.g. under

local monotonicity assumptions, will directly yield the uniqueness of a strong solution.

Hence, the important part of the main theorem is the existence.

For the proof we consider the so-called Euler �polygonal� approximations of the equa-

tion (SDE), which are de�ned as processes (Xn(t))t≥0, n ∈ N, given by

Xn(t) = ξ +

∫ t

0

b
(
s,Xn(κn(s))

)
ds+

∫ t

0

σ
(
s,Xn(κn(s))

)
dW (s),

where κn(s) := tni , for s ∈ [tni , t
n
i+1[, and {0 = tn0 < tn1 < tn2 < · · · < tni < tni+1 < . . . } is a

sequence of partitions of R+ such that the mesh tends to zero for n→ ∞ and tni → ∞
as i→ ∞.

Now the �rst main theorem (see Theorem 3.7), which is based on a theorem in

[GK96] (cf. Theorem 2.4 on page 148), states that there exists a process (X(t))t≥0 such

that Xn(t) −−−→
n→∞

X(t) in probability, uniformly in t on bounded intervals, and that

(X(t))t≥0 is the unique solution of (SDE).
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Part I: Structure of the chapters, references and own

contributions

In Chapter 1 we work out the mathematical preliminaries of this thesis, which include

the basic notations and de�nitions in the �rst section. Besides, we give a detailed

proof for a crucial lemma from [GK96] in Section 1.2 (see Lemma 1.14), that yields an

equivalent description for convergence in probability of a sequence of random variables

in terms of convergence in distribution. The necessary preparations for the proof are

taken from the book [Dud02] of R. M. Dudley.

The second chapter starts with the framework of the thesis. On the basis of [GK96]

we state the main assumptions A1) to A3) as well as the notion of a solution and

the concept of the Euler �polygonal� approximations. Besides, we introduce the notion

of pathwise uniqueness from [GK96]. In the second section we prove that the non-

explosion criterion for solutions of the stochastic di�erential equation holds, i.e. we

consider a lemma from [GK96] (see Lemma 2.4). For the extended version of its proof

we in particular need Itô's formula and Itô's product rule, which, being cited from

[KS05] and [RY99], respectively, can be found in Section A.3 of the Appendix.

At the beginning of Chapter 3 we state and prove two helpful technical lemmas

(see Lemma 3.1 and 3.2) that are necessary for the proof of the �rst main theorem. We

�nish the �rst section by stating the important Skorokhod representation theorem, while

referring for its proof to [Bil99]. In Section 3.2 we state a crucial lemma mentioned in

[GK96] about the convergence in probability of sequences of (stochastic) integrals (see

Lemma 3.6). The proof is a detailed and extended version using the basic idea of a

theorem from A. V. Skorokhod (see [Sko65] on page 32).

The third section contains the �rst main theorem and its proof (see Theorem 3.7),

which is a more elaborate version of the one given in [GK96]. In particular, a signi�cant

part of the e�ort is the usage of tightness criteria to prove the relatively weak com-

pactness of sequences of probability measures via Prokhorov's theorem. The applied

tightness criteria from the books [Dur96] of R. Durrett and [Bil99] of P. Billingsley are

gathered in Section A.4 of the Appendix.

We �nish this chapter with a remark on the application of the �rst main theorem in

the case D = Rd and Corollary 3.8 about the fact that local weak monotonicity implies

pathwise uniqueness.

The already mentioned Appendix, which can be found at the end of the thesis, al-

so includes plenty of basic theorems like continuous mapping theorems, a generalised

Young inequality, a generalised Minkowski inequality for integrals, Itô's formula, Prok-

horov's theorem and lemmas concerning the relationship between the di�erent types of

convergence of random variables. The most important references in the Appendix are

[Dud02], [Dur96], [Bil99], [vdV98], [RY99] and [KS05].
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Part II: Assumptions and results

In the second part of the thesis, i.e. Chapter 4 and 5, we change the assumptions from

the �rst part slightly with the aim that we do not have to assume the continuity of the

drift coe�cient b anymore.

First of all, we add a fourth assumption, the so-called non-degeneracy condition A4)

for the di�usion coe�cient σ, to A1), A2) and A3). Namely, we assume:

A4) For every k ∈ N the domain Dk is bounded and convex and

d∑
i,j=1

(σσT )ij(t, x)λiλj ≥ εkMk(t)
d∑

i=1

|λi|2

holds for every t ∈ [0, k], x ∈ Dk and λi ∈ R for i = 1, . . . , d, where εk > 0 are

some constants.

Then it is claimed in [GK96] (cf. Theorem 2.8 on page 149) that in this case

(Xn(t)))t≥0 converges in probability, uniformly in t on bounded intervals, to a unique

solution (X(t))t≥0 of the equation (SDE) under the further assumptions that σ(t, x) is

locally Hölder continuous in x with some exponent α ∈]0, 1] and in addition, if α ̸= 1,

that the pathwise uniqueness holds for (SDE). This second main theorem is stated as

Theorem 5.2 in Chapter 5.

Part II: Structure of the chapters, references and own

contributions

In the fourth chapter we start with the properties of positive de�nite matrices in Section

4.1 and follow the book [HJ85] of R. A. Horn and C. R. Johnson as a reference.

For the proof of the second main theorem we have to consider Theorem 4.8 (see

also Theorem 4.2 in [GK96] on page 153) about estimates on the transition probability

density, which can be found in the third section of Chapter 4. In order to show these

estimates we crucially need auxiliary estimates from Lemma 4.7 in Section 4.2 (see also

Lemma 4.1 in [GK96] on page 152) at �rst.

We tried to follow the proof of Gyöngy and Krylov given in [GK96], but could not

con�rm the steps of their estimates on page 153. In fact, it seems that the �rst step of

the inequalities may not be ful�lled for any t > 0 with a constant N independent of t.

Namely, the term

exp
(
− ⟨(a+ a1)

−1(y − x), y − x⟩Rd

)
(cf. [GK96] on page 152 for the de�nition of pa(x, y)) is estimated from above by

exp
(
−

∥y − x∥2Rd

N t

)
for a constant N , which should be independent of the time variable

t.
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This implies that

⟨(a+ a1)
−1(y − x), y − x⟩Rd ≥

∥y − x∥2Rd

N t

and, therefore, a+ a1 ≤ N t Id as well would have to hold. But by assumption we only

know that the inequality ε t Id ≤ a ≤ K t Id is ful�lled for the symmetric matrix a

and that a1 is the covariance matrix of an unspeci�ed d-dimensional Gaussian vector

η with zero mean. Hence, we could not manage to prove that a1 as well as a + a1 are

bounded from above by N t Id for a constant N independent of t.

Therefore, we had to modify the proof and estimate the covariance matrix a1 by its

maximal and minimal eigenvalue. In this case we could verify the assertion of the lemma

and prove the same estimate but with a constant depending on these eigenvalues.

The problem with this adjusted estimate becomes clear in the proof of Lemma 4.8.

There we show that we cannot avoid that the constants may depend on the time

variable since the estimates for the covariance matrix depend on it in this case. The

independence would be necessary for following up the idea of the proof presented in

[GK96].

Hence, we are not able to �nish the proof of Lemma 4.8 completely, but we clarify

the occurring di�culties instead and give an extended version of the proof up to this

point.

The �fth chapter contains the second main theorem (see Theorem 5.2) with the

additional assumption A4). In order to keep this thesis within reasonable length, we,

however, do not present its proof and refer to [GK96] instead.
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1. Mathematical Preliminaries

In this �rst chapter we will on the one hand �x the most important basic notations used

in this thesis and besides recall some de�nitions from probability theory. On the other

hand we will also prove the crucial Lemma 1.14 concerning an equivalent description

for convergence in probability of a sequence of random variables by using convergence

in distribution of pairs of subsequences to an element on the diagonal.

1.1. Basic notations and de�nitions

For a topological space U the expression B(U) will always denote the Borel-σ-algebra
of U . A map f : U1 −→ U2 between topological spaces U1 and U2 is said to be Borel-

measurable if it is B(U1)/B(U2)-measurable.

Let (S, ρ) be a metric space. For y ∈ S and ε > 0 we de�ne

Bε(y) :=
{
x ∈ S

∣∣ ρ(x, y) < ε
}

to be the open ball of radius ε centered at point y and denote the corresponding closed

ball by Bε(y) :=
{
x ∈ S

∣∣ ρ(x, y) ≤ ε
}
. Furthermore, we write ∥ · ∥Rd for the Euclidean

norm (of course: | · | = ∥ · ∥R1) and ⟨·, ·⟩Rd for the Euclidean inner product on Rd. From

now on the interval [0,∞[ will be also denoted by R+.

Let T ∈ R+. In the following we will consider the space C
(
[0, T ];Rd

)
of continuous

functions from [0, T ] to Rd. Usually this space is equipped with the supremum norm

∥ · ∥∞ de�ned by

∥f∥∞ := sup
t∈[0,T ]

∥f(t)∥Rd .

Then C
(
[0, T ];Rd

)
is a separable and complete normed space. The separability follows

from the fact that polynomials with rational coe�cients form a countable dense subset,

and for the completeness we refer for example to [Bil99] on page 11, where a proof for

the space C
(
[0, 1];R

)
can be found.

For m,n, α ∈ N and an open set Λ ⊆ Rm we denote by Cα(Λ;Rn) the space of

α-times continuously di�erentiable functions f : Λ −→ Rn. We also use the notation

Cα,β(Λ1×Λ2;Rn) for functions mapping from a domain Λ1×Λ2 ⊆ Rm1×Rm2 to Rn that

are α-times continuously di�erentiable in the �rst and β-times in the second variable,

where m1,m2, β ∈ N as well. Besides, for 1 ≤ p < ∞ we denote by Lp := Lp(Λ;R)
the space of equivalence classes of p-th power integrable, measurable functions from

Λ ⊆ Rm to R equipped with the Lp-norm

∥f∥Lp :=

(∫
|f(x)|p dx

) 1
p

.

In the case p = ∞ we consider the essentially bounded, measurable functions for the

space L∞.
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Furthermore, we introduce the notation Rn×m for the space of n×m-matrices with

R-valued entries. For A ∈ Rn×m we de�ne the Hilbert-Schmidt norm ∥ · ∥L2 by

∥A∥2L2
:=

n∑
i=1

m∑
j=1

|Aij|2,

where the subindex L2 refers to the Hilbert-Schmidt operators. In addition, we write

Id for the d× d unit matrix as well as AT for the transpose, detA for the determinant

and trA for the trace of a matrix A as usual.

The space of all probability measures on a measurable space (U,B(U)) will be denoted
by M1(U).

Given a subset B ⊆ U of a topological space U , we write BC for the complement,

B for the closure and ∂B for the boundary. Besides, we de�ne inf ∅ := ∞ as usual.

Moreover, we set dist(x,B) := inf
{
∥x−z∥Rn

∣∣ z ∈ B
}
as the distance of a point x ∈ Rn

to a set B ⊆ Rn.

Finally, we have to �x the notation for partial derivatives. Let m,n ∈ N and f ∈
C1,2

(
R+ × Rm;Rn

)
. Then we write ∂

∂t
f(t, x) for the partial derivative with respect to

the time component, ∂
∂xif(t, x), 1 ≤ i ≤ m, for the i-th spacial partial derivative and

∂2

∂xi∂xj f(t, x), 1 ≤ i, j ≤ m, for the second-order mixed partial derivative with respect

to the i-th and j-th spacial component.

Now we can recall some important basic de�nitions from probability theory, begin-

ning with the distribution of random variables.

De�nition 1.1 (Distribution of a random variable). Let (Ω,F , P ) be a probability

space,
(
U,B(U)

)
be a measurable space and X : Ω −→ U be a random variable. Then

de�ne the distribution of X by PX := P ◦X−1.

In particular, we write N(m,Σ) for a normal distribution with mean vector m and

covariance matrix Σ in the following. We will also need the marginal distributions of a

joint random variable.

De�nition 1.2 (Marginal distribution of a joint random variable). Let n ∈ N, (Ω,F , P )
be a probability space and let

(
U i,B(U i)

)
, for 1 ≤ i ≤ n, be measurable spaces. Suppose

in addition that X = (X1, . . . , Xn) : Ω −→ U1×· · ·×Un is a joint random variable with

distribution PX . Then, for any 1 ≤ k ≤ n and every subset {i1, . . . , ik} ⊆ {1, . . . , n}
with il ̸= iℓ for l ̸= ℓ, the distribution P(Xi1 ,...,Xik ) is called marginal distribution of X.

Recall that for an index set I, a probability space (Ω,F , P ) and a measurable

space
(
U,B(U)

)
the stochastic process X is the family

(
X(t)

)
t∈I of random variables

X(t) : Ω −→ U . Of course, we can think of X as the map

X :
I × Ω −→ U

(t, ω) 7−→ X(t, ω)

as well. Now we can specify the notion of �nite-dimensional distributions of a stochastic

process.
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De�nition 1.3 (Finite-dimensional distribution of a stochastic process). Let (Ω,F , P )
be a probability space,

(
U,B(U)

)
be a measurable space and I be an index set. Suppose

that X : I×Ω −→ U is a stochastic process. Then for any k ∈ N and every t1, . . . , tk ∈ I

the distribution P(X(t1),...,X(tk)) is said to be a �nite-dimensional distribution of X.

A probability space (Ω,F , P ) is called complete if for every N ∈ F with P [N ] = 0

and for all N ′ ⊆ N we have N ′ ∈ F , i.e. every subset of a P -zero set in F is again

contained in F . By a �ltration (Ft)t≥0 we mean a family of sub-σ-algebras of F such

that we have Fs ⊆ Ft for s ≤ t.

De�nition 1.4 (Stochastic basis, cf. [PR07] on page 121). We call (Ω,F , P, (Ft)t≥0)

a stochastic basis if (Ω,F , P ) is a complete probability space and (Ft)t≥0 is a normal

�ltration, i.e. (Ft)t≥0 is right-continuous and F0 contains all P -zero sets.

Next, we clarify the concept of equality of two stochastic processes that we will use

later in this thesis when it comes to the uniqueness of a solution of the considered

stochastic di�erential equation.

De�nition 1.5 (P -indistinguishable). Let
(
X(t)

)
t≥0

and
(
Y (t)

)
t≥0

be two stochastic

processes on a probability space (Ω,F , P ) taking values in a measurable space
(
U,B(U)

)
.

Then they are called P -indistinguishable if

P
[
X(t) = Y (t), ∀t ≥ 0

]
= 1.

At this point we have to emphasise that whenever a P -a.s. continuous stochastic

process is given, we can replace it by the altered and P -indistinguishable process which

is continuous for every ω ∈ Ω. This basic idea is stated in the following remark and

will be used tacitly in future.

Remark (Continuity of stochastic processes). Let (Ω,F , P ) be a complete probability

space and X be a P -a.s. continuous stochastic process taking values in a measurable

space
(
U,B(U)

)
. Then the set

Ω0 :=
{
ω ∈ Ω

∣∣∣ t 7−→ X(t, ω) is not continuous
}

is a measurable P -zero set, i.e. P [Ω0] = 0, by the completeness of (Ω,F , P ). Therefore,
we can always consider the process given by

X̄(·, ω) :=
{
X(·, ω) for ω ∈ Ω \ Ω0,

0 for ω ∈ Ω0,

which is in fact continuous for every ω ∈ Ω.

Moreover, we should recall the notion of convergence of random variables, where we

can also introduce the notation of weak convergence of probability measures at �rst.
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De�nition 1.6 (Weak convergence of probability measures, cf. [Bil99], page 7).

Let U be a topological space and let µ, µn, for n ∈ N, be probability measures on(
U,B(U)

)
. We say that (µn)n∈N converges weakly to µ if∫

f dµn −−−→
n→∞

∫
f dµ

for every bounded function f ∈ C(U,R), and denote the weak convergence of probability

measures by µn
w−−−→

n→∞
µ.

De�nition 1.7 (Convergence of random variables). Let (Ω,F , P ) be a probability space
and (S, ρ) be a separable metric space. Let Z and Zn, for n ∈ N, be S-valued random

variables on (Ω,F , P ). We say that

i) (Zn)n∈N converges P -a.s. to Z if

P
[
lim
n→∞

ρ(Zn, Z) = 0
]
= 1,

and denote this by Zn
P−a.s.−−−−→
n→∞

Z,

ii) (Zn)n∈N converges in probability to Z if for every ε > 0 we have

lim
n→∞

P
[
ρ(Zn, Z) ≥ ε

]
= 0,

and write Zn
p−−−→

n→∞
Z,

iii) (Zn)n∈N converges in distribution (or weakly) to Z if

PZn

w−−−→
n→∞

PZ ,

and denote this by Zn
d−−−→

n→∞
Z.

For some important basic lemmas concerning the relationship between the di�erent

types of convergence of random variables we refer to Section A.3 in the Appendix.

Besides, we also mention the de�nition of Polish spaces, which we will use in the

following Section 1.2.

De�nition 1.8 (Polish space, cf. [Kle06], De�nition 13.1 on page 235). A topological

space is called Polish if it is completely metrisable and separable.

Now let (Ω,F , P, (Ft)t≥0) be a stochastic basis. First of all, we recall the notion of

bounded variation of a process (B(t))t≥0. Let t ≥ 0 and let Π =
{
0 = s0 < s1 < · · · <

sm = t
}
for some m ∈ N be a partition of [0, t]. Then B is of bounded variation if

sup
Π

∑
i : si+1∈Π

∥B(si+1)−B(si)∥Rd <∞

for every t ≥ 0 (see e.g. [KS05] on page 32). Moreover, we recall the de�nition of a

continuous local martingale (up to ∞).
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De�nition 1.9 (Continuous local martingale, [KS05], De�nition 5.15 on page 36).

A continuous, (Ft)-adapted process (Z(t))t≥0 with Z(0) = 0 P -a.s. is said to be a

continuous local (Ft)-martingale (up to ∞) if there exists a non-decreasing sequence of

(Ft)-stopping times (τn)n∈N such that
(
Z(t ∧ τn)

)
t≥0

is a continuous (Ft)-martingale

for every n ∈ N and

P
[
lim
n→∞

τn = ∞
]
= 1.

Finally, we can give the de�nition of a continuous semimartingale.

De�nition 1.10 (Continuous semimartingale, cf. [RY99], De�nition 1.17 on page 127).

A continuous semimartingale (Y (t))t≥0 is an (Ft)-adapted process which has P -a.s. the

decomposition

Y (t) = Y0 + Z(t) + B(t)

for every t ≥ 0, where (Z(t))t≥0 is an (Ft)-adapted continuous local martingale,(B(t))t≥0

is a continuous, (Ft)-adapted process of bounded variation and Y0 is an F0-measurable

random vector.

11



1.2. A characterisation of convergence in probability

For the proof of the previously mentioned Lemma 1.14, we �rst have to clarify how to

metrise a certain space of random variables with respect to convergence in probability.

The following considerations are based on Dudley's Chapter 9.2 in [Dud02].

Let (Ω,F , P ) be a probability space and (U,U) be a measurable space. Then denote

by E
(
Ω,F ;U,U

)
the set of all F/U -measurable functions from Ω to U . Furthermore,

let Ẽ
(
Ω,F , P ;U,U

)
be the set of all equivalence classes of elements of E

(
Ω,F ;U,U

)
with respect to P -a.s. equality.

De�nition 1.11 (Ky Fan metric, cf. [Dud02] on page 289). Let (Ω,F , P ) be a proba-

bility space and (S, ρ) be a separable metric space. Then de�ne the map ρ̃ by

ρ̃(X,Y ) := inf
{
ε ≥ 0

∣∣P [ρ(X, Y ) ≥ ε
]
≤ ε
}

for any X, Y ∈ E
(
Ω,F ;S,B(S)

)
.

We note at this point that ρ̃ is only a semimetric (or pseudometric) on E
(
Ω,F ;S,B(S)

)
because the coincidence axiom is not ful�lled due to matters of P -a.s. equality. On

Ẽ
(
Ω,F , P ;S,B(S)

)
then again, ρ̃ is in fact a metric as it is stated in the following

theorem and, therefore, said to be the Ky Fan metric.

Remark (cf. [Dud02] on page 289). Note that the de�nitions of P -a.s. convergence

and convergence in probability are una�ected by replacing random variables by P -a.s.

equal ones. Hence, these modes of convergence from De�nition 1.7 are also de�ned on

Ẽ
(
Ω,F , P ;S,B(S)

)
.

Theorem 1.12 (cf. [Dud02], Theorem 9.2.2 on page 289). Let (Ω,F , P ) be a pro-

bability space and (S, ρ) be a separable metric space. Then the map ρ̃ is a metric

on Ẽ
(
Ω,F ;S,B(S)

)
, which corresponds to convergence in probability, i.e. a sequence

(Zn)n∈N of random variables converges in probability to Z if and only if ρ̃(Zn, Z) −−−→
n→∞

0.

Proof. We refer to [Dud02], Theorem 9.2.2 on page 289.

Remark. The in�mum in this de�nition of the Ky Fan metric is always attained. For

further details we refer to [Dud02] on page 289.

Finally, we can also show the completeness of
(
Ẽ
(
Ω,F , P ;E,B(E)

)
, ρ̃
)
for a Polish

space
(
E, ρ

)
.

Theorem 1.13 (cf. [Dud02], Theorem 9.2.3 on page 290). If (E, ρ) is a Polish space

and (Ω,F , P ) is a probability space, then Ẽ
(
Ω,F , P ;E,B(E)

)
is complete with respect

to the Ky Fan metric ρ̃.

Proof. We refer to [Dud02], Theorem 9.2.3 on page 290.
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After these preparations we can state Lemma 1.14, which is one of the fundamental

ideas for the proof of the main theorem (cf. Theorem 3.7) in Section 3.3. Using this

observation, which has been stated by Gyöngy and Krylov in [GK96], we can prove

convergence in probability of the Euler �polygonal� approximations to a solution of the

stochastic di�erential equation later.

Lemma 1.14 (cf. [GK96], Lemma 1.1 on page 144). Let (E, ρ) be a Polish space

equipped with the Borel σ-algebra B(E) and D :=
{
(x, y) ∈ E × E

∣∣x = y
}
. Suppose

in addition that (Zn)n∈N is a sequence of E-valued random variables on a probability

space (Ω,F , P ). Then the following assertions are equivalent.

i) There exists an E-valued random variable Z such that Zn
p−−−→

n→∞
Z.

ii) For every pair
(
Znl

, Zn̄l

)
l∈N of subsequences of (Zn)n∈N there exists a subsequence

(zk)k∈N :=
(
Znlk

, Zn̄lk

)
k∈N such that zk

d−−−→
k→∞

z for a D-valued random variable z.

Proof. (cf. [GK96] on page 145)

�i) ⇒ ii)�: Let Zn
p−−−→

n→∞
Z for an E-valued random variable Z. Then every subse-

quence of (Zn)n∈N converges in probability to Z. Besides, we also have the convergence

in probability of pairs of subsequences (cf. Lemma A.13 in the Appendix). Hence, z is

given by (Z,Z). Since convergence in probability implies convergence in distribution

(cf. Lemma A.12 ii) in the Appendix), the assertion holds.

�ii) ⇒ i)�: Let Z̃n for n ∈ N be the equivalence class related to Zn. Then we pro-

ve the following claim.

Claim (1). (Z̃n)n∈N is a Cauchy sequence in
(
Ẽ
(
Ω,F , P ;E,B(E)

)
, ρ̃
)
.

For convenience we write Zn for the representative of the equivalence class. Since the

convergence in probability and the de�nition of the Ky Fan metric are well-de�ned,

the calculations are independent of the choice of the representative.

Proof of the Claim (1). Assume that (Zn)n∈N is not a Cauchy sequence, i.e. there exists

an ε > 0 such that for all l ∈ N there exist m,m′ ≥ l such that ρ̃(Zm, Zm′) > ε. Hence,

we can �nd subsequences of (Zn)n∈N such that

ρ̃(Znl
, Zn̄l

) > ε (1.1)

for every l ∈ N. Then there exists a subsequence (zk)k∈N :=
(
Znlk

, Zn̄lk

)
k∈N such that

zk
d−−−→

k→∞
z for a D-valued random variable z by assumption.

By the continuous mapping theorem (cf. Lemma A.1 in the Appendix) we know that

f(zk)
d−−−→

n→∞
f(z) holds for any continuous function f between metric spaces. Since

ρ :
E × E −→ R+,

(x, y) 7−→ ρ(x, y)

13



is continuous and ρ(z) = 0, we have for the sequence
(
ρ(zk)

)
k∈N of random variables

that ρ(zk)
d−−−→

n→∞
0. At this point we need the separability of E to ensure that ρ(zk) for

k ∈ N are random variables as desired. Details can be found in [Dud02] on page 287

and for example in [Bil99] on page 27 or in [Kle06] on page 125. Then it follows that

ρ(zk)
p−−−→

k→∞
0

holds due to the fact that convergence in distribution to a constant implies convergence

in probability to this constant (cf. Lemma A.12 iii) in the Appendix).

Consequently, ρ̃(Znlk
, Zn̄lk

) −−−→
k→∞

0 by the de�nition of the Ky Fan metric. That is a

contradiction to the assumed inequality (1.1).

By the completeness of
(
Ẽ
(
Ω,F , P ;E,B(E)

)
, ρ̃
)
(see Theorem 1.13) we can conclu-

de the convergence of the Cauchy sequence (Z̃n)n∈N. Now Theorem 1.12 implies that

(Z̃n)n∈N converges in probability to some Z̃ ∈ Ẽ
(
Ω,F , P ;E,B(E)

)
. Therefore, we cer-

tainly obtain that the sequence (Zn)n∈N converges in probability to an E-valued random

variable Z. Hence, the assertion is ful�lled.
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2. Framework

At the beginning of this chapter we will state the three main assumptions A1), A2)

and A3) for the considered stochastic di�erential equation (shortly: SDE), which we

use hereafter in the whole thesis. In addition, we will introduce the so-called Euler

�polygonal� approximations and the notion of a solution of the SDE. Besides, we de�ne

the notion of pathwise uniqueness for the SDE in the same way as it is done in [GK96].

In the second section we will prove the �non-explosion� Lemma 2.4, which ensures

that solutions of the SDE never leave a given domain, what makes it the crucial lemma

of this chapter.

2.1. Assumptions

The following assumptions and de�nitions are based on the article [GK96] by Gyöngy

and Krylov, but we have changed for example A1) and the assumed integrability of

the functions M and Mk, k ∈ N, slightly.
Let (Ω,F , P, (Ft)t≥0) be a stochastic basis and d, d1 ∈ N. Consider the Rd-valued

SDE

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dW (t),

X(0) = ξ
(2.1)

in a domain D ⊆ Rd, where
(
W (t)

)
t≥0

is a d1-dimensional Wiener process with respect

to (Ft)t≥0 and ξ is an F0-measurable random vector with values in D. Furthermore,

b : R+ ×D −→ Rd,

σ : R+ ×D −→ Rd×d1

are assumed to be Borel-measurable functions, and we de�ne b(t, x) = 0 = σ(t, x) for

x ∈ Rd \D, t ∈ R+. Now we clarify the notion of a solution used in this thesis.

De�nition 2.1 (Solution of equation (2.1)). Let (X(t))t≥0 be a P -a.s. continuous, Rd-

valued, (Ft)-adapted process that satis�es P -a.s. the SDE (2.1) for all t ∈ [0,∞[. Then

(X(t))t≥0 is called solution of equation (2.1).

Let χ > 0 and let

M,Mk : R+ −→]0,∞[,

for k ∈ N, be locally L1+χ
(
R+; ]0,∞[

)
-integrable functions. Then we can introduce the

following assumptions, which are of main importance for the whole thesis.

A1) There exists a sequence of bounded domains (Dk)k∈N ⊆ Rd such that

• Dk ⊆ Dk+1 for all k ∈ N and
∪
k∈N

Dk = D,

• sup
x∈Dk

∥b(t, x)∥Rd ≤Mk(t) and sup
x∈Dk

∥σ(t, x)∥2L2
≤Mk(t) for all k ∈ N, t ∈ [0, k].
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A2) There exists a non-negative function V ∈ C1,2
(
R+ ×D;R

)
such that

• LV (t, x) ≤ M(t)V (t, x) for all t ∈ R+ and x ∈ D, where L is the di�erential

operator given by

L :=
∂

∂t
+

d∑
i=1

bi(t, x)
∂

∂xi
+

1

2

d∑
i,j=1

(σσT )ij(t, x)
∂2

∂xi∂xj
,

• Vk(T ) := inf
x∈∂Dk
t∈[0,T ]

V (t, x) −−−→
k→∞

∞ for all T <∞.

A3) P
[
ξ ∈ D

]
= 1.

Note that A1) is an assumption for the existence of an exhausting sequence for the

domain D, in which we demand some kind of boundedness of the coe�cients b and

σ by non-random locally L1+χ-integrable functions. Assumption A2) is said to be a

Lyapunov condition on the existence of a Lyapunov function V , which provides an

estimate for the di�erential operator L associated with equation (2.1). In particular,

that is central to the proof of Lemma 2.4, where we show that the occurrence of so-

called explosions can be excluded, i.e. that solutions of the SDE (2.1) never actually

leave the domain D.

Hence, we would like to emphasise that the de�nition of b and σ outside of D is only

for convenience.

Additionally, we will consider the Euler �polygonal� approximations of the SDE (2.1).

Therefore, we de�ne a sequence of partitions of R+ given by{
0 = tn0 < tn1 < tn2 < · · · < tni < tni+1 < . . .

}
such that tni −−−→

i→∞
∞ and that the mesh dn(T ) tends to zero for every T > 0, i.e.

dn(T ) := sup
i : tni+1≤T

|tni+1 − tni | −−−→
n→∞

0.

Now for every n ∈ N let κn(s) := tni , for s ∈ [tni , t
n
i+1[, and de�ne the Euler �polygonal�

approximations as the process (Xn(t))t≥0 given by

Xn(t) = ξ +

∫ t

0

b
(
s,Xn(κn(s))

)
ds+

∫ t

0

σ
(
s,Xn(κn(s))

)
dW (s) (2.2)

for t ∈ [0,∞[.

Remark. Note that by assumption A1) and by the de�nition of b and σ outside of D

both integrals on the right-hand sides of (2.2) exist for all t ∈ [0,∞[. Indeed, we have∫ k

0

sup
x∈Dk

∥b(s, x)∥Rd ds +

∫ k

0

sup
x∈Dk

∥σ(s, x)∥2L2
ds ≤ 2

∫ k

0

Mk(s) ds <∞

for every k ∈ N.
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Finally, we de�ne pathwise uniqueness for the SDE (2.1) in the same way as it is

done in [GK96]. This property ensures, as an assumption in the upcoming Theorem

3.7, the uniqueness of the strong solution.

De�nition 2.2 (Pathwise uniqueness for equation (2.1)). Let P(W,ξ) be the joint dis-

tribution of (W, ξ) given by equation (2.1). We say that pathwise uniqueness holds for

equation (2.1) if for any stochastic basis (Ω′,F ′, P ′, (F ′
t)t≥0) carrying a d1-dimensional

Wiener process W ′ and a random variable ξ′, such that

P ′
(W ′,ξ′) = P(W,ξ)

is ful�lled, we have that equation (2.1) with W ′ and ξ′ instead of W and ξ cannot have

more than one solution (up to P ′-indistinguishability).
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2.2. Non-explosion of solutions

At �rst we have to recall a lemma that is similar to Lemma 3.1.3 from [PR07] on page

44, which is an adaption of Chebyshev's inequality including stopping times.

Lemma 2.3 (cf. [PR07], Lemma 3.1.3 on page 44). Let (Y (t))t≥0 be a P -a.s. conti-

nuous, R+-valued, (Ft)-adapted process on a stochastic basis (Ω,F , P, (Ft)t≥0). Suppose

that γ is an (Ft)-stopping time, ε ∈ ]0,∞[ and T > 0. De�ne

τε := γ ∧ inf
{
t ≥ 0

∣∣Y (t) ≥ ε
}
.

Then

P
[
sup
t∈[0,γ]

Y (t) ≥ ε, 0 < γ ≤ T
]
≤ 1

ε
E
[
Y (τε)11{0<γ≤T}

]
.

Proof. We refer to [PR07], Lemma 3.1.3 on page 44.

Now we can consider the previously mentioned Lemma 2.4, that is based on [GK96].

It states that a solution of the SDE (2.1) never actually leaves the domain D.

Lemma 2.4 (�Non-explosion�, cf. [GK96], Lemma 2.2 on page 147). Assume that

(X(t))t≥0 is a P -a.s. continuous, Rd-valued, (Ft)-adapted process that satis�es the SDE

(2.1) for t < τ , where τ := inf
{
t ≥ 0

∣∣X(t) /∈ D
}
. Suppose moreover that the assump-

tions from Section 2.1 are ful�lled. Then P -a.s. we have τ = ∞.

Proof. (cf. [GK96], Lemma 2.2 on page 147)

For k ∈ N de�ne the stopping times

τ k := inf
{
t ≥ 0

∣∣X(t) /∈ Dk

}
∧ k.

Then τ k ↑ τ because of the assumptions Dk ⊆ Dk+1 for all k ∈ N and
∪
k∈N

Dk = D

in A1). Furthermore, note that for every T ∈ ]0,∞[ there exists a K ∈ N such that

Vk(T ) > 0 for all k ≥ K since Vk(T ) −−−→
k→∞

∞ by A2). Now we are going to prove the

following claim.

Claim (1). For every T > 0, δ > 0 and k ∈ N, such that Vk(T ) > 0 and k ≥ T , the

inequality

P
[
τ k ≤ T

]
≤ P

[
ξ /∈ Dk

]
+ P

[
V (0, ξ) ≥ log

(1
δ

)]
+

1

δVk(T )
exp

(∫ T

0

M(t) dt

) (2.3)

holds.

Proof of the Claim (1). First of all, we mention that by A3) the expression V (0, ξ) is

de�ned. Now let T > 0, δ > 0 and let k ∈ N be such that Vk(T ) > 0 and k ≥ T .
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Then we have

P
[
τ k ≤ T

]
≤ P

[
τ k ≤ T, ξ /∈ Dk

]
+ P

[
τ k ≤ T, ξ ∈ Dk, V (0, ξ) ≥ log

(1
δ

)]
+ P

[
τ k ≤ T, ξ ∈ Dk, V (0, ξ) < log

(1
δ

)]
≤ P

[
ξ /∈ Dk

]
+ P

[
V (0, ξ) ≥ log

(1
δ

)]
+ P

[
0 < τ k ≤ T, V (0, ξ) < log

(1
δ

)]
(2.4)

since ξ ∈ Dk implies τ k > 0. The latter implication holds because Dk is an open set

and X is P -a.s. continuous. In order to estimate P
[
0 < τ k ≤ T, V (0, ξ) < log(1

δ
)
]
, we

de�ne

γ(t) := exp

(
−
∫ t

0

M(s) ds− V (0, ξ)

)
.

Applying Itô's product rule for semimartingales (cf. Theorem A.11 in the Appendix)

to γ(t)V (t,X(t)) yields P -a.s.

γ(t)V
(
t,X(t)

)
= γ(0)V

(
0, X(0)

)
+

∫ t

0

γ(s) dV
(
s,X(s)

)
+

∫ t

0

V
(
s,X(s)

)
dγ(s)

+ ⟨γ(·), V
(
·, X(·)⟩t

for every t ∈ [0, τ k], where ⟨γ(·), V
(
·, X(·)

)
⟩t = 0 since γ is of bounded variation. Now

we use Itô's formula (cf. Corollary A.10 in the Appendix) for V (t,X(t)), which gives

us P -a.s.

V
(
t,X(t)

)
= V

(
0, X(0)

)
+

∫ t

0

∂

∂t
V
(
s,X(s)

)
ds

+
d∑

i=1

∫ t

0

bi
(
s,X(s)

) ∂

∂xi
V
(
s,X(s)

)
ds

+

∫ t

0

⟨
∇xV

(
s,X(s)

)
, σ
(
s,X(s)

)
dW (s)

⟩
Rd

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

(σσT )ij
(
s,X(s)

) ∂

∂xi∂xj
V
(
s,X(s)

)
ds

for every t ∈ [0, τ k]. We compute∫ t

0

γ(s) dV
(
s,X(s)

)
=

∫ t

0

γ(s)
∂

∂t
V
(
s,X(s)

)
ds

+

∫ t

0

γ(s)
d∑

i=1

bi
(
s,X(s)

) ∂

∂xi
V
(
s,X(s)

)
ds

+

∫ t

0

γ(s)
⟨
∇xV

(
s,X(s)

)
, σ
(
s,X(s)

)
dW (s)

⟩
Rd

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

γ(s) (σσT )ij
(
s,X(s)

) ∂

∂xi∂xj
V
(
s,X(s)

)
ds
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and ∫ t

0

V
(
s,X(s)

)
dγ(s) = −

∫ t

0

V
(
s,X(s)

)
γ(s)M(s) ds.

Then, by using the de�nition of the di�erential operator L and assumption A2), we

have P -a.s. for every t ∈ [0, τ k]

γ(t)V
(
t,X(t)

)
= γ(0)V

(
0, X(0)

)
+

∫ t

0

γ(s)LV
(
s,X(s)

)
ds−

∫ t

0

M(s)γ(s)V
(
s,X(s)

)
ds

+

∫ t

0

⟨
γ(s)∇xV

(
s,X(s)

)
, σ
(
s,X(s)

)
dW (s)

⟩
Rd

≤ γ(0)V
(
0, X(0)

)
+

∫ t

0

M(s)γ(s)V
(
s,X(s)

)
ds−

∫ t

0

M(s)γ(s)V
(
s,X(s)

)
ds

+

∫ t

0

⟨
γ(s)∇xV

(
s,X(s)

)
, σ
(
s,X(s)

)
dW (s)

⟩
Rd︸ ︷︷ ︸

=:m(t)

= γ(0)V
(
0, X(0)

)
+m(t),

where m(t), t ∈ [0, τ k], is a continuous local (Ft)-martingale with m(0) = 0.

Hence, for any (Ft)-stopping time ϑ ≤ τ k and for any sequence (ϕs)s∈N of (Ft)-

stopping times with ϕs ↑ τ k such that m(t ∧ ϕs), t ∈ [0, τ k], is a martingale for every

s ∈ N, we have by Fatou's lemma

E
[
γ(ϑ)V

(
ϑ,X(ϑ)

)
11{0<τk≤T}

]
≤ E

[
lim
s→∞

γ(ϑ ∧ ϕs)V
(
ϑ ∧ ϕs, X(ϑ ∧ ϕs)

)︸ ︷︷ ︸
≥0

]
≤ lim inf

s→∞
E
[
γ(ϑ ∧ ϕs)V (ϑ ∧ ϕs, X(ϑ ∧ ϕs))

]
≤ lim inf

s→∞
E
[
γ(0)V (0, ξ) +m(ϑ ∧ ϕs)

]
≤ E

[
γ(0)V (0, ξ)

]
+ lim inf

s→∞
E
[
m(ϑ ∧ ϕs)

]
︸ ︷︷ ︸
=0, since m(0)=0

,

where we have used that V and γ are continuous and also that X is P -a.s. continuous

in the �rst step. Let R > 0 and ϑ̃ := τ k ∧ inf
{
t ≥ 0

∣∣ γ(t)V (t,X(t)
)
≥ R

}
. Then by

applying Lemma 2.3 it follows that

P

[
sup

t∈[0,τk]
γ(t)V

(
t,X(t)

)
≥ R, 0 < τ k ≤ T

]
≤ 1

R
E
[
γ(ϑ̃)V

(
ϑ̃, X(ϑ̃)

)
11{0<τk≤T}

]
≤ 1

R
E
[
γ(0)V (0, ξ)

]
≤ 1

R

(2.5)
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holds since e−zz ≤ 1
e
for every z ∈ R and, hence,

E
[
γ(0)V (0, ξ)

]
= E

[
exp

(
− V (0, ξ)

)
V (0, ξ)

]
≤ 1.

Note that for 0 < τ k ≤ T we have

0 < Vk(T ) = inf
x∈∂Dk
r∈[0,T ]

V
(
r, x
)
≤ V

(
τ k, X(τ k)

)
≤ sup

r∈[0,τk]
V
(
r,X(r)

)
<∞,

where the �niteness is ful�lled since V is a continuous function and X is P -a.s. conti-

nuous. Now we can complete the estimate of the last summand in inequality (2.4) by

calculating

P
[
0 < τ k ≤ T, V (0, ξ) < log

(1
δ

)]
= P

[
0 < τ k ≤ T, exp

(
− V (0, ξ)

)
> δ
]

= P

[
0 < τ k ≤ T, γ(τ k)V

(
τ k, X(τ k)

)
> δ V

(
τ k, X(τ k)

)
exp

(
−
∫ τk

0

M(s) ds

)]
≤ P

[
0 < τ k ≤ T, sup

r∈[0,τk]
γ(r)V

(
r,X(r)

)
≥ δ inf

x∈∂Dk
r∈[0,T ]

V
(
r,X(r)

)
exp

(
−
∫ T

0

M(s) ds

)]
(2.5)

≤ 1

δ

1

inf
x∈∂Dk
r∈[0,T ]

V
(
r,X(r)

) exp(∫ T

0

M(s) ds

)

=
1

δ Vk(T )
exp

(∫ T

0

M(t) dt

)

such that we obtain the required term for (2.3).

Now it is left to show that inequality (2.3) implies the assertion of the lemma. Since

τ k ↑ τ for k → ∞, we have for every T > 0

P
[
τ ≤ T

]
= P

[
sup
k∈N

τ k ≤ T
]
= P

[ ∩
k∈N

{τ k ≤ T}
]
= lim

N→∞
P

[
N∩
k=1

{τ k ≤ T}

]
≤ lim sup

k→∞
P
[
τ k ≤ T

]
by the continuity from above of P .
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Hence, we obtain

P
[
τ ≤ T

]
≤ lim

δ↓0
lim sup
k→∞

P
[
τ k ≤ T

]
(2.3)

≤ lim
δ↓0

lim sup
k→∞

(
P
[
ξ /∈ Dk

]
+ P

[
V (0, ξ) ≥ log

(1
δ

)]
+

1

δVk(T )
exp

(∫ T

0

M(t) dt

))
≤ P

[
ξ /∈ D

]︸ ︷︷ ︸
=0

+ lim
δ↓0

P
[
V (0, ξ) ≥ log

(1
δ

)]

+ lim
δ↓0

lim sup
k→∞

1

δVk(T )
exp

(∫ T

0

M(t) dt

)
,

where we have used that Dk ↑ D for k → ∞ and therefore that

lim sup
k→∞

P
[
ξ /∈ Dk

]
≤ P

[
lim sup
k→∞

{ξ /∈ Dk}
]
= 1− P

[
lim inf
k→∞

{ξ ∈ Dk}
]

= 1− P
[ ∪
n∈N

∩
k≥n

{ξ ∈ Dk}
]
= 1− P

[
ξ ∈

∪
n∈N

∩
k≥n

Dk

]
= 1− P

[
ξ ∈ lim inf

k→∞
Dk

]
= 1− P

[
ξ ∈ D

]
= P

[
ξ /∈ D

]
holds by Lemma A.8 from the Appendix. In addition, lim

δ↓0
P
[
V (0, ξ) ≥ log(1

δ
)
]
= 0 be-

cause for δ ↓ 0 we have log
(
1
δ

)
−−→
δ↓0

∞. Hence, P
[
V (0, ξ) ≥ log(1

δ
)
]
−−→
δ↓0

0 since V (0, ξ)

is a �nite number. Furthermore, we have Vk(T ) −−−→
k→∞

∞ and, hence, 1
δVk(T )

−−−→
k→∞

0.

Therefore, P
[
τ ≤ T

]
= 0 for every T > 0 and, hence, we conclude τ = ∞ P -a.s. such

that the assertion is proved.
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3. Existence and Uniqueness

In this chapter we will state and prove the �rst main theorem of this thesis (i.e. Theorem

3.7) about the existence and uniqueness of a solution for the SDE (2.1). But �rst of

all, we have to explain all further necessary preparations for this proof in the following

two sections.

3.1. Distribution of stopping times and Skorokhod's

representation theorem

At the beginning of this section we will consider the distribution of certain stopping

times related to random variables with equal distribution, that are de�ned on di�erent

probability spaces. The reason for that is the usage of Skorokhod's representation

theorem (see Theorem 3.3) in the proof of Theorem 3.7, due to which we have to

consider a change of the underlying probability space. Furthermore, we will also prove

Lemma 3.2 about an inequality concerning important stopping times for the proof of

Theorem 3.7.

Lemma 3.1. Let (Ω,F , P ), (Ω̃, F̃ , P̃ ) be two probability spaces and let T ≥ 0, k ∈
N. Suppose that Y : Ω −→ C

(
[0, T ];Rd

)
and Ỹ : Ω̃ −→ C

(
[0, T ];Rd

)
are stochastic

processes such that

PY = P̃Ỹ .

Let U ⊆ Rd be an open and bounded set. De�ne τU
c

Y := inf
{
s ∈ [0, T ]

∣∣Y (s) /∈ U
}
∧ k

and τU
c

Ỹ
:= inf

{
s ∈ [0, T ]

∣∣ Ỹ (s) /∈ U
}
∧ k. Then

PτU
c

Y
= P̃τU

c

Ỹ
.

Proof. Observe that τU
c

Y and τU
c

Ỹ
are R+-valued random variables. Therefore, it su�ces

to show the equality of their distributions on generating sets of B(R+). Hence, we have

to prove that

P
[
τU

c

Y ≤ t
]
= P̃

[
τU

c

Ỹ
≤ t
]

for every t ∈ R+.

Step 1: In this �rst step we construct an increasing sequence (Ūn)n∈N of compact sets

in order to approximate τU
c

Y .

Since U ⊆ Rd is an open and bounded set, we can de�ne a sequence (Ūn)n∈N of

compact sets by Ūn :=
{
x ∈ Rd

∣∣ dist(x, UC) ≥ 1
n

}
. Then the properties

∪
n∈N

Ūn = U and

Ūn ⊆ Ūn+1 are ful�lled. De�ne the stopping times τ
Ūc
n

Y := inf
{
s ∈ [0, T ]

∣∣Y (s) /∈ Ūn

}
∧k

for n ∈ N.

Claim (1). We have P -a.s.

sup
n∈N

τ
Ūc
n

Y = τU
c

Y .
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Proof of Claim (1). First of all, we note that it su�ces to prove

sup
n∈N

inf
{
s ∈ [0, T ]

∣∣Y (s) /∈ Ūn

}︸ ︷︷ ︸
=: τn

= inf
{
s ∈ [0, T ]

∣∣Y (s) /∈ U
}︸ ︷︷ ︸

=: τ

since sup
n∈N

τ
Ūc
n

Y =
(
sup
n∈N

τn

)
∧ k.

�≤�: By construction Ūn ⊆ U and, hence, sup
n∈N

τn ≤ τ .

�≥�: We have to consider the inequality sup
n∈N

τn ≥ τ with respect to the following

complementary events.

1) On
{
sup
n∈N

τn > T
}
we are in the trivial case.

2) Consider
{
sup
n∈N

τn ≤ T
}
. Then we have Y

(
τn
)
∈

m∩
j=1

ŪC
j for every m < n. Hence, by

letting n→ ∞ we obtain

Y
(
sup
n∈N

τn
)
∈

m∩
j=1

ŪC
j

for every m ∈ N since Y is continuous. Therefore, Y
(
sup
n∈N

τn
)
∈
∩
j∈N

ŪC
j = UC and,

hence, the inequality sup
n∈N

τn ≥ τ follows.

Note that the analogous property for Ỹ and P̃ in Claim (1) holds as well.

Step 2: In this step we will prove that P
τ
Ūc
n

Y

= P̃
τ
Ūc
n

Ỹ

, where it su�ces to show that

P
[
τ
Ūc
n

Y < t
]
= P̃

[
τ
Ūc
n

Ỹ
< t
]
is ful�lled for every t ∈ R+.

To do this we observe that{
τ
Ūc
n

Y < t
}
=

∪
q∈[0,t[∩Q

{
Y (q) ∈ ŪC

n

}
∪ {k < t}

holds by using the continuity of Y . Then we write {q1, q2, q3, . . . } for the countable set

[0, t[∩Q and obtain ∪
q∈[0,t[∩Q

{
Y (q) ∈ ŪC

n

}
=
∪
N∈N

N∪
i=1

{
Y (qi) ∈ ŪC

n

}
.

Hence,

P
[
τ
Ūc
n

Y < t
]
= P

[ ∪
N∈N

N∪
i=1

{
Y (qi) ∈ ŪC

n

}
∪ {k < t}

]

= lim
N→∞

P

[ N∪
i=1

{
Y (qi) ∈ ŪC

n

}
∪ {k < t}

]
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follows by the continuity from below of P . Now we apply the so-called inclusion-

exclusion principle (cf. [Bil95], Equation (2.9) on page 24), which states that for arbi-

trary sets Ai we have

P

[ N∪
i=1

Ai

]
=

N∑
j=1

(−1)j−1
∑

I⊆{1,...,N}
|I|=j

P

[∩
i∈I

Ai

]
.

Hence, we can write

P

[ N∪
i=1

{
Y (qi) ∈ ŪC

n

}]

=
N∑
j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤N

P
[{(

Y (qi1), . . . , Y (qij)
)
∈
(
ŪC
n

)j}]
.

By using the fact that the equality of the distributions PY and P̃Ỹ implies the equality

of their �nite-dimensional distributions, we obtain that

P

[ N∪
i=1

{
Y (qi) ∈ ŪC

n

}]
= P̃

[ N∪
i=1

{
Ỹ (qi) ∈ ŪC

n

}]
holds. Besides, {k < t} equals either ∅ or the whole sample space such that in fact

P

[ N∪
i=1

{
Y (qi) ∈ ŪC

n

}
∪ {k < t}

]
= P̃

[ N∪
i=1

{
Ỹ (qi) ∈ ŪC

n

}
∪ {k < t}

]
is ful�lled. Therefore, by also applying the calculation and arguments from above to

the term P̃

[
N∪
i=1

{
Ỹ (qi) ∈ ŪC

n

}
∪ {k < t}

]
, we get that

P
[
τ
Ūc
n

Y < t
]
= P̃

[
τ
Ūc
n

Ỹ
< t
]

holds.

Step 3: Finally, we will prove the assertion, i.e. that P
[
τU

c

Y ≤ t
]
= P̃

[
τU

c

Ỹ
≤ t
]
is

ful�lled.

Since we have noticed in Step 1 that τU
c

Y = sup
n∈N

τ
Ūc
n

Y and besides for any n ∈ N the

inclusions
{
τ
Ūc
n+1

Y ≤ t
}
⊆
{
τ
Ūc
n

Y ≤ t
}
hold, the assertion

P
[
τU

c

Y ≤ t
]
= P

[ ∩
n∈N

{
τ
Ūc
n

Y ≤ t
}]

= lim
n→∞

P
[
τ
Ūc
n

Y ≤ t
]
= lim

n→∞
P̃
[
τ
Ūc
n

Ỹ
≤ t
]

= P̃

[ ∩
n∈N

{
τ
Ūc
n

Ỹ
≤ t
}]

= P̃
[
τU

c

Ỹ
≤ t
]

follows by the continuity from above of P and P̃ , where we have used the equality of

the distributions from Step 2.
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Lemma 3.2. Let (Ω,F , P ) be a probability space and let T ≥ 0, k ∈ N. Suppose that

Y, Yn : Ω −→ C
(
[0, T ];Rd

)
, for n ∈ N, are stochastic processes such that∥∥Yn − Y
∥∥
∞ = sup

t∈[0,T ]

∥∥Yn(t)− Y (t)
∥∥
Rd −−−→

n→∞
0 (3.1)

P -a.s. holds. De�ne the stopping times

τ kYn
:= inf

{
t ∈ [0, T ]

∣∣Yn(t) /∈ Dk

}︸ ︷︷ ︸
=: τYn

∧k and τ kY := inf
{
t ∈ [0, T ]

∣∣Y (t) /∈ Dk

}︸ ︷︷ ︸
=: τY

∧k.

Then we have P -a.s.

lim inf
n→∞

τ kYn
≥ τ kY .

Proof. First of all note that lim inf
n→∞

τ kYn
=
(
lim inf
n→∞

τYn

)
∧ k. Hence, it su�ces to prove

that P -a.s.

lim inf
n→∞

τYn ≥ τY

holds. But we still have to distinguish di�erent complementary events for this proof

because we only consider the processes on [0, T ] and have set inf ∅ := ∞.

1) On
{
lim inf
n→∞

τYn > T
}
we are in the trivial case.

2) Now consider
{
lim inf
n→∞

τYn ≤ T, τY ≤ T
}
. Assume that lim inf

n→∞
τYn < τY , i.e. for some

ε > 0 we have sup
ℓ∈N

inf
n≥ℓ

τYn ≤ τY − ε and, hence,

inf
n≥ℓ

τYn ≤ τY − ε

for every ℓ ∈ N. Due to this boundedness we can �nd a subsequence
(
τYns

)
s∈N such

that

τYns
−−−→
s→∞

τ0 (3.2)

for some τ0 ≤ τY − ε. Since

∥Yns(τYns
)− Y (τ0)∥Rd ≤ ∥Yns(τYns

)− Y (τYns
)∥Rd + ∥Y (τYns

)− Y (τ0)∥Rd

≤ sup
t∈[0,T ]

∥Yns(t)− Y (t)∥Rd︸ ︷︷ ︸
−−−→
s→∞

0 by (3.1)

+ ∥Y (τYns
)− Y (τ0)∥Rd︸ ︷︷ ︸

−−−→
s→∞

0 by (3.2)

,

where we have used the continuity of Y for the last summand, we obtain

Yns(τYns
) −−−→

s→∞
Y (τ0).

Observe, that Yns(τYns
) ∈ DC

k for every s ∈ N by the de�nition of τYns
. Hence, we

have Y (τ0) ∈ DC
k since DC

k is a closed set. Therefore, we obtain τ0 ≥ τY , which

contradicts the inequality τ0 ≤ τY − ε.
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3) Finally, we observe that by the same arguments as above we can prove that{
lim inf
n→∞

τYn ≤ T, τY > T
}
is a P -zero set.

Now we have a closer look at Skorokhod's representation theorem, which is of great

importance for the proof of Theorem 3.7 such that it is the second main idea apart

from Lemma 1.14. This version is a little less general than the one stated in [Bil99],

but it will still be su�cient in our framework.

Theorem 3.3 (Skorokhod's representation theorem, cf. [Bil99], Theorem 6.7 on page

70). Let (µn)n∈N and µ be probability measures on a separable metric space (S, ρ) and

suppose that µn
w−−−→

n→∞
µ. Then there exist S-valued random variables Zn, n ∈ N, and

Z on a common probability space (Ω,F , P ) such that

• PZn = µn for all n ∈ N,

• PZ = µ,

• Zn
P−a.s−−−→
n→∞

Z.

Proof. We refer to [Bil99], Theorem 6.7 on page 70.
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3.2. Convergence in probability of (stochastic) integrals

In this section we state and prove Lemma 3.6 about the convergence in probability of

certain sequences of (stochastic) integrals. In particular, we consider the convergence

of stochastic integrals whose integrand and integrator are both a sequence. But �rst of

all, we need the following de�nition and lemma about Dirac sequences that are stated

in the book [Alt12] of W. Alt.

Recall that, for any A ⊆ R, the space of all in�nitely di�erentiable functions

f : A −→ R which have a compact support supp(f) :=
{
x ∈ A

∣∣ f(x) ̸= 0
}
is deno-

ted by C∞
0

(
A;R

)
.

De�nition 3.4 ((General / Standard) Dirac sequence, cf. [Alt12], De�nition 2.14 on

page 114). Let n ∈ N.

i) A sequence (δℓ)ℓ∈N in L1
(
Rn;R

)
is called (general) Dirac sequence if

δℓ ≥ 0,

∫
Rn

δℓ(x) dx = 1 and

∫
Rn\Br(0)

δℓ(x) dx −−−→
ℓ→∞

0 for every r > 0.

The last assumption holds for example if supp
(
δℓ
)
⊆ Brℓ(0) for a zero sequence

(rℓ)ℓ∈N, i.e. rℓ −−−→
ℓ→∞

0.

ii) Let δ ∈ L1
(
Rn;R

)
be a function such that δ ≥ 0 and

∫
Rn

δ(x) dx = 1. For ε > 0

de�ne the function

δε(x) := ε−nδ
(x
ε

)
. (3.3)

Then

∫
Rn

δε(x) dx = 1 and

∫
Rn\Br(0)

δε(x) dx −−→
ε→0

0 for every r > 0 hold.

Hence, for every zero sequence (εk)k∈N, the sequence (δεk)k∈N is a general Dirac

sequence in the sense of i). The family of functions (δε)ε∈]0,∞[ is therefore called

Dirac sequence of δ.

iii) Let δ ∈ C∞
0

(
B1(0);R

)
be a function (extended on Rn \B1(0) by 0) such that

δ ≥ 0,

∫
Rn

δ(x) dx = 1 and supp(δε) ⊆ Bε(0) for every ε > 0,

where δε is given by (3.3). Then (δε)ε∈]0,∞[ is called standard Dirac sequence.

Lemma 3.5 (cf. [Alt12], Theorem 2.15 on page 115). Let Y be a Banach space, n ∈ N,
1 ≤ p <∞, f ∈ Lp

(
Rn;Y

)
and let (δℓ)ℓ∈N be a Dirac sequence. Then

i)
∥∥f( ·+h)− f

∥∥
Lp(Rn;Y )

−→ 0 for ∥h∥Rn −→ 0, h ∈ Rn,

ii)
∥∥δℓ ∗ f − f

∥∥
Lp(Rn;Y )

−−−→
ℓ→∞

0.
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Note that δℓ ∗ f denotes the convolution of the functions δℓ and f , i.e. (δℓ ∗ f)(x) :=∫
Rn δℓ(x− y)f(y) dy.

Proof. We refer to [Alt12], Theorem 2.15 on page 115.

Now we can consider the already mentioned Lemma 3.6, that we state more closely

related to our application than it is done in [GK96] (see Lemma 3.1 on page 151).

Lemma 3.6. Let T ∈ [0,∞[ and let (Ω,F , P ) be a probability space. Let Yj, for j ∈ N,
and Y be stochastic processes on (Ω,F , P ) with values in C

(
[0, T ];Rd

)
such that P -a.s.∥∥Yj − Y

∥∥
∞ = sup

t∈[0,T ]

∥∥Yj(t)− Y (t)
∥∥
Rd −−−→

j→∞
0 (3.4)

holds. Assume furthermore that Wj, for j ∈ N, and W are d1-dimensional Wiener

processes on (Ω,F , P ) with respect to normal �ltrations FWj and FW taking values in

C
(
[0, T ];Rd1

)
such that P -a.s.∥∥Wj −W

∥∥
∞ = sup

t∈[0,T ]

∥∥Wj(t)−W (t)
∥∥
Rd1

−−−→
j→∞

0 (3.5)

is ful�lled. Besides, the processes
(
Y (t)

)
t∈[0,T ]

and
(
Yj(t)

)
t∈[0,T ]

are assumed to be ad-

apted to
(
FW

t

)
t∈[0,T ]

and
(
FWj

t

)
t∈[0,T ]

, respectively. For a function Mloc being locally in

L1+χ
(
R+; ]0,∞[

)
we then have the following assertions.

i) Let f : R+ ×Rd −→ Rd be Borel-measurable in s ∈ R+ and continuous in x ∈ Rd.

Suppose furthermore that

sup
x∈Rd

∥f(s, x)∥Rd ≤Mloc(s)

for every s ∈ [0, T ]. Then we have∫ t

0

f
(
s, Yj(κj(s))

)
ds

p−−−→
j→∞

∫ t

0

f
(
s, Y (s)

)
ds

uniformly in t ∈ [0, T ].

ii) Let f : R+ × Rd −→ Rd×d1 be Borel-measurable in s ∈ R+ and continuous in

x ∈ Rd. Suppose furthermore that

sup
x∈Rd

∥f(s, x)∥2L2
≤Mloc(s)

for every s ∈ [0, T ]. Then we have∫ t

0

f
(
s, Yj(κj(s))

)
dWj(s)

p−−−→
j→∞

∫ t

0

f
(
s, Y (s)

)
dW (s)

uniformly in t ∈ [0, T ].
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Proof of Lemma 3.6.

At �rst we observe that κj(s) −−−→
j→∞

s since the mesh of the partitions dj(T ) tends to

zero for j → ∞. Therefore, we have P -a.s.

∥∥Yj(κj(s))− Y (s)
∥∥
Rd ≤

∥∥Yj(κj(s))− Y (κj(s))
∥∥
Rd +

∥∥Y (κj(s))− Y (s)
∥∥
Rd

≤ sup
r∈[0,T ]

∥∥Yj(r)− Y (r)
∥∥
Rd︸ ︷︷ ︸

−−−→
j→∞

0 by (3.4)

+
∥∥Y (κj(s))− Y (s)

∥∥
Rd︸ ︷︷ ︸

−−−→
j→∞

0

(3.6)

for every s ∈ [0, T ], where we have used the continuity of Y for the last summand.

�i)�: Let ε > 0. Then we have

lim sup
j→∞

P

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(κj(s))

)
ds−

∫ t

0

f
(
s, Y (s)

)
ds

∥∥∥∥
Rd

≥ ε

]

≤ lim sup
j→∞

P

[∫ T

0

∥∥∥f(s, Yj(κj(s)))− f
(
s, Y (s)

)∥∥∥
Rd

ds ≥ ε

]

≤ 1

ε
lim sup
j→∞

E
[ ∫ T

0

∥∥∥f(s, Yj(κj(s)))− f
(
s, Y (s)

)∥∥∥
Rd

ds

]

by the Markov inequality. We can now apply the reverse Fatou lemma (cf. Lemma A.4

in the Appendix) by using that sup
x∈Rd

∥f(s, x)∥Rd ≤ Mloc(s) holds for every s ∈ [0, T ].

Hence, by using the continuity of f in x ∈ Rd, we conclude

lim sup
j→∞

∥∥∥f(s, Yj(κj(s)))− f
(
s, Y (s)

)∥∥∥
Rd

= 0

from (3.6). Therefore, the assertion

lim
j→∞

P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

f
(
s, Yj(κj(s))

)
ds−

∫ t

0

f
(
s, Y (s)

)
ds

∥∥∥∥
Rd

≥ ε

]
= 0

follows.

�ii)�: It su�ces to prove that for every ε > 0

lim sup
j→∞

P

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(κj(s))

)
dWj(s)−

∫ t

0

f
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

]
= 0

holds.
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First of all, we have

P

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(κj(s))

)
dWj(s)−

∫ t

0

f
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

]

≤ P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

f
(
s, Yj(κj(s))

)
− f

(
s, Yj(s)

)
dWj(s)

∥∥∥∥
Rd

≥ ε

2

]
︸ ︷︷ ︸

=: I1j

+ P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

f
(
s, Yj(s)

)
dWj(s)−

∫ t

0

f
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

2

]
︸ ︷︷ ︸

=: I2j

.

Observe that

I1j = P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

f
(
s, Yj(κj(s))

)
− f

(
s, Yj(s)

)
dWj(s)

∥∥∥∥2
Rd

≥ ε2

4

]

≤ 4

ε2
E

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(κj(s))

)
− f

(
s, Yj(s)

)
dWj(s)

∥∥∥∥2
Rd

]

≤ 8

ε2
E
[ ∫ T

0

∥∥∥f(s, Yj(κj(s)))− f
(
s, Yj(s)

)∥∥∥2
L2

ds

]
holds by using the Markov inequality in the second and the Burkholder-Davis-Gundy

type inequality (cf. Lemma A.5 in the Appendix) in the last step. In order to prove

lim sup
j→∞

I1j = 0, we can now apply the reverse Fatou lemma (cf. Lemma A.4 in the Ap-

pendix) using the assumption sup
x∈Rd

∥f(s, x)∥2L2
≤Mloc(s) for every s ∈ [0, T ]. Therefore,

it su�ces to conclude that

lim sup
j→∞

∥∥∥f(s, Yj(κj(s)))− f
(
s, Yj(s)

)∥∥∥2
L2

= 0

holds. By using the continuity of f in the second component and considering∥∥Yj(κj(s))− Yj(s)
∥∥
Rd ≤

∥∥Yj(κj(s))− Y (s)
∥∥
Rd︸ ︷︷ ︸

−−−→
j→∞

0 by (3.6)

+
∥∥Yj(s)− Y (s)

∥∥
Rd︸ ︷︷ ︸

−−−→
j→∞

0 by (3.4)

,

we obtain the convergence to 0.

Now we have to estimate the summand I2j . Therefore, let (δℓ)ℓ∈N be a standard Dirac

sequence in C∞
0

(
R;R

)
such that supp(δℓ) ⊆ B 1

ℓ
(0) and de�ne the function f0 by

f0
(
s, Z(s)

)
:=

{
f
(
s, Z(s)

)
for s ∈ [0, T ],

0 else,

for s ∈ R, where Z represents the stochastic processes Yj and Y . Then de�ne

fℓ
(
s, Z(s)

)
:=

∫
R
δℓ(r − s) f0

(
r, Z(r)

)
dr.
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Note that the map s 7−→ fℓ
(
s, Z(s)

)
, s ∈ [0, T ], is now continuous since we consider

this convolution (see e.g. [Alt12], De�nition 2.13 on page 112). By the de�nition of f0
we conclude that in fact

fℓ
(
s, Z(s)

)
=

∫ T

0

δℓ(r − s) f
(
r, Z(r)

)
dr

holds. Then we have

I2j ≤ P

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(s)

)
− fℓ

(
s, Yj(s)

)
dWj(s)

∥∥∥∥
Rd

≥ ε

6

]

+ P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

fℓ
(
s, Yj(s)

)
dWj(s)−

∫ t

0

fℓ
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

6

]
︸ ︷︷ ︸

=: J2
j,ℓ

+ P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

fℓ
(
s, Y (s)

)
− f

(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

6

]

≤ 36

ε2
E

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

f
(
s, Yj(s)

)
− fℓ

(
s, Yj(s)

)
dWj(s)

∥∥∥∥2
Rd

]

+ J2
j,ℓ +

36

ε2
E

[
sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

fℓ
(
s, Y (s)

)
− f

(
s, Y (s)

)
dW (s)

∥∥∥∥2
Rd

]

by using the Markov inequality. An application of the Burkholder-Davis-Gundy type

inequality (cf. Lemma A.5 in the Appendix) yields

I2j ≤ 72

ε2
E
[ ∫ T

0

∥∥∥f(s, Yj(s))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

ds

]
︸ ︷︷ ︸

=: J1
j,ℓ

+ J2
j,ℓ +

72

ε2
E
[ ∫ T

0

∥∥∥fℓ(s, Y (s)
)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

]
︸ ︷︷ ︸

=: J3
ℓ

.

Observe that we can compute for the summand J3
ℓ

J3
ℓ = E

[ ∫ T

0

∥∥∥∫
R
δℓ(r − s) f0

(
r, Y (r)

)
dr − f

(
s, Y (s)

)∥∥∥2
L2

ds

]
≤ E

[ ∫ T

0

(∫
R
δℓ(r − s)

∥∥∥f0(r, Y (r)
)
− f

(
s, Y (s)

)∥∥∥
L2

dr

)2

ds

]
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by using

∫
R
δℓ(x) dx = 1. Now we can split up the inner integral and obtain

E
[ ∫ T

0

(∫
R
δℓ(r − s)

∥∥∥f0(r, Y (r)
)
− f

(
s, Y (s)

)∥∥∥
L2

dr

)2

ds

]
= E

[ ∫ T

0

(∫ T

0

δℓ(r − s)
∥∥∥f(r, Y (r)

)
− f

(
s, Y (s)

)∥∥∥
L2

dr

+

∫
[0,T ]C

δℓ(r − s)
∥∥∥0− f

(
s, Y (s)

)∥∥∥
L2

dr

)2

ds

]
≤ 2 E

[ ∫ T

0

(∫ T

0

δℓ(r − s)
∥∥∥f(r, Y (r)

)
− f

(
s, Y (s)

)∥∥∥
L2

dr

)2

ds

]
︸ ︷︷ ︸

=: J̃3
ℓ

+ 2E
[ ∫ T

0

∥∥f(s, Y (s)
)∥∥2

L2

(∫
[0,T ]C

δℓ(r − s) dr

)2

ds

]
by using Young's inequality in the last step. Note that for 0 < s < T we have∫

[0,T ]C
δℓ(r − s) dr =

∫
R\[−s,T−s]

δℓ(r) dr ≤
∫
R\Bmin{s,T−s}(0)

δℓ(r) dr −−−→
ℓ→∞

0

by de�nition. Hence, by using that sup
x∈Rd

∥f(s, x)∥2L2
≤Mloc(s) holds for every s ∈ [0, T ]

and applying Lebesgue's dominated convergence theorem, we only have to consider the

�rst summand J̃3
ℓ .

Therefore, the transformation r 7−→ r+s followed by an application of the generalised

Minkowski integral inequality for p = 2 (cf. Theorem A.6 in the Appendix) yields

J̃3
ℓ = E

[∫ T

0

(∫
R
11[−s,T−s](r) δℓ(r)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥
L2

dr

)2

ds

]

≤ E

[(∫
R

(∫ T

0

11[0,T ](r + s) δℓ(r)
2

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

) 1
2

dr

)2
]

= E

[(∫
R
δℓ(r)

(∫
R
11[0,T ](r + s) 11[0,T ](s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

) 1
2

dr

)2
]
.

Now we split up the �rst integral into B 1
ϱ
(0) and R \B 1

ϱ
(0) for ϱ ∈ N. Then we have
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on the one hand by using Young's inequality

E

[(∫
R\B 1

ϱ
(0)

δℓ(r)

(∫
R
11[0,T ](r + s) 11[0,T ](s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

) 1
2

dr

)2
]

≤ 2E

[(∫
R\B 1

ϱ
(0)

δℓ(r)

(∫
R
11[0,T ](r + s)

∥∥∥f(r + s, Y (r + s)
)∥∥∥2

L2

ds

+

∫
R
11[0,T ](s)

∥∥∥f(s, Y (s)
)∥∥∥2

L2

ds

) 1
2

dr

)2
]

≤ 4E

[(∫
R\B 1

ϱ
(0)

δℓ(r)

(∫ T

0

Mloc(s) ds

) 1
2

dr

)2
]

= 4

∫ T

0

Mloc(s) ds

(∫
R\B 1

ϱ
(0)

δℓ(r) dr

)2

−−−→
ℓ→∞

0

since
∫
R\B 1

ϱ
(0)
δℓ(r) dr −−−→

ℓ→∞
0 by de�nition. On the other hand

E

[(∫
B 1

ϱ
(0)

δℓ(r)

(∫
R
11[0,T ](r + s) 11[0,T ](s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

) 1
2

dr

)2
]

≤ E

[(∫
B 1

ϱ
(0)

δℓ(r) dr︸ ︷︷ ︸
≤ 1

)2(
sup

r∈B 1
ϱ
(0)

∫
R
11[0,T ](r + s) 11[0,T ](s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

)]

≤ E

[
sup

r∈B 1
ϱ
(0)

∫
R
11[0,T ](r + s) 11[0,T ](s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds

]
−−−→
ϱ→∞

0

holds by Lebesgue's dominated convergence theorem. The claimed convergence is ful-

�lled because we have

11[− 1
ϱ
, 1
ϱ
](r)

∫
R
11[0,T ](s) 11[0,T ](r + s)

·
∥∥∥f(r + s, Y (r + s)

)
− f

(
s, Y (s)

)∥∥∥2
L2

ds −−−→
ϱ→∞

0
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by Lemma 3.5 i). In addition, an integrable dominating function is given by

sup
r∈B 1

ϱ
(0)

∫
R
11[0,T ](r + s) 11[0,T ](s)

∥∥∥f(r + s, Y (r + s)
)
− f

(
s, Y (s)

)∥∥∥2
L2︸ ︷︷ ︸

≤2
(
Mloc(r+s)+Mloc(s)

) ds

≤ 2

∫ T

0

Mloc(s) ds.

Analogously, we obtain for the summand J1
j,ℓ

lim
ϱ→∞

lim
ℓ→∞

lim sup
j→∞

J1
j,ℓ

= lim
ϱ→∞

lim
ℓ→∞

lim sup
j→∞

E
[ ∫ T

0

∥∥∥f(s, Yj(s))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

ds

]
≤ lim

ϱ→∞
lim
ℓ→∞

E
[ ∫ T

0

∥∥∥f(s, Y (s)
)
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]
= 0,

where we have applied the reverse Fatou lemma (cf. Lemma A.4 in the Appendix) in

the second step. An integrable dominating function is given by

∥∥∥f(s, Yj(s))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

≤
∥∥∥∥f(s, Yj(s))− ∫ T

0

δℓ(r − s) f
(
r, Yj(r)

)
dr

∥∥∥∥2
L2

≤ 2
∥∥∥f(s, Yj(s))∥∥∥2

L2

+ 2

(∫ T

0

δℓ(r − s)
∥∥∥f(r, Yj(r))∥∥∥

L2

dr

)2

≤ 2Mloc(s) + 2T sup
ξ∈R

δℓ(ξ)
2

∫ T

0

Mloc(r) dr,

where we have used Young's inequality in the second as well as the Cauchy-Schwarz

inequality and the continuity of δℓ in the last step. Hence, it remains to note that

lim sup
j→∞

∥∥∥f(s, Yj(s))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

=
∥∥∥f(s, Y (s)

)
− fℓ

(
s, Y (s)

)∥∥∥2
L2

holds by using the continuity of f and fℓ in their spacial component.

For the summand J2
j,ℓ we need a slightly di�erent argument. We will follow the main

idea of the proof of the theorem on page 32 in [Sko65] by using the continuity of the

coe�cients and the representation of the stochastic integral in this case.
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Let (πl)l∈N be a sequence of partitions of [0, T ] given by
{
0 = rl0 < rl1 < · · · < rlNl

=

T
}
such that sup

i : rli+1≤T

|rli+1 − rli| −−−→
l→∞

0. Then consider

J2
j,ℓ = P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

fℓ
(
s, Yj(s)

)
dWj(s)−

∫ t

0

fℓ
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

6

]

≤ P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

fℓ
(
s, Yj(s)

)
dWj(s)

−
∑
rli∈πl

fℓ
(
rli, Yj(r

l
i)
)(
Wj(r

l
i+1 ∧ t)−Wj(r

l
i ∧ t)

)∥∥∥∥
Rd

≥ ε

18

]
︸ ︷︷ ︸

=:K1
j,ℓ,l

+ P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

fℓ
(
rli, Yj(r

l
i)
)(
Wj(r

l
i+1 ∧ t)−Wj(r

l
i ∧ t)

)
−
∑
rli∈πl

fℓ
(
rli, Y (rli)

)(
W (rli+1 ∧ t)−W (rli ∧ t)

)∥∥∥∥
Rd

≥ ε

18

]
︸ ︷︷ ︸

=:K2
j,ℓ,l

+ P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

fℓ
(
rli, Y (rli)

)(
W (rli+1 ∧ t)−W (rli ∧ t)

)
−
∫ t

0

fℓ
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

18

]
︸ ︷︷ ︸

=:K3
ℓ,l

.

For the summand K3
ℓ,l we have

K3
ℓ,l = P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

fℓ
(
rli, Y (rli)

) ∫ rli+1∧t

rli∧t
dW (s)−

∫ t

0

fℓ
(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

18

]

= P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

( ∑
rli∈πl

11[rli, rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)
dW (s)

∥∥∥∥
Rd

≥ ε

18

]
.

Applying the Markov inequality yields

P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

( ∑
rli∈πl

11[rli, rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)
dW (s)

∥∥∥∥2
Rd

≥ ε2

324

]

≤ 324

ε2
E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

( ∑
rli∈πl

11[rli, rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)
dW (s)

∥∥∥∥2
Rd

]

≤ 648

ε2
E

[∫ T

0

∥∥∥( ∑
rli∈πl

11[rli, rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]
,
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where we have used the Burkholder-Davis-Gundy type inequality (cf. Lemma A.5 in

the Appendix) in the last step. Now we can split up the integral back again into the

sum of the partition points such that we obtain

E
[ ∫ T

0

∥∥∥( ∑
rli∈πl

11[rli,rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]

= E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥( ∑
rli∈πl

11[rli,rli+1]
(s) fℓ

(
rli, Y (rli)

))
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]

= E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥fℓ(rli, Y (rli)
)
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]
.

(3.7)

By using the mean value theorem for integrals, there exist ξi ∈ [rli, r
l
i+1] such that

E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥fℓ(rli, Y (rli)
)
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]

= E
[ ∑

rli∈πl

(rli+1 − rli)
∥∥∥fℓ(rli, Y (rli)

)
− fℓ

(
ξi, Y (ξi)

)∥∥∥2
L2

]

holds.

Now let ε̃ > 0. Then by the uniform continuity of the map s 7−→ fℓ
(
s, Y (s)

)
,

s ∈ [0, T ], there exists a δ > 0 such that
∥∥∥fℓ(s1, Y (s1)

)
− fℓ

(
s2, Y (s2)

)∥∥∥2
L2

≤ ε̃

T
for any

s1, s2 ∈ [0, T ] with |s1 − s2| < δ. Using the fact that we have sup
i : rli+1≤T

|rli+1 − rli| −−−→
l→∞

0

by assumption, we can choose l large enough such that sup
i : rli+1≤T

|rli+1 − rli| < δ. Hence,

∑
rli∈πl

(rli+1 − rli)
∥∥∥fℓ(rli, Y (rli)

)
− fℓ

(
ξi, Y (ξi)

)∥∥∥2
L2︸ ︷︷ ︸

≤ ε̃
T

≤
∑
rli∈πl

(rli+1 − rli)
ε̃

T
= ε̃

for l large enough. Therefore, we conclude that

E
[ ∑

rli∈πl

(rli+1 − rli)
∥∥∥fℓ(rli, Y (rli)

)
− fℓ

(
ξi, Y (ξi)

)∥∥∥2
L2

]
−−−→
l→∞

0

is ful�lled because we can apply Lebesgue's dominated convergence theorem since an
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integrable dominating function is given by

∑
rli∈πl

(rli+1 − rli)
∥∥∥fℓ(rli, Y (rli)

)
− fℓ

(
ξi, Y (ξi)

)∥∥∥2
L2

=
∑
rli∈πl

(rli+1 − rli)

∥∥∥∥∫ T

0

(
δℓ(r − rli)− δℓ(r − ξi)

)
f
(
r, Y (r)

)
dr

∥∥∥∥2
L2

≤
∑
rli∈πl

(rli+1 − rli)

∫ T

0

(
δℓ(r − rli)− δℓ(r − ξi)

)2
dr

∫ t

0

∥∥∥f(r, Y (r)
)∥∥∥2

L2

dr

≤ 2T 2 sup
ξ∈R

δℓ(ξ)
2

∫ T

0

Mloc(r) dr,

where we have used the Cauchy-Schwarz inequality and the continuity of the function

δℓ.

We obtain an analogous statement for the summand K1
j,ℓ,l, i.e. we repeat the calcu-

lation up to (3.7) and obtain

K1
j,ℓ,l = P

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

fℓ
(
s, Yj(s)

)
dWj(s)

−
∑
rli∈πl

fℓ
(
rli, Yj(r

l
i)
) (
Wj(r

l
i+1 ∧ t)−Wj(r

l
i ∧ t)

)∥∥∥∥
Rd

≥ ε

18

]

≤ E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥fℓ(rli, Yj(rli))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

ds

]
.

Now we can apply the reverse Fatou lemma (cf. Lemma A.4 in the Appendix) by

again considering 2T 2 sup
ξ∈R

δℓ(ξ)
2
∫ T

0
Mloc(r) dr as an integrable dominating function.

We obtain

lim
ℓ→∞

lim
l→∞

lim sup
j→∞

K1
j,ℓ,l

≤ lim
ℓ→∞

lim
l→∞

lim sup
j→∞

E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥fℓ(rli, Yj(rli))− fℓ
(
s, Yj(s)

)∥∥∥2
L2

ds

]

≤ lim
ℓ→∞

lim
l→∞

E
[ ∑

rli∈πl

∫ rli+1

rli

∥∥∥fℓ(rli, Y (rli)
)
− fℓ

(
s, Y (s)

)∥∥∥2
L2

ds

]
= 0,

where we have again used the continuity of fℓ and (3.4) for the uniform convergence

of Yj.
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Finally, we have to consider K2
j,ℓ,l and compute

K2
j,ℓ,l = P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

fℓ
(
rli, Yj(r

l
i)
)(
Wj(r

l
i+1 ∧ t)−Wj(r

l
i ∧ t)

)
−
∑
rli∈πl

fℓ
(
rli, Y (rli)

)(
W (rli+1 ∧ t)−W (rli ∧ t)

)∥∥∥∥
Rd

≥ ε

18

]

≤ P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

fℓ
(
rli, Yj(r

l
i)
)((

Wj(r
l
i+1 ∧ t)−Wj(r

l
i ∧ t)

)
−
(
W (rli+1 ∧ t)−W (rli ∧ t)

))∥∥∥∥
Rd

≥ ε

36

]

+ P

[
sup

t∈[0,T ]

∥∥∥∥ ∑
rli∈πl

(
fℓ
(
rli, Yj(r

l
i)
)
− fℓ

(
rli, Y (rli)

))

·
(
W (rli+1 ∧ t)−W (rli ∧ t)

)∥∥∥∥
Rd

≥ ε

36

]
.

By using the Markov inequality the latter can be estimated by

36

ε
E
[ ∑

rli∈πl

∥∥∥fℓ(rli, Yj(rli))∥∥∥
L2

2 sup
ξ∈[0,T ]

∥∥Wj(ξ)−W (ξ)
∥∥
Rd1

]

+
36

ε
E
[

sup
t∈[0,T ]

∑
rli∈πl

∥∥∥fℓ(rli, Yj(rli))− fℓ
(
rli, Y (rli)

)∥∥∥
L2

·
∥∥∥W (rli+1 ∧ t)−W (rli ∧ t)

∥∥∥
Rd1

]
≤ 72

ε
E
[
Nl sup

ξ∈[0,T ]

∥∥∥fℓ(ξ, Yj(ξ))∥∥∥
L2

sup
ξ∈[0,T ]

∥∥Wj(ξ)−W (ξ)
∥∥
Rd1

]
+

72

ε
E
[
Nl sup

ξ∈[0,T ]

∥∥∥fℓ(ξ, Yj(ξ))− fℓ
(
ξ, Y (ξ)

)∥∥∥
L2

sup
ξ∈[0,T ]

∥∥W (ξ)
∥∥
Rd1

]
.

Now we use (3.4) and (3.5), i.e. we have P -a.s.

sup
t∈[0,T ]

∥∥Yj(t)− Y (t)
∥∥
Rd −−−→

j→∞
0 and sup

t∈[0,T ]

∥∥Wj(t)−W (t)
∥∥
Rd1

−−−→
j→∞

0

as well as the uniform continuity of the maps s 7−→ fℓ
(
s, Yj(s)

)
and s 7−→ fℓ

(
s, Y (s)

)
for s ∈ [0, T ]. Namely, we have

lim sup
j→∞

sup
ξ∈[0,T ]

∥∥fℓ(ξ, Yj(ξ))∥∥L2
sup

ξ∈[0,T ]

∥∥Wj(ξ)−W (ξ)
∥∥
Rd1

≤ lim sup
j→∞

sup
ξ∈[0,T ]

∥∥fℓ(ξ, Yj(ξ))∥∥L2
· lim sup

j→∞
sup

ξ∈[0,T ]

∥∥Wj(ξ)−W (ξ)
∥∥
Rd1︸ ︷︷ ︸

=0
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and by the same arguments as before

lim sup
j→∞

sup
ξ∈[0,T ]

∥∥fℓ(ξ, Yj(ξ))∥∥L2
= sup

ξ∈[0,T ]

∥∥fℓ(ξ, Y (ξ)
)∥∥

L2

as well as an analogous statement for the second summand. Hence, we can conclude

that lim sup
j→∞

K2
j,ℓ,l = 0 holds by using the reverse Fatou lemma (cf. Lemma A.4 in the

Appendix).
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3.3. Main theorem

This section contains the �rst main theorem of this thesis. We will assume the continuity

of the coe�cients in their spacial component in addition to the assumptions from

Section 2.1 and, of course, the pathwise uniqueness from De�nition 2.2. The proof is

an extended version of the one stated in [GK96] and uses in particular Lemma 3.6

about the convergence in probability of sequences of (stochastic) integrals as well as

tightness criteria to prove the relatively weak compactness of sequences of probability

measures via Prokhorov's theorem. At the end, we will also mention in Corollary 3.8

that the well-known local weak monotonicity condition on b and σ can replace some of

the assumptions from the theorem.

Theorem 3.7 (cf. [GK96], Theorem 2.4 on page 148). Let the assumptions from Section

2.1 be ful�lled. Suppose moreover that b and σ are continuous in x ∈ D and that

pathwise uniqueness holds for the equation (2.1). Then we have:

1) There exists a process (X(t))t≥0 such that Xn(t)
p−−−→

n→∞
X(t) uniformly in t on

bounded intervals.

2) (X(t))t≥0 is the unique solution of equation (2.1) (up to P -indistinguishability).

Recall that (Xn)n∈N are the Euler �polygonal� approximations given by equation (2.2)

in Section 2.1.

Proof. (cf. [GK96], Theorem 2.4 on page 150)

For every T ≥ 0 and k, n ∈ N de�ne the stopping times

τ kn := inf
{
t ∈ [0, T ] |Xn(t) /∈ Dk

}
∧ k.

Since κn(s) ≤ s for all s ≥ 0 by the de�nition of κn (see Section 2.1), we have for every

t ≤ τ kn (if τ kn > 0)∥∥b(t,Xn(κn(t))
)∥∥

Rd ≤Mk(t) and
∥∥σ(t,Xn(κn(t))

)∥∥2
L2

≤Mk(t)

by assumption A1).

De�ne the family
{
Xk

n

∣∣n ∈ N
}
of stochastic processes with continuous sample paths

by

Xk
n(t) := Xn(t ∧ τ kn)

for t ∈ [0, T ] and k, n ∈ N. Let PXk
n
:= P ◦

(
Xk

n

)−1
be the distribution of Xk

n. Then

for any T ≥ 0 we can consider
{
PXk

n

∣∣n ∈ N
}
as a family of probability measures

on C
(
[0, T ];Rd

)
. Since C

(
[0, T ];Rd

)
is separable, the Prokhorov metric metrises the

space of probability measures M1

(
C
(
[0, T ];Rd

))
with respect to weak convergence of

probability measures (cf. [Bil99], Section 6 on page 72 and 73).
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We will now divide this proof into three consecutive steps (Step 1, Step 2 and

Step 3) to improve the comprehensibility of the most important ideas, methods and

arguments.

Step 1: At �rst we will show the tightness (cf. De�nition A.16 in the Appendix) of the

family
{
PXk

n

∣∣n ∈ N
}
as it is asserted in Claim (1).

Claim (1). For every k ∈ N and T ≥ 0 the family of probability measures{
PXk

n

∣∣n ∈ N
}
⊆ M1

(
C
(
[0, T ];Rd

))
is tight.

Proof of Claim (1). For the proof we use Theorem A.20 and Theorem A.21 from the

Appendix, which jointly add up to a tightness criterion for the distributions of sto-

chastic processes with continuous sample paths. Hence, we have to show that for every

�xed k ∈ N and T ≥ 0 the assertions

i) For every ε > 0 there exists an R > 0 such that P
[
∥Xk

n(0)∥Rd > R
]
≤ ε for all

n ∈ N.

ii) There exist α, β,K > 0 such that E
[
∥Xk

n(t) − Xk
n(s)∥

β
Rd

]
≤ K|t − s|1+α for all

n ∈ N and s, t ∈ [0, T ].

hold.

�i)�: We know that ∥Xk
n(0)∥Rd = ∥ξ∥Rd . Since

∩
R∈N

{
∥ξ∥Rd > R

}
= ∅, it follows that

P
[
∥ξ∥Rd > R

]
−−−→
R→∞

0. Hence, i) is ful�lled for every n ∈ N.

�ii)�: Let β := 2 (1+χ)2

χ
and s, t ∈ [0, T ]. Without loss of generality let t > s and τ kn > 0.

Since E
[∥∥∥Xk

n(t)−Xk
n(s)

∥∥∥β
Rd
11{s>τkn}

]
= 0, we obtain for a constant C1 > 0

E
[∥∥∥Xk

n(t)−Xk
n(s)

∥∥∥β
Rd

]
= E

[∥∥∥Xk
n(t)−Xk

n(s)
∥∥∥β
Rd
11{s≤τkn}

]
(2.2)
= E

[∥∥∥∥ ∫ t∧τkn

s∧τkn
b
(
r,Xn(κn(r))

)
dr +

∫ t∧τkn

s∧τkn
σ
(
r,Xn(κn(r))

)
dW (r)

∥∥∥∥β
Rd

11{s≤τkn}

]

≤ E

[∥∥∥∥∫ t∧τkn

s

b
(
r,Xn(κn(r))

)
dr +

∫ t∧τkn

s

σ
(
r,Xn(κn(r))

)
dW (r)

∥∥∥∥β
Rd

]

≤ C1 E

[∥∥∥∥∫ t∧τkn

s

b
(
r,Xn(κn(r))

)
dr

∥∥∥∥β
Rd

]

+ C1 E

[∥∥∥∥∫ T

0

11]s,t∧τkn ](r) σ
(
r,Xn(κn(r))

)
dW (r)

∥∥∥∥β
Rd

]
,
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where we have used a generalised Young inequality (cf. Lemma A.3 in the Appendix)

in the last step. Applying the Burkholder-Davis-Gundy type inequality for p = β (cf.

Theorem A.5 in the Appendix) yields

C1 E

[∥∥∥∥ ∫ t∧τkn

s

b
(
r,Xn(κn(r))

)
dr

∥∥∥∥β
Rd

]

+ C1 E

[∥∥∥∥ ∫ T

0

11]s,t∧τkn ](r) σ
(
r,Xn(κn(r))

)
dW (r)

∥∥∥∥β
Rd

]

≤ C1 E

[(∫ t∧τkn

s

∥∥b(r,Xn(κn(r))
)∥∥

Rd︸ ︷︷ ︸
≤Mk(r), since r≤τkn

dr

) 2 (1+χ)2

χ

]

+ C2

(∫ T

0

E
[
11]s,t∧τkn ](r)

(∥∥σ(r,Xn(κn(r))
)∥∥2

L2︸ ︷︷ ︸
≤Mk(r), since r≤τkn

) (1+χ)2

χ

] χ

(1+χ)2

dr

) (1+χ)2

χ

≤ C1

(∫ t

s

Mk(r) dr

) 2 (1+χ)2

χ

+ C2

(∫ t

s

Mk(r) dr

) (1+χ)2

χ

for a constant C2 > 0 by using t ∧ τ kn ≤ t as well as Mk > 0. By an application of

Hölder's inequality we altogether obtain

E
[∥∥∥Xk

n(t)−Xk
n(s)

∥∥∥β
Rd

]

≤ C1

(∫ t

s

Mk(r) dr

) 2 (1+χ)2

χ

+ C2

(∫ t

s

Mk(r) dr

) (1+χ)2

χ

≤
(∫ t

s

Mk(r) dr

) (1+χ)2

χ

·

(
C1

(∫ T

0

Mk(r) dr

) (1+χ)2

χ

+ C2

)
︸ ︷︷ ︸

=:C3

≤ C3

((∫ t

s

1
1+χ
χ dr

) χ
1+χ
(∫ t

s

Mk(r)
1+χ dr

) 1
1+χ

) (1+χ)2

χ

≤ K(t− s)1+χ,

where C3 > 0 and K := C3

( ∫ T

0
Mk(r)

1+χ dr
) 1+χ

χ
> 0 are constants. Hence, assertion

ii) follows with α := χ.

Step 2: Now we consider PXn , i.e. the distribution of Xn, and intend to deduce the

tightness of the family
{
PXn

∣∣n ∈ N
}
in M1

(
C
(
[0, T ];Rd

))
from Step 1.

It su�ces to show that the following claim is ful�lled.
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Claim (2). We have

lim
k→∞

lim sup
n→∞

P
[
τ kn ≤ T

]
= 0 (3.8)

for every T ∈ [0,∞[.

This claim is su�cient for the assertion because we have Xk
n(t) = Xn(t) for t ∈ [0, τ kn ]

by de�nition. Hence, the processes coincide on {τ kn > T} for every t ∈ [0, T ] and the

probability of the event {τ kn ≤ T} tends to zero by taking the limits. In fact, we have

for ε > 0

P
[
Wδ(Xn) > ε

]
= P

[
Wδ(Xn) > ε, τ kn > T

]
+ P

[
Wδ(Xn) > ε, τ kn ≤ T

]
≤ P

[
Wδ(X

k
n) > ε

]
+ P [τ kn ≤ T ]

and hence

lim
δ↓0

lim sup
n→∞

P
[
Wδ(Xn) > ε

]
= lim

k→∞
lim
δ↓0

lim sup
n→∞

P
[
Wδ(Xn) > ε

]
≤ lim

k→∞
lim
δ↓0

lim sup
n→∞

P
[
Wδ(X

k
n) > ε

]
︸ ︷︷ ︸

=0 by Claim (1)

+ lim
k→∞

lim sup
n→∞

P [τ kn ≤ T ]︸ ︷︷ ︸
=0 by Claim (2)

.

Besides, for R > 0

lim
R↑∞

lim sup
n→∞

P
[
∥Xn(0)∥Rd > R

]
= lim

R↑∞
lim sup
n→∞

P
[
∥ξ∥Rd > R

]
= lim

R↑∞
lim sup
n→∞

P
[
∥Xk

n(0)∥Rd > R
]

︸ ︷︷ ︸
=0 by Claim (1)

holds such that we can conclude the tightness of
{
PXn

∣∣n ∈ N
}
from Theorem A.20.

Proof of Claim (2). Let T ≥ 0 and let k ∈ N such that k ≥ T . According to Claim (1)

we know that
{
PXk

n

∣∣n ∈ N
}
is a tight family of probability measures on C

(
[0, T ];Rd

)
.

Let
(
PXk

nm

)
m∈N ⊆

{
PXk

n

∣∣n ∈ N
}
be an arbitrary subsequence, then it is again a tight

sequence. Since every single probability measure on a separable and complete space

is tight (cf. Lemma A.18 in the Appendix), the distribution PW of the Wiener pro-

cess W is a tight probability measure on C
(
[0, T ];Rd1

)
. Hence, the trivial sequence

which only consists of PW is tight. Therefore, by applying Lemma A.22 we obtain

that
(
P(Xk

nm
,W )

)
m∈N is a tight family of probability measures on C

(
[0, T ];Rd+d1

)
. From

Prokhorov's theorem (cf. Theorem A.17 in the Appendix) it follows that there exists

a relatively weakly convergent subsequence
(
P(Xk

nmj
,W )

)
j∈N by using the fact that in

metric spaces relative compactness and relative sequential compactness are equivalent.
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Now we can apply Skorokhod's representation theorem (see Theorem 3.3) to this sub-

sequence. Then there exist a probability space (Ω̃, F̃ , P̃ ) and a sequence of continuous

random variables
(
X̃k

nmj
, W̃j

)
j∈N such that

P(Xk
nmj

,W ) = P̃(X̃k
nmj

,W̃j)
for every j ∈ N and (3.9)(

X̃k
nmj

, W̃j

)
j∈N

P̃−a.s.−−−−→
j→∞

(
X̃k, W̃

)
(3.10)

for stochastic processes X̃k and W̃ with values in C
(
[0, T ];Rd

)
and C

(
[0, T ];Rd1

)
,

respectively. Therefore, we have P̃ -a.s.∥∥X̃k
nmj

− X̃k
∥∥
∞ = sup

t∈[0,T ]

∥∥X̃k
nmj

(t)− X̃k(t)
∥∥
Rd −−−→

j→∞
0 and∥∥W̃j − W̃

∥∥
∞ = sup

t∈[0,T ]

∥∥W̃j(t)− W̃ (t)
∥∥
Rd1

−−−→
j→∞

0.
(3.11)

In order to prove Claim (2), we now have to consider the six auxiliary claims Claim

(2-1), Claim (2-2), Claim (2-3), Claim (2-4), Claim (2-5) and Claim (2-6).

We start by de�ning the stopping times τ̃ knmj
:= inf

{
t ∈ [0, T ]

∣∣ X̃k
nmj

(t) /∈ Dk

}
∧ k

and τ̃ k := inf
{
t ∈ [0, T ]

∣∣ X̃k(t) /∈ Dk

}
∧ k.

Claim (2-1). The inequality

lim inf
j→∞

τ̃ knmj
≥ τ̃ k (3.12)

P̃ -a.s. holds.

Proof of Claim (2-1). This is just an application of Lemma 3.2.

Now de�ne the σ-algebras

F̃ j
t := σ

(
X̃k

nmj
(s), W̃j(s)

∣∣ s ∈ [0, t]
)
and F̃t := σ

(
X̃k(s), W̃ (s)

∣∣ s ∈ [0, t]
)
.

Claim (2-2). For every j ∈ N we have that (W̃j(t))t∈[0,T ] is an (F̃ j
t )-adapted Wiener

process and (W̃ (t))t∈[0,T ] is an (F̃t)-adapted Wiener process.

Proof of Claim (2-2). First of all, the processes (W̃j(t))t∈[0,T ] (for every j ∈ N) and

(W̃ (t))t∈[0,T ] are P̃ -a.s. continuous as well as by de�nition adapted with respect to F̃ j
t

and F̃t, respectively. Furthermore, we have by (3.9) and (3.10)

PW = P̃W̃j

w−−−→
j→∞

P̃W̃

because of the equality of the marginal distributions, Lemma A.12 and Lemma A.15

i) from the Appendix. Hence, W̃j and W̃ have the same distribution as the Wiener

process W .
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Next we note that W̃j(0) = 0 holds since we can de�ne the measurable set

U1 :=
{
u ∈ C

(
[0, T ];Rd1

) ∣∣∣u(0) = 0
}

such that we obtain

1 = PW [U1] = P̃W̃j
[U1].

We also have W̃ (0) = 0 P̃ -a.s. since∥∥W̃ (0)− 0
∥∥
Rd1

=
∥∥W̃ (0)− W̃j(0)

∥∥
Rd1

≤ sup
t∈[0,T ]

∥∥W̃j(t)− W̃ (t)
∥∥
Rd1

−−−→
j→∞

0

follows from (3.11). For the independence of the increments we consider the following

four intermediate steps ((1), (2), (3) and (4)).

(1): The Euler �polygonal� approximations
(
Xn(t)

)
are (Ft)-adapted for any n ∈ N.

For t ∈ [tn0 , t
n
1 ] we have by (2.2) that

Xn(t) = ξ +

∫ t

0

b(s, ξ) ds+

∫ t

0

σ(s, ξ) dW (s),

where ξ is F0-measurable and b, σ are Borel-measurable by assumption. Hence, after

the integration we obtain the (Ft)-measurability of Xn(t). Inductively we get for t ∈
[tni , t

n
i+1] that

Xn(t) = Xn(t
n
i ) +

∫ t

tni

b
(
s,Xn(t

n
i )
)
ds+

∫ t

tni

σ
(
s,Xn(t

n
i )
)
dW (s)

holds such that the (Ftni
)-measurability of Xn(t

n
i ) and the Borel-measurability of b and

σ again imply that Xn(t) is (Ft)-measurable.

(2): Adjustment of the σ-algebras.

The measurability of Xnmj
(t) from (1) yields that the stopped process Xk

nmj
(t)

is (Ft)-measurable as well, i.e. we have Ft = σ
(
Ft, X

k
nmj

(s) | s ≤ t
)
. Furthermore,

we know that
(
W (t)

)
t≥0

is (Ft)-adapted by assumption, hence we can write Ft =

σ
(
Ft, X

k
nmj

(s),W (s) | s ≤ t
)
. Therefore, we conclude that the increment W (t)−W (s)

is in fact independent of σ
(
Fs, X

k
nmj

(r),W (r) | r ≤ s
)
and certainly independent of the

smaller σ-algebra given by σ
(
Xk

nmj
(r),W (r) | r ≤ s

)
.

(3): The increment W̃j(t)− W̃j(s) is independent of F̃ j
s = σ

(
X̃k

nmj
(r), W̃j(r)

∣∣ r ≤ s
)
.

First of all, we know that

σ
(
W̃j(t)− W̃j(s)

)
=
{{
W̃j(t)− W̃j(s) ∈ B

} ∣∣B ∈ B(Rd1)
}
.

Besides, the σ-algebra F̃ j
s is generated by sets of the form{(

X̃k
nmj

(s0), W̃j(s0), . . . , X̃
k
nmj

(sN), W̃j(sN)
)
∈ B

}
,

where N ∈ N, 0 = s0 ≤ s1 ≤ · · · ≤ sN = s and B ∈ B
(
RN(d+d1)

)
.
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For N ∈ N, 0 = s0 ≤ s1 ≤ · · · ≤ sN = s, B1 ∈ B
(
Rd1
)
, B2 ∈ B

(
RN(d+d1)

)
and

B̄1 :=
{
(w1, w2) ∈ R2d1

∣∣w1 − w2 ∈ B1

}
we compute

P̃
[
W̃j(t)− W̃j(s) ∈ B1

]
· P̃
[(
X̃k

nmj
(s0), W̃j(s0), . . . , X̃

k
nmj

(sN), W̃j(sN)
)
∈ B2

]
= P̃(

W̃j(t),W̃j(s)
)[B̄1

]
· P̃(

X̃k
nmj

(s0),W̃j(s0),...,X̃k
nmj

(sN ),W̃j(sN )
)[B2

]
= P(

W (t),W (s)
)[B̄1

]
︸ ︷︷ ︸
=PW (t)−W (s)[B1]

·P(
Xk

nmj
(s0),W (s0),...,Xk

nmj
(sN ),W (sN )

)[B2

]

= P

[{
W (t)−W (s) ∈ B1

}
∩
{(
Xk

nmj
(s0),W (s0), . . . , X

k
nmj

(sN),W (sN)
)
∈ B2

}]
= P

[{(
W (t),W (s)

)
∈ B̄1

}
∩
{(
Xk

nmj
(s0),W (s0), . . . , X

k
nmj

(sN),W (sN)
)
∈ B2

}]
,

where we have used in the second step that by (3.9) the distributions P(Xk
nmj

,W ) and

P̃(X̃k
nmj

,W̃j)
and, therefore, also their �nite-dimensional distributions coincide. Besi-

des, the third step follows by the independence of W (t) − W (s) from the σ-algebra

σ
(
Xk

nmj
(r),W (r) | r ≤ s

)
(see (2)). Hence, we obtain

P
[{(

W (t),W (s)
)
∈ B̄1

}
∩ {
(
Xk

nmj
(s0),W (s0), . . . , X

k
nmj

(sN),W (sN)
)
∈ B2}

]
= P

[(
W (t),W (s), Xk

nmj
(s0),W (s0), . . . , X

k
nmj

(sN),W (sN)
)
∈ B̄1 ×B2

]
= P(

W (t),W (s),Xk
nmj

(s0),W (s0),...,Xk
nmj

(sN ),W (sN )
)[B̄1 ×B2

]
= P̃(

W̃j(t),W̃j(s),X̃k
nmj

(s0),W̃j(s0),...,X̃k
nmj

(sN ),W̃j(sN )
)[B̄1 ×B2

]
= P̃

[{
W̃j(t)− W̃j(s) ∈ B1

}
∩
{(
X̃k

nmj
(s0), W̃j(s0), . . . , X̃

k
nmj

(sN), W̃j(sN)
)
∈ B2

}]
,

where we have again used the equality of the �nite-dimensional distributions in the

third step.

(4): The increment W̃ (t)− W̃ (s) is independent of F̃s = σ
(
X̃k(r), W̃ (r)

∣∣ r ≤ s
)
.

Let N ∈ N. Assume that φ ∈ C
(
Rd1 ;R

)
and ψ ∈ C

(
RN(d+d1);R

)
are bounded

functions. By using the monotone class theorem (see e.g. [Pro05], Theorem 8 on page
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7) it su�ces to conclude from (3) and (3.11) that

E
[
φ
(
W̃ (t)− W̃ (s)

)
ψ
(
X̃k(s0), W̃ (s0), . . . , X̃

k(sN), W̃ (sN)
)]

= lim
j→∞

E
[
φ
(
W̃j(t)− W̃j(s)

)
ψ
(
X̃k

nmj
(s0), W̃j(s0), . . . , X̃

k
nmj

(sN), W̃j(sN)
)]

= lim
j→∞

E
[
φ
(
W̃j(t)− W̃j(s)

)]
· E
[
ψ
(
X̃k

nmj
(s0), W̃j(s0), . . . , X̃

k
nmj

(sN), W̃j(sN)
)]

= E
[
φ
(
W̃ (t)− W̃ (s)

)]
E
[
ψ
(
X̃k(s0), W̃ (s0), . . . , X̃

k(sN), W̃ (sN)
)]

holds for N ∈ N and 0 = s0 ≤ s1 ≤ · · · ≤ sN = s by Lebesgue's dominated convergence

theorem.

At this point it is necessary to ensure that (F̃ j
t ) and (F̃t) are normal �ltrations

such that they are suitable for the usual stochastic integration theory. In case they are

not normal, we augment them by all P̃ -zero sets and make them right-continuous by

construction (intersection of the larger σ-algebras) as it is done for example in [PR07]

on page 12. Then the processes (W̃j(t))t∈[0,T ] and (W̃ (t))t∈[0,T ] are still Wiener processes

with respect to these new normal �ltrations (cf. [PR07], Proposition 2.1.13 on page 12

for an applicable proof).

Furthermore, we have the following claim.

Claim (2-3). We have P̃ -a.s.

X̃k
nmj

(t) = X̃k
nmj

(0) +

∫ t

0

b
(
s, X̃k

nmj
(κnmj

(s))
)
ds+

∫ t

0

σ
(
s, X̃k

nmj
(κnmj

(s))
)
dW̃j(s)

for all t ∈ [0, T ∧ τ̃ knmj
].

Proof of Claim (2-3). To verify this equality we de�ne the set

U2 :=

{
(uℓj , vj) ∈ C

(
[0, T ];Rd+d1

) ∣∣∣∣ ∀t ∈ [0, T ∧ τuℓj
] :

uℓj(t) = uℓj(0) +

∫ t

0

b
(
s, uℓj(κℓj(s))

)
ds+

∫ t

0

σ
(
s, uℓj(κℓj(s))

)
dvj(s)

}
,

where τuℓj
:= inf

{
t ∈ [0, T ]

∣∣uℓj(t) /∈ Dk

}
∧ k. Then we have by (3.9)

P̃
[
(X̃k

nmj
, W̃j) ∈ U2

]
= P̃(X̃k

nmj
,W̃j)

[
U2

]
= P(Xk

nmj
,W )

[
U2

]
= P

[
(Xk

nmj
,W ) ∈ U2

]
= 1

since Xk
nmj

satis�es equation (2.2) P -a.s. for every t ∈ [0, T ∧ τ knmj
].
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Claim (2-4). We have∫ t

0

b
(
s, X̃k

nmj
(κnmj

(s))
)
ds

p−−−→
j→∞

∫ t

0

b
(
s, X̃k(s)

)
ds and∫ t

0

σ
(
s, X̃k

nmj
(κnmj

(s))
)
dW̃j(s)

p−−−→
j→∞

∫ t

0

σ
(
s, X̃k(s)

)
dW̃ (s)

for t < T ∧ τ̃ k.

Proof of Claim (2-4). With the help of Lemma A.8 from the Appendix we calculate

lim sup
j→∞

P̃
[
τ̃ kj ≤ t, t < τ̃ k ∧ T

]
≤ P̃

[
lim sup
j→∞

{
τ̃ kj ≤ t

}
, t < τ̃ k ∧ T

]
= P̃

[ ∩
ϱ∈N

∪
j≥ϱ

{
τ̃ kj ≤ t

}
, t < τ̃ k ∧ T

]
≤ P̃

[ ∩
ϱ∈N

{
inf
j≥ϱ

τ̃ kj ≤ t
}
, t < τ̃ k ∧ T

]
= P̃

[{
sup
ϱ∈N

inf
j≥ϱ

τ̃ kj ≤ t
}
, t < τ̃ k ∧ T

]
= P̃

[
lim inf
j→∞

τ̃ kj ≤ t, t < τ̃ k ∧ T
]
.

Therefore, since P̃
[
lim inf
n→∞

τ̃ kj ≥ τ̃ k
]
= 1 holds by Claim (2-1), we conclude

lim sup
j→∞

P̃
[
τ̃ kj ≤ t, t < τ̃ k ∧ T

]
= 0. (3.13)

The latter implies that we only have to consider the convergence in probability with

respect to the event {t < τ̃ kj } ∩ {t < τ̃ k ∧ T}.
Now, in order to apply Lemma 3.6, we have to localise the functions b and σ. The-

refore, de�ne the set A as the complement of Dk+1 in D, i.e. A := D \ Dk+1. Let

γ : D → [0, 1] be the function given by

γ(x) :=
dist

(
x,A

)
dist

(
x,Dk

)
+ dist

(
x,A

)
for x ∈ D.

Then for σ we can consider the function σ̄ : R+ × Rd → Rd×d1 given by

σ̄(s, x) :=

{
σ(s, x) γ(x) for x ∈ Dk+1, s ∈ [0, T ],

0 else,

which is continuous in x ∈ Rd and Borel-measurable in s ∈ R+. By this de�nition we

also know that σ̄(s, x) = σ(s, x) for x ∈ Dk, s ∈ [0, T ] and

sup
x∈Rd

∥σ̄(s, x)∥Rd = sup
x∈Dk+1

∥σ̄(s, x)∥Rd ≤ sup
x∈Dk+1

∥σ(s, x)∥Rd ≤Mk+1(s)
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for every s ∈ [0, T ] since k ≥ T by assumption. Let ε > 0. Then we have

lim sup
j→∞

P̃

[∥∥∥∥∫ t

0

σ
(
s, X̃k

nmj
(κnmj

(s))
)
dW̃j(s)

−
∫ t

0

σ
(
s, X̃k(s)

)
dW̃ (s)

∥∥∥∥
Rd

≥ ε, t < τ kj , t < τ k ∧ T

]

= lim sup
j→∞

P̃

[∥∥∥∥∫ t∧τ̃kj ∧T

0

σ
(
s, X̃k

nmj
(κnmj

(s))
)
dW̃j(s)

−
∫ t∧τ̃k∧T

0

σ
(
s, X̃k(s)

)
dW̃ (s)

∥∥∥∥
Rd

≥ ε, t < τ kj , t < τ k ∧ T

]

≤ lim sup
j→∞

P̃

[∥∥∥∥ ∫ t∧T

0

σ̄
(
s, X̃k

nmj
(κnmj

(s))
)
dW̃j(s)

−
∫ t∧T

0

σ̄
(
s, X̃k(s)

)
dW̃ (s)

∥∥∥∥
Rd

≥ ε

]
= 0

by applying Lemma 3.6. Analogously, for a function b : R+ × Rd → Rd the estimate

lim sup
j→∞

P̃

[∥∥∥∥∫ t

0

b
(
s, X̃k

nmj
(κnmj

(s))
)
ds

−
∫ t

0

b
(
s, X̃k(s)

)
ds

∥∥∥∥
Rd

≥ ε, t < τ kj , t < τ k ∧ T

]

= lim sup
j→∞

P̃

[∥∥∥∥ ∫ t∧τ̃kj ∧T

0

b
(
s, X̃k

nmj
(κnmj

(s))
)
ds

−
∫ t∧τ̃k∧T

0

b
(
s, X̃k(s)

)
ds

∥∥∥∥
Rd

≥ ε, t < τ kj , t < τ k ∧ T

]

≤ lim sup
j→∞

P̃

[∥∥∥∥∫ t∧T

0

b
(
s, X̃k

nmj
(κnmj

(s))
)
ds−

∫ t∧T

0

b
(
s, X̃k(s)

)
ds

∥∥∥∥
Rd

≥ ε

]
= 0

holds. This directly yields the assertion of the claim by using (3.13).

From Claim (2-3) we can now conclude that the process X̃k satis�es the SDE for

every t ∈ [0, T ∧ τ̃ k].

Claim (2-5). The process X̃k satis�es P̃ -a.s. the equation

X̃k(t) = X̃k(0) +

∫ t

0

b
(
s, X̃k(s)

)
ds+

∫ t

0

σ
(
s, X̃k(s)

)
dW̃ (s) (3.14)

for t ∈ [0, T ∧ τ̃ k].
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Proof of Claim (2-5). By (3.11) we know that X̃k
nmj

(t)
P̃−a.s.−−−−→
j→∞

X̃k(t) uniformly in t ∈

[0, T ]. In particular, we have X̃k
nmj

(0)
p−−−→

j→∞
X̃k(0) (cf. Lemma A.12 i), which states

that a.s. convergence implies convergence in probability). Furthermore, we have the

convergence in probability of the integrals for t ∈ [0, T ∧ τ̃ k[ by Claim (2-4). Therefore,

Claim (2-3) implies that equation (3.14) P̃ -a.s. holds for every t ∈ [0, T ∧ τ̃ k[ because
the P̃ -a.s. limit and the limit in probability have to be P̃ -a.s. equal.

Note that both integrals in (3.14) are continuous in t and exist for t ∈ [0, T ∧ τ̃ k].

Since X̃k(t) is continuous for t ∈ [0, T ], we conclude that the equation actually holds

for t ∈ [0, T ∧ τ̃ k].

Furthermore, we have to prove that the following claim holds.

Claim (2-6). We have lim
k→∞

P̃
[
τ̃ k ≤ T

]
= 0.

Proof of Claim (2-6). In the proof of inequality (2.3) we have only used that the pro-

cess considered in Lemma 2.4 is P -a.s. continuous and satis�es the equation (2.1) until

it hits ∂Dk as well as that its initial value is in D. Therefore, we work with the same

kind of inequality as in the lemma for τ̃ k and X̃k in this case.

Namely, we obtain analogously to (2.4) the estimate

P̃
[
τ̃ k ≤ T

]
≤ P̃

[
X̃k(0) /∈ Dk

]
+ P̃

[
V
(
0, X̃k(0)

)
≥ log

(1
δ

)
, X̃k(0) ∈ Dk

]
+ P̃

[
τ̃ k ≤ T, X̃k(0) ∈ Dk, V

(
0, X̃k(0)

)
< log

(1
δ

)]
because X̃k has continuous sample paths and satis�es the equation (2.1) with W̃ instead

of W until it hits ∂Dk by Claim (2-5). Besides, we have the condition X̃k(0) ∈ Dk in

the second and third summand such that V
(
0, X̃k(0)

)
is still de�ned. Hence, repeating

the arguments from the proof of Lemma 2.4 yields

P̃
[
τ̃ k ≤ T

]
≤ P̃

[
X̃k(0) /∈ Dk

]
+ P̃

[
V
(
0, X̃k(0)

)
≥ log

(1
δ

)
, X̃k(0) ∈ Dk

]
+

1

δVk(T )
exp

(∫ T

0

M(t) dt

)
.

(3.15)

Now note that we also have Pξ = P̃X̃k(0) since (3.9), (3.10) and Lemma A.15 i) from

the Appendix imply

Pξ = PXk
nmj

(0) = P̃X̃k
nmj

(0)

w−−−→
j→∞

P̃X̃k(0).

Therefore, we can transform estimate (3.15) into

P̃
[
τ̃ k ≤ T

]
≤ P

[
ξ /∈ Dk

]
+ P

[
V
(
0, ξ
)
≥ log

(1
δ

)]
+

1

δVk(T )
exp

(∫ T

0

M(t) dt

)
,

which coincides with the estimate (2.3). Hence, we conclude lim
k→∞

P̃
[
τ̃ k ≤ T

]
= 0.
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Since the inequality

P̃
[
lim sup
j→∞

{
τ̃ knmj

≤ T
}]

= P̃

[ ∩
ϱ∈N

∪
j≥ϱ

{
τ̃ knmj

≤ T
}]

≤ P̃

[ ∩
ϱ∈N

{
inf
j≥ϱ

τ̃ knmj
≤ T

}]
= P̃

[{
sup
ϱ∈N

inf
j≥ϱ

τ̃ knmj
≤ T

}]
= P

[{
lim inf
j→∞

τ̃ knmj
≤ T

}]
is ful�lled and the stopping times τ knmj

and τ̃ knmj
have the same distribution (cf. Lemma

3.1), it follows from Claim (2-6) that

lim
k→∞

lim sup
j→∞

P
[
τ knmj

≤ T
]
= lim

k→∞
lim sup
j→∞

P̃
[
τ̃ knmj

≤ T
]
≤ lim

k→∞
P̃
[
lim sup
j→∞

{
τ̃ knmj

≤ T
}]

≤ lim
k→∞

P̃
[{

lim inf
j→∞

τ̃ knmj
≤ T

}]
≤ lim

k→∞
P̃
[
τ̃ k ≤ T

]
= 0

holds, where we have used Lemma A.8 from the Appendix and τ̃ k ≤ lim inf
j→∞

τ̃ knmj
P̃ -a.s.

from Claim (2-1).

Hence, we have proved that equation (3.8) holds for the subsequence (τ knmj
)j∈N of an

arbitrary subsequence (τ knm
)m∈N. Now we obtain the assertion for the whole sequence

(τ kn)n∈N as follows. Since lim sup
j→∞

P
[
τ knmj

≤ T
]
≤ P̃

[
τ̃ k ≤ T

]
, we can apply Lemma A.14

such that lim sup
n→∞

P
[
τ kn ≤ T

]
≤ P̃

[
τ̃ k ≤ T

]
and, therefore, lim

k→∞
lim sup
n→∞

P [τ kn ≤ T ] = 0

hold.

Step 3: In this last step we apply Lemma 1.14 to conclude convergence in probability

of the Euler �polygonal� approximations by proving convergence in distribution of cer-

tain subsequences.

Therefore, we take two arbitrary subsequences (Xnl
)l∈N and (Xn̄l

)l∈N of the Eu-

ler �polygonal� approximations (Xn)n∈N and additionally the Wiener process W . Let

P(Xnl
,W,Xn̄l

,W ) be the joint distribution of the stochastic process (Xnl
,W,Xn̄l

,W ).

Then as in Step 2, by using Lemma A.22, we obtain for any T ≥ 0 that{
P(Xnl

,W,Xn̄l
,W ) | l ∈ N

}
⊆ M1

(
C
(
[0, T ];R2(d+d1)

))
is a tight family of probabili-

ty measures and, hence, a relatively weakly compact set (cf. Prokhorov's theorem,

Theorem A.17). Consequently, there exists a relatively weakly convergent subsequence(
P(Xnlj

,W,Xn̄lj
,W )

)
j∈N with a limit that we �rst of all label as µ. Again by apply-

ing Skorokhod's representation theorem (see Theorem 3.3) to this sequence, there

exists a probability space (Ω̂, F̂ , P̂ ) and a sequence of continuous random processes(
X̂nlj

, Ŵj, X̌n̄lj
, W̌j

)
j∈N such that

P(Xnlj
,W,Xn̄lj

,W ) = P̂(X̂nlj
,Ŵj ,X̌n̄lj

,W̌j)
for every j ∈ N, (3.16)

µ = P̂(X̂,Ŵ ,X̌,W̌ ), (3.17)(
X̂nlj

, Ŵj, X̌n̄lj
, W̌j

) P̂−a.s.−−−−→
j→∞

(
X̂, Ŵ , X̌, W̌

)
(3.18)
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for stochastic processes X̂, X̌, Ŵ and W̌ taking values in C
(
[0, T ];Rd

)
and C

(
[0, T ];Rd1

)
,

respectively. Similarly to Step 2 we have P̂ -a.s.∥∥X̂nlj
− X̂

∥∥
∞ = sup

t∈[0,T ]

∥∥X̂nlj
(t)− X̂(t)

∥∥
Rd −−−→

j→∞
0,∥∥X̌n̄lj

− X̌
∥∥
∞ = sup

t∈[0,T ]

∥∥X̌n̄lj
(t)− X̌(t)

∥∥
Rd −−−→

j→∞
0,∥∥Ŵj − Ŵ

∥∥
∞ = sup

t∈[0,T ]

∥∥Ŵj(t)− Ŵ (t)
∥∥
Rd1

−−−→
j→∞

0,∥∥W̌j − W̌
∥∥
∞ = sup

t∈[0,T ]

∥∥W̌j(t)− W̌ (t)
∥∥
Rd1

−−−→
j→∞

0

(3.19)

for any T ≥ 0.

Now we can de�ne the set

U1 :=
{
(u, v, w, x) ∈ C

(
[0, T ];R2(d+d1)

) ∣∣ v(t) = x(t) for every t ∈ [0, T ]
}

for which we have

1 = P(Xnlj
,W,Xn̄lj

,W )

[
U1

]
= P̂(X̂nlj

,Ŵj ,X̌n̄lj
,W̌j)

[
U1

]
for every j ∈ N by (3.16). Hence, for any T ≥ 0, we obtain that P̂ -a.s. Ŵj(t) = W̌j(t)

for every t ∈ [0, T ]. By using the P̂ -a.s. convergence from (3.18) and Lemma A.15 iii)

from the Appendix, we can conclude that P̂ -a.s.

Ŵ (t) = W̌ (t)

for every t ∈ [0,∞[.

In the same way as in the proof of Claim (2) we obtain that for every k ∈ N and

T ≥ 0 the processes X̂ and X̌ satisfy equation (2.1) with Ŵ instead of W on the time

intervals [0, T ∧ τ̂ k] and [0, T ∧ τ̌ k], respectively, where τ̂ k := inf
{
t ∈ [0, T ]

∣∣ X̂(t) /∈
Dk

}
∧ k and τ̌ k := inf

{
t ∈ [0, T ]

∣∣ X̌(t) /∈ Dk

}
∧ k are stopping times.

Again as in Step 2, by using the inequality (2.3) from Lemma 2.4, we can proof for

every T ≥ 0 that lim
k→∞

P̂
[
τ̂ k ≤ T

]
= 0 and lim

k→∞
P̂
[
τ̌ k ≤ T

]
= 0 hold such that the

processes (X̂(t))t≥0 and (X̌(t))t≥0 actually satisfy equation (2.1) with Ŵ instead of W

on [0,∞[.

Note that X̂nlj
(0) = X̌nlj

(0) for every j ∈ N. This equality is ful�lled because

Xnlj
(0) = ξ = Xn̄lj

(0) and the equality of the distributions (3.16) hold. Consequently,

we can de�ne for any T ≥ 0 the measurable set

U2 :=
{
(u, v, w, x) ∈ C

(
[0, T ];R2(d+d1)

) ∣∣u(0) = w(0)
}

and calculate

1 = P(Xnlj
,W,Xn̄lj

,W )

[
U2

]
= P̂(X̂nlj

,Ŵj ,X̌n̄lj
,W̌j)

[
U2

]
.
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Hence, we can conclude from (3.18) that the initial values X̂(0) and X̌(0) also have to

be P̂ -a.s. equal.

Then P(ξ,W ) = P̂(X̂(0),Ŵ ) holds because we have (3.16) as well as (3.18) and, therefore,

in particular

P(ξ,W,ξ,W ) = P(Xnlj
(0),W,Xn̄lj

(0),W ) = P̂(X̂nlj
(0),Ŵj ,X̌n̄lj

(0),Ŵj)

w−−−→
j→∞

P̂(X̂(0),Ŵ ,X̂(0),Ŵ )

such that an application of Lemma A.15 i) from the Appendix yields the equality of

these distributions.

Hence, by pathwise uniqueness we conclude that P̂ -a.s.

X̂(t) = X̌(t)

for all t ∈ [0,∞[.

Therefore, we �nish the proof as follows. We have proved that

P(Xnlj
,W,Xn̄lj

,W ) = P̂(X̂nlj
,Ŵj ,X̌n̄lj

,Ŵj)

w−−−→
j→∞

P̂(X̂,Ŵ ,X̂,Ŵ )

such that µ is supported on the diagonal since µ = P̂(X̂,Ŵ ,X̂,Ŵ ) according to (3.17). The

application of Lemma 1.14 yields

(Xn,W )
p−−−→

n→∞
(X,Z)

for stochastic processes X and Z taking values in C
(
[0, T ];Rd

)
and C

(
[0, T ];Rd1

)
,

respectively. Note that by Lemma A.15 ii) from the Appendix we can conclude that

Z = W P̂ -a.s. and obtain furthermore Xn
p−−−→

j→∞
X. Hence, we have proved assertion

1) of the theorem.

Finally, we will show that the process X satis�es the SDE (2.1). Since we know

that every subsequence of (Xn)n∈N converges in probability to X, we can conclude

that the joint process (Xnlj
,W,Xn̄lj

,W ) also converges in probability to (X,W,X,W )

(cf. Lemma A.13 in the Appendix). Hence, (Xnlj
,W,Xn̄lj

,W ) converges in distribution

(cf. Lemma A.12 ii) in the Appendix) such that we can identify the limit µ as the

distribution of (X,W,X,W ). Therefore, for any T ≥ 0 we can de�ne the set

U3 :=

{
(u, v, w, x) ∈ C

(
[0, T ];R2(d+d1)

) ∣∣∣∣ ∀t ∈ [0, T ] :

u(t) = u(0) +

∫ t

0

b
(
s, u(s)

)
ds+

∫ t

0

σ
(
s, u(s)

)
dv(s)

}
for which we have by (3.17) that

P(X,W,X,W )

[
U3

]
= µ

[
U3

]
= P̂(X̂,Ŵ ,X̂,Ŵ )

[
U3

]
= 1

holds since (X̂(t))t≥0 satis�es P̂ -a.s. the equation (2.1) with Ŵ instead of W on [0,∞[.

Hence, we conclude that the stochastic process (X(t))t≥0 satis�es P -a.s. the SDE (2.1)
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on [0,∞[. The (Ft)-adaptedness of X follows by construction of the Euler �polygonal�

approximations because the processes (Xn(t))t≥0 are (Ft)-adapted (cf. Claim (2-2),

(1)) for every n ∈ N.
The uniqueness asserted in 2) follows directly from the assumed pathwise uniqueness.

We �nish this chapter with a remark on the application of Theorem 3.7 in the case D =

Rd and, as mentioned before, Corollary 3.8 about assuming the local weak monotonicity

due to which we can drop the pathwise uniqueness and the continuity of σ in this case.

Remark (cf. [GK96], Remark 2.5 on page 148). In the case D := Rd and Dk :=
{
x ∈

Rd
∣∣ ∥x∥Rd < k

}
we can restate the assumptions A1) and A2) by taking

V (t, x) := (1 + ∥x∥2Rd) exp
(
−
∫ t

0

M(s) ds
)

as

A1') sup
x∈Dk

∥b(t, x)∥Rd + ∥σ(t, x)∥2L2
≤Mk(t) for every t ≥ 0 and k ∈ N,

A2') 2xb(t, x) + ∥σ(t, x)∥2L2
≤M(t)(1 + ∥x∥2Rd) for every t ≥ 0 and x ∈ Rd.

Corollary 3.8 (cf. [GK96], Corollary 2.6 on page 148). Let the assumptions from Sec-

tion 2.1 be ful�lled. Suppose moreover that b and σ satisfy the local weak monotonicity

condition on D, i.e.

2(x− y)
(
b(t, x)− b(t, y)

)
+ ∥σ(t, x)− σ(t, y)∥2L2

≤Mk(t)∥x− y∥Rd

for every k ∈ N and t ≥ 0, x, y ∈ Dk. Or in the case D = Rd we may assume that

A1') and A2') are ful�lled and that the local weak monotonicity condition is satis�ed

for Dk =
{
x ∈ Rd

∣∣ ∥x∥Rd < k
}
. Assume moreover that b is continuous in x ∈ D. Then

the conclusions of Theorem 3.7 hold.

Proof. We refer to [GK96], Corollary 2.6 on page 148.
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4. Estimates on the Transition Probability Density

In this fourth chapter we will work on the necessary preparations and estimates for the

proof of Theorem 5.2 in Chapter 5. First of all, we have to consider some properties

of positive de�nite matrices in the �rst section. These properties are important for the

very technical proof of Lemma 4.7 in the second section.

We will apply the crucially needed auxiliary estimates from Lemma 4.7 in the third

section in the proof of Lemma 4.8, but unfortunately we have to omit certain parts of

that proof. The reason for this restriction will be discussed later in Section 4.3 in more

detail. However, it is claimed that Lemma 4.8 provides estimates for the transition

probability density, which are required in the proof of Theorem 5.2. Both lemmas 4.7

and 4.8 are based on the work of Krylov and Gyöngy in [GK96].

4.1. Properties of positive de�nite matrices

In this �rst section we will gather the essential framework concerning positive de�nite

matrices and those of their basic properties that are necessary for the proof of Lemma

4.7 in Section 4.2. We will follow the book [HJ85] of R. Horn and C. Johnson called

�Matrix Analysis� and refer to it as the main reference such that we can omit most of

the proofs here.

First of all, we recall the notion of self-adjoint and positive (semi-)de�nite matrices.

De�nition 4.1 (adjoint / self-adjoint matrix). Let A ∈ Rn×n. Then the adjoint matrix

A∗ of A is given by A∗ = AT . A is called self-adjoint if A = A∗.

By this de�nition the adjoint matrix A∗ has the property ⟨Ax, y
⟩
Rn = ⟨x,A∗y

⟩
Rn for

every x, y ∈ Rn. Furthermore, note that self-adjoint matrices with R-valued entries are

in fact symmetric matrices.

De�nition 4.2 (positive (semi-)de�nite matrix). Let A ∈ Rn×n be a self-adjoint ma-

trix. Then A is called positive de�nite if

⟨Ax, x
⟩
Rn > 0

for every x ∈ Rn. It is called positive semi-de�nite if the strict inequality is weakened

to

⟨Ax, x
⟩
Rn ≥ 0

for every x ∈ Rn.

In particular, every eigenvalue of a positive semi-de�nite matrix is non-negative.

Moreover, every eigenvalue of a positive de�nite matrix A ∈ Rn×n is positive such that

this also ensures the existence of its inverse matrix A−1.
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There is a common approach to de�ne a partial order on the set of all self-adjoint

matrices.

De�nition 4.3. Let n ∈ N and Rn×n
∗ be the space of all self-adjoint matrices. Then

de�ne a partial order �≤� on Rn×n
∗ by

A ≤ B if and only if
⟨
(B − A)x, x

⟩
Rn ≥ 0 for every x ∈ Rn,

where A,B ∈ Rn×n
∗ .

Now we can state three lemmas about properties of self-adjoint and positive de�nite

matrices that are important for the upcoming estimates in the proof of Lemma 4.7.

Lemma 4.4 (cf. [HJ85], Corollary 7.7.4 on page 471). Let A,B ∈ Rn×n be self-adjoint

and positive de�nite matrices. Then:

i) A ≤ B if and only if A−1 ≥ B−1,

ii) If A ≤ B, then detA ≤ detB and trA ≤ trB.

Proof. We refer to [HJ85], Corollary 7.7.4 on page 471.

Lemma 4.5 (cf. [HJ85], Theorem 4.2.2 on page 176). Let A ∈ Rn×n be a self-adjoint

matrix with eigenvalues λi, 1 ≤ i ≤ n. Then we have

λmin
A Id ≤ A ≤ λmax

A Id,

where λmin
A := min

1≤i≤n
λi and λ

max
A := max

1≤i≤n
λi.

Proof. We refer to [HJ85], Theorem 4.2.2 on page 176.

Lemma 4.6. Let A ∈ Rn×n be a self-adjoint matrix and c1, c2 > 0 such that

c1 Id ≤ A ≤ c2 Id. (4.1)

Then the following assertions are ful�lled:

i) The inequality (c1)
n ≤ detA ≤ (c2)

n holds. In particular, A is invertible.

ii) There exists a self-adjoint invertible matrix A
1
2 ∈ Rn×n such that A = A

1
2A

1
2 .

iii) We have |Aij| ≤ c2 for every 1 ≤ i, j ≤ d.

iv) Consider the map x 7−→ ⟨A(x− y), x− y⟩Rn. Then for any 1 ≤ j ≤ n we have

∂

∂xj
⟨A(x− y), x− y⟩Rn = 2

(
A(x− y)

)
j

for every x, y ∈ Rn.
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Recall that an orthogonal matrix Q ∈ Rn×n satis�es the property QQT = Id = QTQ

by de�nition.

Proof. �i)�: This is just an application of Lemma 4.4 ii).

�ii)�: Since A is symmetric, there exists an orthogonal matrix Q ∈ Rn×n such that

A = QDQT for a diagonal matrix D ∈ Rn×n. For the diagonal matrix D, which has

only positive elements on the main diagonal because of the assumed inequality (4.1),

there exists D
1
2 ∈ Rn×n by taking the square root. Hence A = QD

1
2QTQD

1
2QT and

we can de�ne A
1
2 := QD

1
2QT . Note that since det

(
A

1
2

)
= det(Q) det

(
D

1
2

)
det(Q)−1 =

det
(
D

1
2

)
> 0, the matrix A

1
2 is invertible. Furthermore, it is also self-adjoint because

the symmetry follows from(
A

1
2

)T
=
(
QD

1
2QT

)T
=
(
QT
)T (

D
1
2

)T
QT = QD

1
2QT = A

1
2 .

�iii)�: For the self-adjoint matrix A we compute⟨
Ax, y

⟩
Rn =

1

2

(⟨
Ax, x

⟩
Rn +

⟨
Ay, y

⟩
Rn −

⟨
A(x− y), x− y

⟩
Rn

)
≤ c2

2

(
∥x∥2Rn + ∥y∥2Rn

)
since 0 ≤ c1∥z∥2Rn ≤

⟨
Az, z

⟩
Rn ≤ c2∥z∥2Rn for every z ∈ Rn is ful�lled by assumption

(4.1). Besides, we have⟨
Ax, y

⟩
Rn =

1

2

(⟨
A(x+ y), x+ y

⟩
Rn −

⟨
Ax, x

⟩
Rn −

⟨
Ay, y

⟩
Rn

)
≥ −c2

2

(
∥x∥2Rn + ∥y∥2Rn

)
such that altogether the inequality

∣∣⟨Ax, y⟩Rn

∣∣ ≤ c2
2

(
∥x∥2Rn + ∥y∥2Rn

)
holds for every

x, y ∈ Rn. Hence, for every 1 ≤ i, j ≤ n we obtain

|Aij| =
∣∣⟨Aej, ei⟩Rn

∣∣ ≤ c2
2

(
∥ej∥2Rn + ∥ei∥2Rn

)
= c2,

where ei, for 1 ≤ i ≤ n, are the canonical basis vectors of Rn.

�iv)�: We compute

∂

∂xj
⟨A(x− y), x− y⟩Rn =

∂

∂xj

n∑
ℓ=1

(
A(x− y)

)
ℓ

(
x− y

)
ℓ

=
∂

∂xj

( n∑
ℓ=1

( n∑
k=1

Aℓk(x− y)k

)(
x− y

)
ℓ

)
=

∂

∂xj

( n∑
ℓ=1
ℓ̸=j

Aℓj(x− y)j
(
x− y

)
ℓ

)
+

∂

∂xj

( n∑
k=1

Ajk(x− y)k
(
x− y

)
j

)
= 2
(
A(x− y)

)
j

for 1 ≤ j ≤ n and x, y ∈ Rn by using the symmetry of A.
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Remark. Let A ∈ Rn×n be a self-adjoint and positive de�nite matrix. Since

det(A−1) = det(A)−1 and detA = det
(
A

1
2A

1
2

)
= det

(
A

1
2

)2
hold, we also have det

(
A− 1

2

)
=
(
detA

)− 1
2 .
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4.2. Auxiliary estimates

This section contains the auxiliary Lemma 4.7 that we crucially need for the estimates

on the transition probability density in Section 4.3. The proof is an extended and

modi�ed version of the one given by Gyöngy and Krylov in [GK96]. We laid particular

emphasis on the development of the dependencies of every constant by labeling them

explicitly with individual numbers in the following. This helps us to observe and ensure

that the occurring constants are really independent of t as it is asserted in the lemma.

Lemma 4.7 (cf. [GK96], Lemma 4.1 on page 152). Let K, t, ε > 0 and α ∈ ]0, 1[.

Furthermore, let Λ: Rd −→ Rd×d be a map such that for every y ∈ Rd

ε t Id ≤ Λ(y) = Λ(y)∗ ≤ K t Id (4.2)

holds and assume that g : Rd −→ R is an α-Hölder continuous function, i.e.

|g(x)− g(y)| ≤ K∥x− y∥αRd

for all x, y ∈ Rd. Suppose that ξ and η are independent d-dimensional Gaussian vectors

on (Ω,F , P ) with ξ ∼ N(0, Id) and η ∼ N(0,Λη), respectively, where Λη is a positive

de�nite covariance matrix. Besides, set λmax
η as the largest and λmin

η as the smallest

eigenvalue of the matrix Λη. For bounded Borel-measurable functions f : Rd −→ R
consider the operator T ∗, which is de�ned by

T ∗f(y) := E
[
f
(
y + Λ(y)

1
2 ξ
)]
,

and let T be the adjoint operator of T ∗ in L2
(
Rd;R)-sense.

Then for any i, j = 1, . . . d, x ∈ Rd, p ∈ [1,∞] and for any bounded Borel-measurable

function f : Rd −→ R the inequalities∣∣∣∣g(x)E[( ∂2

∂xi∂xj
Tf
)
(x+ η)

]
− E

[( ∂2

∂xi∂xj
T (g f)

)
(x+ η)

]∣∣∣∣
≤ C(4.3) t

− d
2p

−1+α
2 ∥f∥Lp ,

(4.3)

∥∥∥∥∥g(·)E
[( ∂2

∂xi∂xj
Tf
)
(·+ η)

]
− E

[( ∂2

∂xi∂xj
T (g f)

)
(·+ η)

]∥∥∥∥∥
Lp

≤ C(4.4) t
−1+α

2 ∥f∥Lp

(4.4)

hold, where the constants C(4.3) = C(4.3)

(
K, ε, d, p, λmin

η , λmax
η

)
and

C(4.4) = C(4.4)

(
K, ε, d, λmin

η , λmax
η

)
are independent of t.

Proof. (cf. [GK96], Lemma 4.1 on page 152)

Step 1: At �rst we calculate the adjoint operator T in L2
(
Rd;R

)
-sense. Let h1, h2 ∈

L2
(
Rd;R

)
, then we have

⟨T ∗h1, h2⟩L2 =

∫
Rd

T ∗h1(y)h2(y) dy =

∫
Rd

∫
Ω

h1
(
y + Λ(y)

1
2 ξ
)
dP h2(y) dy

=

∫
Rd

∫
Rd

h1
(
y + Λ(y)

1
2x
)
h2(y) (2π)

− d
2 exp

(
− 1

2
⟨x, x⟩Rd

)
dx dy.
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Now we use the transformation x 7−→ Λ(y)−
1
2 (x − y) with the Jacobian determinant

given by det
(
Λ(y)−

1
2

)
and thus

⟨T ∗h1, h2⟩L2 =

∫
Rd

∫
Rd

h1(x)h2(y) (2π)
− d

2

∣∣ det (Λ(y)− 1
2

)∣∣
· exp

(
− 1

2
⟨Λ(y)−

1
2 (x− y),Λ(y)−

1
2 (x− y)⟩Rd

)
dx dy

=

∫
Rd

∫
Rd

h1(x)h2(y) (2π)
− d

2

(
detΛ(y)

)− 1
2

· exp
(
− 1

2
⟨Λ(y)−1(x− y), x− y⟩Rd

)
dx dy,

where we have used that detΛ(y) ≥ 0, that Lemma 4.6 ii) provides the existence of

Λ(y)−
1
2 and that the inverse of a self-adjoint matrix is again self-adjoint.

Note that by assumption (4.2) we have the inequality ε t Id ≤ Λ(y) ≤ K t Id and,

hence, 1
ε t

Id ≥ Λ(y)−1 ≥ 1
K t

Id by Lemma 4.4 i). We can also apply Lemma 4.6 i) and

obtain the estimate

(ε t)d ≤ detΛ(y) ≤ (K t)d (4.5)

for every y ∈ Rd. Hence, we conclude that∫
Rd

∫
Rd

∣∣∣h1(x)h2(y) (2π)− d
2

(
detΛ(y)

)− 1
2 exp

(
− 1

2
⟨Λ(y)−1(x− y), x− y⟩Rd

)∣∣∣ dx dy
≤
∫
Rd

∫
Rd

|h1(x)| |h2(y)| (2π)−
d
2 (ε t)−

d
2 exp

(
− 1

2
⟨ 1

K t
Id (x− y), x− y⟩Rd

)
dx dy

= (2π ε t)−
d
2

∫
Rd

|h2(y)|
∫
Rd

|h1(x)| exp
(
− 1

2K t
∥y − x∥2Rd

)
dx dy

is �nite by using the fact that the heat kernel in Rd is an operator from L2
(
Rd;R

)
to L2

(
Rd;R

)
(cf. [Gri09], Lemma 2.18 on page 41). Therefore, we can apply Fubini's

theorem and obtain

Th2(x) =

∫
Rd

h2(y) (2π)
− d

2

(
detΛ(y)

)− 1
2 exp

(
− 1

2
⟨Λ(y)−1(x− y), x− y⟩Rd

)
dy.

Step 2: In this step we compute the partial derivatives of Tf and T (g f).

Claim (1). We have

∂

∂xj
Tf(x)

=

∫
Rd

(2π)−
d
2

(
detΛ(y)

)− 1
2 f(y)

∂

∂xj
exp

(
− 1

2
⟨Λ(y)−1(x− y), x− y⟩Rd

)
dy

for every x ∈ Rd.
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Proof of Claim (1). Following the theory about partial di�erentiation of a Lebesgue

integral with respect to a parameter (see e.g. [AE08], Theorem 3.18 on page 111), we

have to verify that there exists a function h ∈ L1
(
Rd;R

)
such that the estimate∣∣∣∣ ∂∂xj (2π)− d

2

(
detΛ(y)

)− 1
2 f(y) exp

(
− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

)∣∣∣∣ ≤ h(y) (4.6)

holds for every y ∈ Rd and ξ ∈ Bϱ(x) ⊆ Rd for some ϱ > 0. Note that

∂

∂xj
exp

(
− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

)
= −1

2
exp

(
− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

) ∂

∂xj
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

= −1

2
exp

(
− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

)
2
(
Λ(y)−1(ξ − y)

)
j

is ful�lled, where we have used Lemma 4.6 iv) in the last step. Since by assumption

(4.2) and Lemma 4.4 i) the inequality 1
K t

Id ≤ Λ(y)−1 ≤ 1
ε t

Id holds, we can apply

Lemma 4.6 iii) and obtain

∥∥Λ(y)−1
∥∥2
L2

=
d∑

i,j=1

∣∣Λij(y)
−1
∣∣2 ≤ ( d

ε t

)2
.

Hence, we compute∣∣∣∣ ∂∂xj exp(− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

)∣∣∣∣
=

∣∣∣∣ exp(− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

) (
Λ(y)−1(ξ − y)

)
j

∣∣∣∣
≤ exp

(
− 1

2
⟨Λ(y)−1(ξ − y), ξ − y⟩Rd

)
∥Λ(y)−1(ξ − y)∥Rd

≤ exp
(
− 1

2K t
∥ξ − y∥2Rd

)
∥Λ(y)−1∥L2 ∥ξ − y∥Rd .

(4.7)

Since the triangle inequality yields −∥ξ − y∥2Rd ≤ −∥y∥2Rd + 2 ∥y∥Rd∥ξ∥Rd − ∥ξ∥2Rd , we

have

exp
(
− 1

2K t
∥ξ − y∥2Rd

)
≤ exp

(
1

2K t

(
− ∥y∥2Rd + 2 ∥y∥Rd sup

ξ∈Bϱ(x)

∥ξ∥Rd

))
= exp

(
C2

(4.8)

2K t

)
exp

(
−
(
∥y∥Rd − C(4.8)

)2
2K t

)
,

(4.8)

where C(4.8) := sup
ξ∈Bϱ(x)

∥ξ∥Rd is a �nite constant.

Then by using (4.7), the integrability of the function z 7−→ z exp(−z2) for z ≥ 0 and

the assumed boundedness of f , we only have to conclude from (4.5) that
(
detΛ(y)

)− 1
2

is bounded in order to estimate the term in (4.6). Hence, we can �nd an integrable

dominating function h.
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Moreover, we have to consider the case where g f instead of f is given. Therefore, we

need the α-Hölder continuity of g which implies

|g(y)| ≤ K ∥x− y∥αRd + |g(x)|

because we have |g(y)| − |g(x)| ≤ |g(y) − g(x)| ≤ K ∥x − y∥αRd for every x, y ∈ Rd.

Hence, we can use the integrability of the function z 7−→ z1+α exp(−z2) for z ≥ 0 in

addition to the arguments from above.

For the second partial derivative we apply the analogous argumentation from the

proof of Claim (1). Hence, we obtain

∂2

∂xi∂xj
Tf(x)

=

∫
Rd

(2π)−
d
2

(
detΛ(y)

)− 1
2 f(y)

∂2

∂xi∂xj
exp

(
− 1

2
⟨Λ(y)−1(x− y), x− y⟩Rd

)
dy

=

∫
Rd

(2π)−
d
2

(
detΛ(y)

)− 1
2 f(y)

∂2

∂yi∂yj
exp

(
− 1

2
⟨Λ−1(y − x), y − x⟩Rd

)∣∣∣∣
Λ=Λ(y)

dy,

where considering the second partial derivative with respect to y turns out to be helpful

in Step 3. For ∂2

∂xi∂xjT (g f)(x) we can also repeat the arguments from above.

Step 3: In this step we compute E
[(

∂2

∂xi∂xjTf
)
(x+ η)

]
.

Using the calculation from Step 2 yields

E
[(

∂2

∂xi∂xj
Tf

)
(x+ η)

]
= E

[∫
Rd

(2π)−
d
2

(
detΛ(y)

)− 1
2 f(y)

· ∂2

∂yi∂yj
exp

(
− 1

2
⟨Λ−1(y − (x+ η)), y − (x+ η)⟩Rd

)∣∣∣∣
Λ=Λ(y)

dy

]

=

∫
Rd

f(y)
∂2

∂yi∂yj
E
[
(2π)−

d
2

(
detΛ

)− 1
2

· exp
(
− 1

2
⟨Λ−1(y − (x+ η)), y − (x+ η)⟩Rd

)]∣∣∣∣
Λ=Λ(y)

dy,

(4.9)

where the interchange of the expectation and the integral follows from Fubini's theorem

and the one with the partial derivative results from the same arguments as in Step 2.
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Since Λ
1
2 ξ ∼ N(0,Λ) and η ∼ N(0,Λη) are independent Gaussian vectors, we have

E
[
(2π)−

d
2

(
detΛ

)− 1
2 exp

(
− 1

2
⟨Λ−1(y − x− η), y − x− η⟩Rd

)]
=

∫
Rd

(2π)−
d
2

(
detΛ

)− 1
2 exp

(
− 1

2
⟨Λ−1(y − x− z), y − x− z⟩Rd

)
· (2π)−

d
2 (det Λη)

− 1
2 exp

(
− 1

2
⟨Λ−1

η z, z⟩Rd

)
dz

= (2π)−
d
2

(
det(Λ + Λη)

)− 1
2 exp

(
− 1

2
⟨(Λ + Λη)

−1(y − x), y − x⟩Rd

)
,

where we have used the representation of the convolution of two probability density

functions belonging to independent normal-distributed random variables in the last

step (cf. [Bau02], Theorem 8.4 on page 55). De�ne

pA(x, y) := (2π)−
d
2

(
det(A+ Λη)

)− 1
2

· exp
(
− 1

2
⟨(A+ Λη)

−1(y − x), y − x⟩Rd

) (4.10)

for any positive de�nite matrix A ∈ Rd×d. Hence, plugging the de�nition (4.10) into

equation (4.9) yields

E
[(

∂2

∂xi∂xj
Tf

)
(x+ η)

]
=

∫
Rd

f(y)
∂2

∂yi∂yj
pΛ(x, y)

∣∣∣∣
Λ=Λ(y)

dy.

Let Θ(y) :=
(
Λ(y) + Λη

)−1
. Now we compute by using Lemma 4.6 iv)

∂

∂yj
pΛ(x, y)

∣∣∣
Λ=Λ(y)

= pΛ(y)(x, y) ·
∂

∂yj

(
− 1

2
⟨Θ(y − x), y − x⟩Rd

)∣∣∣
Θ=Θ(y)

= −1

2
pΛ(y)(x, y) ·

(
2
(
Θ(y − x)

)
j

)∣∣∣
Θ=Θ(y)

since Θ(y) is symmetric. We obtain

∂2

∂yi∂yj
pΛ(x, y)

∣∣∣
Λ=Λ(y)

=
∂

∂yi

(
− pΛ(x, y)

(
Θ(y − x)

)
j

)∣∣∣∣Λ=Λ(y)

Θ=Θ(y)

= −pΛ(y)(x, y) ·Θ(y)
ij +

(
−Θ(y)(y − x)

)
j
·
(
− pΛ(y)(x, y) ·

(
Θ(y)(y − x)

)
i

)
= pΛ(y)(x, y) ·

((
Θ(y)(y − x)

)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

)
.

Hence,

E
[(

∂2

∂xi∂xj
Tf

)
(x+ η)

]
=

∫
Rd

f(y)
∂2

∂yi∂yj
pΛ(x, y)

∣∣∣∣
Λ=Λ(y)

dy

=

∫
Rd

f(y) pΛ(y)(x, y)
((

Θ(y)(y − x)
)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

)
dy.
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Step 4: Next we show that

|pΛ(y)(x, y)| ≤ (2π)−
d
2 exp

(
− 1

2(Kt+ λmax
η )

∥y − x∥2Rd

)( 1

ε t+ λmin
η

) d
2

holds, where λmin
η and λmax

η are the smallest and biggest, respectively, eigenvalue of the

matrix Λη. To do this, we will prove the following two claims.

Claim (2). We have

0 < λmin
η Id ≤ Λη ≤ λmax

η Id . (4.11)

Proof of Claim (2). By Lemma 4.5 we obtain λmin
η Id ≤ Λη ≤ λmax

η Id. Since the

covariance matrix Λη is positive de�nite by assumption, we also know that λmin
η > 0.

Claim (3). We have

−1

2
⟨Θ(y)(y − x), y − x⟩Rd ≤ − 1

2(Kt+ λmax
η )

∥y − x∥2Rd

for every x, y ∈ Rd.

Proof of Claim (3). By (4.2) the inequality ε t Id ≤ Λ(y) ≤ K t Id holds. Hence, by

using the estimate (4.11) for Λη from Claim (2), we obtain(
ε t+ λmin

η

)
Id ≤ Λ(y) + Λη ≤

(
K t+ λmax

η

)
Id .

Therefore, according to Lemma 4.4 i)

1

ε t+ λmin
η

Id ≥
(
Λ(y) + Λη

)−1︸ ︷︷ ︸
=Θ(y)

≥ 1

K t+ λmax
η

Id (4.12)

is ful�lled and, hence,

−1

2
⟨Θ(y)(y − x), y − x⟩Rd ≤ −1

2

⟨ 1

K t+ λmax
η

Id (y − x), y − x
⟩
Rd

= −
∥y − x∥2Rd

2
(
K t+ λmax

η

)
follows.

Thus we conclude

|pΛ(y)(x, y)|

=

∣∣∣∣∣(2π)− d
2

(
det(Λ(y) + Λη)

)− 1
2 exp

(
− 1

2
⟨
(
Λ(y) + Λη

)−1
(y − x), y − x⟩Rd

)∣∣∣∣∣
= (2π)−

d
2 exp

(
− 1

2
⟨Θ(y)(y − x), y − x⟩Rd

) ∣∣∣( detΘ(y)
) 1

2

∣∣∣
≤ (2π)−

d
2 exp

(
− 1

2(Kt+ λmax
η )

∥y − x∥2Rd

) (
detΘ(y)

) 1
2

≤ (2π)−
d
2 exp

(
− 1

2(Kt+ λmax
η )

∥y − x∥2Rd

) ( 1

ε t+ λmin
η

) d
2

since 0 ≤
(
detΘ(y)

) 1
2 ≤

(
1

ε t+λmin
η

) d
2
holds by estimate (4.12) and Lemma 4.6 i).
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Step 5: In this step we prove inequality (4.3).

Observe that

∣∣∣∣g(x)E[( ∂2

∂xi∂xj
Tf
)
(x+ η)

]
− E

[( ∂2

∂xi∂xj
T (g f)

)
(x+ η)

]∣∣∣∣
=

∣∣∣∣ ∫
Rd

(
g(x)− g(y)

)
f(y) pΛ(y)(x, y)

((
Θ(y)(y − x)

)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

)
dy

∣∣∣∣
≤
∫
Rd

∣∣g(x)− g(y)
∣∣︸ ︷︷ ︸

≤K ∥x−y∥α
Rd

|f(y)| |pΛ(y)(x, y)|
∣∣∣(Θ(y)(y − x)

)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

∣∣∣ dy

is ful�lled. Since we have (4.12) and Lemma 4.6 iii), it follows that the inequalities

∣∣Θ(y)
ij

∣∣ ≤ 1

ε t+ λmin
η

and

∣∣∣(Θ(y)(y − x)
)
i

(
Θ(y)(y − x)

)
j

∣∣∣ = ∣∣∣∣( d∑
l=1

Θ
(y)
il (y − x)l

)( d∑
ℓ=1

Θ
(y)
jℓ (y − x)ℓ

)∣∣∣
≤
( d∑

l=1

∣∣Θ(y)
il

∣∣|(y − x)l|
)( d∑

ℓ=1

∣∣Θ(y)
jℓ

∣∣|(y − x)ℓ|
)

≤ 1

(ε t+ λmin
η )2

( d∑
l=1

|(y − x)l|
)2

≤ 1

(ε t+ λmin
η )2

( d∑
l=1

(y − x)2l

)( d∑
l=1

12
)

=
d

(ε t+ λmin
η )2

∥y − x∥2Rd

hold for every 1 ≤ i, j ≤ d, where we have used the Cauchy-Schwarz inequality in the

second last step. Hence, we get

∣∣∣(Θ(y)(y − x)
)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

∣∣∣ ≤ d

(ε t+ λmin
η )2

∥y − x∥2Rd +
1

ε t+ λmin
η

.
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With this calculation and the estimate for |pΛ(y)(x, y)| from Step 4 we obtain∫
Rd

K ∥y − x∥αRd |f(y)| |pΛ(y)(x, y)|

·
∣∣∣(Θ(y)(y − x)

)
i

(
Θ(y)(y − x)

)
j
−Θ

(y)
ij

∣∣∣ dy
≤ K

(2π)
d
2 (ε t+ λmin

η )
d
2

∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

(ε t+ λmin
η )2

+
1

ε t+ λmin
η

)
· exp

(
− 1

2(Kt+ λmax
η )

∥y − x∥2Rd

)
dy

= C(4.13) (ε t+ λmin
η )−

d
2
−1

∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

ε t+ λmin
η

+ 1

)
· exp

(
−

∥y − x∥2Rd

2(Kt+ λmax
η )

)
dy,

(4.13)

where C(4.13) := K (2π)−
d
2 . Now, in order to simplify the occurring constants, we esti-

mate the latter by

C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy,

(4.14)

where Cmin
(4.14) := min

{
ε, λmin

η

}
and Cmax

(4.14) := 2 max
{
K,λmax

η

}
are constants.

Applying Hölder's inequality for p ∈ ]1,∞] and its conjugate q := p
p−1

∈ [1,∞[ yields

C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

≤ C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1 ∥f∥Lp

(∫
Rd

∥y − x∥qαRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)q

· exp
(
−

q ∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

) 1
q

= C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1 ∥f∥Lp

(∫
Rd

∥y∥qαRd

(
d ∥y∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)q

· exp
(
−

q∥y∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

) 1
q

by shifting the integral via y 7−→ y+x in the last step. Next we use the transformation
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y 7−→ (t+ 1)
1
2y with the Jacobian determinant given by (t+ 1)

d
2 and obtain

C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−
d
2
−1 ∥f∥Lp

·

(∫
Rd

(t+ 1)
d
2 ∥y∥qαRd (t+ 1)

qα
2

(
d ∥y∥2Rd

Cmin
(4.14)

+ 1

)q

exp
(
−
q ∥y∥2Rd

Cmax
(4.14)

)
dy

) 1
q

= (t+ 1)−
d
2
−1+α

2
+ d

2q︸ ︷︷ ︸
=(t+1)

− d
2p−1+α

2

∥f∥Lp C(4.3),

where the constant

C(4.3) := C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(∫
Rd

∥y∥qαRd

(d ∥y∥2Rd

Cmin
(4.14)

+ 1
)q

exp
(
−
q ∥y∥2Rd

Cmax
(4.14)

)
dy

) 1
q

depends on d, ε,K, λmin
η , λmax

η and p. Since the power − d
2p
−1+ α

2
of (t+1) is negative,

we have

(t+ 1)−
d
2p

−1+α
2 ≤ t−

d
2p

−1+α
2

and, therefore, we obtain the inequality (4.3).

Moreover, in the case p = 1 we obtain from (4.14) by using the transformation

y 7−→ (t+ 1)
1
2y + x with the Jacobian determinant given by (t+ 1)

d
2

C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

= C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−1+α
2

∫
Rd

∣∣∣f((t+ 1)
1
2y + x

)∣∣∣
· ∥y∥αRd

(
d ∥y∥2Rd

Cmin
(4.14)

+ 1

)
exp

(
−

∥y∥2Rd

Cmax
(4.14)

)
dy.

An application of Hölder's inequality yields

C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−1+α
2

∫
Rd

∣∣∣f((t+ 1)
1
2y + x

)∣∣∣
· ∥y∥αRd

(
d ∥y∥2Rd

Cmin
(4.14)

+ 1

)
exp

(
−

∥y∥2Rd

Cmax
(4.14)

)
dy

≤ C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−1+α
2

∫
Rd

∣∣∣f((t+ 1)
1
2y + x

)∣∣∣ dy
·
∥∥∥∥∥ · ∥αRd

(
d ∥ · ∥2Rd

Cmin
(4.14)

+ 1

)
exp

(
−

∥ · ∥2Rd

Cmax
(4.14)

)∥∥∥∥
L∞
.
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Hence, we just have to consider the reversing transformation y 7−→ (t + 1)−
1
2 (y − x)

with the Jacobian determinant given by (t+ 1)−
d
2 for the integral∫

Rd

∣∣∣f((t+ 1)
1
2y + x

)∣∣∣ dy
to obtain the term

C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−1+α
2
− d

2 ∥f∥L1

·
∥∥∥∥∥ · ∥αRd

(
d ∥ · ∥2Rd

Cmin
(4.14)

+ 1

)
exp

(
−

∥ · ∥2Rd

Cmax
(4.14)

)∥∥∥∥
L∞

as an estimate such that inequality (4.3) follows.

Step 6: Finally, inequality (4.4) results from the calculation in Step 5 if we use

the generalised Minkowski inequality (cf. Theorem A.6 in the Appendix) for integrals

instead of Hölder's inequality.

Therefore, we have for p ∈ [1,∞[∥∥∥∥∥g(·)E
[( ∂2

∂xi∂xj
Tf
)
(·+ η)

]
− E

[( ∂2

∂xi∂xj
T (g f)

)
(·+ η)

]∥∥∥∥∥
Lp

≤ C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1

(∫
Rd

(∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)

· exp
(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

)p

dx

) 1
p

≤ C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

(∫
Rd

(
∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)

· exp
(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

))p

dx

) 1
p

dy

by using (4.14) in the �rst and the generalised Minkowski inequality for integrals in

the second step. Shifting the integral via y 7−→ y+ x, where the Jacobian determinant

is given by 1, yields

C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1 ∥f∥Lp

∫
Rd

∥y∥αRd

(
d ∥y∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

since ∥f∥Lp =
∫
Rd |f(y + x)| dx. Again by using the transformation y 7−→ (t + 1)

1
2y
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with the Jacobian determinant given by (t+ 1)
d
2 , we obtain

C(4.13)

(
Cmin

(4.14)

)− d
2
−1

(t+ 1)−
d
2
−1 ∥f∥Lp

∫
Rd

∥y∥αRd

(
d ∥y∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

= (t+ 1)−1+α
2 ∥f∥Lp

· C(4.13)

(
Cmin

(4.14)

)− d
2
−1
∫
Rd

∥y∥αRd

(d ∥y∥2Rd

Cmin
(4.14)

+ 1
)
exp

(
−

∥y∥2Rd

Cmax
(4.14)

)
dy︸ ︷︷ ︸

=:C(4.4) =C(4.4)

(
K,ε,d,λmin

η ,λmax
η

)
≤ t−1+α

2 ∥f∥Lp C(4.4).

For p = ∞ we have again by (4.14) and Theorem A.6 the estimate∥∥∥∥∥g(·)E
[( ∂2

∂xi∂xj
Tf
)
(·+ η)

]
− E

[( ∂2

∂xi∂xj
T (g · f)

)
(·+ η)

]∥∥∥∥∥
L∞

≤

∥∥∥∥∥C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

|f(·)| ∥ · −x∥αRd

(
d ∥ · −x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)

· exp
(
−

∥ · −x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

∥∥∥∥∥
L∞

≤ C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1

ess sup
x∈Rd

∫
Rd

|f(y)| ∥y − x∥αRd

(
d ∥y − x∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y − x∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

≤ C(4.13)

(
Cmin

(4.14) (t+ 1)
)− d

2
−1
∫
Rd

ess sup
x∈Rd

|f(x+ y)| ∥y∥αRd

(
d ∥y∥2Rd

Cmin
(4.14) (t+ 1)

+ 1

)
· exp

(
−

∥y∥2Rd

Cmax
(4.14) (t+ 1)

)
dy

since we can consider the shift y 7−→ y + x as before. Then we have ∥f∥L∞ =

ess sup
x∈Rd

|f(x + y)| such that we can repeat the calculation from above at this point

to obtain inequality (4.4).
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4.3. Estimates on the transition probability density

On the basis of Lemma 4.7 we will state and prove parts of Theorem 4.8 about estimates

on the transition probability density belonging to the considered stochastic process in

the Lq-norm. We will describe later in this section to what extent we have to omit

parts of the proof because of occurring issues with the dependence of the constants as

well as in order to keep the thesis within reasonable length.

Anyway, for every n ∈ N we start over with the simpli�ed process
(
Yn(t)

)
t≥0

de�ned

by

Yn(t)
(
:= Yn(t, Y0)

)
:= Y0 +

∫ t

0

σ
(
s, Yn(κn(s))

)
dW (s), (4.15)

where Y0 ∈ Rd is non-random and σ : R+ × Rd −→ Rd×d1 is a Borel-measurable map

satisfying the conditions

ε Id ≤ (σσT )(s, x) ≤ K Id (4.16)

and

∥σ(s, x)− σ(s, y)∥L2 ≤ K∥x− y∥αRd (4.17)

for some constants α ∈ ]0, 1[, K, ε > 0 and every x, y ∈ Rd, s > 0. For �xed n ∈ N
and t > 0 consider the corresponding transition semigroup πn

t associated with (4.15),

which is given by

πn
t (Y0, dy) := P ◦ Yn(t, Y0)−1(dy).

Then as usual we set

πn
t f(Y0) := E

[
f
(
Yn(t, Y0)

)]
=

∫
Ω

f
(
Yn(t, Y0)

)
dP =

∫
Rd

f(y)πn
t (Y0, dy)

for bounded Borel-measurable maps f : Rd −→ R.
Let pn(t, y) be the density of πn

t (Y0, dy) with respect to the Lebesgue measure. Denote

its supremum by mn(t) := sup
y∈Rd

pn(t, y).

Theorem 4.8 (cf. [GK96], Theorem 4.2 on page 153). For every n ∈ N let
(
Yn(t)

)
t≥0

be

the process given by (4.15) such that (4.16) and (4.17) are ful�lled for some constants

α ∈ ]0, 1[ and K, ε > 0. Suppose furthermore that there exists a density pn(t, y) of

πn
t (Y0, dy) with respect to the Lebesgue measure. Then the following assertions hold.

a) Let 1 ≤ q < d
d−α

. Then there exists a constant C(4.18) = C(4.18)(d, α,K, ε, p) such

that for every t > 0 and n ∈ N we have

∥pn(t, ·)∥Lq =

(∫
Rd

pn(t, x)
q dx

) 1
q

≤ C(4.18)

(
t−

d
2p + 1

)
, (4.18)

where p := q
q−1

is the conjugate of q.
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b) If the partitions {0 = tn0 < tn1 < . . . } satisfy the additional conditions κn(s) ≥ εs

for every n ∈ N and s > tn1 , then there exists a constant C(4.19) = C(4.19)(d, α,K, ε)

such that

mn(t) ≤ C(4.19)

(
t−

d
2 + 1

)
(4.19)

for every t > 0 and n ∈ N. In this case (4.18) holds as well for any q ∈ [1,∞], t > 0

and n ∈ N.

The following proof is based on the one given by Gyöngy and Krylov in [GK96]. But

we will only prove assertion a) of the theorem and only for a constant C(4.31) instead

of C(4.18) which also depends on an upper time bound T ∈ [0,∞[. We have to omit

the proof of assertion b) as well as the method to obtain a constant independent of T

because both considerations would exceed the extent of this thesis. Hence, we refer to

[GK96] at this point.

But more importantly, we will describe in a remark, that is stated before Step 4

within this proof, in which way the application of Lemma 4.7 turns out to be proble-

matic. In particular, we will see that we cannot exclude that the occurring constants

may not be independent of the time variable.

Proof of Theorem 4.8 a). (cf. [GK96], Theorem 4.2 on page 153)

Observe that ∥pn(t, ·)∥L1 =
∫
Rd pn(t, x) dx = 1 holds since pn(t, y) is a probability

density. Hence, we only have to consider 1 < q < d
d−α

in the following.

Step 1: First of all, we de�ne the operator T ∗
s,t as well as its adjoint Ts,t and prove

some of their properties that are necessary for the application of Lemma 4.7 later.

For 0 ≤ s ≤ t < ∞ and bounded Borel-measurable functions f : Rd −→ R consider

the operator T ∗
s,t de�ned by

T ∗
s,tf(y) := E

[
f

(
y +

∫ t

s

σ(r, y) dW (r)

)]
,

and let Ts,t be the adjoint operator of T
∗
s,t in L

2
(
Rd;R

)
-sense.

In order to apply Lemma 4.7 later, we have to show the following claim at �rst.

Claim (1). If s < t and y ∈ Rd, then the stochastic integral

ξ(s, t, y) :=

∫ t

s

σ(r, y) dW (r)

is a d-dimensional Gaussian vector with distribution N
(
0,Λ(s, t, y)

)
, where Λ(s, t, y) :=∫ t

s
(σσT )(r, y) dr is a covariance matrix such that

ε (t− s) Id ≤ Λ(s, t, y) = Λ(s, t, y)∗ ≤ K (t− s) Id (4.20)

holds for every y ∈ Rd.
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Proof of Claim (1). In order to prove that for �xed s < t and y ∈ Rd the stochas-

tic integral ξ(s, t, y) =
(
ξ1, . . . , ξd

)
(s, t, y) is a d-dimensional Gaussian vector, we will

show that for any arbitrary ψ ∈ Rd the linear combination
d∑

i=1

ψi ξ
i(s, t, y) has a one-

dimensional normal distribution (cf. [Bau02], �30 on page 260). In this case the vector

of means is given by

E
[
ξ(s, t, y)

]
=
(
E
[
ξ1(s, t, y)

]
, . . . ,E

[
ξd(s, t, y)

])
and the covariance matrix Λ(s, t, y) =

(
Λij(s, t, y)

)
ij
consists of elements

Λij(s, t, y) = cov
(
ξi(s, t, y), ξj(s, t, y)

)
.

For the linear combination
d∑

i=1

ψi ξ
i(s, t, y) we have

d∑
i=1

ψi ξ
i(s, t, y) =

d∑
i=1

ψi

d1∑
k=1

∫ t

s

σik(r, y) dW
k(r) =

d1∑
k=1

∫ t

s

d∑
i=1

ψi σik(r, y) dW
k(r),

where
∫ t

s

d∑
i=1

ψi σik(r, y) dW
k(r), for k = 1, · · · , d1, are R-valued integrals with determi-

nistic integrands. By [Shr04], Example 4.7.3 on page 223 we know that these integrals

have a normal distribution. Since linear combinations of independent normal distri-

buted random variables are again normal distributed (cf. [Bau02], Theorem 8.4 on

page 55 and Example 3 on page 56), the assertion follows by the independence of the

components of the Wiener process W .

Furthermore, we have E
[
ξi(s, t, y)

]
= 0 for every 1 ≤ i ≤ d. Observe that Lemma

A.7 from the Appendix and (4.16) imply that∥∥σ(r, y)∥∥2
L2

≤ dK

holds. This yields by using the Itô isometry

E
[
⟨ξi(s, ·, y)⟩t

]
= E

[⟨ d1∑
k=1

∫ ·

s

σik(r, y) dW
k(r)

⟩
t

]

= E

[
d1∑
k=1

⟨∫ ·

s

σik(r, y) dW
k(r)

⟩
t

]

= E

[∫ t

s

d1∑
k=1

∣∣σik(r, y)∣∣2 dr] ≤ E

[∫ t

s

∥∥σ(r, y)∥∥2
L2

dr

]
<∞,

where the second step holds since we have ⟨Z1 + Z2⟩t = ⟨Z1⟩t + 2 ⟨Z1, Z2⟩t + ⟨Z2⟩t for
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continuous local martingales Z1 and Z2, the bilinearity of the covariation ⟨·, ·⟩t and

E

[⟨∫ ·

s

σik(r, y) dW
k(r),

∫ ·

s

σik̃(r, y) dW
k̃(r)

⟩
t

]

= E

[∫ t

s

σik(r, y)σik̃(r, y) d⟨W
k,W k̃⟩t

]

= E

[∫ t

s

σik(r, y)σik̃(r, y) δk k̃ dr

]
= 0

for k ̸= k̃ because δk k̃ means the Kronecker delta. Therefore, ξi(s, t̃, y), t̃ ∈ [s, t], is in

fact a martingale (cf. [RY99], Corollary 1.25 on page 130) and hence E
[
ξi(s, t, y)

]
= 0.

Now the calculation of the elements of the covariance matrix Λ(s, t, y) yields

cov
(
ξi(s, t, y),ξj(s, t, y)

)
= E

[
ξi(s, t, y) ξj(s, t, y)

]
= E

[( d1∑
k=1

∫ t

s

σik(r, y) dW
k(r)

)( d1∑
k̃=1

∫ t

s

σjk̃(r̃, y) dW
k̃(r̃)

)]

= E
[ d1∑

k=1

d1∑
k̃=1

∫ t

s

∫ t

s

σik(r, y)σjk̃(r̃, y) dW
k(r) dW k̃(r̃)

]

= E
[ ∫ t

s

d1∑
k=1

σik(r, y)σjk(r, y) dr

]
=

∫ t

s

(σσT )ij(r, y) dr.

Furthermore, we have to prove that (4.20) is ful�lled. Therefore, observe that

Λ(s, t, y) =

∫ t

s

(σσT )(r, y) dr

holds and that the symmetry of Λ(s, t, y) follows because (σσT )(r, y) is symmetric. In

addition, we have

⟨Λ(s, t, y)x, x⟩Rd =
⟨ ∫ t

s

(σσT )(r, y) dr x, x
⟩
Rd =

∫ t

s

⟨(σσT )(r, y)x, x⟩Rd︸ ︷︷ ︸
≤ K⟨x,x⟩Rd
≥ ε ⟨x,x⟩Rd

by (4.16)

dr,

and, hence,

ε (t− s) ⟨x, x⟩Rd =

∫ t

s

ε ⟨x, x⟩Rd dr

≤ ⟨Λ(s, t, y)x, x⟩Rd

≤
∫ t

s

K ⟨x, x⟩Rd dr = K (t− s) ⟨x, x⟩Rd

(4.21)
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holds for every x ∈ Rd.

Note that in the case s = t we have T ∗
t,tf(y) = f(y) = Tt,tf(y).

For s < t we can now repeat the calculation of Ts,t from Step 1 in the proof of

Lemma 4.7 and obtain

Ts,tf(x) =

∫
Rd

f(y) (2π)−
d
2

(
detΛ(s, t, y)

)− 1
2

· exp
(
− 1

2
⟨Λ(s, t, y)−1(x− y), x− y⟩Rd

)
dy.

(4.22)

By using formula (4.22), we can see that the following claim holds.

Claim (2). For any s < t the function x 7−→ Ts,tf(x) is in�nitely di�erentiable.

Furthermore,

∂

∂s
Ts,tf(x) = −

d∑
i,j=1

(
∂2

∂xi∂xj
Ts,t aij(s, ·) f(·)

)
(x) (4.23)

holds, where aij :=
1
2
(σσT )ij.

Proof of Claim (2). We omit the proof and refer to [GK96], where it is claimed that

the assertion is ful�lled.

Step 2: In this step we start to calculate E
[
f
(
Yn(t)

)]
.

Consider the map s 7−→ E
[
φ
(
s, Yn(s)

)]
, where the function φ is given by

φ
(
s, Yn(s)

)
:= Ts,tf

(
Yn(s)

)
. Then observe that for any r ∈ [0, t] we can apply the

Newton-Leibniz formula and obtain

E
[
f
(
Yn(t)

)]
= E

[
Tt,tf

(
Yn(t)

)]
= E

[
φ
(
t, Yn(t)

)]
= E

[
φ
(
r, Yn(r)

)]
+

∫ t

r

d

ds
E
[
φ
(
s, Yn(s)

)]
ds.

From Itô's formula (cf. Theorem A.9 in the Appendix) follows that P -a.s.

φ
(
s, Yn(s)

)
= φ

(
0, Yn(0)

)
+

∫ s

0

∂

∂s
φ
(
u, Yn(u)

)
du

+
1

2

d∑
i,j=1

∫ s

0

aij
(
u, Yn

(
κn(u)

)) ∂2

∂xi∂xj
φ
(
u, Yn(u)

)
du

+

∫ s

0

⟨
∇xφ

(
u, Yn(u)

)
, σ
(
u, Yn

(
κn(u)

))
dW (u)

⟩
Rd︸ ︷︷ ︸

=:m(s)

holds, where m(ϱ), ϱ ∈ [0, s], is a continuous local (Fϱ)-martingale with m(0) = 0.

Claim (3). The continuous local m(ϱ), ϱ ∈ [0, s], is a martingale for s < t.
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Proof of Claim (3). We have

m(ϱ) =

∫ ϱ

0

⟨
∇xφ

(
u, Yn(u)

)
, σ
(
u, Yn

(
κn(u)

))
dW (u)

⟩
Rd

=

d1∑
k=1

∫ ϱ

0

d∑
j=1

σjk
(
u, Yn

(
κn(u)

) ∂

∂xj
φ
(
u, Yn(u)

)
dW k(u)︸ ︷︷ ︸

=:mk(ϱ)

.

Now it again su�ces to prove that E
[⟨
mk(·)

⟩
s

]
<∞ holds for every k = 1, . . . , d1 (cf.

[RY99], Corollary 1.25 on page 130). Namely, we have by the Itô isometry

E
[⟨
mk(·)

⟩
s

]
= E

[⟨∫ ·

0

d∑
j=1

σjk
(
u, Yn

(
κn(u)

) ∂

∂xj
φ
(
u, Yn(u)

)
dW k(u)

⟩
s

]

= E

[∫ s

0

∣∣∣∣ d∑
j=1

σjk
(
u, Yn

(
κn(u)

) ∂

∂xj
φ
(
u, Yn(u)

)∣∣∣∣2 du
]

≤ E

[∫ s

0

( d∑
j=1

∣∣∣σjk(u, Yn(κn(u))∣∣∣2)︸ ︷︷ ︸
≤
∥∥σ(u,Yn(κn(u)

)∥∥2

L2

( d∑
j=1

∣∣∣ ∂
∂xj

φ
(
u, Yn(u)

)∣∣∣2) du

]
,

where we have used the Cauchy-Schwarz inequality in the last step. Besides,∥∥σ(r, y)∥∥2
L2

≤ dK

holds for every r > 0 and y ∈ Rd by Lemma A.7 from the Appendix and inequality

(4.16). Furthermore, from equation (4.22) it follows that∣∣∣ ∂
∂xj

φ
(
u, Yn(u)

)∣∣∣2
=
∣∣∣ ∂
∂xj

Tu,tf
(
Yn(u)

)∣∣∣2
=

∣∣∣∣( ∂

∂xj

∫
Rd

f(y) (2π)−
d
2

(
detΛ(u, t, y)

)− 1
2

· exp
(
− 1

2
⟨Λ(u, t, y)−1

(
· −y

)
, · − y⟩Rd

)
dy

)(
Yn(u)

)∣∣∣∣2
=

∣∣∣∣ ∫
Rd

f(y) (2π)−
d
2

(
detΛ(u, t, y)

)− 1
2

·
(

∂

∂xj
exp

(
− 1

2
⟨Λ(u, t, y)−1

(
· −y

)
, · − y⟩Rd

))(
Yn(u)

)
dy

∣∣∣∣2
holds since the last step is just the assertion of Claim (1) in the proof of Lemma 4.7.
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Applying the calculation from inequality (4.7) yields∣∣∣ ∂
∂xj

φ
(
u, Yn(u)

)∣∣∣2
≤
(∫

Rd

|f(y)| (2π)−
d
2

(
detΛ(u, t, y)

)− 1
2 ∥Λ(u, t, y)−1∥L2

· exp
(
− 1

2K (t− u)

∥∥y − Yn(u)
∥∥2
Rd

)∥∥y − Yn(u)
∥∥
Rd dy

)2

,

where we have used that by (4.21) the inequality ε (t−u) Id ≤ Λ(u, t, y) ≤ K (t−u) Id
and, hence, 1

ε (t−u)
Id ≥ Λ(u, t, y)−1 ≥ 1

K (t−u)
Id by Lemma 4.4 i) hold. Moreover, by

applying Lemma 4.6 iii) we can see that

∥∥Λ(u, t, y)−1
∥∥2
L2

=
d∑

i,j=1

∣∣Λij(u, t, y)
−1
∣∣2 ≤ ( d

ε (t− u)

)2
is ful�lled. Furthermore, since the estimate (4.21) holds, we know that an application

of Lemma 4.6 i) yields
(
ε (t − u)

)− d
2 ≥

(
detΛ(u, t, y)

)− 1
2 ≥

(
K (t − u)

)− d
2 for every

y ∈ Rd. Hence,∣∣∣ ∂
∂xj

φ
(
u, Yn(u)

)∣∣∣2
≤
(∫

Rd

∥f∥∞ (2π)−
d
2

(
ε (t− u)

)− d
2

d

ε (t− u)

· exp
(
− 1

2K (t− u)

∥∥y − Yn(u)
∥∥2
Rd

)∥∥y − Yn(u)
∥∥
Rd dy

)2

=

(
(2πε)−

d
2
d

ε
∥f∥∞

(
t− u

)− d
2 (t− u)−1

·
∫
Rd

exp
(
− 1

2K (t− u)

∥∥y − Yn(u)
∥∥2
Rd

)∥∥y − Yn(u)
∥∥
Rd dy

)2

,

and by using the transformation y 7−→
(
t−u

) 1
2y+Yn(u) with the Jacobian determinant

given by
(
t− u

) d
2 , we obtain(

(2πε)−
d
2
d

ε
∥f∥∞

(
t− u

)− 1
2

∫
Rd

exp
(
− 1

2K

∥∥y∥∥2Rd

)∥∥y∥∥Rd dy

)2

=
(
t− u

)−1∥f∥2∞ ·
(
(2πε)−

d
2
d

ε

∫
Rd

exp
(
− 1

2K

∥∥y∥∥2Rd

)∥∥y∥∥Rd dy

)2

︸ ︷︷ ︸
=:C(4.24)

,
(4.24)

where C(4.24) = C(4.24)(ε,K, d) is a constant. Altogether we have

E
[⟨
mk(·)

⟩
s

]
≤ E

[∫ s

0

d2K
(
t− u

)−1∥f∥2∞C(4.24) du

]

= d2K ∥f∥2∞C(4.24)

∫ s

0

(
t− u

)−1
du <∞
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since
∫ s

0

(
t− u

)−1
du =

∫ t

t−s
u−1 du = ln(t)− ln(t− s) <∞ for t > s.

Therefore, E
[
m(s)

]
= 0 holds such that we conclude

d

ds
E
[
φ
(
s,Yn(s)

)]
=

d

ds
E
[
φ
(
0, Yn(0)

)]
+

d

ds
E
[ ∫ s

0

∂

∂s
φ
(
u, Yn(u)

)
du

]
+

d

ds
E
[
1

2

d∑
i,j=1

∫ s

0

aij
(
u, Yn

(
κn(u)

)) ∂2

∂xi∂xj
φ
(
u, Yn(u)

)
du

]
=

d

ds
φ
(
0, Y0

)︸ ︷︷ ︸
=0

+E
[
∂

∂s
φ
(
s, Yn(s)

)]

+
1

2

d∑
i,j=1

E
[
aij
(
s, Yn

(
κn(s)

)) ∂2

∂xi∂xj
φ
(
s, Yn(s)

)]
,

where we have applied Fubini's theorem in the last step to interchange the integral and

the expectation by using the same arguments as in the proof of Claim (1) in Lemma

4.7 for the necessary �niteness of the integrals. Hence, by applying (4.23) we altogether

obtain

E
[
f
(
Yn(t)

)]
= E

[
Tr,tf

(
Yn(r)

)]
+

∫ t

r

E
[ d∑

i,j=1

aij
(
s, Yn

(
κn(s)

))( ∂2

∂xi∂xj
Ts,tf

)(
Yn(s)

)
−
(

∂2

∂xi∂xj
Ts,t aij(s, ·)f(·)

)(
Yn(s)

)]
ds.

De�ne

η(s, x) :=

∫ s

κn(s)

σ(r, x) dW (r).

Then we have the following claim.

Claim (4). If κn(s) < s and x ∈ Rd, then the stochastic integral η(s, x) is a d-

dimensional Gaussian vector with distribution N
(
0,Λη(s,x)

)
, where

Λη(s,x) :=
∫ s

κn(s)
(σσT )(r, x) dr is a covariance matrix.

Proof of Claim (4). Analogous to the proof of Claim (1).

Observe that we can write

Yn(s) = Yn
(
κn(s)

)
+

∫ s

κn(s)

σ
(
r, Yn

(
κn(r)

)︸ ︷︷ ︸
=Yn(κn(s))

)
dW (r)

= Yn
(
κn(s)

)
+ η
(
s, Yn

(
κn(s)

))
.
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Taking conditional expectation with respect to the sigma-algebra σ
(
Yn
(
κn(s)

))
yields

E
[
f
(
Yn(t)

)]
= E

[
E
[
f
(
Yn(t)

) ∣∣∣σ(Yn(κn(s)))]]
= E

[
E
[
Tr,tf

(
Yn(r)

) ∣∣∣σ(Yn(κn(s)))]]
+

∫ t

r

E

[
E
[ d∑

i,j=1

aij
(
s, Yn

(
κn(s)

))( ∂2

∂xi∂xj
Ts,tf

)(
Yn(s)

) ∣∣∣∣σ(Yn(κn(s)))]

− E
[ d∑

i,j=1

(
∂2

∂xi∂xj
Ts,t aij(s, ·)f(·)

)(
Yn(s)

) ∣∣∣∣σ(Yn(κn(s)))]
]
ds,

where we can write the second summand by using the measurability of aij as∫ t

r

d∑
i,j=1

E

[
aij
(
s, Yn

(
κn(s)

))
E
[(

∂2

∂xi∂xj
Ts,tf

)(
Yn(s)

) ∣∣∣∣σ(Yn(κn(s)))]
]

− E
[(

∂2

∂xi∂xj
Ts,t aij(s, ·)f(·)

)(
Yn(s)

)]
ds.

Now observe that

E

[
aij
(
s, Yn

(
κn(s)

))
E
[(

∂2

∂xi∂xj
Ts,tf

)(
Yn(s)

) ∣∣∣∣σ(Yn(κn(s)))]
]

=

∫
Rd

aij
(
s, x
)
E
[(

∂2

∂xi∂xj
Ts,tf

)(
x+ η(s, x)

) ∣∣∣∣σ(x)] pn(κn(s), x) dx
=

∫
Rd

aij
(
s, x
)
E
[(

∂2

∂xi∂xj
Ts,tf

)(
x+ η(s, x)

)]
pn
(
κn(s), x

)
dx

holds if we write the expectation as an integral with respect to the density pn
(
κn(s), ·

)
of the transition semigroup. Hence, altogether we have

E
[
f
(
Yn(t)

)]
= E

[
Tr,tf

(
Yn(r)

)]
+

∫ t

r

d∑
i,j=1

E

[
aij
(
s, Yn

(
κn(s)

))
E
[(

∂2

∂xi∂xj
Ts,tf

)(
Yn(s)

)]

− E
[(

∂2

∂xi∂xj
Ts,t aij(s, ·)f(·)

)(
Yn(s)

)]]
ds.

(4.25)

Therefore, based on the last summand of (4.25), we consider the expression∫ t

r

E
[ d∑

i,j=1

Hij

(
s, t, Yn

(
κn(s)

))]
ds =

∫ t

r

∫
Rd

d∑
i,j=1

Hij

(
s, t, x

)
pn
(
κn(s), x

)
dx ds,
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where

Hij(s, t, x) := aij(s, x)E
[(

∂2

∂xi∂xj
Ts,tf

)(
x+ η(s, x)

)]
− E

[(
∂2

∂xi∂xj
Ts,t aij(s, ·)f(·)

)(
x+ η(s, x)

)]
.

Step 3: In this step we determine an estimate for the term
∣∣Hij(s, t, x)

∣∣ by applying

Lemma 4.7.

Claim (5). For Hij(s, t, x) the necessary assumptions from Lemma 4.7 hold.

Proof of Claim (5).

1) f : Rd −→ R is a bounded Borel-measurable function.

2) The role of g is taken by the function aij(s, ·) : Rd −→ R. Therefore, we have to

prove its Hölder continuity, which is induced by (4.17). Namely, by using the submul-

tiplicativity of ∥ · ∥L2 , we have

∥σ(s, x)− σ(s, y)∥L2 ≤ K ∥x− y∥αRd

⇔ ∥σ(s, x)− σ(s, y)∥L2 ∥σT (s, x)∥L2 ≤ K ∥σT (s, x)∥L2 ∥x− y∥αRd

⇒
∥∥∥1
2
σσT (s, x)− 1

2
σ(s, y) σT (s, x)

∥∥∥
L2

≤ 1

2
K ∥σT (s, x)∥L2 ∥x− y∥αRd

and since ∥σ(s, x)−σ(s, y)∥L2 = ∥
(
σ(s, x)−σ(s, y)

)T∥L2 = ∥σT (s, x)−σT (s, y)∥L2 also

∥σT (s, x)− σT (s, y)∥L2 ≤ K ∥x− y∥αRd

⇔ ∥σ(s, y)∥L2 ∥σT (s, x)− σT (s, y)∥L2 ≤ K ∥σ(s, y)∥L2 ∥x− y∥αRd

⇒
∥∥∥1
2
σ(s, y) σT (s, x)− 1

2
σσT (s, y)

∥∥∥
L2

≤ 1

2
K ∥σ(s, y)∥L2 ∥x− y∥αRd .

From this we can conclude that

∥a(s, x)− a(s, y)∥L2 =
∥∥∥1
2
σσT (s, x)− 1

2
σσT (s, y)

∥∥∥
L2

≤
∥∥∥1
2
σσT (s, x)− 1

2
σ(s, y)σT (s, x)

∥∥∥
L2

+
∥∥∥1
2
σ(s, y)σT (s, x)− 1

2
σσT (s, y)

∥∥∥
L2

≤ 1

2
K
(
∥σT (s, x)∥L2 + ∥σ(s, y)∥L2

)︸ ︷︷ ︸
=:K̃

∥x− y∥αRd

holds for x, y ∈ Rd, s > 0 with a constant K̃ > 0.

3) The properties of ξ and η have already been proved in Claim (1) and Claim

(4). But we still have to prove their independence. Therefore, notice that ξ and η are

stochastic integrals with non-random integrands which only di�er in their bounds of

integration. Since the intervals from κn(s) up to s and from s up to t do not intersect,

the independence follows from the independence of the increments of the Wiener process

W .
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Therefore, we obtain the estimate∣∣Hij(s, t, x)
∣∣ ≤ C(4.26)(t− s)−

d
2p

−1+α
2 ∥f∥Lp (4.26)

from Lemma 4.7, where C(4.26) is a constant.

At this point we have to insert an important remark about the dependencies of

C(4.26).

Remark. The constant C(4.26) depends among others on the variables λmin
η and λmax

η

that are introduced in Lemma 4.7. In this lemma we have proved the assertion with

a constant C(4.26) = C(4.26)

(
K, ε, d, p, λmin

η , λmax
η

)
and a covariance matrix Λη corre-

sponding to a Gaussian vector η, which was introduced as an abstract object being

independent of s and t. In our case the covariance matrix is given by

Λη(s,x) =

∫ s

κn(s)

(σσT )(r, x) dr.

We can now use the estimate

ε
(
s− κn(s)

)
⟨x, x⟩Rd =

∫ s

κn(s)

ε ⟨x, x⟩Rd dr

≤ ⟨Λη(s,x) x, x⟩Rd

≤
∫ s

κn(s)

K ⟨x, x⟩Rd dr = K
(
s− κn(s)

)
⟨x, x⟩Rd

which is induced by the inequality (4.16). Consequently, we consider

ε
(
s− κn(s)

)
Id ≤ Λη(s,x) ≤ K

(
s− κn(s)

)
Id

for the estimate of Λη in this case. Therefore, the constants λmin
η and λmax

η from Lemma

4.7 are now replaced by ε
(
s−κn(s)

)
andK

(
s−κn(s)

)
, respectively. Hence, we conclude

that we cannot exclude that the constant C(4.26) may be depending on s, i.e. C(4.26) =

C(4.26)

(
K, ε, d, p, s

)
.

This remark about the possible dependence of C(4.26) on s is a problem for the com-

pletion of the proof. In Step 4 we will show how to �nish the proof, but under the

crucial assumption that C(4.26) does not depend on s.

Step 4: In this step we prove the estimate (4.18) with a constant depending on an

upper time bound T ∈ [0,∞[ (assuming that C(4.26) is independent of s).

Let T ∈ [0,∞[. Consider the equation

E
[
f
(
Yn(t)

)]
= E

[
Tr,tf

(
Yn(r)

)]
+

∫ t

r

E
[ d∑

i,j=1

Hij

(
s, t, Yn

(
κn(s)

))]
ds (4.27)
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for r = 0 and t ∈ ]0, T ]. Then we have∣∣∣E[f(Yn(t))]∣∣∣ = ∣∣∣∣E[T0,tf(Yn(0))]+ ∫ t

0

E
[ d∑

i,j=1

Hij

(
s, t, Yn

(
κn(s)

))]
ds

∣∣∣∣
≤ E

[∣∣T0,tf(Y0)∣∣]+ ∫ t

0

E
[ d∑

i,j=1

∣∣∣Hij

(
s, t, Yn

(
κn(s)

))∣∣∣] ds.
At �rst we prove an estimate for

∣∣T0,tf(Y0)∣∣ for t > 0. Note that by equation (4.20)

and Lemma 4.6 i) we have the inequalities ε t Id ≤ Λ(0, t, y) ≤ K t Id and
(
ε t
)d ≤

det
(
Λ(0, t, y)

)
≤
(
K t
)d
. Therefore, we can calculate as before in the proof of Lemma

4.7 ∣∣T0,tf(Y0)∣∣ = ∣∣∣∣ ∫
Rd

f(y) (2π)−
d
2

(
detΛ(0, t, y)

)− 1
2

· exp
(
− 1

2
⟨Λ(0, t, y)−1(y − Y0), y − Y0⟩Rd

)
dy

∣∣∣∣
≤ (2π)−

d
2

∫
Rd

|f(y)| (ε t)−
d
2 exp

(
− 1

2K t
∥y − Y0∥2Rd

)
dy

≤ (2π ε)−
d
2 t−

d
2 ∥f∥Lp

(∫
Rd

exp
(
− 1

2K t
∥y − Y0∥2Rd

)q
dy

) 1
q

,

where the last step follows by applying Hölder's inequality for q ∈ ]1, d
d−α

[ and its

conjugate p ∈ ] d
α
,∞[. Since(∫

Rd

exp
(
− 1

2K t
∥y − Y0∥2Rd

)q
dy

) 1
q

= t
d
2q

(∫
Rd

exp
(
− 1

2K
∥y∥2Rd

)q
dy

) 1
q

holds by using a shift y 7−→ y+Y0 and the transformation y 7−→ t
1
2y with the Jacobian

determinant given by t
d
2 as seen before in the proof of Lemma 4.7, we obtain

∣∣T0,tf(Y0)∣∣ ≤ t−
d
2 t

d
2q︸ ︷︷ ︸

= t
− d

2p

∥f∥Lp (2π ε)−
d
2

(∫
Rd

exp
(
− 1

2K
∥y∥2Rd

)q
dy

) 1
q

︸ ︷︷ ︸
=:C(4.28)

= C(4.28) t
− d

2p ∥f∥Lp ,

(4.28)

where C(4.28) = C(4.28)(K, ε, d, p) is a constant. Next we have by estimate (4.26)∫ t

0

E
[ d∑

i,j=1

∣∣∣Hij

(
s, t, Yn

(
κn(s)

))∣∣∣] ds
≤
∫ t

0

d∑
i,j=1

C(4.26)(t− s)−
d
2p

−1+α
2 ∥f∥Lp ds

= C(4.29) ∥f∥Lp

∫ t

0

(t− s)−
d
2p

−1+α
2 ds,

(4.29)
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where C(4.29) := d2C(4.26).

Now we have to take a closer look at the power of (t−s) in the integral. By assumption

we have 1 < q < d
d−α

and, hence,

q <
d

d− α
⇔ (d− α) q < d⇔ (q − 1) d < αq ⇔ d

α
<

q

q − 1︸ ︷︷ ︸
= p

since d ∈ N and α ∈ ]0, 1[. Therefore,

d

α
< p⇔ d < α p⇔ 0 <

αp

2p
− d

2p
⇔ −1 < − d

2p
− 1 +

α

2
.

Hence, we can compute the integral by substitution, i.e. we obtain∫ t

0

(t− s)−
d
2p

−1+α
2 ds = −

∫ 0

t

z−
d
2p

−1+α
2 dz =

1

− d
2p

+ α
2

z−
d
2p

+α
2

∣∣∣∣t
0

= C(4.30) t
− d

2p
+α

2

(4.30)

with a constant C(4.30) = C(4.30)(d, α, p). Altogether we have

∣∣∣E[f(Yn(t))]∣∣∣ = E
[∣∣T0,tf(Y0)∣∣]+ ∫ t

0

E
[ d∑

i,j=1

∣∣∣Hij

(
s, t, Yn

(
κn(s)

))∣∣∣] ds
≤ C(4.28) t

− d
2p ∥f∥Lp + C(4.29)C(4.30) t

− d
2p

+α
2 ∥f∥Lp

≤
(
C(4.28) + C(4.29)C(4.30) T

α
2︸ ︷︷ ︸

=:C(4.31)

)
t−

d
2p ∥f∥Lp

≤ C(4.31) ∥f∥Lp (t−
d
2p + 1),

(4.31)

where C(4.31) = C(4.31)(K, ε, d, α, p, λ
min
η , λmax

η , T ).

Now we will show how this implies the estimate from the assertion. Consider the

linear functional

Φ
(
pn(t, ·)

)
:

Lp(Rd;R) −→ R

f 7−→
∫
Rd

f(y) pn(t, y) dy

and observe that we have proved that∣∣∣Φ(pn(t, ·))(f)∣∣∣ = ∣∣∣ ∫
Rd

f(y) pn(t, y) dy
∣∣∣ = ∣∣∣E[f(Yn(t))]∣∣∣ ≤ C(4.31) ∥f∥Lp (t−

d
2p + 1)

holds for bounded Borel-measurable functions f . By an approximation argument we

also get this inequality for f ∈ Lp because we can consider the sequence (fm)m∈N of

bounded Borel-measurable functions given by fm := f 11{−m≤f≤m}, which converges by

84



Lebesgue's dominated convergence theorem to f in Lp. Hence, we can conclude that

Φ
(
pn(t, ·)

)
∈
(
Lp(Rd;R)

)′
.

Therefore, by using the duality of the Lp-spaces for 1 ≤ p < ∞, we can consider

the isometric isomorphism T : Lq(Rd;R) −→
(
Lp(Rd;R)

)′
that provides the general

form of the linear functional Φ
(
pn(t, ·)

)
(see e.g. [Bog07], Theorem 4.4.1 on page 262

or [Alt12], Theorem 4.12 on page 183). Hence, there exists a g ∈ Lq(Rd;R) such that∫
Rd

f(y) g(y) dy =: (T g)(f) = Φ
(
pn(t, ·)

)
(f),

the isometry property
∥∥T g∥∥ = ∥g∥Lq and∣∣∣∣ ∫

Rd

f(y) g(y) dy

∣∣∣∣ ≤ ∥g∥Lq∥f∥Lp

from Hölder's inequality are ful�lled.

Furthermore, we know that
∥∥T g∥∥ = inf

{
c ≥ 0

∣∣ ∣∣(T g)f ∣∣ ≤ c ∥f∥Lp

}
is given by the

de�nition of the operator norm. Thus we realise that in fact

∥g∥Lq ≤ C(4.31) (t
− d

2p + 1)

has to hold. Hence, by using that g = pn(t, ·), we can obtain the estimate

∥pn(t, ·)∥Lq ≤ C(4.31) (t
− d

2p + 1) (4.32)

from the assertion with a constant depending on T .
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5. Existence and Uniqueness (Non-degeneracy

Version)

This last chapter will focus on the second main theorem (see Theorem 5.2) in which we

will change the assumptions from the �rst main theorem (see Theorem 3.7) slightly. We

base the following considerations on [GK96], where it is claimed that such a theorem

holds.

Unfortunately, in order to keep this thesis within reasonable length, we cannot go

into details concerning the proof such that we just have to refer to the one given by

Gyöngy and Krylov in [GK96]. There the authors also mention the similarity to the

proof of Theorem 3.7 such that we have already worked out the necessary essential

ideas in the previous chapters.

5.1. Main theorem (non-degeneracy version)

In this section we will extend the assumptions from the framework in Section 2.1

by a so-called non-degeneracy condition for the di�usion coe�cient σ. With this new

condition we can change the continuity assumptions on b and σ later in Theorem 5.2.

Therefore, we introduce A4) as the fourth main assumption of this thesis.

A4) For every k ∈ N the domain Dk is bounded and convex and

d∑
i,j=1

(σσT )ij(t, x)λiλj ≥ εkMk(t)
d∑

i=1

|λi|2

holds for every t ∈ [0, k], x ∈ Dk and λi ∈ R for i = 1, . . . , d, where εk > 0 are

some constants.

But before we can state the theorem, we have to de�ne the local Hölder continuity,

which we will assume for the di�usion coe�cient σ in the following.

De�nition 5.1 (Local Hölder continuity). Let n ∈ N. A function f : R+×D −→ Rn is

called locally Hölder continuous in x ∈ D (with exponent α ∈ ]0, 1]) if for every k ∈ N,
t ≥ 0 and x, y ∈ Dk we have

∥f(t, x)− f(t, y)∥2Rn ≤Mk(t)∥x− y∥2αRd .

If α = 1, we say that f is locally Lipschitz continuous in x ∈ D.

Now we can �nally state the second main and simultaneously last theorem of this

thesis, that can be found in [GK96].

87



Theorem 5.2 (cf. [GK96], Theorem 2.8 on page 149). Let the assumptions from the

framework in Section 2.1 and in addition A4) be ful�lled. Suppose moreover that σ is

locally Hölder continuous in x ∈ D with some exponent α ∈ ]0, 1]. If α ̸= 1, assume

that pathwise uniqueness holds for the equation (2.1). Then we have:

1) There exists a process (X(t))t≥0 such that Xn(t)
p−−−→

n→∞
X(t) uniformly in t on

bounded intervals.

2) (X(t))t≥0 is the unique solution of equation (2.1) (up to P -indistinguishability).

Proof. At this point we refer to [GK96] on page 157. First of all, we note that Corollary

4.3 on page 156 still has to be proved before. Then the reader can comprehend that

the main idea is to prove Lemma 5.1, which is stated on page 157.
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A. Appendix

The Appendix contains several fundamental lemmas and theorems, which we use within

this thesis. On the one hand we will recall well-known basic facts that are mentioned

here to ensure the completeness and comprehensibility of the proofs and also to state

their intended version exactly (e.g. Theorem A.20, A.21, A.3 and A.6). But on the

other hand we will also prove some helpful assertions (e.g. Lemma A.14 and A.22) that

have been extracted from the previous chapters, for example due to their length or

simplicity.

A.1. Basic theorems

At the beginning we will recall some basic theorems like the continuous mapping theo-

rems, a generalised Young inequality and a generalised Minkowski inequality for inte-

grals, where we usually give references for their proofs.

Theorem A.1 (Continuous mapping theorem, convergence in distribution). Let X,Y

be topological spaces and f : X −→ Y be a continuous function. Let µn, for n ∈ N, and
µ be distributions on X such that µn

w−−−→
n→∞

µ. Then on Y we have µn◦f−1 w−−−→
n→∞

µ◦f−1

for the image distributions.

Proof. We refer to [Dud02], Theorem 9.3.7 on page 296.

Remark. Note that for a sequence of random variables (Zn)n∈N on a probability space

(Ω,F , P ) with Zn
d−−−→

n→∞
Z, i.e. PZn

w−−−→
n→∞

PZ , we have f(Zn)
d−−−→

n→∞
f(Z) for continuous

functions f because

Pf(Zn)[A] = P
[
f(Zn) ∈ A

]
= P

[
Zn ∈ f−1(A)

]
= PZn

[
f−1(A)

]
=
(
PZn ◦ f−1

)
[A]

and, therefore, Pf(Zn) = PZn ◦ f−1 holds.

Theorem A.2 (Continuous mapping theorem, P -a.s. convergence and convergence in

probability). Let (Ω,F , P ) be a probability space, (S1, ρ1), (S2, ρ2) be separable metric

spaces and let f : S1 −→ S2 be a continuous function. Assume that (Zn)n∈N is a sequence

of S1-valued random variables. Then the assertions

i) Zn
p−−−→

n→∞
Z implies f

(
Zn

) p−−−→
n→∞

f
(
Z
)
,

ii) Zn
P−a.s.−−−−→
n→∞

Z implies f
(
Zn

) P−a.s.−−−−→
n→∞

f
(
Z
)

hold.

The proof is an adapted version of the one stated in [vdV98] (see Theorem 2.3 on

page 8).
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Proof. (cf. [vdV98] on page 8)

�i)� Let ε > 0. For every δ > 0 de�ne the set

Bδ :=
{
x ∈ S1

∣∣∣ ∃ y ∈ S1 : ρ1(x, y) < δ and ρ2
(
f(x), f(y)

)
≥ ε
}

for which δ ↓ 0 implies Bδ ↓ ∅. Note that Z /∈ Bδ and ρ2
(
f(Zn), f(Z)

)
≥ ε imply

ρ1
(
Zn, Z

)
≥ δ. Hence,

P
[
ρ2
(
f(Zn), f(Z)

)
≥ ε
]
≤ P

[
Z ∈ Bδ

]
+ P

[
ρ1
(
Zn, Z

)
≥ δ
]
.

The second summand converges to zero for n → ∞ by assumption. By letting δ ↓ 0

the �rst summand also tends to zero since Bδ ↓ ∅.
�ii)� Note that lim

n→∞
Zn(ω) = Z(ω) for ω ∈ Ω implies lim

n→∞
f
(
Zn(ω)

)
= f

(
Z(ω)

)
by the

continuity of f . Hence,

P
[
lim
n→∞

ρ2
(
f(Zn), f(Z)

)]
≥ P

[
lim
n→∞

ρ1
(
Zn, Z

)]
= 1.

Lemma A.3 (Generalised Young inequality). Let X be a vector space, p ≥ 1 and let

f : X −→ R be a convex function which is homogeneous of degree p (i.e. f(αx) = αpf(x)

for every α > 0, x ∈ X). Then

f(a+ b) ≤ 2p−1
(
f(a) + f(b)

)
for every a, b ∈ X.

In particular, for a normed space (X, ∥ · ∥) we have ∥a + b∥p ≤ 2p−1
(
∥a∥p + ∥b∥p

)
for every a, b ∈ X.

Proof. We compute

f(a+ b) = 2p f
(1
2
a+

1

2
b
)
≤ 2p

(1
2
f(a) +

1

2
f(b)

)
= 2p−1

(
f(a) + f(b)

)
by using the homogeneity in the �rst and the convexity in the second step.

Lemma A.4 (Reverse Fatou lemma). Let (fn)n∈N be a sequence of non-negative, R̄-
valued, measurable functions on a measure space (S,S, µ). Suppose there exists a func-

tion g ∈ L1(S; R̄) such that fn ≤ g for every n ∈ N. Then

lim sup
n→∞

∫
S

fn dµ ≤
∫
S

lim sup
n→∞

fn dµ

holds.

Proof. This version follows immediately from the original Fatou lemma (see e.g. [Dud02],

Lemma 4.3.3 on page 131) by considering g − fn .
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Now we have to mention the space NW from the general stochastic integration theory

in [PR07] (see Section 2.3 starting on page 21) and �t it in our framework such that we

can state a Burkholder-Davis-Gundy type inequality afterwards. Therefore, we de�ne

NW

(
0, T ;Rd

)
:=

{
Φ: [0, T ]× Ω −→ Rd×d1

∣∣∣∣∣Φ is predictable and

P

[ ∫ T

0

∥∥Φ(s)∥∥2
L2

ds <∞
]
= 1

}
as in [PR07] on page 30. Recall that

PT = σ
(
Y : [0, T ]× Ω −→ R

∣∣∣Y is left-continuous and adapted to Ft, t ∈ [0, T ]
)

is the so-called predictable σ-algebra, and for any separable Hilbert space H a process

Y : [0, T ]× Ω −→ H is said to be (H-)predictable if it is PT/B(H)-measurable.

Lemma A.5 (Burkholder-Davis-Gundy type inequality). Assume that p ≥ 2 and Φ ∈
NW

(
0, T ;Rd

)
. Then we have

E
[

sup
t∈[0,T ]

∥∥∥∫ t

0

Φ(s) dW (s)
∥∥∥p
Rd

] 1
p

≤ p
( p

2(p− 1)

) 1
2

(∫ T

0

E
[∥∥Φ(s)∥∥p

L2

] 2
p
ds

) 1
2

.

At this point we recall that the predictability assumption on Φ ∈ NW

(
0, T ;Rd

)
can

be replaced by assuming progessive measurability, i.e. Φ|[0,t]×Ω is B([0, t])⊗Ft/B
(
Rd×d1

)
-

measurable for every t ∈ [0, T ], since we consider the Wiener processW as an integrator.

For further details we refer to [PR07] on page 42.

Proof. We refer to [DZ92], Lemma 7.7 on page 195.

We call (X,A, µ) a σ-�nite measure space if it is the countable union ofA-measurable

sets with �nite measure. As usual, we de�ne the essential supremum of a function

f : X −→ R̄ by

ess sup
x∈X

f(x) := inf
{
a ∈ R

∣∣∣µ[x ∈ X
∣∣ f(x) > a

]
= 0
}
.

Theorem A.6 (Generalised Minkowski integral inequality, cf. [Sch07], Theorem 13.14

on page 130). Let (X,A1, µ) and (Y,A2, ν) be σ-�nite measure spaces and f : X×Y −→
R̄ be a A1 ⊗A2-measurable function. Then(∫

X

(∫
Y

|f(x, y)| dν(y)
)p

dµ(x)

) 1
p

≤
∫
Y

(∫
X

|f(x, y)|p dµ(x)
) 1

p

dν(y)

holds for every p ∈ [1,∞[, with equality for p = 1.

For p = ∞ we have the modi�ed inequality

ess sup
x∈X

∫
Y

|f(x, y)| dν(y) ≤
∫
Y

ess sup
x∈X

|f(x, y)| dν(y).
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Proof. For p ∈ [1,∞[ we refer to [Sch07], Theorem 13.14 on page 130 or [HLP67],

Theorem 202 on page 148. Observe that the inequality is obvious in the case p = ∞.

Lemma A.7. Let A ∈ Rn×m be a matrix such that

ε Id ≤ AAT ≤ K Id

for some constants ε,K > 0. Then the inequality

ε ≤ ∥A∥2L2
≤ min{n,m}K

holds.

Proof. In this proof we could choose any induced matrix norm (operator norm) as a

help for the estimate, but we consider a special one for convenience. Therefore, let

∥ · ∥2 be the spectral norm for matrices, i.e. ∥A∥2 := sup
∥x∥Rm=1

∥Ax∥Rn . Then we have

∥A∥2 ≤ ∥A∥L2 ≤
√
min{n,m} ∥A∥2 (cf. [GL13], Inequality (2.3.7) on page 72) and

ε = ε sup
∥x∥Rn=1

∥x∥2Rn ≤ sup
∥x∥Rn=1

⟨AATx, x⟩Rn ≤ K sup
∥x∥Rn=1

∥x∥2Rn = K.

Since

sup
∥x∥Rn=1

⟨AATx, x⟩Rn = sup
∥x∥Rn=1

⟨ATx,ATx⟩Rm = sup
∥x∥Rn=1

∥ATx∥2Rm = ∥AT∥22 = ∥A∥22,

it follows that

ε ≤ ∥A∥22 ≤ ∥A∥2L2
≤ min{n,m}∥A∥22 ≤ min{n,m}K

holds.

Finally, we state a well-known lemma about some fundamental inequalities for lim sup,

lim inf and probability measures, that the reader should keep in mind.

Lemma A.8. Let (Ω,F , P ) be a probability space and Ai ∈ F for every i ∈ N. Then
we have

i) lim sup
n→∞

P [An] ≤ P
[
lim sup
n→∞

An

]
,

ii) P
[
lim inf
n→∞

An

]
≤ lim inf

n→∞
P [An].

Proof.

�i)� Since
∪

m≥n

Am is a decreasing sequence in n, we conclude by the continuity from

above of P that

P
[
lim sup
n→∞

An

]
= P

[ ∩
n∈N

∪
m≥n

Am

]
= lim

n→∞
P
[ ∪
m≥n

Am

]
≥ lim

n→∞
sup
m≥n

P [Am]︸ ︷︷ ︸
= lim sup

n→∞
P [An]

holds. Assertion �ii)� can be proved analogously.
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A.2. Itô's formula and Itô's product rule

In preparation of the application of the well-known Itô formula and Itô product rule

for semimartingales, we recall the corresponding theorems from Karatzas/Shreve in

[KS05] and Revuz/Yor in [RY99]. Besides, we deduce in Corollary A.10 the explicit

representation of the Itô formula for processes which satisfy the SDE (2.1).

Theorem A.9 (cf. [KS05], Theorem 3.6 on page 153). Let (Z(t))t≥0 be an (Ft)-adapted,

Rd-valued continuous local martingale with Z(0) = 0, (B(t))t≥0 be an (Ft)-adapted,

Rd-valued process of bounded variation with B(0) = 0 and Y0 be an F0-measurable

random vector with values in Rd. Set Y (t) := Y0 + Z(t) + B(t) for t ∈ [0,∞[ and let

F ∈ C1,2
(
R+ × Rd;R

)
. Then we have P -a.s.

F (t, Y (t)) = F (0, Y0) +

∫ t

0

∂

∂t
F (s, Y (s)) ds

+
d∑

i=1

∫ t

0

∂

∂xi
F (s, Y (s)) dBi(s)

+
d∑

i=1

∫ t

0

∂

∂xi
F (s, Y (s)) dZi(s)

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

∂

∂xi∂xj
F (s, Y (s)) d⟨Zi, Zj⟩s

for all t ∈ [0,∞[.

Corollary A.10. Let k ∈ N and let (X(t))t≥0 be a process satisfying SDE (2.1) for

every t ≤ τ k := inf
{
t ≥ 0

∣∣X(t) /∈ Dk

}
∧k. Suppose that the assumptions from Section

2.1 are ful�lled and that F ∈ C1,2
(
R+ ×D;R

)
. Then we have P -a.s.

F (t,X(t)) = F (0, X(0)) +

∫ t

0

∂

∂t
F (s,X(s)) ds

+
d∑

i=1

∫ t

0

bi(s,X(s))
∂

∂xi
F (s,X(s)) ds

+

∫ t

0

⟨
∇xF (s,X(s)), σ(s,X(s)) dW (s)

⟩
Rd

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

(σσT )ij(s,X(s))
∂

∂xi∂xj
F (s,X(s)) ds

for all t ∈ [0, τ k].

Proof. By satisfying SDE (2.1), we know that (X(t))t≥0 is a semimartingale with the

representation Y0 := X(0), B(t) :=
∫ t

0
b(s,X(s)) ds and Z(t) :=

∫ t

0
σ(s,X(s)) dW (s)

for t ∈ [0, τ k] from Theorem A.9. Note that (Z(t))t≥0 is a continuous local martingale

by construction of the Itô integral and (B(t))t≥0 is of bounded variation by A1).
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Indeed, we obtain

sup
Π

∑
i : si+1∈Π

∥∥B(si+1)−B(si)
∥∥
Rd = sup

Π

∑
i : si+1∈Π

∥∥∥∫ si+1

si

b(s,X(s)) ds
∥∥∥
Rd

≤
∫ t

0

∥∥b(s,X(s))
∥∥
Rd ds ≤

∫ t

0

Mk(s) ds <∞,

where Π is a partition of [0, t]. Furthermore, we have

Bi(t) =

∫ t

0

bi(s,X(s)) ds and Zi(t) =

d1∑
k=1

∫ t

0

σik(s,X(s)) dW k(s)

for i = 1, . . . , d. Therefore, we use

dBi(s) = bi(s,X(s)) ds as well as dZi(s) =

d1∑
k=1

σik(s,X(s)) dW k(s)

and compute the covariation

⟨Zi, Zj⟩s =
⟨ d1∑

k=1

∫ ·

0

σik(r,X(r)) dW k(r),

d1∑
k̃=1

∫ ·

0

σjk̃(r,X(r)) dW k̃(r)
⟩
s

=

d1∑
k=1

d1∑
k̃=1

∫ s

0

σik(r,X(r))σjk̃(r,X(r)) d⟨W k,W k̃⟩r︸ ︷︷ ︸
= δkk̃ dr

=

∫ s

0

d1∑
k=1

σik(r,X(r))σjk(r,X(r)) dr

=

∫ s

0

(σσT )ij(r,X(r)) dr,

where δkk̃ means the Kronecker delta of k and k̃. Hence,

d⟨Zi, Zj⟩s = (σσT )ij(s,X(s)) ds.

Finally, we write ∇x for the gradient in the second component and ⟨·, ·⟩Rd for the

Euclidean inner product. Hence,

d∑
i=1

d1∑
k=1

∫ t

0

∂

∂xi
F (s,X(s))σik(s,X(s)) dW k(s)

=

∫ t

0

⟨
∇xF (s,X(s)), σ(s,X(s)) dW (s)

⟩
Rd .

Theorem A.11 (cf. [RY99], Proposition 3.1 on page 146). Let (Y1(t))t≥0 and (Y2(t))t≥0

be continuous semimartingales on a probability space (Ω,F , P ). Then we have P -a.s.

Y1(t)Y2(t) = Y1(0)Y2(0) +

∫ t

0

Y1(s) dY2(s) +

∫ t

0

Y2(s) dY1(s) + ⟨Y1, Y2⟩t.

Proof. We refer to [RY99], Proposition 3.1 on page 146.
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A.3. Convergence

In this section we will state Lemma A.12 and A.13 about implications between the

di�erent modes of convergence of sequences of random variables, that are used in this

thesis. Furthermore, we will also prove Lemma A.14 and A.15, which we apply in the

proof of Theorem 3.7.

Lemma A.12 (Implications between modes of convergence, cf. [vdV98], Theorem 2.7

on page 10). Let (Ω,F , P ) be a probability space, (S, ρ) be a separable metric space

and let c ∈ S. Assume that Z and Zn, for n ∈ N, are S-valued random variables on

(Ω,F , P ). Then the following assertions hold.

i) Zn
P−a.s.−−−−→
n→∞

Z implies Zn
p−−−→

n→∞
Z,

ii) Zn
p−−−→

n→∞
Z implies Zn

d−−−→
n→∞

Z,

iii) Zn
d−−−→

n→∞
c if and only if Zn

p−−−→
n→∞

c.

Proof. We refer to [vdV98], Theorem 2.7 on page 10.

Lemma A.13 (cf. [vdV98], Theorem 2.7 vi) on page 10). Let (Ω,F , P ) be a probability

space and (S1, ρ1), (S2, ρ2) be separable metric spaces. Assume that Z1, Z1
n, for n ∈ N,

are S1-valued and Z2, Z2
n, for n ∈ N, are S2-valued random variables on (Ω,F , P ) such

that Zi
n

p−−−→
n→∞

Zi for i = 1, 2. Then we also have the convergence of the joint random

variable (Z1
n, Z

2
n), i.e. (Z

1
n, Z

2
n)

p−−−→
n→∞

(Z1, Z2).

Proof. (cf. [vdV98], Theorem 2.7 vi) on page 10)

Let ρ∗ be the metric on the product space S1 × S2 given by

ρ∗
(
(Xn, Yn), (X, Y )

)
:= ρ1

(
Xn, X

)
+ ρ2

(
Yn, Y

)
.

Then we have

P
[
ρ∗
(
(Z1

n, Z
2
n), (Z

1, Z2)
)
≥ ε
]
≤ P

[
ρ1
(
Z1

n, Z
1
)
≥ ε

2

]
+ P

[
ρ2
(
Z2

n, Z
2
)
≥ ε

2

]
such that the assertion follows by the assumed convergence of the individual sequences.

Lemma A.14. Let (an)n∈N be a [0, 1]-valued sequence and c ∈ [0, 1]. If for every subse-

quence (anm)m∈N of (an)n∈N there exists a subsequence (anmj
)j∈N such that lim sup

j→∞
anmj

≤

c, then lim sup
n→∞

an ≤ c.

Proof. Assume that d := lim sup
n→∞

an > c. Then we can choose a subsequence (anm)m∈N

such that |anm − d| ≤ d−c
2

for every m ∈ N, since d is an accumulation point. But then

there must exist a subsequence (anmj
)j∈N such that lim sup

j→∞
anmj

≤ c. That is impossible

by our choice of (anm)m∈N. Hence, lim sup
n→∞

an ≤ c.
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Lemma A.15. Let (Ω,F , P ) be a probability space, r ∈ N and di ∈ N for 1 ≤ i ≤ r.

For i = 1, · · · , r let
(
X i

n

)
n∈N be sequences of stochastic processes such that X i

n : Ω −→
C
(
[0, T ];Rdi

)
for every n ∈ N. Furthermore, assume that X i : Ω −→ C

(
[0, T ];Rdi

)
are

stochastic processes such that one of the following convergences

i)
(
X1

n, . . . , X
r
n

) d−−−→
n→∞

(
X1, . . . , Xr),

ii)
(
X1

n, . . . , X
r
n

) p−−−→
n→∞

(
X1, . . . , Xr),

iii)
(
X1

n, . . . , X
r
n

) P−a.s.−−−−→
n→∞

(
X1, . . . , Xr)

holds. In each of these cases we have for every q ∈ N with q ≤ r and every
{
j1, . . . , jq

}
⊆{

1, . . . , r
}
, where jl ̸= jℓ for l ̸= ℓ, that

i)
(
Xj1

n , . . . , X
jq
n

) d−−−→
n→∞

(
Xj1 , . . . , Xjq),

ii)
(
Xj1

n , . . . , X
jq
n

) p−−−→
n→∞

(
Xj1 , . . . , Xjq),

iii)
(
Xj1

n , . . . , X
jq
n

) P−a.s.−−−−→
n→∞

(
Xj1 , . . . , Xjq).

Proof. We consider the map

ϕ :
C
(
[0, T ];Rd1

)
× · · · × C

(
[0, T ];Rdr

)
−→ C

(
[0, T ];Rdj1

)
× · · · × C

(
[0, T ];Rdjq

)
,

(f 1, . . . , f r) 7−→ (f j1 , . . . , f jq),

which is a continuous function. Hence, by the continuous mapping theorems (cf. Theo-

rem A.1 and Theorem A.2) we obtain the assertion.
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A.4. Tightness

In this section we will consider some necessary facts concerning tightness. This includes

on the one hand the tightness criteria A.20 and A.21 as well as on the other hand the

important Lemma A.22 about tightness of joint distributions.

First of all, we recall the de�nition of a tight family of probability measures and

Prokhorov's theorem about the implications between tightness and relative compact-

ness.

De�nition A.16 (tight). A family M of probability measures on a metric space (S, ρ)

is called tight if for every ε > 0 there exists a compact set Kε ⊆ S such that

µ(Kε) ≥ 1− ε

for all µ ∈ M.

Theorem A.17 (Prokhorov). Let (S, ρ) be a metric space and M ⊆ M1(S) be a

family of probability measures. Then the tightness of the family M implies the relative

compactness of M. If S is a Polish space, these properties are equivalent.

Proof. We refer to [Dur96], Chapter 8.2 starting on page 276 and [Bil99], Theorem 5.1

on page 59 and Theorem 5.2 on page 60.

Lemma A.18. Let (S, ρ) be a metric space and S be the Borel-σ-algebra on S. If S is

separable and complete, then every single probability measure on (S,S) is tight.

Proof. We refer to [Bil99], Theorem 1.3 on page 7.

Let T ∈ [0,∞[ and d ∈ N. Then the space C
(
[0, T ];Rd

)
of continuous functions equip-

ped with the supremum norm ∥ · ∥∞ is a separable and complete normed space.

Now we de�ne the modulus of continuity that is used in the following tightness

criterion.

De�nition A.19 (Modulus of continuity). For every T ≥ 0, f ∈ C
(
[0, T ];Rd

)
and

δ > 0 de�ne a so-called modulus of continuity by

Wδ(f) := sup
s,t∈[0,T ]
|s−t|≤δ

∥f(s)− f(t)∥Rd .

Theorem A.20 (Tightness criterion). A sequence of probability measures (µn)n∈N on

C
(
[0, T ];Rd

)
is tight if and only if for every ε > 0 there exist constants n0 ∈ N, R > 0

and δ > 0 such that

i) µn

[{
f ∈ C

(
[0, T ];Rd

) ∣∣ ∥f(0)∥Rd > R
}]

≤ ε,

ii) µn

[{
f ∈ C

(
[0, T ];Rd

) ∣∣Wδ(f) > ε
}]

≤ ε

hold for every n ≥ n0.
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Remark. Observe that assertion ii) of Theorem A.20 can be stated equivalently with

possibly di�erent η, ξ > 0 instead of taking the same ε > 0, since ii) certainly holds for

ε = η ∧ ξ in that case.

Remark (cf. [Bil99], Theorem 7.3 and Equation (7.8) on page 82). We can restate the

assertions i) and ii) in a more compact form, i.e.

i') lim
R↑∞

lim sup
n→∞

µn

[{
f ∈ C

(
[0, T ];Rd

) ∣∣ ∥f(0)∥Rd > R
}]

= 0,

ii') lim
δ↓0

lim sup
n→∞

µn

[
Wδ > ε

]
= 0 for every ε > 0.

Proof of Theorem A.20. We refer to [Dur96], Theorem 3.4 on page 284 for a generali-

sable version of a proof for the space C
(
[0, 1];Rd

)
.

If we consider the distributions of stochastic processes with continuous sample paths,

we can restate condition ii) from Theorem A.20 in another di�erent way. The new

condition is closely related to the theorem of Kolmogorov-Chentsov.

Theorem A.21 (Tightness criterion for distributions of stochastic processes with con-

tinuous sample paths). Let (Ω,A, P ) be a probability space and (Xn)n∈N be a sequence

of stochastic processes with Xn : Ω −→ C
(
[0, T ];Rd

)
. If there exist some constants

α, β,K > 0 such that the inequality

E
[∥∥Xn(t)−Xn(s)

∥∥β
Rd

]
≤ K|t− s|1+α

is ful�lled for every n ∈ N and s, t ∈ [0, T ], then assertion ii) from the tightness

criterion A.20 holds for the sequence of distributions (PXn)n∈N.

Proof. We refer to [KS05], Theorem 4.10 and Problem 4.11 on page 63-64 or [Dur96],

Theorem 3.6 on page 284 for proofs in similar settings.

Finally, we state and prove the previously mentioned Lemma A.22 about the tight-

ness of joint distributions.

Lemma A.22. Let (Ω,A, P ) be a probability space, T ≥ 0, d1, d2 ∈ N and assu-

me that (Xn)n∈N, (Yn)n∈N are sequences of stochastic processes such that Xn : Ω −→
C
(
[0, T ];Rd1

)
and Yn : Ω −→ C

(
[0, T ];Rd2

)
for every n ∈ N. If both sequences of dis-

tributions (PXn)n∈N and (PYn)n∈N are tight, then the sequence of joint distributions

(P(Xn,Yn))n∈N is a tight family of measures on C
(
[0, T ];Rd1+d2

)
.

Proof. We will just verify the two conditions from Theorem A.20. Let ε > 0.

�i)�: Choose n1 ∈ N and R > 0 such that

P

[
∥Xn(0)∥2Rd1 >

R2

2

]
= P

[
∥Xn(0)∥Rd1 >

R√
2

]
≤ ε

2
and

P

[
∥Yn(0)∥2Rd2 >

R2

2

]
= P

[
∥Yn(0)∥Rd2 >

R√
2

]
≤ ε

2

(A.1)
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for every n ≥ n1. Then

P

[∥∥∥∥(Xn(0)

Yn(0)

)∥∥∥∥
Rd1+d2

> R

]
= P

[∥∥∥∥(Xn(0)

Yn(0)

)∥∥∥∥2
Rd1+d2

> R2

]
= P

[
∥Xn(0)∥2Rd1 + ∥Yn(0)∥2Rd2 > R2

]
≤ P

[
∥Xn(0)∥2Rd1 >

R2

2

]
+ P

[
∥Yn(0)∥2Rd2 >

R2

2

]
≤ ε

2
+
ε

2
= ε

follows from (A.1) for all n ≥ n1.

�ii)�: Choose n2 ∈ N and δ > 0 such that

P
[
Wδ(Xn) >

ε√
2

]
≤ ε

2
and P

[
Wδ(Xn) >

ε√
2

]
≤ ε

2
(A.2)

for every n ≥ n2. Then by using the monotonicity of the square function, it follows

P
[
Wδ

(
(Xn, Yn)

)
> ε
]

= P
[
Wδ

(
(Xn, Yn)

)2
> ε2

]
= P

[(
sup

s,t∈[0,T ]
|s−t|≤δ

∥∥∥∥(Xn(t)−Xn(s)

Yn(t)− Yn(s)

)∥∥∥∥
Rd1+d2

)2

> ε2

]

= P

[
sup

s,t∈[0,T ]
|s−t|≤δ

∥∥∥∥(Xn(t)−Xn(s)

Yn(t)− Yn(s)

)∥∥∥∥2
Rd1+d2

> ε2

]

= P

[
sup

s,t∈[0,T ]
|s−t|≤δ

(
∥Xn(t)−Xn(s)∥2Rd1 + ∥Yn(t)− Yn(s)∥2Rd2

)
> ε2

]

≤ P
[
Wδ(Xn)

2 +Wδ(Yn)
2 > ε2

]
≤ P

[
Wδ(Xn)

2 >
ε2

2

]
+ P

[
Wδ(Yn)

2 >
ε2

2

]
.

Hence by (A.2) we have

P
[
Wδ

(
(Xn, Yn)

)
> ε
]
≤ P

[
Wδ(Xn) >

ε√
2

]
+ P

[
Wδ(Yn) >

ε√
2

]
≤ ε

for every n ≥ n2. By taking n0 := max{n1, n2}, we �nish the proof.
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