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Introduction

Consider the R%valued stochastic differential equation

AX () = b(t, X (1)) dt + o (t, X () dW (1),

X(0) =€, (SDE)

where (W(t))t>0
(Fi)i>0 and & is an Fy-measurable random vector. Let b and o be Borel-measurable

is a d;-dimensional Wiener process with respect to a normal filtration

functions mapping from R, x R? into R and R respectively.

Then there exist well-known results about the existence and uniqueness of strong so-
lutions of the equation (SDE) under certain additional assumptions on the coefficients.
For example, D. W. Stroock and S. R. S. Varadhan state such a theorem in [SV79]
(cf. Chapter 5.1 starting on page 124) under the further assumptions that b(t, z) and
o(t,x) are Lipschitz continuous in  and bounded by a constant. In [Kry99| the results
(cf. Theorem 1.2 on page 2) are heavily based on the also well-known local weak mo-
notonicity and weak coercivity assumptions on the coefficients b and o. By assuming
the continuity of b(t,z) and o(t, z) in = as well as an integrability criterion in addition,
N. V. Krylov proves existence and uniqueness in that case.

In applications, for example in mathematical biology and financial mathematics, it is
often necessary to consider stochastic differential equations in a certain domain instead
of the whole space R?. Therefore, we have to introduce so-called non-ezplosion criteria
by which we can exclude that an explosion occurs, i.e. that a solution leaves the domain
in finite time.

The aim of this thesis is to present a more elaborate version of the article “Existence of
strong solutions for [t6’s stochastic equations via approximations” written by 1. Gyongy
and N. V. Krylov and published in the journal “Probability Theory and Related Fields”
in 1996 (see |GK96]), which concentrates on the study of the equation (SDE) in a
domain D C R? using the concept of Lyapunov functions as a condition to ensure
non-explosion.

The study of Lyapunov functions in the context of stochastic differential equations
in finite dimensions goes, among others, back to R. Khaminskii who considered the
stability of finite-dimensional stochastic differential equations in [Kha80] (in particular
Chapter 5.4. and 3.4). This book had originally been published in 1969 in Russian.

Part |I: Assumptions and results

In the first part of the thesis we introduce the three assumptions A1), A2) and A3),
which are of main importance for the further considerations and are slightly modified
in comparision to |GK96].

First of all, we assume that for some x > 0 the coefficients b and o are bounded
by non-random locally L'™-integrable functions Mj: R, —]0,00[ on the sets Dy
belonging to an ezhausting sequence (Dy)ren of bounded domains. Namely,



A1) There exists a sequence of bounded domains (Dy)geny C R? such that

.EngkJr]_ for all £ € N and UDk:D;

keN
o sup ||b(t,z)|lpe < Mi(t) and sup ||o(t, 2)||7, < My(t) for all k € N, ¢ € [0, k].
meﬁk meﬁk

Besides, we suppose in the crucial assumption A2) the existence of a Lyapunov function
V', which is the main condition to ensure that a solution of the stochastic differential
equation never leaves the domain D.

A2) There exists a non-negative function V € C*?(R; x D;R) such that
o LV(t,x) < M(t)V(t,xz) forallt >0,z € D,

e inf V(t,z) —— oo forall T < .
z€IDy, k—00
te[0,7)

Here, L is the differential operator associated with (SDE), which is given by

R 0 1< 0?2
L:=— i — + = Ti' ) A
5 +;bz(t’$)6ﬂ + 5 Z(aa )ij(t x>8:c18:1:3

2,7=1

and M is locally in L'*x (R+;]O,oo[). In addition, the initial value of the equation
(SDE) should be P-a.s. in D, i.e. we assume that

A3) PlceD] =1

holds.

Except for the Borel-measurability of the coefficients b and o we also have to make
two other additional assumptions in order to prove existence and uniqueness of a strong
solution of (SDE). We assume that b(¢,z) and o(t,x) are continuous in z € D as well
as that pathwise uniqueness holds. The pathwise uniqueness, which holds e.g. under
local monotonicity assumptions, will directly yield the uniqueness of a strong solution.
Hence, the important part of the main theorem is the existence.

For the proof we consider the so-called Euler “polygonal” approximations of the equa-
tion (SDE), which are defined as processes (X, (t))i>0, n € N, given by

X, (t) zf—{—/o b(s, Xn(kn(s))) d8~|—/0 o (s, Xp(kn(s))) dW (s),

where r,(s) =17, for s € [t7', ¢ [, and {0 =1t <t} <tf <--- <P <P, <...}isa
sequence of partitions of R such that the mesh tends to zero for n — oo and ¢ — oo
as ¢t — oQ.

Now the first main theorem (see Theorem 3.7), which is based on a theorem in
[GK96| (cf. Theorem 2.4 on page 148), states that there exists a process (X (t)):>0 such
that X, (¢) — X(t) in probability, uniformly in ¢ on bounded intervals, and that

(X(t))¢>0 is the unique solution of (SDE).



Part |: Structure of the chapters, references and own
contributions

In Chapter 1 we work out the mathematical preliminaries of this thesis, which include
the basic notations and definitions in the first section. Besides, we give a detailed
proof for a crucial lemma from [GK96| in Section 1.2 (see Lemma 1.14), that yields an
equivalent description for convergence in probability of a sequence of random variables
in terms of convergence in distribution. The necessary preparations for the proof are
taken from the book [Dud02| of R. M. Dudley.

The second chapter starts with the framework of the thesis. On the basis of [GK96]
we state the main assumptions A1) to A3) as well as the notion of a solution and
the concept of the Euler “polygonal” approzimations. Besides, we introduce the notion
of pathwise uniqueness from [GK96|. In the second section we prove that the non-
explosion criterion for solutions of the stochastic differential equation holds, i.e. we
consider a lemma from |GK96| (see Lemma 2.4). For the extended version of its proof
we in particular need It0’s formula and It6’s product rule, which, being cited from
[KS05] and [RY99], respectively, can be found in Section A.3 of the Appendix.

At the beginning of Chapter 3 we state and prove two helpful technical lemmas
(see Lemma 3.1 and 3.2) that are necessary for the proof of the first main theorem. We
finish the first section by stating the important Skorokhod representation theorem, while
referring for its proof to [Bil99]. In Section 3.2 we state a crucial lemma mentioned in
|GK96] about the convergence in probability of sequences of (stochastic) integrals (see
Lemma 3.6). The proof is a detailed and extended version using the basic idea of a
theorem from A. V. Skorokhod (see [Sko65] on page 32).

The third section contains the first main theorem and its proof (see Theorem 3.7),
which is a more elaborate version of the one given in [GK96|. In particular, a significant
part of the effort is the usage of tightness criteria to prove the relatively weak com-
pactness of sequences of probability measures via Prokhorov’s theorem. The applied
tightness criteria from the books [Dur96| of R. Durrett and [Bil99] of P. Billingsley are
gathered in Section A.4 of the Appendix.

We finish this chapter with a remark on the application of the first main theorem in
the case D = R? and Corollary 3.8 about the fact that local weak monotonicity implies
pathwise uniqueness.

The already mentioned Appendix, which can be found at the end of the thesis, al-
so includes plenty of basic theorems like continuous mapping theorems, a generalised
Young inequality, a generalised Minkowski inequality for integrals, Itd’s formula, Prok-
horov’s theorem and lemmas concerning the relationship between the different types of

convergence of random variables. The most important references in the Appendix are
[Dud02], [Dur96], |Bil99], [vdV98|, |[RY99| and [KS05|.



Part Il: Assumptions and results

In the second part of the thesis, i.e. Chapter 4 and 5, we change the assumptions from
the first part slightly with the aim that we do not have to assume the continuity of the
drift coefficient b anymore.

First of all, we add a fourth assumption, the so-called non-degeneracy condition A4)
for the diffusion coefficient o, to A1), A2) and A3). Namely, we assume:

A4) For every k € N the domain Dy, is bounded and convex and

d d
D (00" )it 2)AN > e Mi(t) Y [N
ij—1 i1

holds for every t € [0,k], x € Dy and \; € R for i = 1,...,d, where g, > 0 are
some constants.

Then it is claimed in [GK96| (cf. Theorem 2.8 on page 149) that in this case
(Xn(t)))i>0 converges in probability, uniformly in ¢ on bounded intervals, to a unique
solution (X ()):>o of the equation (SDE) under the further assumptions that o(¢, x) is
locally Holder continuous in x with some exponent « €]0, 1] and in addition, if o # 1,
that the pathwise uniqueness holds for (SDE). This second main theorem is stated as
Theorem 5.2 in Chapter 5.

Part |l: Structure of the chapters, references and own
contributions

In the fourth chapter we start with the properties of positive definite matrices in Section
4.1 and follow the book |[HJ85] of R. A. Horn and C. R. Johnson as a reference.

For the proof of the second main theorem we have to consider Theorem 4.8 (see
also Theorem 4.2 in [GK96] on page 153) about estimates on the transition probability
density, which can be found in the third section of Chapter 4. In order to show these
estimates we crucially need auxiliary estimates from Lemma 4.7 in Section 4.2 (see also
Lemma 4.1 in [GK96] on page 152) at first.

We tried to follow the proof of Gyongy and Krylov given in [GK96], but could not
confirm the steps of their estimates on page 153. In fact, it seems that the first step of
the inequalities may not be fulfilled for any ¢t > 0 with a constant N independent of .
Namely, the term

exp (= {(a+a) ™y — ).y — )

(cf. [GK96| on page 152 for the definition of p,(z,y)) is estimated from above by

exp ( — w> for a constant NV, which should be independent of the time variable
t.



This implies that

2
_ y—T
(fa+ a0) (g~ 2),y — 2 > 12 e

and, therefore, a +a; < Nt Id as well would have to hold. But by assumption we only
know that the inequality et Id < a < Kt Id is fulfilled for the symmetric matrix a
and that a; is the covariance matrix of an unspecified d-dimensional Gaussian vector
1 with zero mean. Hence, we could not manage to prove that a; as well as a + a; are
bounded from above by Nt Id for a constant N independent of ¢.

Therefore, we had to modify the proof and estimate the covariance matrix a; by its
maximal and minimal eigenvalue. In this case we could verify the assertion of the lemma
and prove the same estimate but with a constant depending on these eigenvalues.

The problem with this adjusted estimate becomes clear in the proof of Lemma 4.8.
There we show that we cannot avoid that the constants may depend on the time
variable since the estimates for the covariance matrix depend on it in this case. The
independence would be necessary for following up the idea of the proof presented in
|GK96].

Hence, we are not able to finish the proof of Lemma 4.8 completely, but we clarify
the occurring difficulties instead and give an extended version of the proof up to this
point.

The fifth chapter contains the second main theorem (see Theorem 5.2) with the
additional assumption A4). In order to keep this thesis within reasonable length, we,
however, do not present its proof and refer to [GK96| instead.
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1. Mathematical Preliminaries

In this first chapter we will on the one hand fix the most important basic notations used
in this thesis and besides recall some definitions from probability theory. On the other
hand we will also prove the crucial Lemma 1.14 concerning an equivalent description
for convergence in probability of a sequence of random variables by using convergence
in distribution of pairs of subsequences to an element on the diagonal.

1.1. Basic notations and definitions

For a topological space U the expression B(U) will always denote the Borel-o-algebra
of U. A map f: Uy — U, between topological spaces U; and U, is said to be Borel-
measurable if it is B(U;)/B(Us)-measurable.

Let (S, p) be a metric space. For y € S and € > 0 we define

B.(y) = {x € S| p(z,y) < e}

to be the open ball of radius € centered at point y and denote the corresponding closed
ball by Be(y) := {z € S| p(z,y) < e}. Furthermore, we write || - ||z« for the Euclidean
norm (of course: |-| = || - ||g1) and (-, -)ga for the Euclidean inner product on R%. From
now on the interval [0, co[ will be also denoted by R..

Let T € R.. In the following we will consider the space C([0,T]; R?) of continuous
functions from [0, 7] to RY. Usually this space is equipped with the supremum norm
|| - oo defined by

[flloo :=sup [|f(£)]lre.

te€[0,7)

Then C([O, T};]Rd) is a separable and complete normed space. The separability follows
from the fact that polynomials with rational coefficients form a countable dense subset,
and for the completeness we refer for example to [Bil99| on page 11, where a proof for
the space C'([0,1];R) can be found.

For m,n,a € N and an open set A C R™ we denote by C*(A;R") the space of
a-times continuously differentiable functions f: A — R". We also use the notation
CP(Ay x Ay; R™) for functions mapping from a domain A; x Ay € R™ xR™? to R" that
are a-times continuously differentiable in the first and S-times in the second variable,
where my,my, 8 € N as well. Besides, for 1 < p < oo we denote by LP := LP(A;R)
the space of equivalence classes of p-th power integrable, measurable functions from
A C R™ to R equipped with the LP-norm

1l = ( / If(rc)l”dw);-

In the case p = oo we consider the essentially bounded, measurable functions for the
space L°°.



Furthermore, we introduce the notation R™*™ for the space of n x m-matrices with
R-valued entries. For A € R"*™ we define the Hilbert-Schmidt norm || - ||, by

1A, == ) 1Aul%
i=1 j=1
where the subindex Ly refers to the Hilbert-Schmidt operators. In addition, we write
Id for the d x d unit matrix as well as AT for the transpose, det A for the determinant
and tr A for the trace of a matrix A as usual.

The space of all probability measures on a measurable space (U, B(U)) will be denoted
by M1(U)

Given a subset B C U of a topological space U, we write B¢ for the complement,
B for the closure and 0B for the boundary. Besides, we define inf () := oo as usual.
Moreover, we set dist(z, B) := inf {||z—z||g» | 2 € B} as the distance of a point z € R"
to a set B C R".

Finally, we have to fix the notation for partial derivatives. Let m,n € N and f €
CH?(R; x R™;R"™). Then we write 2 f(t,z) for the partial derivative with respect to
the time component, 25

) Ot
8x‘?—(;cjf(t, x), 1 <i,7 < m, for the second-order mixed partial derivative with respect

f(t,z), 1 <i < m, for the i-th spacial partial derivative and

to the i-th and j-th spacial component.
Now we can recall some important basic definitions from probability theory, begin-
ning with the distribution of random variables.

Definition 1.1 (Distribution of a random variable). Let (2, F, P) be a probability
space, (U,B(U)) be a measurable space and X : Q — U be a random variable. Then
define the distribution of X by Px := Po X1,

In particular, we write N(m,X) for a normal distribution with mean vector m and
covariance matrix X in the following. We will also need the marginal distributions of a
joint random variable.

Definition 1.2 (Marginal distribution of a joint random variable). Let n € N, (2, F, P)
be a probability space and let (Ui, B(Ui)), for 1 <i < n, be measurable spaces. Suppose
in addition that X = (X1, ..., X"): Q — Ul x---xU" is a joint random variable with
distribution Px. Then, for any 1 < k < n and every subset {iy,...,ix} C {1,...,n}
with 1 # ig for 1 # {, the distribution Pxi,  xuy is called marginal distribution of X.

Recall that for an index set I, a probability space (£2,F,P) and a measurable
space (U,B(U)) the stochastic process X is the family (X(t))td of random variables
X(t): Q@ — U. Of course, we can think of X as the map

‘IxQ—>U
(tw) — X(tw)

as well. Now we can specify the notion of finite-dimensional distributions of a stochastic
process.



Definition 1.3 (Finite-dimensional distribution of a stochastic process). Let (2, F, P)
be a probability space, (U, B(U)) be a measurable space and I be an index set. Suppose
that X : I xQ — U is a stochastic process. Then for any k € N and every ty, ...ty € 1
the distribution P x(,),.. x(t,)) 5 said to be a finite-dimensional distribution of X.

A probability space (2, F, P) is called complete if for every N € F with P[N] =0
and for all N' C N we have N’ € F, i.e. every subset of a P-zero set in F is again
contained in F. By a filtration (F;):>o we mean a family of sub-o-algebras of F such
that we have F, C F; for s <'t.

Definition 1.4 (Stochastic basis, cf. [PR07| on page 121). We call (2, F, P, (F¢)t>0)
a stochastic basis if (2, F, P) is a complete probability space and (F;)i>o is a normal
filtration, i.e. (Fi)i>o is right-continuous and Fo contains all P-zero sets.

Next, we clarify the concept of equality of two stochastic processes that we will use
later in this thesis when it comes to the uniqueness of a solution of the considered
stochastic differential equation.

Definition 1.5 (P-indistinguishable). Let (X(t))t>0 and (Y(t))t>0 be two stochastic
processes on a probability space (0, F, P) taking values in a measurable space (U, B(U)).

Then they are called P-indistinguishable if
Plx@)=Y(@®), vt > o} ~1.

At this point we have to emphasise that whenever a P-a.s. continuous stochastic
process is given, we can replace it by the altered and P-indistinguishable process which
is continuous for every w € (). This basic idea is stated in the following remark and
will be used tacitly in future.

Remark (Continuity of stochastic processes). Let (2, F, P) be a complete probability
space and X be a P-a.s. continuous stochastic process taking values in a measurable
space (U, B(U)). Then the set

Qp = {w €N ‘ t — X(t,w) is not continuous}

is a measurable P-zero set, i.e. P[] = 0, by the completeness of (2, F, P). Therefore,
we can always consider the process given by

S X(w) forwe Q\ Q,
X (- =
() {O for w € Q,
which is in fact continuous for every w € €.

Moreover, we should recall the notion of convergence of random variables, where we
can also introduce the notation of weak convergence of probability measures at first.



Definition 1.6 (Weak convergence of probability measures, cf. [Bil99], page 7).
Let U be a topological space and let p, p,, for n € N, be probability measures on
(U, B(U)). We say that (ji,)nen converges weakly to i if

[ ran— [ 1au

for every bounded function f € C(U,R), and denote the weak convergence of probability
measures by ft, — [i.

n—o0

Definition 1.7 (Convergence of random variables). Let (2, F, P) be a probability space
and (S, p) be a separable metric space. Let Z and Z,, for n € N, be S-valued random
variables on (0, F, P). We say that

i) (Zn)nen converges P-a.s. to Z if

P[ lim p(Zn, Z) = 0} —1,

n—oo
. P—a.s.
and denote this by Z, —— Z,
n—oo

i) (Zn)nen converges in probability to Z if for every € > 0 we have

lim P[p(Zn, Z) > s] =0,

n—oo

and write Z, —— Z,

n—o0

i1i) (Zn)nen converges in distribution (or weakly) to Z if

PZnL)Pz,

n—00

and denote this by Z, Ny

n—0o0

For some important basic lemmas concerning the relationship between the different
types of convergence of random variables we refer to Section A.3 in the Appendix.

Besides, we also mention the definition of Polish spaces, which we will use in the
following Section 1.2.

Definition 1.8 (Polish space, cf. [Kle06|, Definition 13.1 on page 235). A topological
space s called Polish if it is completely metrisable and separable.

Now let (2, F, P, (F:)i>0) be a stochastic basis. First of all, we recall the notion of
bounded variation of a process (B(t));>0. Let t > 0 and let II = {0 =5)< 85 <---<
Sm =t} for some m € N be a partition of [0,¢]. Then B is of bounded variation if

sup 37 [Blsisn) = Blsi)e < o

i1 si41 €11

for every t > 0 (see e.g. |[KS05| on page 32). Moreover, we recall the definition of a
continuous local martingale (up to 0o).

10



Definition 1.9 (Continuous local martingale, [KS05], Definition 5.15 on page 36).
A continuous, (Fy)-adapted process (Z(t))i>o0 with Z(0) = 0 P-a.s. is said to be a
continuous local (Fi)-martingale (up to o) if there exists a non-decreasing sequence of
(F2)-stopping times (T,)nen such that (Z(t A 1,))
for every n € N and

0 18 a continuous (Fy)-martingale

P[lim Tn:OO] =1.

n—oo

Finally, we can give the definition of a continuous semimartingale.

Definition 1.10 (Continuous semimartingale, cf. [RY99|, Definition 1.17 on page 127).
A continuous semimartingale (Y (t))t>o is an (F;)-adapted process which has P-a.s. the
decomposition

Y(t) =Yy + Z(t) + B(t)

for everyt > 0, where (Z(t))i>0 is an (F;)-adapted continuous local martingale,(B(t))i>o
is a continuous, (Fi)-adapted process of bounded variation and Yy is an Fo-measurable
random vector.

11



1.2. A characterisation of convergence in probability

For the proof of the previously mentioned Lemma 1.14, we first have to clarify how to
metrise a certain space of random variables with respect to convergence in probability.
The following considerations are based on Dudley’s Chapter 9.2 in [Dud02].

Let (2, F, P) be a probability space and (U,U) be a measurable space. Then denote
by 5(9,]—"; U, L{) the set of all F/U-measurable functions from € to U. Furthermore,
let S(Q,}",P; U, Z/l) be the set of all equivalence classes of elements of E(Q,}"; U, Z/{)
with respect to P-a.s. equality.

Definition 1.11 (Ky Fan metric, cf. [Dud02]| on page 289). Let (2, F, P) be a proba-
bility space and (S, p) be a separable metric space. Then define the map p by

X, Y):=inf{e > 0|P[p(X,Y) >¢] <e}
for any X,Y € E(Q,]:; S,B(S)).

We note at this point that p is only a semimetric (or pseudometric) on € (Q, F: S, B(S))
because the coincidence axiom is not fulfilled due to matters of P-a.s. equality. On
S(Q,}", P: S,B(S)) then again, p is in fact a metric as it is stated in the following
theorem and, therefore, said to be the Ky Fan metric.

Remark (cf. [Dud02] on page 289). Note that the definitions of P-a.s. convergence
and convergence in probability are unaffected by replacing random variables by P-a.s.
equal ones. Hence, these modes of convergence from Definition 1.7 are also defined on

E(Q,F,P;S,B(S)).

Theorem 1.12 (cf. [Dud02], Theorem 9.2.2 on page 289). Let (Q2, F, P) be a pro-
bability space and (S,p) be a separable metric space. Then the map p is a metric
on c‘j(Q,]:; S,B(S)), which corresponds to convergence in probability, i.e. a sequence
(Zp)nen of random variables converges in probability to Z if and only if p(Z,, Z) —

n—oo
0.

Proof. We refer to [Dud02|, Theorem 9.2.2 on page 289. O

Remark. The infimum in this definition of the Ky Fan metric is always attained. For
further details we refer to [Dud02] on page 289.

Finally, we can also show the completeness of (é (Q,]—", P; E,B(E)),ﬁ) for a Polish
space (E, p).

Theorem 1.13 (cf. [Dud02], Theorem 9.2.3 on page 290). If (E, p) is a Polish space
and (Q, F, P) is a probability space, then E(Q,]:, P B, B(E)) is complete with respect
to the Ky Fan metric p.

Proof. We refer to [Dud02], Theorem 9.2.3 on page 290. O

12



After these preparations we can state Lemma 1.14, which is one of the fundamental
ideas for the proof of the main theorem (cf. Theorem 3.7) in Section 3.3. Using this
observation, which has been stated by Gyongy and Krylov in |[GK96|, we can prove
convergence in probability of the Euler “polygonal” approrimations to a solution of the
stochastic differential equation later.

Lemma 1.14 (cf. [GK96], Lemma 1.1 on page 144). Let (E,p) be a Polish space
equipped with the Borel o-algebra B(E) and D := {(z,y) € E X E | x =y}. Suppose
in addition that (Z,)nen 18 a sequence of E-valued random variables on a probability
space (), F, P). Then the following assertions are equivalent.

i) There exists an E-valued random variable Z such that Z, —— Z.

n—o0

ii) For every pair (an, Zﬁl) of subsequences of (Z,)nen there erists a subsequence

leN
(2k)ken = (ka, ka)keN such that z ﬁ z for a D-valued random variable z.

Proof. (cf. [GK96| on page 145)

“1) = 1) Let Z, ﬁ Z for an E-valued random variable Z. Then every subse-
quence of (Z,)nen converges in probability to Z. Besides, we also have the convergence
in probability of pairs of subsequences (cf. Lemma A.13 in the Appendix). Hence, z is

given by (Z, 7). Since convergence in probability implies convergence in distribution
(cf. Lemma A.12 ii) in the Appendix), the assertion holds.

“i1) = i) Let Z, for n € N be the equivalence class related to Z,. Then we pro-
ve the following claim.

Claim (1). (Z,)nen is a Cauchy sequence in (S(Q,}", P: E7B(E)),ﬁ).

For convenience we write Z,, for the representative of the equivalence class. Since the
convergence in probability and the definition of the Ky Fan metric are well-defined,
the calculations are independent of the choice of the representative.

Proof of the Claim (1). Assume that (Z,),en is not a Cauchy sequence, i.e. there exists
an € > 0 such that for all [ € N there exist m,m’ > [ such that p(Z,,, Z,,) > €. Hence,
we can find subsequences of (Z,),en such that

ﬁ(anZﬁz> > € (1'1)

for every [ € N. Then there exists a subsequence (z)gen = (ank, ka)keN such that
2k % 4 2 for a D-valued random variable z by assumption.

k—o0

By the continuous mapping theorem (cf. Lemma A.1 in the Appendix) we know that

f(zx) SN f(2) holds for any continuous function f between metric spaces. Since
n—oo

ExE— Ry,

a (z,y) — p(z,y)

13



is continuous and p(z) = 0, we have for the sequence (p(zk))keN of random variables

that p(zx) —% 5 0. At this point we need the separability of E to ensure that p(z) for
n—oo
k € N are random variables as desired. Details can be found in [Dud02| on page 287
and for example in [Bil99] on page 27 or in |[Kle06] on page 125. Then it follows that
p(zr) —— 0
k—o0
holds due to the fact that convergence in distribution to a constant implies convergence

in probability to this constant (cf. Lemma A.12 iii) in the Appendix).
Consequently, ﬁ(ank, Zﬁlk) k—> 0 by the definition of the Ky Fan metric. That is a
—00

contradiction to the assumed inequality (1.1). O

By the completeness of (S(Q,}", P: E,B(E)),ﬁ) (see Theorem 1.13) we can conclu-
de the convergence of the Cauchy sequence (Z,),en. Now Theorem 1.12 implies that
(Zn)neN converges in probability to some Z € é(Q, F,P;E, B(E)) Therefore, we cer-
tainly obtain that the sequence (Z,),en converges in probability to an E-valued random

variable Z. Hence, the assertion is fulfilled. 0
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2. Framework

At the beginning of this chapter we will state the three main assumptions A1), A2)
and A3) for the considered stochastic differential equation (shortly: SDE), which we
use hereafter in the whole thesis. In addition, we will introduce the so-called Fuler
“polygonal” approximations and the notion of a solution of the SDE. Besides, we define
the notion of pathwise uniqueness for the SDE in the same way as it is done in [GK96].

In the second section we will prove the “non-explosion” Lemma 2.4, which ensures
that solutions of the SDE never leave a given domain, what makes it the crucial lemma
of this chapter.

2.1. Assumptions

The following assumptions and definitions are based on the article [GK96] by Gyongy
and Krylov, but we have changed for example A1) and the assumed integrability of
the functions M and My, k € N, slightly.

Let (Q,F, P, (F;)i>0) be a stochastic basis and d,d; € N. Consider the R%valued
SDE

dX(t) =0b(t, X(t))dt + o(t, X(t)) dW (2),
X(0)=¢

in a domain D C R? where (W(t))t>0
to (Fi)e>0 and € is an Fy-measurable random vector with values in D. Furthermore,

(2.1)

is a di-dimensional Wiener process with respect

b: Ry x D — RY,
o: Ry x D — R

are assumed to be Borel-measurable functions, and we define b(t,z) = 0 = o(t, z) for
z € R \ D, t € R,. Now we clarify the notion of a solution used in this thesis.

Definition 2.1 (Solution of equation (2.1)). Let (X (t))i>0 be a P-a.s. continuous, R%-
valued, (F;)-adapted process that satisfies P-a.s. the SDE (2.1) for allt € [0,00][. Then
(X (t))e>0 is called solution of equation (2.1).

Let x > 0 and let
M, My.: Ry, —]0, 00|,

for k € N, be locally L'*X(IR ;]0, oo[)-integrable functions. Then we can introduce the
following assumptions, which are of main importance for the whole thesis.

A1) There exists a sequence of bounded domains (Dy)reny € R such that

¢ D, C Dyyy forallk€Nand |J D, = D,

kEN
o sup [|b(t,2)|lge < Mi(t) and sup |o(t,z)]|7, < My(t) for all k € N, ¢ € [0, k].
xeﬁk meﬁk
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A2) There exists a non-negative function V € C*?(R; x D;R) such that

o LV(t,x) < M(t)V(t,z) for all t € Ry and = € D, where L is the differential
operator given by

P~ 0 1< 0?
L.=— bl t = = T 37 t, e
aﬁ; (t2) 50 * 2;(“ Jull:2) g g
o Vi.(T) := iglf) V(t,x) 00 for all T' < oo.
xre k —00
t€[0,T7]

A3) Pl¢e D] =1

Note that A1) is an assumption for the existence of an exhausting sequence for the
domain D, in which we demand some kind of boundedness of the coefficients b and
o by non-random locally L'™-integrable functions. Assumption A2) is said to be a
Lyapunov condition on the existence of a Lyapunov function V, which provides an
estimate for the differential operator L associated with equation (2.1). In particular,
that is central to the proof of Lemma 2.4, where we show that the occurrence of so-
called ezplosions can be excluded, i.e. that solutions of the SDE (2.1) never actually
leave the domain D.

Hence, we would like to emphasise that the definition of b and o outside of D is only
for convenience.

Additionally, we will consider the Euler “polygonal” approzimations of the SDE (2.1).
Therefore, we define a sequence of partitions of R, given by

0=t <t} <th<-- <t} <tl <..}

)

such that t! —— oo and that the mesh d,(7) tends to zero for every T' > 0, i.e.

1—>00

dn(T):= sup |tj, —t/| — 0.
i:t?  <T n—00

Now for every n € N let x,(s) := t7, for s € [t?,t7" ], and define the Euler “polygonal”
approzimations as the process (X, (t))i>o given by

X,(t) =¢ —l—/o b(s, Xy (kn(s))) ds —l—/o o (s, Xn(kn(s))) dW (s) (2.2)

for t € [0, 0o

Remark. Note that by assumption A1) and by the definition of b and o outside of D
both integrals on the right-hand sides of (2.2) exist for all ¢ € [0, co[. Indeed, we have

k k k
/ sup [[b(s, )z ds +/ sup [lo(s, 2|12, ds < 2/ My(s) ds < oo
0 0 0

mGEk meﬁk

for every k£ € N.
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Finally, we define pathwise uniqueness for the SDE (2.1) in the same way as it is

done in [GK96|. This property ensures, as an assumption in the upcoming Theorem
3.7, the uniqueness of the strong solution.

Definition 2.2 (Pathwise uniqueness for equation (2.1)). Let Py be the joint dis-
tribution of (W, &) given by equation (2.1). We say that pathwise uniqueness holds for
equation (2.1) if for any stochastic basis (Y, F', P', (F])i>0) carrying a dy-dimensional
Wiener process W' and a random variable &', such that

P(/W/,gf) = P(W@

is fulfilled, we have that equation (2.1) with W' and &' instead of W and & cannot have
more than one solution (up to P'-indistinguishability).

17



2.2. Non-explosion of solutions

At first we have to recall a lemma that is similar to Lemma 3.1.3 from [PR07] on page
44, which is an adaption of Chebyshev’s inequality including stopping times.

Lemma 2.3 (cf. [PRO7|, Lemma 3.1.3 on page 44). Let (Y (t))i>0 be a P-a.s. conti-
nuous, R -valued, (F;)-adapted process on a stochastic basis (2, F, P, (Ft)i>0). Suppose
that ~y is an (Fy)-stopping time, € €10,00[ and T > 0. Define

T.i=qAinf{t>0|Y(t) > €}

Then
1
Pl sup Y(t) 22,0 <y < T| < ZE|Y(m)Tgperer|.
t€[0,7] €
Proof. We refer to [PR07|, Lemma 3.1.3 on page 44. O

Now we can consider the previously mentioned Lemma 2.4, that is based on [GK96|.
It states that a solution of the SDE (2.1) never actually leaves the domain D.

Lemma 2.4 (“Non-explosion”, cf. [GK96|, Lemma 2.2 on page 147). Assume that
(X (t))e=0 is a P-a.s. continuous, R%-valued, (F,)-adapted process that satisfies the SDE
(2.1) for t <7, where T :=inf {¢t > 0| X(t) ¢ D}. Suppose moreover that the assump-
tions from Section 2.1 are fulfilled. Then P-a.s. we have T = 00.

Proof. (ct. |GK96|, Lemma 2.2 on page 147)
For k£ € N define the stopping times

" =inf {t > 0| X(¢) ¢ Dy} Nk

Then 7% 1 7 because of the assumptions D, C Dii1 forall k e Nand |J Dy = D
kEN
in A1). Furthermore, note that for every 7' €0, oo[ there exists a K € N such that

Vi(T) > 0 for all k > K since Vi(T) 00 by A2). Now we are going to prove the
—00

following claim.

Claim (1). For every T'> 0, 6 > 0 and k € N, such that Vi(T') > 0 and k > T, the

inequality

P[r* <T] < P[¢ ¢ D;] + P[WO@ = log (%ﬂ

* 5V:(T) =P (/OT M) dt) -

holds.

Proof of the Claim (1). First of all, we mention that by A3) the expression V(0,&) is
defined. Now let 7> 0, 6 > 0 and let k£ € N be such that V;(T) > 0 and k > T.

18



Then we have

Pl <T] < Pl < To6 ¢ D] + P < T.6 € DL V(0.6) 2 1og ()]
—|—P[7'k <T,§ € Dy, V(0,§) <log (%)}
Ple 0 + P[110.9 2 os (5]

_|_P[O <rh < T,v(0,¢) <log (%)]

(2.4)

since £ € Dy, implies 7% > 0. The latter implication holds because D}, is an open set
and X is P-a.s. continuous. In order to estimate P[0 < 78 < T,V(0,¢) < log($)], we

define
() = exp ( - /Ot M(s)ds — V(o,g)).

Applying It6’s product rule for semimartingales (cf. Theorem A.11 in the Appendix)
to y()V(t, X (1)) yields P-a.s.

)V (¢, X (1)) :7(0)V(O,X(O))+/O y(s)dv(s,X(s))Jr/O V(s,X(s))dv(s)

+ (). V(5 X))

for every ¢ € [0, 7%], where (y(-), V (-, X()))¢ = 0 since ~ is of bounded variation. Now
we use [t0’s formula (cf. Corollary A.10 in the Appendix) for V (¢, X (¢)), which gives
us P-a.s.

V(t, X(t) =V (0,X(0)) + /Ot %V(S,X(S)) ds
+Z/ s, X (s —V(s X(s)) ds
+/ <VxV(s,X(s)),a(s,X(s)) dW(s)>Rd

d

+QZZ/O ool (s, X (s ))axf}ax]v(s X(s)) ds

=1 j=1

for every t € [0,7%]. We compute

[ @avexe) - | v<s>§V<s,X<s>) as

0

+ ’y (s)) axiv<S’X(S>) ds

_|_

S— —

v(s) <V V s , X (s )),J(S,X(s)) dW(s)>Rd

ZZ/O v(s U(s X(s )) ax%ij(s,X(s)) ds

i=1 j=1

ISH
U

N —

+
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and
/0 V(s,X(s))dy(s) = —/0 V (s, X(s))v(s) M(s)ds.

Then, by using the definition of the differential operator L and assumption A2), we
have P-a.s. for every t € [0, 7¥]

OV (6 X(0)
=2 OVO.XO) + [ ALV (s X ds = [ MoV (5 X(5)) ds
+ /Ot (Y(s)VaV (5,X(s)), 0 (s, X(5)) AW (s)) g
<HOV(0.X0) + [ MRV (X)) ds = [ MRV (s, X () ds

+ / (1(8) V2V (5. X(5)) 0 (5. X (5)) AW ()

'

=:m(t)

=7(0)V (0, X(0)) +mf(t),

where m(t), t € [0,7"], is a continuous local (F;)-martingale with m(0) = 0.
Hence, for any (F;)-stopping time ¥ < 7% and for any sequence (¢s)sen of (Fi)-
stopping times with ¢, 1 7% such that m(t A ¢s), t € [0,7%], is a martingale for every

s € N, we have by Fatou’s lemma

E[Y(0)V (9, X(9)) Lperrery | < B[ lim 5(9 A 6V (9 A 6, X0 7 9,)) |

>0

< liminfE [’y(ﬁ A o)V (U N g, X (0 A ¢s>>i|

S§—00

< liminf E [V(O)V(O, &) +m(I A %)}

< 5 0v10.6] + e B[00

where we have used that V' and ~ are continuous and also that X is P-a.s. continuous
in the first step. Let R > 0 and ¢ := 7% A'inf {t > 0|~y(t)V (¢, X(t)) > R}. Then by
applying Lemma 2.3 it follows that

P| s 2V X () > R0 <7t < 7] < EPOVEXO)1pernen)
< 2 E[OV(0,0) 25)
<L
R
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holds since e 72 < % for every z € R and, hence,

E[4(0)V(0.6)] = E[exp (- V(0,)V(0,6)] <1
Note that for 0 < 7% < T we have

0 < Vi(T) = inf V(r a:) < V(Tk,X(Tk>) < sup V(T,X(r)) < 00,
fee[%Dﬁ rel0,7%]

where the finiteness is fulfilled since V is a continuous function and X is P-a.s. conti-

nuous. Now we can complete the estimate of the last summand in inequality (2.4) by
calculating

P[O <" <T,V(0,€) < log (%)]

:P-O<T'€§T,exp(—V(0,§)) >5}

_p :o <F < T () V(P X () > 5V (rF, X (7)) exp < _ /0 M(s) dsﬂ

<Pl0<T"<T, sup v(r)V(r,X(r))

rel0,7%]
>0 inf V(r X(r exp( / M(s )]
x€ODy

r€(0,T]

(2;)(15 inf V(lr X(r) eXp(/ M(s ds)

€Dy
exp(/ M(t dt)

TG[O T)
such that we obtain the required term for (2.3). O

Now it is left to show that inequality (2.3) implies the assertion of the lemma. Since
78 4 1 for k — oo, we have for every T > 0

Pl <T] = Plsup7* < 7] = P| ({{7* < T}] = lm P

N—oo
keN kEN

N
n {rf*<T
k=1

< lim sup P[Tk < T}

k—o0

by the continuity from above of P.
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Hence, we obtain

.. k
Plr < 7] < lygtimsup P < 7]

(2.3

5) lim lim sup (P (€ ¢ Di] + P[V(O,{) = log (%ﬂ

e ([ ) dt))

< Ple¢ D] +1im P[V(0.€) > log (5]

=0

o 1 g
+ 1;&)1 llgls$p SV (T) exp (/0 M (t) dt)7
where we have used that D, T D for kK — oo and therefore that

limsup P[¢ ¢ Dy] < P[limsup{¢ ¢ D}| =1— P[ligninf{ﬁ € Dy}]
k—o0 0

- —1-rP|UMsen] =1-rlse J N D4

neNk>n neN k>n

=1-P[¢ €liminf D] =1 - P[¢ € D] = P[¢ ¢ D]

holds by Lemma A.8 from the Appendix. In addition, lgﬂ]lp[V(O, €) > log(%)] =0 be-
cause for 6 | 0 we have log (3) &—0> co. Hence, P[V(0,&) > log(3)] &—0> 0 since V(0,&)

is a finite number. Furthermore, we have Vj(T) —— oo and, hence, 7= — 0.
k—o0 ©(T) koo

Therefore, P[T < T] = 0 for every T' > 0 and, hence, we conclude 7 = oo P-a.s. such

that the assertion is proved. O
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3. Existence and Uniqueness

In this chapter we will state and prove the first main theorem of this thesis (i.e. Theorem
3.7) about the existence and uniqueness of a solution for the SDE (2.1). But first of
all, we have to explain all further necessary preparations for this proof in the following
two sections.

3.1. Distribution of stopping times and Skorokhod's
representation theorem

At the beginning of this section we will consider the distribution of certain stopping
times related to random variables with equal distribution, that are defined on different
probability spaces. The reason for that is the usage of Skorokhod’s representation
theorem (see Theorem 3.3) in the proof of Theorem 3.7, due to which we have to
consider a change of the underlying probability space. Furthermore, we will also prove
Lemma 3.2 about an inequality concerning important stopping times for the proof of
Theorem 3.7.

Lemma 3.1. Let (2, F, P), (Q, F, ]5) be two probability spaces and let T > 0, k €
N. Suppose that YV: Q — C( 0,7); ) and Y: Q — C’([O,T];Rd) are stochastic
processes such that

Py = Py.

Let U C R? be an open and bounded set. Define ¥° :=inf {s € [0,T]|Y(s) ¢ U} Ak
and Tgc =inf {s € [0,T]|Y(s) ¢ U} A k. Then

Pye = Pye.

Proof. Observe that 77/° and Tgc are R, -valued random variables. Therefore, it suffices
to show the equality of their distributions on generating sets of B(R ). Hence, we have
to prove that

Plrl <t] = P[7¥" < ¢

for every t € R,.

Step 1: In this first step we construct an increasing sequence (U, )necn of compact sets

. . c
in order to approximate 7" .

Since U C R” is an open and bounded set, we can define a sequence (U,)nen of
compact sets by U, := {:z: e R? ! dist(z, UY) > %} Then the properties |J U, = U and
neN

U, C U, are fulfilled. Define the stopping times rgﬁ =inf {s € [0,T]|Y(s) & U, } Ak
for n € N.
Claim (1). We have P-a.s.

Ug Ue

Sup 7y = Ty .
neN

23



Proof of Claim (1). First of all, we note that it suffices to prove

supinf {s € 0T|Y ¢Un}123nf{s€[0,THY(s)¢U}J

neN
::7'7L =T
. Ug
since sup 7y = (sup Tn> AEk.
neN neN

“<” By construction U, C U and, hence, sup7, < 7.
neN

“>". We have to consider the inequality sup7, > 7 with respect to the following
neN

complementary events.

1) On {sup Tp > T} we are in the trivial case.
neN

2) Consider {sup Tp < T}. Then we have Y (7,,) € (| UF for every m < n. Hence, by
neN j=1
letting n — oo we obtain

m
sup Tn ﬂ

neN

for every m € N since Y is continuous. Therefore, Y (sup7,) € () UC U and,
neN JEN

hence, the inequality sup 7,, > 7 follows.
neN

Note that the analogous property for Y and P in Claim (1) holds as well.
Step 2: In this step we will prove that P sc = P 5c, where it suffices to show that
TY T.

Y

P [Tgﬁ < t} =P [Tgﬁ < t} is fulfilled for every t € R,..

To do this we observe that
Wri<ty= |J {Y@elfulk<t)
q€(0,¢[NQ

holds by using the continuity of Y. Then we write {q1, g2, ¢s, ... } for the countable set
[0,¢[NQ and obtain

N
U Y@ elUy} = U U{Y(Qi)GUnC}'
€[0,tNQ NeNi=1

Hence,

P[0 < 4] :P{ U U{v@) e Uf}u{k<t}}

NeN=1

= lim P{O{Y(qi) ceUS Uk < t}}

N—oo )
=1
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follows by the continuity from below of P. Now we apply the so-called inclusion-
exclusion principle (cf. [Bil95], Equation (2.9) on page 24), which states that for arbi-
trary sets A; we have

P { LNJ AZ} ﬁ;(—nj—l zgl{%}m P [QA} .

Hence, we can write
PlUtvia <76}
= fj(—nj—l > P @) Yie) € (U}

1<in <o <+ <i; <N

By using the fact that the equality of the distributions Py and 1357 implies the equality
of their finite-dimensional distributions, we obtain that

N N
P[U {V(g) € Uff}} = P{U V() € US}]
i=1 i=1
holds. Besides, {k < t} equals either () or the whole sample space such that in fact
- N . TN
Pl J{Y (@) €U u{k<t}y| = P[U{Y(qi) ceUSu{k< t}}
Li=1 : i=1

is fulfilled. Therefore, by also applying the calculation and arguments from above to

[ N _
the term P | |J {Y(q:) € US} U{k < t}], we get that
Li=1 J

P[Tgﬁ < t] = ]S[Tgﬁ < t]
holds.

Step 3: Finally, we will prove the assertion, i.e. that P[r/" < t] = P[Tg < t]is
fulfilled.

Since we have noticed in Step 1 that 77" = sup rgﬁ and besides for any n € N the
neN

. . U¢ 93 .
inclusions {TY”“ < t} C {75" < t} hold, the assertion

P[r{f St] :P[ﬂ {Tgfl St}} = lim P[Tg’c‘ §t} = lim P[Tg’i St]

n—oo n—oo
neN
- ﬁ{ﬂ (w0 < t}} — P[rY° <]
neN

follows by the continuity from above of P and P, where we have used the equality of
the distributions from Step 2. m
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Lemma 3.2. Let (2, F, P) be a probability space and let T > 0, k € N. Suppose that
YV,: Q — C’([O,T];Rd), for n € N, are stochastic processes such that

|V, — Y| = sup [|[Ya(t) =Y (t)||gg — 0 (3.1)

[O,T] n— o0
P-a.s. holds. Define the stopping times
v =inf {t € [0,T]| YV, (t) ¢ D} Ak and 74 :=inf {t € [0,T]| Y (t) ¢ Dy} \k.

v

::Tyn =Ty
Then we have P-a.s.

liminf 7% > 7£.
n—00 Yn =Y

Proof. First of all note that liminf T{}n = (lim inf Tyn) A k. Hence, it suffices to prove
n—o0 n—oo
that P-a.s.

liminf ry, > 7y
n—o0

holds. But we still have to distinguish different complementary events for this proof
because we only consider the processes on [0,7] and have set inf () := oc.

n—oo

1) On {lim inf 1y, > T} we are in the trivial case.

2) Now consider { liminfry, <T 7y < T}. Assume that liminf 7, < 7y, i.e. for some
n—oo n—oo

€ > 0 we have sup inf 7y, < 7y — ¢ and, hence,
teN 12t

infry <7y —¢
n>{

for every ¢ € N. Due to this boundedness we can find a subsequence (TYnS)SeN such
that

Y, — 70 (3.2)
§—00

for some 17y < 7v — €. Since

||Yns (TYn§) - Y<T0)||Rd S ||Yns (TYnS) - Y(T}/ns) |Rd + ||Y(7—Yns) - Y(TO)HRd
< sup [V, (t) = Y(O)[[re + |V (7v,,) = Y(70) [ ge,

t€[0,T] -
~ ~ - —>0 by (3.2)

S§—>00

—0 by (3.1)

where we have used the continuity of Y for the last summand, we obtain

Yo, (7v,..) - Y (70).

Observe, that Y, (v, ) € Df for every s € N by the definition of 7y, . Hence, we
have Y (75) € DY since D¢ is a closed set. Therefore, we obtain 7o > 7y, which
contradicts the inequality 70 < 7y — €.

26



3) Finally, we observe that by the same arguments as above we can prove that
{lim infry, <T, 7y > T} is a P-zero set.

n—oo

]

Now we have a closer look at Skorokhod’s representation theorem, which is of great
importance for the proof of Theorem 3.7 such that it is the second main idea apart
from Lemma 1.14. This version is a little less general than the one stated in [Bil99],
but it will still be sufficient in our framework.

Theorem 3.3 (Skorokhod’s representation theorem, cf. [Bil99|, Theorem 6.7 on page

70). Let (pn)nen and p be probability measures on a separable metric space (S, p) and

suppose that p, —— . Then there exist S-valued random variables Z,, n € N, and
n—o0

Z on a common probability space (2, F, P) such that
o P, = pu, foralln € N,

o PZ::U’;

° Znﬂ)Z.

n—oo

Proof. We refer to [Bil99], Theorem 6.7 on page 70. O
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3.2. Convergence in probability of (stochastic) integrals

In this section we state and prove Lemma 3.6 about the convergence in probability of
certain sequences of (stochastic) integrals. In particular, we consider the convergence
of stochastic integrals whose integrand and integrator are both a sequence. But first of
all, we need the following definition and lemma about Dirac sequences that are stated
in the book [Alt12] of W. Alt.

Recall that, for any A C R, the space of all infinitely differentiable functions
f: A — R which have a compact support supp(f) = {z € A ‘ f(z) #0} is deno-
ted by Cg° (A;]R).

Definition 3.4 ((General / Standard) Dirac sequence, cf. [Alt12], Definition 2.14 on
page 114). Let n € N.

i) A sequence (0¢)en in L*(R™;R) is called (general) Dirac sequence if

{—00

0p > 0,/ de(x)dx =1 and / d¢(x)dx —— 0 for every r > 0.
" R\ B, (0)

The last assumption holds for example if supp ((5g) C B,,(0) for a zero sequence
(T@)geN, 1.€. Ty m 0.

Let 6 € L*(R™R) be a function such that 6 > 0 and d(z)dz = 1. Fore >0

R’I’L
define the function

dc(x) := 5’”5(5). (3.3)

£

Then / de(x)dx =1 and / de(x) de — 0 for every r > 0 hold.
" R™\B;(0)

e—0

Hence, for every zero sequence (gx)ren, the sequence (0, )ken 1S a general Dirac
sequence in the sense of i). The family of functions (6:)ecjo,00[ @5 therefore called

Dirac sequence of 6.

iii) Let 6 € C3°(B1(0);R) be a function (extended on R™\ By(0) by 0) such that

5> O,/ d(z)dz =1 and supp(d.) C B.(0) for every e > 0,

where 6. is given by (3.3). Then (0:)ecjo,00] @5 called standard Dirac sequence.

Lemma 3.5 (cf. |Alt12|, Theorem 2.15 on page 115). Let Y be a Banach space, n € N,
1<p<oo, felLP (R"; Y) and let (8¢)een be a Dirac sequence. Then

i) ||FC+h) = fll ooy — 0 for [Rllen — 0, h € R™,

i) H(Sf *f = fHLP(R";Y) —0
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Note that d; % f denotes the convolution of the functions d;, and f, i.e. (6 * f)(z) :=
Sz 0e(z — ) f(y) dy.

Proof. We refer to |Alt12], Theorem 2.15 on page 115. O

Now we can consider the already mentioned Lemma 3.6, that we state more closely
related to our application than it is done in [GK96| (see Lemma 3.1 on page 151).

Lemma 3.6. Let T € [0, 00[ and let (2, F, P) be a probability space. Let Y;, for j € N,
and Y be stochastic processes on (S, F, P) with values in C([O, T}, Rd) such that P-a.s.

[V; =Yl = sup [[Y;(t) = Y (#)][pa —2 0 (3.4)

te[0,7) Jj—roo

holds. Assume furthermore that W;, for j € N, and W are d,-dimensional Wiener
processes on (2, F, P) with respect to normal filtrations FVi and FV taking values in

C([O,T];Rdl) such that P-a.s.

Jj—00

|W; = W|| = sup ||[W;(t) = W(t)||ga, —0 (3.5)
t€[0,T]

is fulfilled. Besides, the processes (Y(t))te[o 7 ond (Y}(t))te[o 7y are assumed to be ad-
W;
apted to (F, tW)te[O,T} and (F, )te[o,Ty

L' (Ry4;]0,00[) we then have the following assertions.

respectively. For a function M. being locally in

i) Let f: Ry X RY — R? be Borel-measurable in s € Ry and continuous in x € R%,
Suppose furthermore that

sup Hf(samed < Mloc{s)
zER4

for every s € [0,T]. Then we have
t ) t
/ f(s, Y](ﬁ](s))) ds — f(s,Y(s)) ds
0 J=oeJo
uniformly in t € [0,T).
ii) Let f: Ry X RY — R™% pe Borel-measurable in s € Ry and continuous in
z € RY. Suppose furthermore that

sup [[£(s,2)[17, < Mioe(s)
z€R4

for every s € [0,T]. Then we have
| £yt ami) o [ 1) awts)

J]—00 0

uniformly in t € [0,T).
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Proof of Lemma 3.6.

At first we observe that x;(s) —— s since the mesh of the partitions d;(7") tends to
j—oo

zero for j — oo. Therefore, we have P-a.s.

[V (k()) = Y(5) [ g < [1¥5(r5(5)) = ¥ (15;(9)) || ua + [[Y (15(5)) = Y(5) [ e

< sup HY}(T) — Y(T)HW + HY(/ﬁ]j(S)) — Y(s)HRd (3.6)
rel0,T7] — .
g . —
j—>—oo>0 by (3.4) Jmee

for every s € [0,T], where we have used the continuity of Y for the last summand.

“7)": Let € > 0. Then we have

liljrgsogpp t:Eé% /Otf(s,y}(/gj(s))) ds — /Otf(S’Y(s)) ds g > e]
< hlﬁsjp P /OT Hf(&y}.(,@j(s))) - f(s,Y(s))HRd ds > 5]

< é limsupE{/oT Hf(s,Yj(Fo](S))) - f(S,Y(S))‘

Jj—00

ds}
R4

by the Markov inequality. We can now apply the reverse Fatou lemma (cf. Lemma A.4

in the Appendix) by using that sup || f(s,z)||ge < Moc(s) holds for every s € [0, 7.
rcRd

Hence, by using the continuity of f in z € R?, we conclude

timsup | f (s, ¥; () = f (.Y (5)]|_ =0
Jj—o0 R
from (3.6). Therefore, the assertion
t t
lim P| sup / f(s,Yi(k;(s))) ds — / f(s,Y(s))ds|| >e| =0
J—roo te[o,7] || Jo 0 R4

follows.

“41)”: Tt suffices to prove that for every € > 0

limsup P| sup /t f(5,Y;(k;(s))) dW;(s) — /t f(s,Y(s)dW(s)| = 5] =0
Jj—00 t€[0,T7] 0 0 R4
holds.
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First of all, we have

Pl sm / F (s, Yk (5))) AW (s) - / f (s, (s)) dW(s) 2]
<P| s / f(87Yj(ffj(s>>)V—f(Sa3G<S>) dW(s) Rf%/
+\P Jup / f(s.Y5(5)) de(S): / f(s:Y(5) AW (s) >2]
Observe that -
=P s / £ (s, Y5(r5(5)) = £ (s, Y5(s)) dW;(s) R;gz]
g%]E d /0f(s,Yj(nj(s)))—f(s,Yj(s))de(S) Rd]

< Su] [ remme) - 66 o]

holds by using the Markov inequality in the second and the Burkholder-Davis-Gundy
type inequality (cf. Lemma A.5 in the Appendix) in the last step. In order to prove

lim sup Ijl = 0, we can now apply the reverse Fatou lemma (cf. Lemma A.4 in the Ap-
j—00
pendix) using the assumption sup || f(s,z)||7, < Mioc(s) for every s € [0, T]. Therefore,
z€R4
it suffices to conclude that

lim sup Hf(& Yi(k;(s)) = f(s, YJ(S))‘

Jj—o0

2
=0
Lo

holds. By using the continuity of f in the second component and considering

%0550 = Y5l < [¥5055() = Y+ [¥5(5) = Y ()]
H—ooﬂ;rby (3.6) j_)—ooﬂ)vby (3.4)

we obtain the convergence to 0.
Now we have to estimate the summand Ij2. Therefore, let (d;)sen be a standard Dirac
sequence in C§°(R;R) such that supp(d;) C B%(O) and define the function fy by

fols, Z(s)) = { f(s.2(s)) fors€[0,T],

0 else,

for s € R, where Z represents the stochastic processes Y; and Y. Then define

fe(s, Z(s)) = / Se(r —s) fo(r, Z(r)) dr.

R
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Note that the map s — f (s, Z(s)), s € [0,7], is now continuous since we consider
this convolution (see e.g. [Alt12], Definition 2.13 on page 112). By the definition of f,
we conclude that in fact

fe(s, Z(s)) = /0 Se(r —s) f(r, Z(r)) dr

holds. Then we have

Bep| sw | [ 6050) - fls V) are)| =
te[0,T] 0 R4
t t €
+P _tg[l(l)% /o fe(s,Y;(s)) dWj(s) —/0 fe(s,Y (s)) dW(s) g > A
::ng,é
+ P| sup / fg(S,Y(S)) — f(s,Y(s)) dW (s) > %]
_te[O,T] 0 R4
t 2
< g ap / F(5.:(6)) — ffs¥5(5)) A ]
€ t€[0,T 0 R4
2
+ J2 sup / fg s, Y(s f(s,Y(s)) dW (s) ]
t€[0,T) R4

by using the Markov inequality. An application of the Burkholder-Davis-Gundy type
inequality (cf. Lemma A.5 in the Appendix) yields

g _ 12 2
<= [/ Hf — fuls,Yi(9)]| ds]
, T2 r 2
+Ji+ = E / Hfg(s,Y(s)) — f(s,Y(s)) . ds| .
0 2
— 3
Observe that we can compute for the summand J}
T 2
Jp = E{/ H / 6e(r —s) fo(r, Y (r)) dr — f(s,Y(s)) 5 ds]
0 R 2

2
d'r) ds]
Lo

< [ [otr=9)|aty o) - s
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by using / d¢(z) dz = 1. Now we can split up the inner integral and obtain
R

E{AT(é&v—@HmMYv»—f@J%@)Mdﬁ2®}
—[ [ ([ (tr=9 v o) - 166,

0 Lo

2
+/ de(r — 8) dr) ds}
[o,T1¢ Lo

28] ["( [Tt =9 sy o) - s v, ar) o

(. J

+2E[/OTHf(s,Y(s))Hiz(/[O’T]c (5g(r—s)dr>2ds}

by using Young’s inequality in the last step. Note that for 0 < s < T' we have

/ do(r — s)dr = / de(r)dr < / de(r)ydr —— 0
[OvT]C R\[_sz_s} IR\Bmin{s,T—s}(O) =00

by definition. Hence, by using that sup || f(s,z)||7, < Mec(s) holds for every s € [0, T
z€RC
and applying Lebesgue’s dominated convergence theorem, we only have to consider the

first summand J}.

0 f(5Y()

Therefore, the transformation » — r+s followed by an application of the generalised
Minkowski integral inequality for p = 2 (cf. Theorem A.6 in the Appendix) yields

/OT </R]l[—s,:r—s}(7“) 8o(r)

: Hf(r—l— s, Y(r+s)) — f(s,Y(s))

(/R (/OT Loay(r + ) 6,(r)?

e+ s v +9) = (s, 709)

(/Rée(r) ( /R Lo,y (r + 5) Lo,y (s)

. Hf(r +5,Y(r+s)) = f(s,Y(s))

J} =T

2
dr) ds]
Lo

<E

1

2 3 2
ds) dr) ]
Lo

=E

2 3 2
ds) dr) ] .
Lo

Now we split up the first integral into B1(0) and R\ B1(0) for ¢ € N. Then we have
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on the one hand by using Young’s inequality

([, 0 ([ i+ v
| [+ sy 6+ 9) - s v)
([, a0 ([ tomte+
e
(/R\Bé@ o) / Mie(s) ) : ) ]

T 2
=4 / Mipe(s)ds (/ de(1) dr> — 0
0 R\B1(0) f=o0

since fR\Bl(O) do(r) dr - 0 by definition. On the other hand

([, 340 ([ 1m0+ v

1
e

E

2 3 2
ds) dr>
Lo

2

ds

Lo

2 3 2
ds) dr)
Lo

<2E

f(r +s,Y(r+ s))

(57 ()

<4E

E

2 3 2
ds> dr)
Lo

. Hf(r +5,Y(r+ s)) — f(s, Y(s))

=" (/Bg,m) e dr) (r:glﬁo) /]R Loy(r + 5) Loy (s)
=
. Hf(?" +5,Y(r+s)) = f(s,Y(s)) ; d5>]
<E| sup /R]l[07T1<7’+3)]1[0,T](5)

reB1 (0)
o

: Hf(r +5,Y(r+s)) — f(s,Y(s))

2

ds] —0
Lo 0—00
holds by Lebesgue’s dominated convergence theorem. The claimed convergence is ful-
filled because we have

]1[—l,l}(7') / Lo (s) Loy (r + s)
o’ e R

' Hf('r’ +5,Y(r+s)) = f(s,Y(s))

2

ds —— 0
L2 0— 0
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by Lemma 3.5 i). In addition, an integrable dominating function is given by

‘f(?“%—s,Y(r—l—s)) — f(s,y(s))‘ 2 iy

Lo

sup /]1[077“} (T’ + S) 1].[077“] (S)
reB1(0) JR

[\

v

<2 (Mioe(r+8)+ Mioe (s))

T
§2/ Mipe(s) ds.
0

Analogously, we obtain for the summand Jj,

lim lim limsup le ‘
000 L—00 o0 ’

= lim lim limsupE[/OT Hf(s,Y](S)) — fﬁ(S,Yj(S))‘

0—00 {—00 j—00
2
ds
Lo

2
ds}
Lo

< lim lim E[/OT Hf(s,Y(s)) — fe(s,Y(s))

0—00 f—00

=0,

where we have applied the reverse Fatou lemma (cf. Lemma A.4 in the Appendix) in
the second step. An integrable dominating function is given by

2

| £(s:v3(9) = fuls,v3(9)]

2
2

< s - [ o =) £ Y0))

; ) (/OT@(T _ %) Hf(r, Y:(r))‘

T
< 2 Mioe(s) + 2T sup (54(5)2 / Moo (r) dr,
€eR 0

2
dr)
Lo

<2 /(5. 5(5)),

where we have used Young’s inequality in the second as well as the Cauchy-Schwarz
inequality and the continuity of d; in the last step. Hence, it remains to note that

2

lim sup Hf(s, YJ(S)) — fz(& YJ(S))’

Jj—00

=) - )

Lo

holds by using the continuity of f and f; in their spacial component.

For the summand Jj%g we need a slightly different argument. We will follow the main
idea of the proof of the theorem on page 32 in |Sko65| by using the continuity of the
coefficients and the representation of the stochastic integral in this case.
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Let (7')ien be a sequence of partitions of [0, 7] given by {0 =r{ <7} <--- <rl =
T} such that sup ’7”1+1 — 7 P 0. Then consider
z+1

! €
Jjg,e:P sup /fe VVj(S)—/ fe(s,Y(s)) dW(s)|| > 6]
tE[OT 0 Rd
< P| sup / s W (s)
te[OT
—Zfz 7 Y5 ( Wi(rl A t) — Wy(ri At)) > =
rtenl Rd 18
= V},z,z
+ P sup || D f(r Y00) (Wil A) = Wi At)
t€[0,T] el
- Z fg(Ti,Y(rﬁ)) (W<Ti+1 At) = W(r /\t)) > 13
7‘§€7r Rd
= ng,e,l
+ P| sup Fe(rt, Y (r))) (W (riy At) — W(ri At))
t€[0,T] lenl
! €
— | fe (S,Y(s)) dW (s) > —
0 R4 18
h _.v3 g
Tl
For the summand K7, we have
[ r£+1/\t t c
Kip=P| sup | > fo(rl,Y(r}) / AW (s) — / fe(s: Y () AW (s)|| > o
LTI rint 0 R
_ . | ]
= P| su / I f - — fo(s,Y(s)) dW (s > —|.
o | o <§rz Al Je Y >)> t5, Y () AW re 18

Applying the Markov inequality yields

L [ <Z gt (8) (e Y) ) = S5, Y () AW () 2@]
§6§E / H(Zl Ly fo(rl, Y (r ))) — fe(s,Y () ;dS]’
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where we have used the Burkholder-Davis-Gundy type inequality (cf. Lemma A.5 in
the Appendix) in the last step. Now we can split up the integral back again into the
sum of the partition points such that we obtain

e[ [( > Bt A0V ) = il (9|} s
:E:Zl / (Zl Wi () fo(rd Y (r )))—fg(s,Y(s))H;ds} (37)

—E| Y / (rﬁ,Y(rﬁ))—fg(s,Y(s))‘ids}.

L

Lol l ]
r,EMT H

By using the mean value theorem for integrals, there exist & € [r},rl,,] such that

S ]

! Y(Ti)) — fz(fi,y(fi))

(1)) = fo(5, Y (5))|

2
Lo

holds.
Now let € > 0. Then by the uniform continuity of the map s —— fg(S,Y(S)),
s € [0,T7], there exists a § > 0 such that Hfg(sl, Y(sl)) — fo (52, Y(SQ))

s1, 82 € [0,T] with |s; — so| < 9. Using the fact that we have sup rt =l P 0
<T — 00

2 gf
< — for an
‘LQ_T Y

z+1

riﬂ rt| < §. Hence,

by assumption, we can choose [ large enough such that ~sup

Z_,'_1<T

=€

| o

3 ke =) £ Y 6D) = @), = X =)

/

rtenl rtenl

<

Nl

for [ large enough. Therefore, we conclude that

E{ Z (i, — ‘fz (rh) — fdﬁmﬂ&))’ i

l l
Tieﬂ'

=X

l—o00

is fulfilled because we can apply Lebesgue’s dominated convergence theorem since an
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integrable dominating function is given by

S k= o) [ Y GD) = el v )|

l l
’I“iE’R'

=¥ (-

2

/0 (Se(r —7}) = Se(r = &) f(r, Y (r)) dr

TéGTrl Lo
T t
<Y 0ha=rd [ G- -st-e)’w [ Jreve)], o

T
< 272 sup §y(€)? / Mioe(r) dr
£eR 0

dy.

where we have used the Cauchy-Schwarz inequality and the continuity of the function

We obtain an analogous statement for the summand K;“, i.e. we repeat the calcu-
lation up to (3.7) and obtain

t€[0,T

/0 f2(5,;(5)) W, (s)
- Z fZ N J ( Tit1 /\t) Wj(ré At))
2L ds}.

Now we can apply the reverse Fatou lemma (cf. Lemma A.4 in the Appendix) by
again considering 27?2 sup d,(€)*
R

<e[> [

rlexl W7

m J )) fé( ()>

fOT Moe(r) dr as an integrable dominating function.
We obtain

lim lim lim sup K
loool=00 j 0o

2
<gzrgog@oh?:i3ﬂ[§/, o) =il 5[ o
2
<t e[ [ faved) - nvon]], o
rEﬂ' g
=0,

where we have again used the continuity of f; and (3.4) for the uniform convergence
of Y.
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Finally, we have to consider K ¢, and compute

K3, = tg[lér;] Z Fe(ri, Yi(r)) (Wi iy At) = Wi(ri At))
= ALY D)Wl At =W AD)| > 18_8]
rieml Re
tSB% gz fe “ Y( (( ( i AT) — Wj(rﬁ /\t>)
— (W, nt) —W(r At))) , > ;—6]
oo 5 et -seten)
(W Aty = WEAY)|| > i] .
e 36

By using the Markov inequality the latter can be estimated by

TE| Y v

7’671'

2 sup HW](f) - W(g)HRd1:|
L2 ¢elo,T]

Lo

4+ = IEZ[ sup Z er Y () = fo(rl Y (r))

te(o, T

Wt an - wetan

Rdl}

< 752 E|:Nl sup Hfzz £,Y;(¢))

s W06 = W(E) |

¢el0,T] L2 gefo,T]
7
+—qupM@m@%ﬁ@meswwva]
£€(0,T] L2 ¢efo,]
Now we use (3.4) and (3.5), i.e. we have P-a.s.
sup HY t)HRd —— 0 and sup HW t)HRd1 — 0
€[0,7] J—=ro t€[0,T) J—re0

as well as the uniform continuity of the maps s — f¢(s,Y;(s)) and s — fo(s,Y(s))
for s € [0,T]. Namely, we have

HRdl

limsup sup er(f ()|, e [W;(€) =W (€)

Jj—ooo €[0T

H]Rd1

< hmsup sup ||fg (&Y, ))HL2 -limsup sup |W;(&) = W (€)
j—oo  £€[0,T \JHOO €elo,1]

J/

g

=0
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and by the same arguments as before

lim sup Sup} Hfg(f,Y}(&))HLQ = gi}(l]pﬂ ||f£(57Y(§))HL2

J—oo  ge[0,T

as well as an analogous statement for the second summand. Hence, we can conclude

that lim sup sz,é,l = 0 holds by using the reverse Fatou lemma (cf. Lemma A.4 in the
j—0o0

Appendix). ]
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3.3. Main theorem

This section contains the first main theorem of this thesis. We will assume the continuity
of the coefficients in their spacial component in addition to the assumptions from
Section 2.1 and, of course, the pathwise uniqueness from Definition 2.2. The proof is
an extended version of the one stated in [GK96] and uses in particular Lemma 3.6
about the convergence in probability of sequences of (stochastic) integrals as well as
tightness criteria to prove the relatively weak compactness of sequences of probability
measures via Prokhorov’s theorem. At the end, we will also mention in Corollary 3.8
that the well-known local weak monotonicity condition on b and ¢ can replace some of
the assumptions from the theorem.

Theorem 3.7 (cf. [GK96|, Theorem 2.4 on page 148). Let the assumptions from Section
2.1 be fulfilled. Suppose moreover that b and o are continuous in x € D and that
pathwise uniqueness holds for the equation (2.1). Then we have:

1) There exists a process (X(t))eso such that X,(t) —— X(t) uniformly in t on

n—oo
bounded intervals.

2) (X (t))e>0 is the unique solution of equation (2.1) (up to P-indistinguishability).

Recall that (X,,)nen are the Euler “polygonal” approxzimations given by equation (2.2)
in Section 2.1.

Proof. (cf. [GK96|, Theorem 2.4 on page 150)
For every T' > 0 and k,n € N define the stopping times

i i=1inf {t € [0,T]| X,,(t) & Dy} A k.

Since £, (s) < s for all s > 0 by the definition of «,, (see Section 2.1), we have for every
t<7F(if 7F > 0)

[5(t X (k) || oa < Mi(t) and [|o(t, X (i (1)) || < Mi2)

by assumption Al).
Define the family {ij ‘ neN } of stochastic processes with continuous sample paths
by

XEt) = X, (t ATF)
for t € [0,T] and k,n € N. Let Pxr := Po (Xfi’)_l be the distribution of X*. Then

for any 7' > 0 we can consider {ijg ‘n e N } as a family of probability measures
on C([0,T];R?). Since C([0,T];R?) is separable, the Prokhorov metric metrises the

space of probability measures M, <C’ ([O, T}, Rd)> with respect to weak convergence of
probability measures (cf. [Bil99], Section 6 on page 72 and 73).
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We will now divide this proof into three consecutive steps (Step 1, Step 2 and
Step 3) to improve the comprehensibility of the most important ideas, methods and
arguments.

Step 1: At first we will show the tightness (cf. Definition A.16 in the Appendix) of the
family {Pxﬁ ‘n € N} as it is asserted in Claim (1).

Claim (1). For every k € N and T' > 0 the family of probability measures
{Py; [n € N} € My (C(0, T]:RY))
is tight.

Proof of Claim (1). For the proof we use Theorem A.20 and Theorem A.21 from the
Appendix, which jointly add up to a tightness criterion for the distributions of sto-
chastic processes with continuous sample paths. Hence, we have to show that for every
fixed k € N and T" > 0 the assertions

i) For every € > 0 there exists an R > 0 such that P[HXS(O)HW > R] < ¢ for all
n € N.

ii) There exist o, 3, K > 0 such that IE[HX,’j(t) - X’;(S)”ﬁd} < K|t — s|'* for all
n € Nand s,t € [0,7].

hold.
“i)”: We know that || X*(0)||ge = ||[|ga. Since ) {||¢|lre > R} = 0, it follows that
ReN

P[||¢]|re > R] — 0. Hence, i) is fulfilled for every n € N.
— 00
“41)": Let [ := M and s,t € [0, T]. Without loss of generality let ¢t > s and 7% > 0.

B
Since E [HXﬁ(t) - X,’j(s)” d]1{8>7.k}:| = 0, we obtain for a constant C; > 0
R n

e[ - k|| = 2| xto - x| ]

@l [ b Xolra(r) i+ o (1 X, o) AW (1) ;n{m]
= H /:ATTIf b(r, Xa(rn(r))) dr + /Swji o (r, X, (K (r))) dW (r) ;]

tATk B
< C,E H/s b(r, Xn(Ka(r))) dr Rd]

+C E

H /OT s enrty (1) o (7, X (R () AW (1)

B
Rd7
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where we have used a generalised Young inequality (cf. Lemma A.3 in the Appendix)
in the last step. Applying the Burkholder-Davis-Gundy type inequality for p = /5 (cf.
Theorem A.5 in the Appendix) yields

[ oo |

H / gty (1) 0, X (50 (7)) AW ()

</8Wf: 160 X0 (r) | s dr) W]

<My(r), since r<tk

G E

+C E

B
R4

(142 X (14x)2

v TE[n]smm( lofr X)) ] )
(A+x)

a(fw) ¥ v [ )

<My (r), since r<7k
for a constant Co > 0 by using t A 7F < t as well as My > 0. By an application of
Holder’s inequality we altogether obtain

<CLE

2

B

]Rd:|
(1+x (+x)? +x)2

<y (/st M (1) dr) : (/ M. (r )
' (142 (1432
< (/8 M. (1) dr> (01 </ My (r > . +C’2>

t 1ty ﬁ t ﬁ X
§C3 (/ 1Xd7’) (/ Mk(T)H_Xd’F)

< K(t - 5)1+X7

B[t - x2o)

1+x

where C5 > 0 and K := C4 (fOT My (r)t*x dr) * > 0 are constants. Hence, assertion
ii) follows with « := x. O

Step 2: Now we consider Py, , i.e. the distribution of X,,, and intend to deduce the
tightness of the family {Px, |n € N} in M; (C’([O, T}, ]Rd)> from Step 1.

It suffices to show that the following claim is fulfilled.
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Claim (2). We have

lim limsup P[ry <T] =0 (3.8)

k—oo psoo
for every T' € [0, c0.

This claim is sufficient for the assertion because we have X*(t) = X,,(t) for t € [0, 7]
by definition. Hence, the processes coincide on {7* > T} for every t € [0,T] and the
probability of the event {7* < T’} tends to zero by taking the limits. In fact, we have
fore >0

P[W(;(Xn) > e} - P[W(;(Xn) > ek > T] +P[W5( D) >erh<T
< P[W(;(Xff) > 5} + P[rF < T
and hence

hIBl lim sup P [W5( n) > 5}

n—oo

)

> €
< lim lim limsup P | Ws(XF*) > E} + lim limsup P[r" < T7.

k—oo 010 oo —00  n—oo
-

k—oo 010 500

= lim limlim sup P |:W5<X

(. J/

~~

=0 by Claim (1) =0 by Claim (2)

Besides, for R > 0

hm lim sup P ||| X,,(0)||ge > R] = hm hmsupP[HﬁHRd > R}

Too  n—oo n—oo

= lim hmsupP[HX (0)||ga > R}

ROO n—+00
7

=0 by Claim (1)
holds such that we can conclude the tightness of {Pxn ‘ n e N} from Theorem A.20.

Proof of Claim (2). Let T' > 0 and let & € N such that k£ > T'. According to Claim (1)
we know that { Py } n € N} is a tight family of probability measures on C'([0,T]; R?).
Let (PXfim)meN - {PX,’g |n € N} be an arbitrary subsequence, then it is again a tight
sequence. Since every single probability measure on a separable and complete space
is tight (cf. Lemma A.18 in the Appendix), the distribution Py of the Wiener pro-
cess W is a tight probability measure on C’([O,T];]Rdl). Hence, the trivial sequence
which only consists of Py is tight. Therefore, by applying Lemma A.22 we obtain
that (P Xv’im:W)>meN is a tight family of probability measures on C'([0,7; ]R‘”dl). From
Prokhorov’s theorem (cf. Theorem A.17 in the Appendix) it follows that there exists
a relatively weakly convergent subsequence (P( X, W)) by using the fact that in

metric spaces relative compactness and relative sequentlal compactness are equivalent.
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Now we can apply Skorokhod’s representation theorem (see Theorem 3.3) to this sub-
sequence. Then there exist a probability space (£, F, P) and a sequence of continuous
random variables (X W ) such that

Pixx w) = }'3()25 W) for every j € N and (3.9)
e T P a.s. T
(X Vi) ey oy (X5 ) (3.10)

for stochastic processes X* and W with values in C([O,T];Rd) and C([O,T];Rdl),
respectively. Therefore, we have P-a.s.

|XE - X = sup HX’C — X*(t)||gg —— 0 and
J =0l e (3.11)
[W; =Wl = sup [[W;(t) = W(H)||pw, —0.
t€[0,T J—oo

In order to prove Claim (2), we now have to consider the six auxiliary claims Claim
(2-1), Claim (2-2), Claim (2-3), Claim (2-4), Claim (2-5) and Claim (2-6).

We start by defining the stopping times ﬁ’fmj = inf {¢ € [0, 7] ‘f(ﬁmj (t) ¢ Dp} Ak
and 7 .= inf {t € [0,T] | X*(t) ¢ Dy} A k.

Claim (2-1). The inequality

liminf 7 > 7% (3.12)
j—o0 J

P-a.s. holds.

Proof of Claim (2-1). This is just an application of Lemma 3.2. O

Now define the o-algebras
Fli=0o(XE (s),W;(s) | s €[0,t]) and Fp = J(Xk(s), W(s) | s €0,t]).

Claim (2-2). For every j € N we have that (W;(t))wcpz is an (F/)-adapted Wiener
process and (W (t))iejor) is an (F;)-adapted Wiener process.

Proof of Claim (2-2). First of all, the processes (W;(t))ieqory (for every j € N) and
(W(t))te[o 71 are P-a.s. continuous as well as by definition adapted with respect to JF7
and F;, respectively. Furthermore, we have by (3.9) and (3.10)

Py =Py —“ Py
w jjﬁoo w

because of the equality of the marginal distributions, Lemma A.12 and Lemma A.15
i) from the Appendix. Hence, W; and W have the same distribution as the Wiener
process W.
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Next we note that 1;(0) = 0 holds since we can define the measurable set
Uy i= {ue C(0, TR ) [u(0) = 0}

such that we obtain

1 = Py[Ui] = Py, [Ui].
We also have W (0) = 0 P-a.s. since

970) =0l = [170) = 50, < s [50) = 0, 0

Jj—o0

follows from (3.11). For the independence of the increments we consider the following

four intermediate steps ((1), (2), (3) and (4)).

(1): The Euler “polygonal” approzimations (X,(t)) are (F;)-adapted for any n € N.
For t € [ty,t}] we have by (2.2) that

Xn(t):§+/0 b(s,f)ds+/0 o(s,&)dW (s),

where ¢ is Fy-measurable and b, 0 are Borel-measurable by assumption. Hence, after
the integration we obtain the (F;)-measurability of X,,(¢). Inductively we get for t €
[t?7 t?Jrl] that

t t

b(s, Xo(t)) ds + / o (5, X, (1)) AW (s)

o

Xn(t) = X, (1) +/

tn
holds such that the (F»)-measurability of X,,(¢}') and the Borel-measurability of b and
o again imply that X,,(¢) is (F;)-measurable.
(2): Adjustment of the o-algebras.

The measurability of X, (¢) from (1) yields that the stopped process X,’jmj (t)

is (F;)-measurable as well, i.e. we have 7, = o(F, XF (s)|s < t). Furthermore,

we know that (W(t)),., is (Fi)-adapted by assumption, hence we can write F; =

o(Fy, XF (s),W(s)|s <t). Therefore, we conclude that the increment W (t) — W (s)

is in fact iildependent of o(F,, XF (r),W(r)|r < s) and certainly independent of the

smaller o-algebra given by J(X,’fm_](r), W(r)|r<s).

(3): The increment W;(t) — I/T/}(S)J is independent of F/ = U(X,’jmj (r), W;(r) |7 <s).
First of all, we know that

o (Wilt) = Wi(s)) = {{W;(t) = Wi(s) € B} | B € BR™)}.

Besides, the o-algebra .7:"83 is generated by sets of the form

{(Xh,, (50, Wils0),. KR, (s3), Wi(sw) € B},

where N € N, 0 =59 < 5, <+ < sy = s and B € B(RN4),
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For N € N, 0 =35y <35 < <sy=s, B € BR"), B, € BRV“N) and
By = {(wl,wQ) e R ‘wl —wy € Bl} we compute

PIWi(t) = Wi(s) € Bi] - P[(XE, (s0), Wyso),... Kb (sx0), W(sw)) € B

n

= Py (t)—w (s)[B1]

_p [{wa) _W(s) € B,

(L () W), X5, (). W) € B}

1 { (XKL, (o W) XL (50, W ) € B},

where we have used in the second step that by (3.9) the distributions Px» ) and
P(anc W) and, therefore, also their finite-dimensional distributions coincide. Besi-
'rnj’ p

des, the third step follows by the independence of W (t) — W (s) from the o-algebra
o(XF (r),W(r)|r <s) (see (2)). Hence, we obtain

P[{( (£), W (s)) € Bl} N {( 5 (50, W (s0), o XE (sn), W(sw)) € Bg}}
[ ), XE (50).W(so),... X5, (sn), W(sw)) € By BQ]
Bl X BQ}

(50).W (50),....X% (sN),W(sN))[

(W() W (s). Xk b,
)) [Bl X BQ]

n m

I
o

(W (00175 (5), X8, (5007 50) K (2 (s
{50 = Wys) € B1)
N {(XE, (50). Wils0), . X5, (sw), Wi(sw)) € Ba}

I
o

nm

where we have again used the equality of the finite-dimensional distributions in the
third step.
(4): The increment W (t) — W(s) is independent of F, = o (X*(r), W(r)|r < s).

Let N € N. Assume that ¢ € C(Rdl;R) and Y € C(RN(d+d1);R) are bounded
functions. By using the monotone class theorem (see e.g. [Pro05|, Theorem 8 on page
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7) it suffices to conclude from (3) and (3.11) that

E {(p(W(t) — W (s)) ¢(Xk(so>, W (so), ..., X*(sn), W<3N))}

= lim E{gp(WJ( ) — Wj(s)) w(f(fmj(so),ﬁ/j(so), . ,Xffmj(sN) W; (szv))}

W;
:hmE[ (W;(t) — W(s }

J—00

o) W0, X, (53 o) |

:E{go( { Xk (s0), W (s0), - Xk(SN),W(SN))}

holds for N € Nand 0 = sy < 51 < --- < sy = s by Lebesgue’s dominated convergence
theorem. O

At this point it is necessary to ensure that (F7) and (F;) are normal filtrations
such that they are suitable for the usual stochastic integration theory. In case they are
not normal, we augment them by all P-zero sets and make them right-continuous by
construction (intersection of the larger o-algebras) as it is done for example in [PRO7]
on page 12. Then the processes (W;(t))sco.r] and (W (£))sejo.r) are still Wiener processes
with respect to these new normal filtrations (cf. [PRO7|, Proposition 2.1.13 on page 12
for an applicable proof).

Furthermore, we have the following claim.

Claim (2-3). We have P-a.s.

Xﬁm_(t) = X,’jmj (0) —|—/O b(s,XﬁmJ_(/{nmJ_(s))) ds —I—/O (3 X’“ (/{nm] (s))) dW;(s)

J

forallt € [0,TATE ]

J

Proof of Claim (2-3). To verify this equality we define the set

Uy = {<uej,vj> e O([0. 7] R

Vit € [O,T/\Tuej] :
¢ ¢
g, (t) = uy,(0) —|—/ b(s, ug, (ke (s))) ds + / o (s,ug (ke (5))) dvj(s)},
0 0
where 7, = inf {t €[0,T]|us,(t) ¢ Dy} Ak. Then we have by (3.9)

n

n
nm, ;"
mg

wplUe] = Py, w)[Uo] = PI(X5, W) € Ua] =1

since X! satisfies equation (2.2) P-a.s. for every t € (0,7 A7E | O
J

J
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Claim (2-4). We have

t

/0 b(s,)z'km (K, (s))) ds L b(s,Xk(s)) ds and

/0 U(S,Xﬁmj(/inmj (s))) dW;(s) j_}LOJ i o (s, X*(s)) dW(s)

for t < T A TF.

Proof of Claim (2-4). With the help of Lemma A.8 from the Appendix we calculate

limsupf)[%f <t t< 7~'k/\T] < P|limsup {%f <t} t< %k/\T}
J—roo L j—o0
=P ﬂU{%fgt},t<%’“/\T}
-0eNj>p
~ o .
<P ﬂ{;ggTjSt},t<T /\T}
- 0eN
= P[{supinf 7 <1}, 1 < 7 AT
L QENjZQ
—p 1iminf%f§t,t<%k/\T]_
L j—oo

Therefore, since P[liminf 7 > #*] = 1 holds by Claim (2-1), we conclude

n—oo

lim sup]f’[i'f <t t<FAT| =0 (3.13)
J]—00
The latter implies that we only have to consider the convergence in probability with
respect to the event {t <77} N {t < 7% AT}.
Now, in order to apply Lemma 3.6, we have to localise the functions b and o. The-
refore, define the set A as the complement of Dy in D, i.e. A := D\ Dyyq. Let
~v: D — [0,1] be the function given by

dist (x, A)
V@)= :
ist (x, Dk) + dist (x, A)

for x € D.
Then for ¢ we can consider the function a: R, x R? — R™% given by

_ o(s,x)y(x) forx e Dyyq,s€|0,T],
a(s,x)::{o( )7(@) e k1,8 € [0, 7]

which is continuous in z € R? and Borel-measurable in s € R... By this definition we
also know that &(s,x) = o(s,x) for x € Dy, s € [0,T] and

sup [|6(s, z)[lra = sup |[|o(s,2)|lra < sup |lo(s, 2)|lra < Mria(s)
z€R? z€Dg 41 €Dk 41
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for every s € [0, 7] since k > T by assumption. Let € > 0. Then we have

¢
lim sup P ‘ / o(s, XE (K, (s))) AW (s)
j—roo 0 ’ !
¢
—/ O'(S,Xk(s)) AW (s) 25,t<7'f, t<tEAT
0 Rd
~ tATFAT ~ R
= limsup P ‘ / o(5, XE (Kn, (s))) dW;(s)
j—00 0 7 J
tAFEAT N N
—/ o (s, X"(s)) dW(s) 25,t<7'f, t<tEAT
0 Rd
B ¢AT B B
< limsup P ‘ / o(s, XE  (Kn,, (s))) dW;(s)
o0 0 ! !
¢AT 3 .
— / o(s, X*(s))dW(s)|| >e
0 Rd
=0

by applying Lemma 3.6. Analogously, for a function b: R, x R? — R? the estimate

t
lim sup P H / b(s, X (Kn,n () ds
j—00 0 J J
t ~
—/ b(s,Xk(s)) ds 25,t<rf,t<7'k/\T
0 Rd
~ tATFAT ~
= limsup P ‘ / b(s, X} (Kn,. (s)))ds
j—o00 0 J J
tATEAT ~
—/ b(s,Xk(s))ds 2€,t<7f,t<7'k/\T
0 Rd
B It I
< limsup P ’ / b(s, X} (Kn,. (5)))ds — / b(s, X"(s))ds|| >e¢
j—00 0 I ! 0 Rd
=0
holds. This directly yields the assertion of the claim by using (3.13). O

From Claim (2-3) we can now conclude that the process X* satisfies the SDE for
every t € [0,T A TH].

Claim (2-5). The process X* satisfies P-a.s. the equation

t

Xk(t) :X’“(O)+/

0

b(s, X’“(s)) ds + /0 o (s, X’“(s)) AW (s) (3.14)

for t € [0,T A 7*].
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Proof of Claim (2-5). By (3.11) we know that Xﬁm(t) Lras, X*(t) uniformly in ¢ €
J Jj—o0
[0, 7). In particular, we have X% (0) —*— X*(0) (cf. Lemma A.12 i), which states
J j—o0

that a.s. convergence implies convergence in probability). Furthermore, we have the
convergence in probability of the integrals for ¢ € [0, TA7*[ by Claim (2-4). Therefore,
Claim (2-3) implies that equation (3.14) P-a.s. holds for every ¢ € [0,T A 7| because
the P-a.s. limit and the limit in probability have to be P-a.s. equal.

Note that both integrals in (3.14) are continuous in ¢ and exist for t € [0,T A 7*].
Since X*(t) is continuous for ¢ € [0, 7], we conclude that the equation actually holds
for t € [0, T A 7). O

Furthermore, we have to prove that the following claim holds.

Claim (2-6). We have Jim Pl <T] =0.
—00

Proof of Claim (2-6). In the proof of inequality (2.3) we have only used that the pro-
cess considered in Lemma 2.4 is P-a.s. continuous and satisfies the equation (2.1) until
it hits 0Dy, as well as that its initial value is in D. Therefore, we work with the same
kind of inequality as in the lemma for 7F and X* in this case.

Namely, we obtain analogously to (2.4) the estimate

P[# < T] < P[X*(0) ¢ Dy + P[v(o, X*(0)) > log <%),)~(’“(O) € Dk]

+ P < T,%%(0) € Dy, V(0,X¥(0)) < log (%)}

because X* has continuous sample paths and satisfies the equation (2.1) with W instead
of W until it hits 9Dy, by Claim (2-5). Besides, we have the condition X*(0) € Dy, in
the second and third summand such that V(O, X’“(O)) is still defined. Hence, repeating
the arguments from the proof of Lemma 2.4 yields

P[#* <T] < P[X*(0) ¢ Dy] +15[V(0,f(’“(0)) > log (%),X’f(o) € Dkz]

_ ml(T) exp ( /0 M dt).

Now note that we also have Px = Pgui (g, since (3.9), (3.10) and Lemma A.15 i) from
the Appendix imply

(3.15)
_l’_

Fe=Pxy, = Pxg, 0 jjf; XH0)°

Therefore, we can transform estimate (3.15) into

P[#* <T] < Ple ¢ D] + P[V(0,€) > log (%)] + W:(T) exp (/OT M(1) dt),

which coincides with the estimate (2.3). Hence, we conclude lim ]5[7”“ <T]=0. O

k—o0
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Since the inequality

P[hmsup{T <71} —ﬁ[ﬂL_J{%fjw gT}} < P{ﬂ {if7h <T ]

oo 0€EN j>p ’ 0€EN j=e
f7h < ] [ liminf 75 <7 ]
[{iggggT . ST} {lminf 75, <7}

is fulfilled and the stopping times 77 and 7% have the same distribution (cf. Lemma
J J

3.1), it follows from Claim (2-6) that

lim lim sup P[T:m‘ < T} = lim limsup P[ﬁfm < T} lim P[hm sup {7’ < T}]

k—oo 00 k—oo 00 J k—o0 j—00
< lim P[{hmlnfT <T}} < lim P[T <T] =0
T k—oo Jj—00 k—o0

holds, where we have used Lemma A.8 from the Appendix and 7* < lim inf 7 o, P-as.

]*)OO
from Claim (2-1).

Hence, we have proved that equation (3.8) holds for the subsequence (7} )jeN of an

arbitrary subsequence (7% ),eny. Now we obtain the assertion for the Whole sequence
(75)en as follows. Since lim sup P[Tﬁm‘ <T] < P[ ® < T, we can apply Lemma A.14

]—)OO

such that limsup P[7F < T] < P[#* < T] and, therefore, hm limsup P[r% < T] =0
n—o00 k—=oo  poeco

hold. O

Step 3: In this last step we apply Lemma 1.14 to conclude convergence in probability
of the Fuler “polygonal” approximations by proving convergence in distribution of cer-
tain subsequences.

Therefore, we take two arbitrary subsequences (X,,)eny and (Xz,)en of the Fu-
ler “polygonal” approzimations (X, )nen and additionally the Wiener process W. Let
P(x,., w.x,,w) be the joint distribution of the stochastic process (X, W, X5, W).
Then as in Step 2, by using Lemma A.22, we obtain for any 7 >0 that
{ Pix wixawy |1 € N} C M1<C<[O,T];R2(d+d1))> is a tight family of probabili-
ty measures and, hence, a relatively weakly compact set (cf. Prokhorov’s theorem,
Theorem A.17). Consequently, there exists a relatively weakly convergent subsequence
(P(anj,w,xﬁlj,w))jeN with a limit that we first of all label as p. Again by apply-
ing Skorokhod’s representation theorem (see Theorem 3.3) to this sequence, there
exists a probability space (Q F, ]3) and a sequence of continuous random processes
(an ,W],an ,W) such that

~

P(anj’W’Xﬁlij) = P(anijjjﬁlj ) forevery j €N, (3.16)
1= P w .z (3.17)

I ~ >, 4 P a.s.
(anj,Wj,ij,Wj) . (X, W, X, W) (3.18)

52



for stochastic processes X, X, W and W taking values in C([o,T7; Rd) and C'([0, T7; Rdl),
respectively. Similarly to Step 2 we have P-a.s.

~

||anj - XHOO = ti[%’I;] anj (t> - X(t)HRd ;j O,

”ij o XHOO = sup ||Xﬁl.(t> - X(t)HRd 0,

te[0,T J Jj—ro0 (3 19)
[W; = W= sup [[W;(t) = W(t)||ps, — 0, '
te[0,7 J—00
W =Wl = s [IW50) = W)z, =20

for any 7' > 0.
Now we can define the set

U, = {(u,v,w,x) € C([O,T];RZ(derl)) | v(t) = x(t) for every t € [O,T]}

for which we have

1= P(anj ,VV,Xﬁlj W) [Ul] - p(anj ,W]',anj ,Wj) |:U1:|

for every j € N by (3.16). Hence, for any T' > 0, we obtain that P-a.s. W;(t) = W;(t)
for every t € [0,T]. By using the P-a.s. convergence from (3.18) and Lemma A.15 iii)
from the Appendix, we can conclude that P-a.s.

for every ¢ € [0, oo

In the same way as in the proof of Claim (2) we obtain that for every & € N and
T > 0 the processes X and X satisfy equation (2.1) with W instead of W on the time
intervals [0, 7 A 7*] and [0, T A 7¥], respectively, where 7% := inf {t € [0, 7] ‘X(t) ¢
Dy} Ak and 7% :=inf {t € [0,T7 | X(t) ¢ Dy} Ak are stopping times.

Again as in Step 2, by using the inequality (2.3) from Lemma 2.4, we can proof for
every T > 0 that lim P[#* < T] = 0 and lim P[#* < T| = 0 hold such that the

k—oo k—o0
processes (X (t))i=0 and (X (£))i=0 actually satisfy equation (2.1) with W instead of W
on [0, col.
Note that X, (0) = X, (0) for every j € N. This equality is fulfilled because
X, 0)=¢= X;lj (0) and the equality of the distributions (3.16) hold. Consequently,
we can define for any 7" > 0 the measurable set

Uy = {(u,v,w,x} € C’([O,T];RQ(derl)) |U(0) = w(O)}
and calculate

A

1= P(anj,W,Xﬁlj W) [Uﬂ - P(anj,Wj,Xﬁlj,W]-) [Uﬂ'
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Hence, we can conclude from (3.18) that the initial values X (0) and X (0) also have to
be P-a.s. equal.

Then Pew) = P (o) 1ir) holds because we have (3.16) as well as (3.18) and, therefore,
in particular

A

w -
Plewew) = P(anj (0),W, X5, (0),W) = P(anj (o),Wj,Xﬁlj (0),W;) —>ﬁoo P(X(o),W,X(o),W)
such that an application of Lemma A.15 i) from the Appendix yields the equality of

these distributions.

Hence, by pathwise uniqueness we conclude that P-as.

~

X(t) = X(t)

for all t € [0, co].
Therefore, we finish the proof as follows. We have proved that

P =P o P
(anj,I/V,anjw) (anj,wj,Xﬁlj,Wj) o (X WLXW)

A

such that p is supported on the diagonal since = P i, x 1y according to (3.17). The
application of Lemma 1.14 yields
n—oo
for stochastic processes X and Z taking values in C’([O,T];Rd) and C([O,T];Rdl),
respectively. Note that by Lemma A.15 ii) from the Appendix we can conclude that
Z = W P-a.s. and obtain furthermore X, % X. Hence, we have proved assertion
Jj—00

1) of the theorem.

Finally, we will show that the process X satisfies the SDE (2.1). Since we know
that every subsequence of (X, ),en converges in probability to X, we can conclude
that the joint process (anj W, Xﬁlj , W) also converges in probability to (X, W, X, W)
(cf. Lemma A.13 in the Appendix). Hence, (ij W, Xﬁlj , W) converges in distribution
(cf. Lemma A.12 ii) in the Appendix) such that we can identify the limit ;1 as the
distribution of (X, W, X, W). Therefore, for any 7' > 0 we can define the set

Us := {(u,v,w,x) € C([0, T); R2+) ‘Vt € 10,77 :

u(t) = u(0) +/0 b(s,u(s)) ds —1—/0 o (s,u(s)) dv(s)}
for which we have by (3.17) that

Pixwxw) |[Us) = n|Us] = Pk xw) [Us] =1

holds since (X (t));>o satisfies P-a.s. the equation (2.1) with T instead of W on [0, ool
Hence, we conclude that the stochastic process (X (t)):>o satisfies P-a.s. the SDE (2.1)
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on [0, 00[. The (F;)-adaptedness of X follows by construction of the Euler “polygonal”
approzimations because the processes (X, (t))i>o are (F;)-adapted (cf. Claim (2-2),
(1)) for every n € N.

The uniqueness asserted in 2) follows directly from the assumed pathwise uniqueness.
O

We finish this chapter with a remark on the application of Theorem 3.7 in the case D =
R? and, as mentioned before, Corollary 3.8 about assuming the local weak monotonicity
due to which we can drop the pathwise uniqueness and the continuity of ¢ in this case.

Remark (cf. [GK96], Remark 2.5 on page 148). In the case D := R and Dy, := {z €
R?|||z|lga < k} we can restate the assumptions A1) and A2) by taking

V(t,z) = (1+ ||]2) exp ( . /Ot M(s) ds)

as

A1) sup [|b(t,z)|[ge + |0 (L, 2)||7, < My(t) for every t > 0 and k € N,
xGEk

A2) 2zb(t,z) + ||lo(t,2)]|3, < M()(1+ ||2|2.) for every ¢t > 0 and € R%.

Corollary 3.8 (cf. [GK96], Corollary 2.6 on page 148). Let the assumptions from Sec-
tion 2.1 be fulfilled. Suppose moreover that b and o satisfy the local weak monotonicity
condition on D, 1i.e.

2(x —y) (b(t,2) = b(t,)) + llo(t,2) — o(t,Y)IIL, < Mi(t)[l2 — yllza

for every k € N and t > 0, z,y € Dy. Or in the case D = R? we may assume that
A1’) and A2’) are fulfilled and that the local weak monotonicity condition is satisfied
for Dy ={z € R? } |z|lre < k}. Assume moreover that b is continuous in x € D. Then
the conclusions of Theorem 3.7 hold.

Proof. We refer to [GK96], Corollary 2.6 on page 148. O
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4. Estimates on the Transition Probability Density

In this fourth chapter we will work on the necessary preparations and estimates for the
proof of Theorem 5.2 in Chapter 5. First of all, we have to consider some properties
of positive definite matrices in the first section. These properties are important for the
very technical proof of Lemma 4.7 in the second section.

We will apply the crucially needed auxiliary estimates from Lemma 4.7 in the third
section in the proof of Lemma 4.8, but unfortunately we have to omit certain parts of
that proof. The reason for this restriction will be discussed later in Section 4.3 in more
detail. However, it is claimed that Lemma 4.8 provides estimates for the transition
probability density, which are required in the proof of Theorem 5.2. Both lemmas 4.7
and 4.8 are based on the work of Krylov and Gyongy in [GK96].

4.1. Properties of positive definite matrices

In this first section we will gather the essential framework concerning positive definite
matrices and those of their basic properties that are necessary for the proof of Lemma
4.7 in Section 4.2. We will follow the book [HJ85] of R. Horn and C. Johnson called
“Matrix Analysis” and refer to it as the main reference such that we can omit most of
the proofs here.

First of all, we recall the notion of self-adjoint and positive (semi-)definite matrices.

Definition 4.1 (adjoint / self-adjoint matrix). Let A € R"*". Then the adjoint matriz
A* of A is given by A* = AT, A is called self-adjoint if A = A*.

By this definition the adjoint matrix A* has the property (Az, y>Rn = (z, A*y>Rn for
every x,y € R". Furthermore, note that self-adjoint matrices with R-valued entries are
in fact symmetric matrices.

Definition 4.2 (positive (semi-)definite matrix). Let A € R"™™" be a self-adjoint ma-
triz. Then A is called positive definite if

(Ax, m>Rn >0

for every x € R™. It is called positive semi-definite if the strict inequality is weakened
to

<A:B,$>Rn >0
for every x € R".

In particular, every eigenvalue of a positive semi-definite matrix is non-negative.
Moreover, every eigenvalue of a positive definite matrix A € R™™" is positive such that
this also ensures the existence of its inverse matrix A~L.
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There is a common approach to define a partial order on the set of all self-adjoint
matrices.

Definition 4.3. Let n € N and R?*" be the space of all self-adjoint matrices. Then
define a partial order “<” on RI™™ by

A < B if and only if {(B — A)x,a:>Rn >0 for every x € R",
where A, B € R}™".

Now we can state three lemmas about properties of self-adjoint and positive definite
matrices that are important for the upcoming estimates in the proof of Lemma 4.7.

Lemma 4.4 (cf. [HJ85], Corollary 7.7.4 on page 471). Let A, B € R™" be self-adjoint
and positive definite matrices. Then:

i) A< B ifand only if A~ > B71,
ii) If A< B, then det A < det B and tr A < tr B.
Proof. We refer to [HJ85], Corollary 7.7.4 on page 471. ]

Lemma 4.5 (cf. [HJ85], Theorem 4.2.2 on page 176). Let A € R™™" be a self-adjoint
matrix with eigenvalues A\;;, 1 < i < n. Then we have

AT T < A < e g,

where NP := min \; and N7%® := max \;.
1<i<n 1<i<n
Proof. We refer to [HJ85], Theorem 4.2.2 on page 176. O

Lemma 4.6. Let A € R™" be a self-adjoint matriz and ci,co > 0 such that
e Id< A< e Id. (4.1)
Then the following assertions are fulfilled:
i) The inequality (c1)" < det A < (c2)" holds. In particular, A is invertible.
ii) There exists a self-adjoint invertible matriz Az € R™" such that A = A3 As.
iii) We have |A;j| < co for every 1 <1i,j < d.

iv) Consider the map x — (A(x —y),x — y)rn. Then for any 1 < j < n we have

0

527 Al =), 2 =y = 2(Alx — )

J

for every x,y € R".
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Recall that an orthogonal matrix Q € R"*" satisfies the property QQ7 = 1d = QT Q
by definition.

Proof. “i)”: This is just an application of Lemma 4.4 ii).

“41)”: Since A is symmetric, there exists an orthogonal matrix @ € R™ " such that
A = QDQT for a diagonal matrix D € R™". For the diagonal matrix D, which has
only positive elements on the main diagonal because of the assumed inequality (4.1),
there exists D2 € R™™ by taking the square root. Hence A = QDzQTQD2QT and
we can define Az := QDzQ7. Note that since det (A%) = det(Q) det (D%) det(Q)™! =
det (D%) > 0, the matrix Az is invertible. Furthermore, it is also self-adjoint because
the symmetry follows from

(4)" = (@P}Q") = (@) (D) Q" = @D}Q" - 4t

“7i1)”: For the self-adjoint matrix A we compute

(A 9)g. = 5 ({42}, + Ay ) = (A = 1) = 1))
< 2 (el + yl3.)

since 0 < ¢1]|z|]3. < (Az,z)
(4.1). Besides, we have

e < Goll2|Rn for every z € R™ is fulfilled by assumption

(A1) = 5 (A + 90+ 0)g, — (Ar2)g, = Ay )y )
> =2 (Jlalz + lyliE )

such that altogether the inequality [(Az,y),.| < %(|lz[|3- + [ly[|2+) holds for every
x,y € R". Hence, for every 1 <i,5 <n we obtain

Ayl = ‘<Aeja€z> ‘ <= (”63

where ¢;, for 1 < ¢ < n, are the canonical basis vectors of R".

Rn + ||€z

Rn) = Co,

“v)”: We compute
0 A RS A
@< (r—y),z—y)rr = @Z( (z —y))e(l‘ - y)g

(=1

axj(;(ZAgk T —y ) x—y)g>
_ %(;Aéj(x_y)j(x—y)g) —i—%(iz‘h’k(ﬂ?—y)k(l‘—y)j)
) -

=2(A(x —y))

for 1 <j <mnand z,y € R" by using the symmetry of A. ]

J
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Remark. Let A € R™" be a self-adjoint and positive definite matrix. Since

det(A™') = det(A)™! and det A = det (A%A%) = det (A%)2

N

hold, we also have det (A72) = (det A) 2.
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4.2. Auxiliary estimates

This section contains the auxiliary Lemma 4.7 that we crucially need for the estimates
on the transition probability density in Section 4.3. The proof is an extended and
modified version of the one given by Gyongy and Krylov in [GK96]. We laid particular
emphasis on the development of the dependencies of every constant by labeling them
explicitly with individual numbers in the following. This helps us to observe and ensure
that the occurring constants are really independent of ¢ as it is asserted in the lemma.

Lemma 4.7 (cf. [GK96|, Lemma 4.1 on page 152). Let K,t,e > 0 and a €]0,1].
Furthermore, let A: R — R be a map such that for every y € R?

ctTd < A(y) = A(y)* < Kt 1d (4.2)

holds and assume that g: R — R is an a-Holder continuous function, i.e.

9(z) — 9()| < K|z — yllpa
for all z,y € R%. Suppose that & and n are independent d-dimensional Gaussian vectors
on (Q, F, P) with § ~ N(0,1d) and n ~ N(0,A,), respectively, where A, is a positive
definite covariance matriz. Besides, set A" as the largest and )\:’,“'" as the smallest

eigenvalue of the matriz A,. For bounded Borel-measurable functions f: R? — R
consider the operator T, which is defined by

T fly) = E|f(y+ Aw)te) |,

and let T be the adjoint operator of T* in L? (Rd;R)—sense.
Then for anyi,j =1,...d, z € RY, p € [1,00] and for any bounded Borel-measurable
function f: RT — R the inequalities
92 92
E ——T —E T
1@ (™) 0| | (ggmTe e en|| o

_d _ o
< Clagyt ™2 2| flle,

1B | (g )+ )|~ (5570 ) ¢+ )

< Cua 2 flle

(4.4)

Lr

hold, where the constants Cus) = Cus) (K, e,d,p, )\Z‘m, )\Z““”) and
Clay = Claa (K,a, d, /\nmin’ /\nm‘”) are independent of t.

Proof. (cf. [GK96|, Lemma 4.1 on page 152)
Step 1: At first we calculate the adjoint operator T' in L? (]Rd;]R)—sense. Let hy, hy €
L*(R%R), then we have

@b = [ T )y = [ [ i+ A aPhat) @y

= /Rd /Rd ha(y + A(y)%x) ha(y) (27?)_% exp ( — —(z, I>Rd> dz dy.

| —
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Now we use the transformation 2 — A(y)~2(z — y) with the Jacobian determinant
given by det (A(y)’%) and thus

N[

(T By, ho)ys = / d / (@) ha(y) (2m)7 [ det (Ay) )|

(Aly) 2(r —y),Aly)~

- /Rd /Rd ha () ha(y) (27) 7% (det A(y)) " ?

(Ay) (@ = y),w = s da dy,

m>_-
m>_-

(2 = 9} ) du dy

N | —

-

1
o (-

where we have used that det A(y) > 0, that Lemma 4.6 ii) provides the existence of
A(y)’% and that the inverse of a self-adjoint matrix is again self-adjoint.

Note that by assumption (4.2) we have the inequality ¢t Id < A(y) < Kt Id and,
hence, i Id > A(y)™t > Kit Id by Lemma 4.4 i). We can also apply Lemma 4.6 i) and
obtain the estimate

(e1)? < det A(y) < (K t)? (4.5)

for every y € R% Hence, we conclude that
_d —% 1 —1
() ha(y) (2m) 7% (det A(y) 2 exp (= 5(A0) 7 (0 = )7 = y)w)

o Je
d 1

//|h1 ) Imay)] (2m) % (c1) 2 p(—§<—1d<x—> e drdy

Kt
1
(2 et) 3/ Iha(y |/ I (x exp 2Kt||y—x||Rd>dxdy

is finite by using the fact that the heat kernel in R is an operator from L? (]Rd;]R)
to L? (Rd;R) (cf. [Gri09], Lemma 2.18 on page 41). Therefore, we can apply Fubini’s
theorem and obtain

1

Tha(w) = [ haly) () (detAw) ™ exp (= 5000 @ =) = g .

Step 2: In this step we compute the partial derivatives of T'f and T'(g f).
Claim (1). We have

0

%Tf( )

= [ m)E (detAw) ™ £0) 5 exp (= 50 @ = ). ) dy

for every = € R%.
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Proof of Claim (1). Following the theory about partial differentiation of a Lebesgue
integral with respect to a parameter (see e.g. [AE08|, Theorem 3.18 on page 111), we
have to verify that there exists a function h € L! (Rd; R) such that the estimate

0
507 27)”

K\J\Q_

(Ay) (€ —y).& - y)Rd)

- <h(y) (@45

(det A(y) * f(y) exp (—

holds for every y € R? and ¢ € B,(x) C R? for some g > 0. Note that

% exp ( - %(A(y)‘l(ﬁ —y),&— y)w)
0

= —% exp ( - é(A(y)‘l(f —y),§— y)w) 57 N (1)1 (€ =), & — Y)pa
= 5 e (= 5 (AW € 1) E — yhee) 2(A) €~ 1),

is fulfilled, where we have used Lemma 4.6 iv) in the last step. Since by assumption
(4.2) and Lemma 4.4 i) the inequality % Id < A(y)~! < i Id holds, we can apply
Lemma 4.6 iii) and obtain

[aw) 2, = 3 st < (5)"

1,j=1

Hence, we compute

(AW) ™€ = 9):€ — o)

1

exp (= 3 E - 1), €~ ) (M) € v),
<oxp (- §<A< )7E = 9.6~ p)aa) IAG) ™ (E ~ 9l

(4.7)

< exp (= gy 16—yl IAG) s e — 9l
Since the triangle inequality yields —||& — y2s < —|yllza + 2 [[yl|rall€]lra — [|€]|2a, we
have

1 2
exp (= 5 16— yl) < o0 (5 (= Mol +2 Iolls sup i)
EBy(x
) (4.8)
Cex Cli. SCEOR W (lyllzs — Cay)
Plakt) P 2Kt ’

where Cyg) := sup |[|{||ga is a finite constant.

£€By(x)
Then by using (4.7), the integrability of the function 2z — z exp(—2?) for z > 0 and

_1
the assumed boundedness of f, we only have to conclude from (4.5) that (det A(y))
is bounded in order to estimate the term in (4.6). Hence, we can find an integrable
dominating function h. O]
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Moreover, we have to consider the case where ¢ f instead of f is given. Therefore, we
need the a-Holder continuity of g which implies

l9(y)| < K ||z — yllga + |g(2)]

because we have [g(y)| — |g(z)| < [g(y) — g(x)| < K |l — yl|g for every z,y € R’
Hence, we can use the integrability of the function z — 2'*®exp(—22) for 2 > 0 in

addition to the arguments from above.

For the second partial derivative we apply the analogous argumentation from the

proof of Claim (1). Hence, we obtain

82
rigw @)

- [ enr
- [ )

where considering the second partial derivative with respect to y turns out to be helpful
in Step 3. For 5-%—T(g f)(x) we can also repeat the arguments from above.

M\&

(et Aw) ™ 1) 50 exp (— 2 (AW) @ — )2~ )a) dy

[SI[oH

dy,
A=A(y)

(A7 (y =)y = 2)aa)

N — o~

(et A) 1) o e (-

Step 3: In this step we compute E[( Ryt Tf) (x + n)}

Using the calculation from Step 2 yields

EK@;; - f) (fv+n)}

~B| [ (7 (deea) F r)
' 3y?3yj exp ( - %(A‘l(y —(@+n)y—(r+ 77>>Rd> " dy] (4.9)
:/Rd Us )8ya(9y]El( ™ (detA)” :
eXp( % (y = (z+m)y— (I+77)>Rd>} N dy,

where the interchange of the expectation and the integral follows from Fubini’s theorem
and the one with the partial derivative results from the same arguments as in Step 2.
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Since A2¢ ~ N(0,A) and n ~ N(0,A,)) are independent Gaussian vectors, we have

E|:(27T)(2i(det/\)_é exp ( - %(Al(y —T—n),y—T— 7]>Rd>:|

_1 1
= / (27r)*%(detA) 2 exp ( - §(A*1(y —T—z),y—x— Z>R4>
Rd
1 1
: (27T)_g (det A,;) "2 exp ( — (A2, Z>Rd> dz
_ 1
= (277)_% (det(A+A77)) exXp (_ (A+A77)_1(y_$)7y_w>Rd>>
where we have used the representation of the convolution of two probability density

functions belonging to independent normal-distributed random variables in the last
step (cf. [Bau02|, Theorem 8.4 on page 55). Define

D=

N

paz,y) = (21)" (det(A + A,))~

(4.10)
o (= SUA+ Ay~ 1),y — s

for any positive definite matrix A € R¥“. Hence, plugging the definition (4.10) into
equation (4.9) yields

E{(ax?;xj Tf) o 77)} - /Rd fw) 3y?;yj patey)

Let O := (A(y) + An)_l. Now we compute by using Lemma 4.6 iv)
9]

0 1
6—yij(SC7Z/)‘A:A(y) —pA(y)(l”y) : 8_yJ (— 5(@(3/ - m),y - x>Rd)‘

dy.
A=A(y)

0=0w)

- _%me(%y) ' (2 6y =) >

J

=0
since O is symmetric. We obtain

62
Dy Oy pa(, y)‘A:A(y)
= —pagy(2,9) - O + (- OW(y —2)) - ( — pa)(@,y) - (O (y - 95)))
= maw(@) - (09 - 2)),(09(y - 2)), - 69).
Hence,

dy
A=A(y)

E[(%ﬁm”) (1’+n)} = /Rdf(y) ay?;yj pa(,y)

- /Rd f () pag) (x, y) ((9<y> (y—2)),(0W(y — ), - @(y)> .

j
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Step 4: Next we show that

I\J\R.

1 1 g
Paw) (@, 9)| < 2m) 72 exp (= s 1Y — 2l ) (
v) ( 2(Kt + Aper) ><5t+)\n >

holds, where )\nmm and A\;'** are the smallest and biggest, respectively, eigenvalue of the
matrix A,. To do this, we will prove the following two claims.
Claim (2). We have

0 <A™ Id < A, < AP 1d. (4.11)

Proof of Claim (2). By Lemma 4.5 we obtain )\nmm Id < A, < A Id. Since the
covariance matrix A, is positive definite by assumption, we also know that )\77””'” >0. [0

Claim (3). We have

1
——<@(y)(y—l’),y_x>]Rd < — ) Hy—ZUH]?Qd

2(Kt + Ao
for every z,y € R%.

Proof of Claim (3). By (4.2) the inequality ¢ Id < A(y) < Kt Id holds. Hence, by
using the estimate (4.11) for A, from Claim (2), we obtain

(et+X") Id < A(y) + Ay < (Kt 4+ X0%) 1d.

Therefore, according to Lemma 4.4 i)

1 1 1

——Id > (A A) >— 1d 4.12
et + Apin —_( W) +_/’7) ~ Kt+ \par (4.12)
—0W)
is fulfilled and, hence,
1 1 1 1y — 7|3
_20W (., _ _ < __<— Id (v — _ > - _ R
2<@ (y I)ay x)Rd = INK L+ /\me (y x),y x Rd Q(Kt—i— )\me)
follows. u
Thus we conclude
[P (@, y)|
_d -1 1 -1
= |(27) 2 (det(A(y) + An)) 2 exp ( — 5((A(y) + An) (y—x),y— x)Rd>
1 1
= (27r)_g exp < — Q(G(y)(y — ),y — X)pd ) (det©W))>
d 1 1
2 2 (— - - 2 > det (y) 2
< ) o0 (~ gy v~ #l) (et
< 2m) L e (~ gl —ol) ()
=P (R 4 ey W T IR T )\mm

d
since 0 < (det @(y))% < ( * holds by estimate (4.12) and Lemma 4.6 i).

t+)\mzn )

66



Step 5: In this step we prove inequality (4.3).

Observe that

‘g(x) E [<8x?;xf Tf)(x+ n)] ~E [<8x?;ij(g N+ n)} ‘
/R (9(@) = 9(9)) F() Pacw () (O —2)),(0¥(y - 2), - 0F) dy‘
< /Rd l9(x) = gW)| [F )] [pag) ()] ‘(@(y)(y —x)), (0% (y - z)), - CRl

<K fla—yll2,

is fulfilled. Since we have (4.12) and Lemma 4.6 iii), it follows that the inequalities

W) 1
‘@ij ’ < €t+)\nmin

and

’(@(y)(y _ x))i(@w)(y _ x)) .

J

_ '(ieg)(y —a)) (i@ﬁ%)@ - )

=1 /=1

< (i»@gm@—xm) (i»@%wy—xm)
A

. m(éwﬁ) (Zr)
= WH?J 37||Rd

hold for every 1 < 14,5 < d, where we have used the Cauchy-Schwarz inequality in the
second last step. Hence, we get

1

)
(09 (y—2)) (6 (y - ), - Y| < ey = ol + S v

T (et 4 Apin)?
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With this calculation and the estimate for |pa)(z,y)| from Step 4 we obtain

/Rd K |ly — 2|8 | ()| Ipagy (. 9)|

. ‘(@(y)(y _ I)>i(@(y)<y _ I»] _ @8/)

K / d|ly — |3, 1
< , f)llly — x|z ( —— + ,
(2m)3 (e t + Amin)3 Rd| W Iz (et +Amin)2 T g 4 Amin

dy

.e - — T
P (Kt 4 agany IV T e )
. dlly — [l
— t \mn 1 - « —R 1
Clarn (et 454 [ 1) ol +
.exp(——“y_xuéd )d
2(Kt + Apar) v

where Cy.13) := K (2#)_%. Now, in order to simplify the occurring constants, we esti-
mate the latter by

. o (dly =zl
0(4.13) (0(4.14) (t + 1)) ' /]Rd ‘f(y)| ||y - JJHRd (szn ( R;) +1

L1 , (4.14)
- exp ( Ny~ ollgs > dy
Chusy t+1)/ 7
where C”ZZ& = min {8 /\mm} and C”Z‘ﬁ ‘= 2 max {K )\m‘”} are constants.
Applying Holder’s inequality for p € |1, o0] and its conjugate ¢ := € [1, oo yields

min _%_1 a —dHy_IH]%d
0(4.13) (0(4_14) (t + ].)) R |f(y)| ||y - xHRd szn (t i 1) + 1

(4.14)

|y — z||3 >
: Y= Plre ) 4
eXp( Crae (t+1) y

< Gy (@t ¢+ 0) s (ool )
>~ . (4.14) R R Cmm (t—Fl)

(4.14)
1
= Clu.13) (C(Tz.iﬁi) (t+ ))_7_1 7]z </Rd Hy||?§§ (% ’ 1>q
- exp < %) dy) E

by shifting the integral via y — y 4+« in the last step. Next we use the transformation
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d
2

y — (t + 1)2y with the Jacobian determinant given by (£ + 1)2 and obtain

min —%-1 —4_
0(4.13) (0(4.14)) (t + 1) 2 ||f||LP

w (d ]y ’ : '
-(/;p+n%wmﬁr+w2(é%§“+0 wp(—iﬁkw%@>
R (

4.14) (4.14)
_d_q,a, d
=(t+1)> 1+2+2qj I fllr Claz)s

[

'

_d_ 1419
= (1)

where the constant

1
min —%—1 o dHyH2 g QHyH2 !
Cas) = Claas) (0(4.14)) (/Rd 1yl e < Cmian + 1) exp < - Cma§d> dy
(

4.14) (4.14)

depends on d, ¢, K, Anmi”, A,® and p. Since the power —2% —1+§ of (t+1) is negative,
we have

@

(t+1)7 % 5 < g5 lts

and, therefore, we obtain the inequality (4.3).
Moreover, in the case p = 1 we obtain from (4.14) by using the transformation
1 . . . . d
y— (t+ 1)2y + x with the Jacobian determinant given by (¢t + 1)2

o o1t ly - o3
Cuaz (CTy @t +1)) 2 / fly y—xa(mm—R—i-l
(4.13) ( (4.14) ( )) R | ( )l H HRd 0(4.14) (t + 1)
ly — |3
(- ool

(4.14

= Caag) (Cin) "2 (¢4 1) 718 /R P+ )iy +a)]

dH?JH%d ||y||2d
||y||Rd ( C(mzn ) exXp Cmax Y

4.14 (4.14)

An application of Holder’s inequality yields
min \~ 51 —1+5 3
Cousn () 5 6+ 0 [ [7((0+ Diy+2)]
R

o (Yl vl
. ||?J||Rd( C(mian +1)exp ( — Om—fj) d

4.14) (4.14)

. _d_ - 1
< Counn () 178 [ (5 1y )| ay
NCINF I 12
. HH ' ||Rd< Omian +1 exp ( — Cm—aﬂid) .
(4.14) (4.14) 7 Il oo
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w\»—t

Hence, we just have to consider the reversing transformation y — (¢t + 1)~
with the Jacobian determinant given by (¢ + 1)7% for the integral

J.

(y — )

F(t+ 1)%y+x)‘ dy
to obtain the term

min _%_1 —1+2-4
Cla13) (0(4.14)) (t+1)72 72 [ f] e

NN I- 2.
[t (i 1) e (- )

4.14) (4.14)

Loo

as an estimate such that inequality (4.3) follows.

Step 6: Finally, inequality (4.4) results from the calculation in Step 5 if we use
the generalised Minkowski inequality (cf. Theorem A.6 in the Appendix) for integrals
instead of Holder’s inequality.

Therefore, we have for p € [1, 00|

2

0% (1)) 2| (T n) vl |

. ( dly—al.
< 0(4_13) (0(4 14) (t + 1)) e e |f(y>’ Hy o xHRd Cmin (t + 1) +1
d d (4.14)

P 1

ly — 2|z ’
- ———|d d
exp (= Gz (t+1)> i

(4.14)

, L4y d|ly — 2|3
< C len t 1 2 —_ & . < 1
< Caaz ( (11 (T + ) /Rd (/]Rd (Hy fL‘“Rd(CTZZ& (t+1) i

p 1

ly — |z ’

. — d d
oxb (= G (t+1)> v

(4.14)

by using (4.14) in the first and the generalised Minkowski inequality for integrals in
the second step. Shifting the integral via y — y + x, where the Jacobian determinant
is given by 1, yields

4 a 1yl13a
C Clty (t+1 ! P / Rd <—R +1
(4.13)( (4.14) ( )) (Ralp? e lyllz Cmin “(t + 1)

4.14

Iy,

.eX _—
p( Crny (t+1)

since ||fl|r = Jpa|f(y + x)| dz. Again by using the transformation y — (t + 1)zy
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d
2

with the Jacobian determinant given by (¢ + 1)z, we obtain

Cmin -§-1 -4-1 a dHyH%d 1
Claas) (Cli'Ty) t+1)727 ([ fllze y [yl Ra Cmm—(l)+

4.14

il

'eXp< Cr (t+1)

= (t+ 1) 5 flle

C szn _%_1 « ||yHI%§d 1 ||y||I%§d d
) (4.13)( (4.14)) R HyHRd Cimin + exp Cmax Y

(4.14) (4.14)

[\

= C(4_4) = 0(4_4) (K,a,d,)\;nln’)\nmaz)

<t7e | fllr Caay-

For p = co we have again by (4.14) and Theorem A.6 the estimate

A I ) |

o Cmin 4 o d| - l’”%d 1
. (4.14) R min
aan (it (4 0) [ 1O =l (G s +

(4.14)

<

|- =g
. N R g
eXP< ('maz (t+1)) Y .

(4.14)

Iy — ol
< Carn (€t -+ ) sy [ 17001y~ ol G +

zER4 4.14) (t + 1)
ly x“Rd
- exp ( T) dy
C'414 (t+1)
L (Al
< Cluiz) (0(4 i (t+ 1)) /]Rd esseigp |f(z+y)| lyllze (072“14 (tR—T— 5 +1
x 1
[y]|5a
+ eXp < max ) d
0414 (t+1)

since we can consider the shift y — y + = as before. Then we have | f||L~ =

esssup | f(x + y)| such that we can repeat the calculation from above at this point
z€RY
to obtain inequality (4.4). O

71



4.3. Estimates on the transition probability density

On the basis of Lemma 4.7 we will state and prove parts of Theorem 4.8 about estimates
on the transition probability density belonging to the considered stochastic process in
the L%-norm. We will describe later in this section to what extent we have to omit
parts of the proof because of occurring issues with the dependence of the constants as
well as in order to keep the thesis within reasonable length.

Anyway, for every n € N we start over with the simplified process (Yn(t))t>0 defined
by

Yn(t)< = Yn(t,Yo)> =Y —l—/o o (s, Y, (kn(s))) dW (s), (4.15)

where Yy € R? is non-random and o: R, x R? — R is a Borel-measurable map
satisfying the conditions

eld < (o0")(s,2) < K Id (4.16)
and
lo(s,z) —o(s,y)lle, < Kz —yllz (4.17)

for some constants « €10,1[, K, > 0 and every z,y € R% s > 0. For fixed n € N
and ¢t > 0 consider the corresponding transition semigroup 7" associated with (4.15),
which is given by

7' (Yo, dy) := P o Y, (t, Y())_l(dy).
Then as usual we set

mf (Vo) = E [ (Ya(t. Yo))| = /ﬂ FOLEY) AP = | () (Yo, dy)

for bounded Borel-measurable maps f: R? — R.
Let p,(t,y) be the density of 7]'(Yp, dy) with respect to the Lebesgue measure. Denote
its supremum by m,(t) := sup p,(t,y).

y€ER4
Theorem 4.8 (cf. [GK96], Theorem 4.2 on page 153). For everyn € N let (Y,(t)),., be
the process given by (4.15) such that (4.16) and (4.17) are fulfilled for some constants
a €10,1] and K,e > 0. Suppose furthermore that there exists a density pn(t,y) of
7 (Yo, dy) with respect to the Lebesque measure. Then the following assertions hold.

a) Let 1 < ¢ < ﬁ. Then there exists a constant C(u18) = Claas)(d, o, K, €,p) such

that for everyt >0 and n € N we have

||pn(t, ')”Lq == (/ pn(t,x)qu) S 0(4.18) (t_% + 1), (418)
R4

q

where p := e is the conjugate of q.
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b) If the partitions {0 =t < t} < ...} satisfy the additional conditions k,(s) > €s
for every n € N and s > 7, then there exists a constant C419) = Cla19)(d, o, K, €)
such that

M () < Clarg) (7% +1) (4.19)

for everyt > 0 and n € N. In this case (4.18) holds as well for any q € [1,00], t >0
and n € N.

The following proof is based on the one given by Gyongy and Krylov in [GK96|. But
we will only prove assertion a) of the theorem and only for a constant Ca31) instead
of C(4.18) which also depends on an upper time bound 7" € [0, 00[. We have to omit
the proof of assertion b) as well as the method to obtain a constant independent of 7'
because both considerations would exceed the extent of this thesis. Hence, we refer to
[GK96| at this point.

But more importantly, we will describe in a remark, that is stated before Step 4
within this proof, in which way the application of Lemma 4.7 turns out to be proble-
matic. In particular, we will see that we cannot exclude that the occurring constants
may not be independent of the time variable.

Proof of Theorem 4.8 a). (cf. [GK96|, Theorem 4.2 on page 153)
Observe that ||p,(¢, )11 = [gaPn(t,2)dz = 1 holds since p,(t,y) is a probability
density. Hence, we only have to consider 1 < g < ﬁ in the following.

Step 1: First of all, we define the operator Ty, as well as its adjoint Ti; and prove
some of their properties that are necessary for the application of Lemma 4.7 later.

For 0 < s <t < oo and bounded Borel-measurable functions f: R? — R consider
the operator 77, defined by

720 =1 (u+ [ otraw) |

and let T be the adjoint operator of T;t in L? (]Rd; R)—sense.
In order to apply Lemma 4.7 later, we have to show the following claim at first.

Claim (1). If s < t and y € R%, then the stochastic integral

tlostn) = [ ot aw

is a d-dimensional Gaussian vector with distribution N(O, A(s,t, y)), where A(s, t,y) =
t T . . .
[ (oa™)(r,y)dr is a covariance matrix such that

e(t—s)Id < A(s,t,y) = A(s, t,y)" < K (t—s) Id (4.20)

holds for every y € R?.
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Proof of Claim (1). In order to prove that for fixed s < t and y € R? the stochas-
tic integral £(s,t,y) = (51, o ,fd) (s,t,y) is a d-dimensional Gaussian vector, we will

d

show that for any arbitrary 1» € R? the linear combination > 1; £'(s,t,y) has a one-
i=1

dimensional normal distribution (cf. [Bau02], §30 on page 260). In this case the vector

of means is given by
E[S(s,t,y)] = <]E[£1(s,t, y)], . ,E[{d(s,t,y)D

and the covariance matrix A(s,t,y) = (Aij(s, t, y))l.j consists of elements

Aij(57 t y) = cov (fi(sv t, y)v 53‘(5’ t y)) :

d
For the linear combination Y 1; (s, t,y) we have
i=1
d d dq t dy t d
D ili(sty) =D Ui Y / oin(r,y) AW (r) =) / > dioa(r,y) dWE(r),
i=1 i=1 k=1 % k=1 v% i=1

d
where fst S" b o (r,y) dWH(r), for k =1,--- , dy, are R-valued integrals with determi-
i=1

nistic integrands. By [Shr04]|, Example 4.7.3 on page 223 we know that these integrals
have a normal distribution. Since linear combinations of independent normal distri-
buted random variables are again normal distributed (cf. [Bau02|, Theorem 8.4 on
page 55 and Example 3 on page 56), the assertion follows by the independence of the
components of the Wiener process W.

Furthermore, we have E[£'(s,t,y)] = 0 for every 1 < i < d. Observe that Lemma
A.7 from the Appendix and (4.16) imply that

2
lotry)lly, < dK
holds. This yields by using the 1t6 isometry

E[(€'(s,v)] = E -< 5 JR dwk<r>>t]

_E i</ o, y) de(r)>t]

L k=
i t

) /Z‘Uﬂc(r,y)fdr /Ha(r,y)Hier] < 00,
L S k=1 S

where the second step holds since we have (Z; + Zo) = (Z1)¢ + 2 (21, Za)t + (Z2): for

<E
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continuous local martingales Z; and Zs, the bilinearity of the covariation (-, -); and

</ o (r,y) de(r),/.ai,;(r, Y) dW];(r)>t]

S S

E

- /Uz‘k(r,y)%é(“y)d<Wk’Wi€>t]

t
=E / aik(r,y)%(ny)%;d?“]

=0

for k # k because 8,7 means the Kronecker delta. Therefore, £i(s,1,7), t € [s,1], is in
fact a martingale (cf. [RY99], Corollary 1.25 on page 130) and hence E[£'(s, ¢, y)] = 0.
Now the calculation of the elements of the covariance matrix A(s,t,y) yields

cov (§(s,t,9).&(s, 1, ))
=E[&(s,t,y) (s, t,y)]

B Ty )
=FE :/Stki;aik(r, Y)oik(r,y) dr]

_ / (00T )i y) dr-

Furthermore, we have to prove that (4.20) is fulfilled. Therefore, observe that

Als,t,y) = / (00™)(r,y) dr

holds and that the symmetry of A(s,t,y) follows because (co®)(r,y) is symmetric. In
addition, we have

(A(s, ) 2, 2)ga = { / (00™)(r, ) dr .}, = / ((00™)(r,y) 2, %)z dr.

-~

< K<1‘,I>Rd
> € (2,2)pa by (4.16)

and, hence,

e(t—s)(x,x)pe = / ez, r)ga dr
< (A(s,t,y) x, x)pa (4.21)

< / K {z,x)gadr = K (t — s) (x, x)pa
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holds for every = € R?, [

Note that in the case s =t we have T, f(y) = f(y) = Ti..f(v).
For s < t we can now repeat the calculation of 7;; from Step 1 in the proof of
Lemma 4.7 and obtain

-

Ty f(x)= | fly)(2n)¢(det A(s, t,y))*
i (4.22)

- exp ( - %(A(& ty) e —y), - y>w) dy.

By using formula (4.22), we can see that the following claim holds.

Claim (2). For any s < t the function @ —— T,;f(z) is infinitely differentiable.
Furthermore,

stf Z (@:EZ&BJ St ij (3 )f()) (.ZC) (423)
i,j=1
holds, where a;; := 3(o0™);;.

Proof of Claim (2). We omit the proof and refer to [GK96|, where it is claimed that
the assertion is fulfilled. O

Step 2: In this step we start to calculate E[f (Yn(t))}

Consider the map s — ]E[gp(s, Yn(s))], where the function ¢ is given by

©(s,Yn(s)) == Tsuf (Yn(s)). Then observe that for any r € [0,¢] we can apply the
Newton-Leibniz formula and obtain

E[f(Yn(t))] = E[Tt,tf(Yn(t))} = E[w(t,Yn(t))}
= E[gp(r, Yn(r))} + /Tt %E [@(S,Yn(s))] ds.

From It6’s formula (cf. Theorem A.9 in the Appendix) follows that P-a.s.

gp(s,Yn(s)) = O,Yn / 8 u,Yn )

holds, where m(p), 0 € [0, 5], is a continuous local (F,)-martingale with m(0) = 0.

Claim (3). The continuous local m(p), ¢ € [0, s, is a martingale for s < ¢.
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Proof of Claim (3). We have
_ /0 (Va0 Ya(w) 0 (w0, Yo (1 () AW ()
=3 [ e o) (Yl ).

J/

g

=:m*(o)

Now it again suffices to prove that E [<mk()>s] < 00 holds for every k =1,...,d; (cf.
[RY99], Corollary 1.25 on page 130). Namely, we have by the It6 isometry

E[(m*()),] =E < | Zw (1, Yo (1) 550 (Yol >)dW’€<u>>j

where we have used the Cauchy-Schwarz inequality in the last step. Besides,
2
lo(r ), <dK

holds for every r > 0 and y € R? by Lemma A.7 from the Appendix and inequality
(4.16). Furthermore, from equation (4.22) it follows that

1

“z(det A(u,t,y))

Q') .
N\R.

2

exp (- §<A<u, ) (=) = o) ) ()

1

“z(det A(u,t,y))

I\J\Q.

2

. (% exp ( %<A(U ty)” 1( : —?J)’ T ?J>Rd>) (Yn(u)) dy

holds since the last step is just the assertion of Claim (1) in the proof of Lemma 4.7.
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Applying the calculation from inequality (4.7) yields

= (/R ()] (2m) 7% (det Au, )~ A (u,t,) 7 1

o0 (= g Iy Rl Iy Yot

where we have used that by (4.21) the inequality e(t—u) Id < A(u,t,y) < K (t—u) Id
and, hence, (t 7 1d > Au,t,y)™ ! > —— ; 1d by Lemma 4.4 i) hold. Moreover, by
applying Lemma 4 6 iii) we can see that

d
d 2
Aut) P =S Ay (ut *12<(—)
1At )7, Zl| it ) < (g
is fulfilled. Furthermore, since the estimate (4.21) holds, we know that an application
_d _1 _d
of Lemma 4.6 i) yields (e (t — u)) * > (detA(u,t,y)) > > (K (t —u)) * for every
y € RY. Hence,
o 2
o (u,Ya(w)|

o (= g = Vo) Iy = Yot

~ (re) e =)
e (- g Iy @) Iy Yol w)

1
and by using the transformation y — (t—u)2y+Y,(u) with the Jacobian determinant

(t—u)™

d
given by (t — u) 2, we obtain

ad _1 1 2

(rer S =) [ e (= 5 Dol s )
- _ad 1 2 4.24
S FT Y (C S e e e T 1 e B

/

=:C(4.24)

where Cy.04) = Cla04y(€, K, d) is a constant. Altogether we have
Bl(mt )] <B| [ K (=) 11 Gl ]

0
_d2K||f||2 424 / (t—U)_ldU<OO
0
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since [; (t — u)fl du = ftt_s wldu=1In(t) —In(t — s) < oo for ¢t > s. O

Therefore, E[m(s)] = 0 holds such that we conclude
a5 B0
= %E[@(O, Yn(()))] + diE[/o 62 (u, Yy (u)) du}
[ 231/ a;j u,Yn Kn(u )))ax?amjgo(u,Yn(u)) du}

- digp(() Yo) HE[@ w(S»Yn(S))]

2

82
+3 ZlE {%’(57 Ya(kn(9) 5g7 (5 Yn(S))} :

where we have applied Fubini’s theorem in the last step to interchange the integral and
the expectation by using the same arguments as in the proof of Claim (1) in Lemma
4.7 for the necessary finiteness of the integrals. Hence, by applying (4.23) we altogether
obtain

E[f(Yn(t))] - E{Tmf(Yn(r))]

Define

Then we have the following claim.

Claim (4). If k,(s) < s and € R? then the stochastic integral 7(s,z) is a d-
dimensional Gaussian  vector  with  distribution N (0, An(s,az)); where

Apsz) = fsn(s) (ooT)(r,z) dr is a covariance matrix.

Proof of Claim (4). Analogous to the proof of Claim (1). ]

Observe that we can write

Yo(s) = Y, (ka(s)) + /:(s) o(r, Y, (ka(r)) ) dW (r)
=Yn(kn(s))

=Y, (kn(s)) + n(s,Yn (/@n(s)))
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Taking conditional expectation with respect to the sigma-algebra (T(Yn (nn(s))) yields

where we can write the second summand by using the measurability of a;; as

[ ()|

T oij=1

a5y (5. Vi (s )))E[(%;ﬂﬂtf) (Ya(s))

8] (5 Tha(5.10) ) (65) | as.
Now observe that
o o4 2] (5,58 050 )|
_ /IR ay(s,7) ]EK ax?;ijs’t f) (z + (s, 7)) o(x)] Pa(in(s), 7) da

_ /R aij(s,7) E{(ﬁj—;ﬂTS,tf) (z +n(s, x))] P (in(s), 7) d

holds if we write the expectation as an integral with respect to the density p, (/in(s), )

E

of the transition semigroup. Hence, altogether we have
E[f(Va(t))]

= E[Tr,tf( n\T )}

d

t

+ZE

2,0=1

ai; (5, Y (Kn(s )))E[(%{ZWT&J) (Yn(s))} (4.25)

5[5 (s.70) (Yn<s>>“ds-

Therefore, based on the last summand of (4.25), we consider the expression

/ [ZHmstYmn }ds-//Rdelwstxpnmn() r) dz ds,

4,j=1 4,j=1
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where

Hi(s,t,2) == a(s,2) E Ka?—;ﬂTs,tf) (= +n(s, fc))}

B[ (G T (o0 ) o+ 1(5.)|

Step 3: In this step we determine an estimate for the term ’Hij(s, t, x)‘ by applying
Lemma 4.7.

Claim (5). For H;;(s,t,z) the necessary assumptions from Lemma 4.7 hold.

Proof of Claim (5).

1) f: R — R is a bounded Borel-measurable function.

2) The role of g is taken by the function a;;(s,-): R? — R. Therefore, we have to
prove its Holder continuity, which is induced by (4.17). Namely, by using the submul-
tiplicativity of || - ||1,, we have

lo(s,2) = a(s,y)lle, < K|z = yl|za

= lo(s,2) = (s, )llea o (5, 2) 2, < K 107 (5, 2)1 12 = i
1 1
= |5o07 . 0) = S50 6.0)|, < 5 K o™ sl eyl
. T
and since [l (s,) (s, ). = [|(7(5,2) = (5, 9)) " 2 = 67 (5,2) = 0" (5.9) | . also
o7 (5,) = o7 (5, 9)lles < K llo = g
& lo(s, )l o™ (5,) = 07 (5,9)llzs < K o, )l llw = e
1 1 1 .
= |5t 07 (5,0) = Soo"(sm)| < 5 K llots,)lna llz =yl
2 2 Ly — 2

From this we can conclude that

1
la(s. ) — a(s, ), = 5007 (5.2) ~ 500" (5.)
27 2 2
< [|5o0™(s.2) ~ Sots o s )| +[|5ots. w0 (5, 2) ~ So0T(s.)
< 2 (s,x 20 s,y)o (s,x L 20 s,y)o (s, x 200 S,y L
1 [0
< S K (167 (s.0) e + (s, mllza) o= ol

(. /
v

=K

holds for z,y € R%, s > 0 with a constant K > 0.

3) The properties of & and 7 have already been proved in Claim (1) and Claim
(4). But we still have to prove their independence. Therefore, notice that £ and 7 are
stochastic integrals with non-random integrands which only differ in their bounds of
integration. Since the intervals from £, (s) up to s and from s up to ¢ do not intersect,
the independence follows from the independence of the increments of the Wiener process
W. m
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Therefore, we obtain the estimate
_d_q4a
|[Hij(s.t,2)] < Claze)(t — )72 2| | (4.26)

from Lemma 4.7, where C(4.26) is a constant.

At this point we have to insert an important remark about the dependencies of
Cla.26)-

Remark. The constant C426) depends among others on the variables )\Zm and )\nm‘”
that are introduced in Lemma 4.7. In this lemma we have proved the assertion with
a constant Ciy96) = Cl4.26) (K,g,d,p, )\:7""”,)\:7"“”") and a covariance matrix A, corre-
sponding to a Gaussian vector 77, which was introduced as an abstract object being
independent of s and t. In our case the covariance matrix is given by

Aps,2) :/ (co™)(r,z)dr.
Kn(8)
We can now use the estimate

e (s — knl(s)) (@, 2)pa = / ez, zx)gadr
Kn(s)
< <A77(5,a:) x, x>Rd

< /ﬂn(s) K (z,2)padr = K (s — kn(s)) (2, 2)pa

which is induced by the inequality (4.16). Consequently, we consider
(s —kn(s)) Id < Aysy) < K (s — Ka(s)) Id

for the estimate of A, in this case. Therefore, the constants )\nmin and A\J"** from Lemma
4.7 are now replaced by € (s—£,(s)) and K (s—r,(s)), respectively. Hence, we conclude

that we cannot exclude that the constant C(426) may be depending on s, i.e. Cy.06) =
C1(4.26) (Ka g, d7 p, S) :

This remark about the possible dependence of C4.26) on s is a problem for the com-
pletion of the proof. In Step 4 we will show how to finish the proof, but under the
crucial assumption that Cy ) does not depend on s.

Step 4: In this step we prove the estimate (4.18) with a constant depending on an
upper time bound T" € [0, 00| (assuming that C426) is independent of s).

Let T' € [0, 00]. Consider the equation

d

E[f(Yn(t))] :E[Tmf(Yn(r))] +[E[Z Hij(s,t, Yo (kn(s)) | ds  (4.27)

1,j=1
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for r =0 and ¢ €]0,7T]. Then we have

E[sno)]| = [E[mertnon] + [ =[3

Z H,;j (s, t,Y, (ﬁn(s)))} ds

1,j=1

E[\To,tf(yo)}] + /OtE{ zd: ‘Hij(s,t,Yn(mn(s)))” ds.

1,j=1

At first we prove an estimate for | Ty, f(Yp)| for ¢ > 0. Note that by equation (4.20)
and Lemma 4.6 i) we have the inequalities ¢t Id < A(0,¢,y) < Kt Id and (5 t)d <

det (A(O, t, y)) < (K t)d. Therefore, we can calculate as before in the proof of Lemma
4.7

1

[Toe (Yo)| = ' /R F () 2m) 73 (det A0, 1))

d d
2

< @mz | f@)ED”

(A(0,1, y)_l(y —Y0),y - Yo>Rd> dy‘

N | —

exp (= 5 lly — Yoll2a) dy

2Kt

_d 4
< (2me)"zt 2||f||Lp(/RdeXp< 2Kt||y Yo”Rd )
_d_
a

where the last step follows by applying Holder’s inequality for ¢ €]1,
conjugate p €)%, 0o|. Since

le d 1 q %
% ) - <—— 2) d
([ e (= ggepto—vatie) an) = o ([ o (= Slbliz)" oy

holds by using a shift y — y+ Y and the transformation y — t%y with the Jacobian
determinant given by t2 as seen before in the proof of Lemma 4.7, we obtain

d d d 1 q %
50 09)] <25 W1 o2y ([ oo (= e blie) " av)

— -4 N~ 4 428
£ :50(4.28) ( )

~[ and its

_d
= Clyog)t 2 | fllze,

where C(y08) = Cla08)(K,€,d,p) is a constant. Next we have by estimate (4.26)

/ {Z) (5,1, Yo (n(s )))” ds

2,7=1

/ 204% (t =) % 2| fllo ds (429)

2,7=1

t
_d_1,a
= C(4~29) ||f||LP/ (t - S) 2p 1+2 dS,
0
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where 0(4_29) = d2 C(4.26)-
Now we have to take a closer look at the power of (t—s) in the integral. By assumption
we have 1 < ¢ < ﬁ and, hence,

d d
q<OZT4:)(ol—oz)q<ci<:»(q—1)al<ozq<:»a<q_i1
N——
=p

since d € N and « €0, 1[. Therefore,

d d d
—<p<:>d<ap(:)0<%—2— S -l<—m 142
«

2p D 2p 2

Hence, we can compute the integral by substitution, i.e. we obtain

t 0
d a d o 1 d
_d_q4a _d_q4a _d
/(t—s) 5 2ds=—/z2p Hde=—— w7
(0%
0 t —5 T3

2p

t

nR

0 (4.30)
_d o
= Clagoyt 22

with a constant Cy.30) = Cla.30)(d, o, p). Altogether we have

‘E[f(yn(t))”:E[\To,tf(%} / {Z‘ (5., Yo (s )))”ds

i,j=1

< Cuaosyt 5 | fllze + Cla.20) Claz0) AR 1/l ze
@ d
( (4.28) T Cla20) C430)T54)t 2 || f]| v

[

(4.31)

=10(4.31)
_d
< Cusy [fllze (2 + 1),

where 0(4.31) = 0(4.31)(K75> d, o, p, )\:}m‘n7 A:,mm?T)-
Now we will show how this implies the estimate from the assertion. Consider the
linear functional
LP(R%:R) — R

(I)(pn(t7 >) : fr— y f(y) pa(t,y) dy

and observe that we have proved that

(vt ) (1) =

=1

_d
F) palt.y) dy| = [E[(45)]| < Claan 1l (75 +1)
holds for bounded Borel-measurable functions f. By an approximation argument we

also get this inequality for f € LP because we can consider the sequence (f,)men of
bounded Borel-measurable functions given by f,, := f 1{_;<t<m}, which converges by

84



Lebesgue’s dominated convergence theorem to f in LP. Hence, we can conclude that
O(pa(t,-)) € (LP(RELR)).

Therefore, by using the duality of the LP-spaces for 1 < p < oo, we can consider
the isometric isomorphism 7': LY(R% R) — (LP(Rd;R))/ that provides the general
form of the linear functional ®(p,(t,-)) (see e.g. [Bog07], Theorem 4.4.1 on page 262
or [Alt12], Theorem 4.12 on page 183). Hence, there exists a g € L9(R% R) such that

5 F)g(y) dy = (T g)(f) = ®(palt,-))(f),

the isometry property HTgH = ||g||s and

[ 190 | < gl s

from Holder’s inequality are fulfilled.
Furthermore, we know that HTgH = inf {¢ > O‘ ‘(Tg)f! <c| fllr} is given by the
definition of the operator norm. Thus we realise that in fact

_d
gllze < Crazny (72 +1)

has to hold. Hence, by using that g = p,(¢,), we can obtain the estimate

_4a
1Pn(t, Mze < Clasyy (2 4 1) (4.32)

from the assertion with a constant depending on 7.
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5. Existence and Uniqueness (Non-degeneracy
Version)

This last chapter will focus on the second main theorem (see Theorem 5.2) in which we
will change the assumptions from the first main theorem (see Theorem 3.7) slightly. We
base the following considerations on [GK96|, where it is claimed that such a theorem
holds.

Unfortunately, in order to keep this thesis within reasonable length, we cannot go
into details concerning the proof such that we just have to refer to the one given by
Gyongy and Krylov in [GK96]. There the authors also mention the similarity to the
proof of Theorem 3.7 such that we have already worked out the necessary essential
ideas in the previous chapters.

5.1. Main theorem (non-degeneracy version)

In this section we will extend the assumptions from the framework in Section 2.1

by a so-called non-degeneracy condition for the diffusion coefficient o. With this new

condition we can change the continuity assumptions on b and o later in Theorem 5.2.
Therefore, we introduce A4) as the fourth main assumption of this thesis.

A4) For every k € N the domain Dy, is bounded and convex and

d

d
> (00T )it 2Ny > e Mi(t) > NP
=1

,j=1

holds for every t € [0,k], x € Dy and \; € R for i = 1,...,d, where g > 0 are
some constants.

But before we can state the theorem, we have to define the local Holder continuity,
which we will assume for the diffusion coefficient o in the following.

Definition 5.1 (Local Holder continuity). Let n € N. A function f: Ry x D — R" is
called locally Holder continuous in x € D (with exponent « € 10, 1]) if for every k € N,
t >0 and x,y € Dy we have

1f(t,2) = f(t )z < Mi(t)]|lz — yl1Z5-

If o =1, we say that f is locally Lipschitz continuous in x € D.

Now we can finally state the second main and simultaneously last theorem of this
thesis, that can be found in [GK96].
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Theorem 5.2 (cf. [GK96|, Theorem 2.8 on page 149). Let the assumptions from the
framework in Section 2.1 and in addition A4) be fulfilled. Suppose moreover that o is
locally Hélder continuous in x € D with some exponent o €10,1]. If « # 1, assume
that pathwise uniqueness holds for the equation (2.1). Then we have:

1) There ezists a process (X (t))o0 such that X,(t) —— X(t) uniformly in t on

n—oo
bounded intervals.

2) (X (t))e>0 is the unique solution of equation (2.1) (up to P-indistinguishability).

Proof. At this point we refer to [GK96] on page 157. First of all, we note that Corollary
4.3 on page 156 still has to be proved before. Then the reader can comprehend that
the main idea is to prove Lemma 5.1, which is stated on page 157. O
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A. Appendix

The Appendix contains several fundamental lemmas and theorems, which we use within
this thesis. On the one hand we will recall well-known basic facts that are mentioned
here to ensure the completeness and comprehensibility of the proofs and also to state
their intended version exactly (e.g. Theorem A.20, A.21, A.3 and A.6). But on the
other hand we will also prove some helpful assertions (e.g. Lemma A.14 and A.22) that
have been extracted from the previous chapters, for example due to their length or
simplicity.

A.l1. Basic theorems

At the beginning we will recall some basic theorems like the continuous mapping theo-
rems, a generalised Young inequality and a generalised Minkowski inequality for inte-
grals, where we usually give references for their proofs.

Theorem A.1 (Continuous mapping theorem, convergence in distribution). Let X, Y

be topological spaces and f: X — Y be a continuous function. Let ., for n € N, and

w be distributions on X such that jt, —— . Then on'Y we have p,o f~+ ——— pof!
n—00 n—oo

for the image distributions.
Proof. We refer to [Dud02], Theorem 9.3.7 on page 296. O

Remark. Note that for a sequence of random variables (Z,,),en on a probability space
(Q, F, P) with Z, —2— Z,i.e. Py, —% Pz, we have f(Z,) ——s f(Z) for continuous
n— 00 n—00 n—ro0

functions f because
Pyz)|Al = P[f(Z,) € A] = P[Z, € f71(A)] = Py, [fT(A)] = (Pz, o f)[4]
and, therefore, Pfz,) = Pz, o f~! holds.

Theorem A.2 (Continuous mapping theorem, P-a.s. convergence and convergence in
probability). Let (Q, F, P) be a probability space, (S1,p1), (Se, p2) be separable metric
spaces and let f: S; — Sy be a continuous function. Assume that (Z,)nen is a sequence
of Si-valued random variables. Then the assertions

. p . . p

i) Zn — Z implies f(Zn) — f(Z),

i) Zo Z225 7 implies f(Zn) ——2 f(2)
n—oo n—oo

hold.

The proof is an adapted version of the one stated in [vdV98| (see Theorem 2.3 on
page 8).
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Proof. (cf. [vdV98] on page 8)
“7)” Let € > 0. For every § > 0 define the set

Bs = {x e S ‘ Jy e Sy pi(z,y) < and pg(f(:n),f(y)) > 5}

for which 6 | 0 implies Bs | (). Note that Z ¢ Bs and pa(f(Z,), f(Z)) > € imply
P1 (Zn,Z) > 6. Hence,

Plpa(f(Z,), [(2)) 2 €| < P[Z € BS] + P|p1 (20, 2) = 6].

The second summand converges to zero for n — oo by assumption. By letting ¢ | 0

the first summand also tends to zero since Bs | (0.

“ii)” Note that lim Z,(w) = Z(w) for w € Q implies lim f(Z,(w)) = f(Z(w)) by the
n—oo

n—oo
continuity of f. Hence,

Pl lim po(f(Z0), 1(2))| 2 P| im p1(Z0, 2)| = 1.

n—oo n—oo

]

Lemma A.3 (Generalised Young inequality). Let X be a vector space, p > 1 and let
f: X — R be a convex function which is homogeneous of degree p (i.e. f(ax) = o f(x)
for every o >0, x € X ). Then

fla+0b) <227V (f(a) + f(b))

for every a,b € X.
In particular, for a normed space (X, | - ||) we have ||a + b|[P < 2°7% (||a||P + ||b]|7)
for every a,b € X.

Proof. We compute

1 1 1 1
fla+b) = 2pf(§ aty b) <2 (5 fla)+3 f(b)) =271 (f(a) + f(b))
by using the homogeneity in the first and the convexity in the second step. O

Lemma A.4 (Reverse Fatou lemma). Let (f,)nen be a sequence of non-negative, R-
valued, measurable functions on a measure space (S,S, i). Suppose there erists a func-
tion g € L*(S;R) such that f, < g for every n € N. Then

lim sup/ fodu < /lim sup f, dp
S S

n—o0 n—oo

holds.

Proof. This version follows immediately from the original Fatou lemma (see e.g. [Dud02],
Lemma 4.3.3 on page 131) by considering g — f,, . [
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Now we have to mention the space Ny from the general stochastic integration theory
in [PRO7] (see Section 2.3 starting on page 21) and fit it in our framework such that we
can state a Burkholder-Davis-Gundy type inequality afterwards. Therefore, we define

:

Pr = O'(Y: [0,7] x Q@ — R |Y is left-continuous and adapted to F,t € [0, T])

Nw (O,T; ]Rd) = {CD: [0,T] x Q — R4 | & is predictable and

p[/OTH@@)H; ds < o0

as in [PRO7| on page 30. Recall that

is the so-called predictable o-algebra, and for any separable Hilbert space H a process
Y:[0,7T] x Q@ — H is said to be (H-)predictable if it is Pr/B(H)-measurable.

Lemma A.5 (Burkholder-Davis-Gundy type inequality). Assume that p > 2 and ® €
Nw (O, T, Rd). Then we have

;dr <p (2(pp_ 1)>% (/OTE[H‘D(S)HZ] : d3>§-

At this point we recall that the predictability assumption on ® € Ny (O, T, ]Rd) can
be replaced by assuming progessive measurability, i.e. ® | gxq is B([0, {])@F, /B(R>")-
measurable for every t € [0, T, since we consider the Wiener process W as an integrator.
For further details we refer to [PRO7] on page 42.

e s | (s ()

t€[0,T]

Proof. We refer to [DZ92], Lemma 7.7 on page 195. O

We call (X, A, 1) a o-finite measure space if it is the countable union of A-measurable
sets with finite measure. As usual, we define the essential supremum of a function

f: X — Rby

esssup f(z) := inf {a € R),u[x eX | f(z) >a] = 0}.

zeX

Theorem A.6 (Generalised Minkowski integral inequality, cf. [Sch07], Theorem 13.14
on page 130). Let (X, Ay, p) and (Y, Ay, v) be o-finite measure spaces and f: X XY —
R be a A1 @ As-measurable function. Then

1

([ ([1seiaow) we) < [ ( [ i) s

holds for every p € [1, 00|, with equality for p = 1.
For p = oo we have the modified inequality

esssup /Y ()| duly) < /Y ess sup | £(z, )| dv(y).

zeX zeX
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Proof. For p € [1,00] we refer to [Sch07], Theorem 13.14 on page 130 or [HLP67],
Theorem 202 on page 148. Observe that the inequality is obvious in the case p = co. [

Lemma A.7. Let A € R™™™ be a matriz such that
eld<AA" <K 1d
for some constants £, K > 0. Then the inequality
e < [|All7, < min{n,m}K
holds.

Proof. In this proof we could choose any induced matrix norm (operator norm) as a
help for the estimate, but we consider a special one for convenience. Therefore, let

| - [|2 be the spectral norm for matrices, i.e. ||A|lz := sup | Az||gr. Then we have
llz]lgm =1

|All2 < ||Al|z, < v/min{n, m} ||A|2 (cf. [GL13|, Inequality (2.3.7) on page 72) and

e=¢c sup |z||i. < sup (AAT2 2)pn < K sup |zl = K.

[|#]lrn=1 l|z]lrn=1 llzl[rn=1

Since

sup (AA"z, 2)pe = sup (ATz, ATa)pn = sup |[|A |5 = AT = (A3,

llzllgn =1 [[#]|lrn =1 l|z]lgn =1

it follows that

e < [|All; < [|Al1Z, < min{n, m}[[A]; < min{n,m}K

holds. O

Finally, we state a well-known lemma about some fundamental inequalities for lim sup,
liminf and probability measures, that the reader should keep in mind.

Lemma A.8. Let (Q, F, P) be a probability space and A; € F for every i € N. Then
we have

i) limsup P[A,] < P[limsup 4,],
n—00 n—o0

ii) P[liminf A,] < liminf P[4,].

n—o0 n—oo

Proof.

“3)” Since |J A, is a decreasing sequence in n, we conclude by the continuity from
m>n

above of P that

Pl A, :P[ Am] — i P[ Am} > i PA,,
[timsup A,] nON ngn lim. gﬂ Jn sup | ]

=limsup P[An]

n—>00

holds. Assertion “i7)” can be proved analogously. O]
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A.2. 1t6é’s formula and It6's product rule

In preparation of the application of the well-known It6 formula and It6 product rule
for semimartingales, we recall the corresponding theorems from Karatzas/Shreve in
[KS05] and Revuz/Yor in [RY99|. Besides, we deduce in Corollary A.10 the explicit
representation of the Ito formula for processes which satisfy the SDE (2.1).

Theorem A.9 (cf. [KS05|, Theorem 3.6 on page 153). Let (Z(t))i>0 be an (F:)-adapted,
Re-valued continuous local martingale with Z(0) = 0, (B(t))=o0 be an (F;)-adapted,
R-valued process of bounded variation with B(0) = 0 and Yy be an Fo-measurable
random, vector with values in R?. Set Y (t) := Yy + Z(t) + B(t) for t € [0,00[ and let
F e 2 (IRJr X Rd;R). Then we have P-a.s.

F(t,Y(t)) = F(0,Yy) + /0 %F(S,Y(S)) ds

for all t € [0, 00l.

Corollary A.10. Let k € N and let (X(t))i>0 be a process satisfying SDE (2.1) for
every t < 7% :=inf {t > 0| X(t) ¢ Dy} Ak. Suppose that the assumptions from Section
2.1 are fulfilled and that F € C**(Ry x D;R). Then we have P-a.s.

F(t,X(t)) = F(0,X(0)) + /0 %F(S,X(S}) ds

+Zl/0 bi(S,X(S))%F(S7X(S))dS

+/0 (VoF(s,X(s)),0(s, X (s)) AW (5)) pa
d t

> Z /0 (00")i;(s, X(S))ax%ﬂ F(s,X(s))ds

=1 j=1

+

N —

for all t € [0, 7%].

Proof. By satisfying SDE (2.1), we know that (X (¢));>0 is a semimartingale with the
representation Yy := X(0), B(t) := [ b(s,X(s))ds and Z(t) == [, o(s, X (s))dW (s)
for t € [0,7%] from Theorem A.9. Note that (Z(t))>o is a continuous local martingale
by construction of the It6 integral and (B(t)):>o is of bounded variation by A1).
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Indeed, we obtain

w Y [Bin) =Bl = 3| [T v x|,

i1 si41 €11 i: 5541 €11

§/0 Hb(s,X(s))HRddsg/o My (s)ds < o0,

where I is a partition of [0,¢]. Furthermore, we have

t A et
Bi(t) = / bi(s, X(s)ds and  Zi(t) =3 / oo, X (s)) AR (s)
0 = Jo
for 2 = 1,...,d. Therefore, we use
d1
dB'(s) = bi(s, X(s))ds aswellas dZ'(s) = Z oir(s, X(s)) dW*(s)
k=1

and compute the covariation

7.2, = (3 [ ot X)), 3 [ ot X0 i),

di di

=3 [ onln X ln X)) dovt W,

k=1 =1 :‘Sk/} dr

s di

= [ S eutr XDoatr X)) ar

k=1
= / (o0a™)i;(r, X (r)) dr,
0
where 6,; means the Kronecker delta of £ and k. Hence,
dZ, 77, = (o0 )i(s, X (s)) ds.

Finally, we write V, for the gradient in the second component and (-,-)gs for the
Euclidean inner product. Hence,

Z Z /o 8iiF(S’ X (5))ou(s, X (s)) dW¥(s)

i=1 k=1

= [P X5, X A (5]

]

Theorem A.11 (cf. [RY99], Proposition 3.1 on page 146). Let (Y1(t))i>0 and (Ya(t))t=0
be continuous semimartingales on a probability space (2, F, P). Then we have P-a.s.

Yi(t) Ya(t) = Y1(0) Ya(0) + / Yi(s) dY(s) + / Ya(s) dYi(s) + (i, V).

Proof. We refer to [RY99|, Proposition 3.1 on page 146. O
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A.3. Convergence

In this section we will state Lemma A.12 and A.13 about implications between the
different modes of convergence of sequences of random variables, that are used in this
thesis. Furthermore, we will also prove Lemma A.14 and A.15, which we apply in the
proof of Theorem 3.7.

Lemma A.12 (Implications between modes of convergence, cf. [vdV98|, Theorem 2.7
on page 10). Let (0, F, P) be a probability space, (S,p) be a separable metric space
and let ¢ € S. Assume that Z and Z,, for n € N, are S-valued random variables on
(Q, F, P). Then the following assertions hold.

. P—a.s. o
i) Zn —22 7 implies Z, L7z,
n—oo n—oo

i) Zn —L Z implies Zn —2— Z,
n—oo

n—oo
iii) Z, —2 c if and only if Z, —2— c.
n—o0 n—o0
Proof. We refer to [vdV98|, Theorem 2.7 on page 10. ]

Lemma A.13 (cf. [vdV98|, Theorem 2.7 vi) on page 10). Let (€2, F, P) be a probability
space and (S, p1), (Sa, p2) be separable metric spaces. Assume that Z*, Z}, for n € N,
are Si-valued and Z*, 72, for n € N, are Sy-valued random variables on (Q, F, P) such
that 7! —L 5 7 for i = 1,2. Then we also have the convergence of the joint random

n—o0

variable (Z}, Z2), i.e. (Z}, 22) —2— (21, Z?).

n—oo

Proof. (cf. [vdV98|, Theorem 2.7 vi) on page 10)
Let p* be the metric on the product space S; x S given by

p*((Xm Yn)’ (X? Y)) =M (Xn7 X) + p2 (Yn, Y).
Then we have
Pl (25,222 2%) 2 | < P|pu (23, 2") = 5|+ P|pa(22.2%) = 5]

such that the assertion follows by the assumed convergence of the individual sequences.
O

Lemma A.14. Let (a,)nen be a [0, 1]-valued sequence and c € [0, 1]. If for every subse-

quence (an,, Jmen 0f (n)nen there exists a subsequence (anmj )jen such that lim sup n,, <
Jj—o0
¢, then limsupa, < c.
n—oo

Proof. Assume that d := limsupa, > c¢. Then we can choose a subsequence (a,,, )men
n—o0

such that |a,,, —d| < &< for every m € N, since d is an accumulation point. But then
there must exist a subsequence (anmj )jen such that lim sup . < c. That is impossible
j—o0
by our choice of (a,,, )men. Hence, limsupa,, < c. O
n—oo

95



Lemma A.15. Let (2, F, P) be a probability space, r € N and d; € N for 1 <i <,
Foro=1,---,r let (X,i)neN be sequences of stochastic processes such that X' : Q0 —
C([O, T, Rd") for every n € N. Furthermore, assume that X': Q — C’([O, TY; Rdi) are
stochastic processes such that one of the following convergences

i) (XL, X7 — (XY, X7,

n—o0

i) (X} ... XD —/— (X',...,X"),

n—o0

i) (X1, X7) = (XL X

n—oo
holds. In each of these cases we have for every q € N with ¢ < r and every {jl, - ,jq} -
{1, o ,7’}, where j; # jg for I # {, that

i) (X7, .., X)) =2 (X, X,

n—oo

) (XL X 2 (X, X,

n—oo
i) (X, Xat) =25 (XL X,

Proof. We consider the map

" C([0,T|;R™) x -+ x C([0,T];R") — C([0, T;R%1) x -+ x C([0,T]; R%n),
| (Floe i Y= (s ),

which is a continuous function. Hence, by the continuous mapping theorems (cf. Theo-
rem A.1 and Theorem A.2) we obtain the assertion. O
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A.4. Tightness

In this section we will consider some necessary facts concerning tightness. This includes
on the one hand the tightness criteria A.20 and A.21 as well as on the other hand the
important Lemma A.22 about tightness of joint distributions.

First of all, we recall the definition of a tight family of probability measures and
Prokhorov’s theorem about the implications between tightness and relative compact-
ness.

Definition A.16 (tight). A family M of probability measures on a metric space (S, p)
18 called tight if for every € > 0 there exists a compact set K. C S such that

p(Ke) > 1—e¢
for all p € M.

Theorem A.17 (Prokhorov). Let (S,p) be a metric space and M C M;(S) be a
family of probability measures. Then the tightness of the family M implies the relative
compactness of M. If S is a Polish space, these properties are equivalent.

Proof. We refer to [Dur96|, Chapter 8.2 starting on page 276 and |Bil99], Theorem 5.1
on page 59 and Theorem 5.2 on page 60. [

Lemma A.18. Let (S, p) be a metric space and S be the Borel-o-algebra on S. If S is
separable and complete, then every single probability measure on (S,S) is tight.

Proof. We refer to [Bil99], Theorem 1.3 on page 7. O

Let T € [0, 00 and d € N. Then the space C([0, T7; Rd) of continuous functions equip-
ped with the supremum norm || - || is a separable and complete normed space.

Now we define the modulus of continuity that is used in the following tightness
criterion.

Definition A.19 (Modulus of continuity). For every T > 0, f € C([O,T];Rd) and
0 > 0 define a so-called modulus of continuity by

Ws(f) = tS%)T} 1 £(s) = f(t)|lga-
e

Theorem A.20 (Tightness criterion). A sequence of probability measures (fin)nen 00
C([O, T}, ]Rd) is tight if and only if for every € > 0 there exist constants ng € N, R >0
and 0 > 0 such that

i) | {f € COTERY) | £O)lss > RY| <,

ii) pn[{f e C([0, TR | Wy(f) > g}] <e

hold for every n > ny.
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Remark. Observe that assertion ii) of Theorem A.20 can be stated equivalently with
possibly different 7, £ > 0 instead of taking the same £ > 0, since ii) certainly holds for
e =n A& in that case.

Remark (cf. [Bil99], Theorem 7.3 and Equation (7.8) on page 82). We can restate the
assertions i) and ii) in a more compact form, i.e.

) lim limsup;zn[{f e C(10, T RY) | | £(0)ze > R}] —0,

li
Rfoo psoo

ii’) lgg)l lim sup p4y, [Wg > 5} = 0 for every € > 0.

n—o0

Proof of Theorem A.20. We refer to [Dur96|, Theorem 3.4 on page 284 for a generali-
sable version of a proof for the space C([O, 1]; ]Rd). ]

If we consider the distributions of stochastic processes with continuous sample paths,
we can restate condition ii) from Theorem A.20 in another different way. The new
condition is closely related to the theorem of Kolmogorov-Chentsov.

Theorem A.21 (Tightness criterion for distributions of stochastic processes with con-
tinuous sample paths). Let (2, A, P) be a probability space and (X,)nen be a sequence
of stochastic processes with X,: Q0 — C’([O,T];Rd). If there exist some constants
a, B, K > 0 such that the inequality

IE[HXn(t) . Xn(s)y\gd] < K|t — s|*e

is fulfilled for every n € N and s,t € [0,T], then assertion ii) from the tightness
criterion A.20 holds for the sequence of distributions (Px,, )nen-

Proof. We refer to [KS05|, Theorem 4.10 and Problem 4.11 on page 63-64 or [Dur96|,
Theorem 3.6 on page 284 for proofs in similar settings. [l

Finally, we state and prove the previously mentioned Lemma A.22 about the tight-
ness of joint distributions.

Lemma A.22. Let (2, A, P) be a probability space, T > 0, dy,ds € N and assu-
me that (X,)nen, (Yn)nen are sequences of stochastic processes such that X,: Q@ —
C([0,T;R™M) and Y,: @ — C([0,T];R®) for every n € N. If both sequences of dis-
tributions (Px, )nen and (Py,)nen are tight, then the sequence of joint distributions
(Pix,,va) Jnen i a tight family of measures on C'([0,T];R“*%).

Proof. We will just verify the two conditions from Theorem A.20. Let € > 0.
“1)”: Choose ny € N and R > 0 such that

R’ R €
PIXOl > 5 | = PIX Ol > 72| <5 and
2] i (A1)
R R 3
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for every n > n;. Then

2

UG =l G
Yn(o) R41+d2 Yn(o) Rd1+d2
= P{IXa(0) 2, + IVa(0)]12; > R2|
R? R?

< P [Xn(O)llga > 5 | + P 1Ya(O) g > =
cELf_,
-2 2

follows from (A.1) for all n > n;.

“i1)”: Choose ny € N and 0 > 0 such that

PIWs(X,) > —=| <= and P[Wi(X) > —| <= (A.2)

for every n > no. Then by using the monotonicity of the square function, it follows
PIWs((X0, V2)) > ]

= P{Ws((X,,72))" > 22|

- 2
=P sup (Xn(t) B X”(S)> > ¢?
$,6€[0,T] Yn(t) - Yn(s) Rd1+d2
- Js—t|<s

e [ ]

=7 s (IX(0) - X6l + %00 - V(o) ) > ]
5,t€[0,T]
" |5—1]<8

<P _Wg(Xn)2 + Wg(Yn)Q > 52}

=P| sup
s5,t€[0,T
" ls—t|<é

2 62

<P :Wg(Xn)Q > %} n P[W(;(Yn)Q > 5]

Hence by (A.2) we have
P[Wg((Xn,Yn)) > 5} < P[WJ(Xn) > %] + P[W(;(Yn) > i} <e

for every n > ny. By taking ng := max{nj, ns}, we finish the proof. O
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