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Abstract

In this talk, we follow Ringel [7] to construct the indecomposable representations of quivers of type
E using the magic square of Freudenthal and Tits. Moreover, we construct infinitely many pairwise
non-isomorphic indecomposable representations for non-Dynkin quivers using the four-subspace quiver.
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1 The indecomposable representations of a type E Dynkin quiver

1.1 The Freudenthal-Tits magic square

In the last talk we saw an elementary reasoning that every Dynkin quiver of type A or D is representation-
finite. The reasoning came with a construction of the indecomposable representations using hammocks and
conical representations. In the first part of this talk we wish to construct the indecomposable representations
of every Dynkin quiver of type E. The construction features the Freudenthal-Tits magic square.

Freudenthal [2, 3, 4, 5] and Tits [8] independently gave a construction of the exceptional Lie algebras
from real division algebras. We can visualize the construction by a 4 × 4 square matrix. In this section we
would like to present a simplified construction of the exceptional Lie algebras due to Vinberg [9]. First of
all, Frobenius’s theorem asserts that up to isomorphism there are only three associative finite-dimensional
real division algebras. The algebras are R, C and H; their dimensions are 1, 2 and 4. Using toplogical
methods Kervaire [6] and Bott-Milnor [1] independently proved that up to isomorphism there are only four
(not necessarily associative) finite-dimensional real division algebras. The algebras are R, C, H and O; their
dimensions are 1, 2, 4 and 8.

Suppose that a, b ∈ {R,C,H,O}. We let Der(a) denote the set of derivations, i. e. the set of R-linear
maps D : a → a such that the Leibniz rule D(xy) = D(x)y+xD(y) holds for all x, y ∈ a and D(x) = 0 holds
for all x ∈ R. For example, Der(R) = Der(C) = 0. The vector space Der(a) becomes a Lie algebra via the
commutator. One can show that Der(H) ∼= so(3) and Der(O) ∼= g2. Furthermore, we denote by saa⊗b(3)
the vector space of traceless skew-Hermitian matrices with entries in a⊗R b. Vinberg [9] endows the vector
space

V (a, b) = Der(a)⊕Der(b)⊕ saa⊗b(3)

with a Lie bracket such that Der(a) and Der(a) are commuting Lie subalgebras and for every derivation
D ∈ Der(a) ∪ Der(b) and every matrix x ∈ saa⊗b(3) the Lie bracket [D, x] is given by applying D to the
entries of x.
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Theorem 1.1 (Vinberg). The Vinberg Lie algebra V (a, b) is isomorphic to the corresponding entry in the
Freudenthal-Tits magic square in Figure 1.

R C H O

R so(3) su(3) sp(3) f4
C su(3) su(3)× su(3) su(6) e6
H sp(3) su(6) so(12) e7
O f4 e6 e7 e8

R C H O

R A1 A2 C3 F4

C A2 A2 ×A2 A5 E6

H C3 A5 D6 E7

O F4 E6 E7 E8

Figure 1: The Freudenthal-Tits magic square

1.2 An inductive construction of the indecomposable representations

Let ∆ be a Dynkin diagram of type En with n ∈ {6, 7, 8}. We define diagrams ∆′ and ∆′′ according to the
following submatrix of the Freudenthal-Tits magic square:

n ∆′′ ∆′ ∆

6 A2 ×A2 A5 E6

7 A5 D6 E7

8 E6 E7 E8

Figure 2: Ringel’s subdiagrams

Proposition 1.2. (a) There is a unique vertex y of ∆ such that ∆′ is obtained from ∆ by removing y
and all edges incident with y. The vertex y is called the exceptional vertex of ∆.

(b) The exceptional vertex y is adjacent to exactly one vertex z in ∆. The diagram ∆′′ is obtained from
∆′ by removing the vertex z together with the edges incident with z.

Let k be a field and let Q be a quiver with underlying undirected diagram ∆. We denote by repk(Q)
the category of finite-dimensional representation of Q over k and by indk(Q) the set of indecomposable
representations of Q over k. We consider the full subquivers Q′ and Q′′ of Q with underlying undirected
diagrams ∆′ and ∆′′. When we are interested in representation-finiteness we may assume that all arrows are
oriented towards the central vertex without loss of generality by a proposition in the last talk. Especially,
the exceptional vertex y is a source in Q.

Given a representationX ofQ. Recall that the objects in the hammock category H(X,Q) are the represen-
tations of Q; for two representations M,N ∈ repk(Q) the set of morphisms is given by HomH(X,Q)(M,N) =
HomkQ(M,N)/ ≃ where we define ϕ ≃ ϕ′ if HomkQ(X,ϕ− ϕ′) = 0. Note that M ∈ H(X,Q) is zero if and
only if HomkQ(X,M) = 0.

Theorem 1.3 (Ringel). Suppose that M ∈ repk(Q) is indecomposable. Then exactly one of the following
six statements is true:

(1) The support of M is contained in Q′′. In this case we may view M as an element in indk(Q
′′).

(2) The support ofM is contained inQ′, but not inQ′′. In this case 0 6= dimk(Mz) = dimk HomkQ(P (z),M).
Hence we may view M as an element in the hammock category H(P (z), Q′).

(3) We have dimk(My) = 1 and the restriction N = M |Q′ of M to Q′ is an indecomposable object in the
hammock category H(P (z), Q′).

(4) We have dimk(My) = 1 and the restriction N = M |Q′ of M to Q′ is isomorphic to a direct sum
N = N1 ⊕N2 of two indecomposables object N1, N2 in the hammock category H(P (z), Q′) such that
HomkQ′(N1, N2) = 0 = HomkQ′ (N2, N1).
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Figure 3: The hammock category H(P (z), Q′) for Q of type E6

(5) We have dimk(My) ∈ {1, 2} and the restrictionN = M |Q′ ofM to Q′ is isomorphic to a direct sum N =
N1 ⊕N2 ⊕N3 of three indecomposables object N1, N2, N3 in the hammock category H(P (z), Q′) such
that HomkQ′ (Ni, Nj) = 0 for all i 6= j. In the case the triple (N1, N2, N3) is called a special antichain

triple. Furthermore, up to isomorphism and reordering there is only one special antichain triple in the
hammock category H(P (z), Q′). The special antichain triple obeys the relation ExtkQ′ (Ni, Nj) = 0 for
all i 6= j.

(6) The representation M is isomorphic to the simple representation S(y).

In particular, repk(Q) is representation finite. Figures 3 and 5 illustrate Ringel’s theorem in the case
∆ = E6 and ∆′ = A5. The hammock category H(P (z), Q′) contains 9 indecomposable objects; a red
edge indicates when there are no non-zero morphisms between the indecomposable objects. In Figure 5
indecomposable objects are colored red (case 1), green (case 2), blue (case 3), yellow (case 4), grey (case 5)
and orange (case 6).

2 Representation-finite quivers are Dynkin

2.1 Cross ratios

Let k be an infinite field and let Q be the four subspace quiver of type D̃4 as defined in Figure 4. We
consider the dimension vector d = (1, 1, 1, 1, 2) ∈ N5. It is easy to see that if a representation M ∈
repk(Q,d) is indecomposable, then the linear maps Ma with ϕ ∈ {α, β, γ, δ} are injective. Furthermore, if
M,N ∈ repk(Q,d) are two indecomposable representations with Mϕ(k) = Nϕ(k) for all ϕ ∈ {α, β, γ, δ}, then
M and N are isomorphic. Hence any indecomposable representation M ∈ repK(Q,d) is determined up to
isomorphism by the images a, b, c, d ∈ P1

k of k underMα,Mβ,Mγ ,Mδ. In this case we writeM = M(a, b, c, d).

1 2 3 4

5
α

β γ

δ

Figure 4: The four subspace quiver

Note that the group of automorphisms of the projective line P1
k is isomorphic to Aut(P1

k)
∼= PGLk(2).

Let a, b, c, d and a′, b′, c′, d′ be points in P1
k. Then M(a, b, c, d) and M(a′, b′, c′, d′) are isomorphic if and only

if there is an automorphism Φ ∈ Aut(P1
k) such that a′ = Φ(a), b′ = Φ(b), c′ = Φ(c) and d′ = Φ(d). The

group Aut(P1
k) acts 3-transitively on P1

k. In particular, for every three pairwise different points a, b, c ∈ P1
k
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there is a unique projective transformation Φ ∈ Aut(P1
k) such that Φ(a) = 0, Φ(b) = 1 and Φ(c) = ∞ (where

we view k as a subset of P1
k under the embedding z 7→ (1, z)).

Definition 2.1. Suppose that a, b, c, d ∈ P1
k are pairwise different. The cross ratio of the quadruple (a, b, c, d)

is Φ(d) ∈ k where Φ is the unique projective automorphism such that Φ(a) = 0, Φ(b) = 1 and Φ(c) = ∞.

It follows from the definition that the cross ratio is invariant under projective transformations. Moreover,
two representations M(a, b, c, d) and M(a′, b′, c′, d′), where a, b, c, d and a′, b′, c′, d′ are four pairwise different
points, respectively, are isomorphic if and only if the cross ratios of (a, b, c, d) and (a′, b′, c′, d′) coincide. In
particular, the set repk(Q,d) contains infinitely many pairwise non-isomorphic representations.

Remark 2.2. The name cross ratio comes from the following geometric construction due to Pappus of
Alexandria. Suppose that k = R. Choose a line l ⊆ R2 with 0 /∈ l which is not parallel to any of the lines
a, b, c, d ⊆ R

2. It meets a, b, c, d in points A,B,C,D ∈ R
2. Then the cross ratio of (a, b, c, d) is equal to the

ratio (AC ·BD)/(AD · BC) for every choice of l.

2.2 Thick subcategories of type D̃4

Let k be an infinite field. Suppose that Q̃ is a connected quiver such that the underlying undirected diagram
is not Dynkin. We want to prove that Q̃ is representation infinite.

Lemma 2.3 (Folklore). The quiver Q̃ contains a full subquiver whose underlying undirected diagram is an
extended Dynkin diagram of type Ãn (with n 6= 1), D̃n (with n ≥ 4) or Ẽn (with n ∈ {6, 7, 8}).

Using the Jordan canonical form one can show that repk(Q̃) is representation infinite if the underlying
diagram of Q̃ contains an extended Dynkin diagram of type Ã. It is easy to see that repk(Q̃) contains the
module category of a quiver of type D̃4 as a thick subcategory (i. e. an exact abelian subcategory closed
under extensions) if Q̃ is an orientation of a Dynkin diagram of type D̃. Without loss of generality we may
therefore assume that the underlying undirected diagram of Q̃ has type Ẽ and that all arrows are oriented
towards the central vertex. Note that the extending vertex x of Q̃ is adjacent to the special vertex of y of
the corresponding Dynkin quiver Q.

Theorem 2.4 (Ringel). Let (N1, N2, N3) be the special antichain triple of Q (with support in Q′). We
consider the subcategory E of repk(Q̃) of all representation of Q̃ that admit a filtration with factors isomorphic
to N1, N2, N3, S(x) or S(y). Then E is a thick subcategory and it is equivalent to the module category of
a quiver of type D̃4.
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Figure 5: The indecomposable representations of a Dynkin quiver of type E6
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