
Green’s Main Theorem

Seminar on Ringel-Hall Algebras
Talk by Philipp Lampe

June 8, 2016

Abstract

In this talk, we wish to relate the Ringel-Hall algebra of a quiver with the Drinfel’d-Jimbo
quantum group. As an application, we prove Kac’s theorem which connects indecomposable
quiver representations with positive roots.
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1 Example: The special linear group of size 2

1.1 The interplay of Lie theory and representation theory

We consider the simple Lie algebra of traceless matrices:

sl3(C) = {A ∈ Mat3×3(C) | tr(A) = 0}.

It is an eight-dimensional Lie algebra spanned by the weight spaces Vα1
= Ce1, Vα2 = Ce2, Vα1+α2 =

Ce12, V−α1
= C f1, V−α2 = C f2, V−α1−α2 = C f12, and the Cartan subalgebra h = Ch1 ⊕ Ch2 with

e1 =
(

0 1 0
0 0 0
0 0 0

)
, e2 =

(
0 0 0
0 0 1
0 0 0

)
, e12 =

(
0 0 1
0 0 0
0 0 0

)
, h1 =

(
1 0 0
0 −1 0
0 0 0

)
,

f1 =
(

0 0 0
1 0 0
0 0 0

)
, f2 =

(
0 0 0
0 0 0
0 1 0

)
, f12 =

(
0 0 0
0 0 0
1 0 0

)
, h2 =

(
0 0 0
0 1 0
0 0 −1

)
.
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Figure 1: The root system of type A2

The root system is shown in Figure 1. Note that every root is either positive or negative. The
set Φ+ = {α1, α1 + α2, α2} of positive roots is linked to the representation theory of the quiver
1 → 2 of type A2. More precisely, the expansion of the three positive roots as linear combinations
of the simple roots α1, α2, namely the vectors (1, 0), (1, 1) and (0, 1), are the dimension vectors of
the three indecomposable representations S1 = (k → 0), P1 = (k → k) and S2 = (0 → k), where k
is any field.

Representations of g correspond to modules over its universal enveloping algebra U(g). It is
generated by elements E1, E2, F1, F2, H1, H2 (corresponding to e1, e2, f1, f2, h1, h1) subject to certain
relations such as the Serre relation E2

1E2 − 2E1E2E1 + E2E2
1 = 0 (corresponding to [e1, [e1, e2]] = 0).

The Lie algebra g = sl3 admits a triangular decomposition g = n+ ⊕ h⊕ n− into strictly upper
triangular, diagonal and strictly lower triangular matrices. The universal enveloping algebras U(g)
and U(n+) admit several Poincaré-Birkhoff-Witt bases: every ordered basis of g or n gives rise to a
PBW basis of its universal enveloping algebra. For example, the basis (e1, e12, e2) of n+ from above
yields the basis P = {Ea

1(E1E2 − E2E1)
bEc

2 | (a, b, c) ∈ N3} of U(n+).

The quantized universal enveloping algebra U+ is generated by elements E1, E2 subject to the
quantum Serre relations, e. g. E2

1E2 − (v + v−1)E1E2E1 + E2E2
1 = 0, over a suitable ground ring. The

quantization has the following advantages:

(1) Lusztig [9, Theorem 42.1.10] uses the quantization to construct another basis of U(n+),
the canonical basis B, so that application of B to lowest vectors v0 yields bases of the irre-
ducible representations. In this case Lusztig’s canonical basis is: B = {Ea

1Eb
2Ec

1 | a + c ≥
b} ∪ {Ea

2Eb
1Ec

2 | a + c ≥ b}.

(2) A theorem of Green-Rosso [4, 13] asserts that we can embed U+ ⊆ Fv in the quantum
shuffle algebra. Here Fv is spanned by all symbols w[i1, i2, . . . , ik] for all finite sequences
i = (i1, i2, . . . , ik) ∈ Ik of symbols from the set {1, 2, . . . , n} of length k ≥ 0. The product of
two basis elements is defined as a linear combination of shuffles. Green-Rosso’s embedding
enables us to do computer calculation in U+ efficiently.

(3) We get a deeper connection between Lie theory and quiver representations. We saw in
the first talk of the seminar that we have a short exact sequence 0 → S2 → P1 → S1 but
Ext1

Q(S2, S1) = 0, so that in the Ringel-Hall algebra H(Q) we have uS1
uS2

= uS1⊕S2
+ uP1

but
uS2

uS1
= uS1⊕S2

. It follows that uP1
= uS1

uS2
− uS2

uS1
. Moreover, uS1

uP1
= quS1⊕P1

= quP1
uS1

.
It follows that u2

S1
uS2

− (q + 1)uS1
uS2

uS1
+ quS2

u2
S1

= 0. The relation becomes the quantum
Serre relation in the twisted Ringel-Hall algebra.

In this talk, we wish to understand the first two lines of the following table. The talk is based
on notes by Hubery [5].
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Quiver Q Lie algebra g

Gabriel/Kac indecomposable representations Φ+ positive roots

Ringel/Green twisted Ringel-Hall algebra H(Q) positive quantum group U+

Lusztig constructible sheaves on repk (Q, d) (dual) canonical basis of U+

2 Ringel’s theorem

2.1 The twisted Ringel-Hall algebra and Green’s formula

Let Q be a quiver with n vertices, and let k be a finite field with q elements. The Euler charac-
teristic of two representations M, N ∈ repk(Q) is defined to be 〈M, N〉 = dimk(HomQ(M, N)) −
dimk(ExtQ(M, N)). Because the category repk(Q) is hereditary, it induces a bilinear form K0(Q)×
K0(Q) → R where K0(Q) denotes the Grothendieck group of repk(Q). We consider the sym-
metrized Euler form defined by (M, N) = 〈M, N〉+ 〈N, M〉 for all M, N. Moreover, let v =

√
q ∈

R be a square root of q.

The (twisted) Ringel-Hall algebra H(Q) is the R-vector space with basis elements uM for all
isoclasses of representations M. We define the (twisted) multiplication and comultiplication on
basis elements by the formulae:

uMuN = v〈M,N〉 ∑
X

FX
M,NuX, ∆(uX) = ∑

M,N

v〈M,N〉 aMaN
aX

FX
M,NuM ⊗ uN ,

where FX
M,N is the number of subrepresentations U ⊆ X such that U ∼= N and X/U ∼= M,

and aX is the cardinality of AutQ(X). Then H(Q) becomes a (twisted) bialgebra, i. e. we have
∆(uMuN) = ∆(uM) ·∆(uN) for all N, N when we define a multiplication on H(Q)⊗R H(Q) by the
formula (uA ⊗ uB) · (uC ⊗ uD) = v−〈A,D〉(uAuC ⊗ uBuD) or by the formula (uA ⊗ uB) · (uC ⊗ uD) =
v(B,C)(uAuC ⊗ uBuD) respectively. It becomes a (twisted) Hopf algebra by defining a suitable an-
tipode, see Xiao [14, Theorem 4.5 (c)].

The (twisted) Hopf algebra H(Q) admits a Hopf pairing {·, ·} : H(Q)×H(Q) → R, e. g. we
have {u, vw} = ∑{u(1), v}{u(2), w} whenever we have ∆(u) = ∑ u(1) ⊗ u(2) in Sweedler’s nota-
tion. It is determined by the values on basis elements

{uM, uN} = δM,N
vdim(M)

aM
. (1)

2.2 Ringel’s theorem and the quantum Serre relations

Example 2.1. The quantum Serre relations in Farnsteiner’s talk [2] become the following relations
in the twisted Ringel-Hall algebra. Here we abbreviate ui = uSi

for all i, and we denote by [n] =
(vn − v−n)/(v − v−1) the quantum integer.

Quiver Q Untwisted relation Twisted relation

1 → 2 u2
1u2 − (q + 1)u1u2u1 + u2u2

1 = 0 u2
1u2 − [2]u1u2u1 + u2u2

1 = 0

1 ⇒ 2 u3
1u2 − (q2 + q + 1)u2

1u2u1

+ q(q2 + q + 1)u1u2u2
1 − q3u2u3

1 = 0
u3

1u2 − [3]u2
1u2u1 + [3]u1u2u2

1 − u2u3
1 = 0

1 ⇄ 2 u3
1u2 − (q + 1 + q−1)u2

1u2u1

+ (q + 1 + q−1)u1u2u2
1 − u2u3

1 = 0
u3

1u2 − [3]u2
1u2u1 + [3]u1u2u2

1 − u2u3
1 = 0

The theorem of Ringel [11] asserts that the examples generalize. The proof is a rank 2 cal-
culation similar to the derivation of the quantum Serre relations for the n-Kronecker quiver in
Farnsteiner’s talk [2].
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Theorem 2.2 (Ringel). Assume that ei, ej ∈ K0(Q) correspond to distinct simple representations
Si, Sj. As before, we abbreviate ui = usi

and uj = uSj
. If cij = (ei, ej), then

∑
r+s=1−cij

(−1)r

[
r + s

r

]
ur

i uju
s
i = 0.

Especially, the quantum Serre relations in the twisted Ringel-Hall algebra are invariant under
changing the orientation of arrows, i. e. they depend only on the underlying undirected diagram
of the quiver. The composition algebra C(Q) ⊆ H(Q) is the Hopf subalgebra generated by the
elements ui = uSi

with i ∈ Q0.

3 Green’s theorem

3.1 The positive quantum group and its Hopf structure

Recall the construction of the quantum group from the last talk. Let n ≥ 1. An integer n× n matrix
C = (cij) is called symmetric generalized Cartan matrix if cii = 2 for all 1 ≤ i ≤ n and cij = cji ≤ 0
for all i 6= j. Such a matrix defines a Kac-Moody Lie algebra g = n+ ⊕ h⊕ n−. Drinfel’d-Jimbo
replace universal enveloping algebra U(n+), cocommutative Hopf algebra, with the quantized
enveloping algebra U+, a not necessarily cocommutative Hopf algebra, c.f. Drinfel’d [1]. The
process is called quantization, because in quantum mechanics classical commuting observables
are replaced with not necessarily commutating operators. Let us briefly outline the construction
of U+; the reader can find more details in the work of Kassel [8], Lusztig [9], and Majid [10].

We fix a field k of characteristic 0. The symmetric generalized Cartan matrix C defines a sym-
metric bilinear form (·, ·) on Λ = Zn with respect to the standard basis whose elements we denote
by ei with 1 ≤ i ≤ n. The group algebra U0 of Λ over k can be endowed with the structure of
a Hopf algebra. For every v ∈ k∗, that is not be a root of unity, we can define a Hopf pairing
{·, ·} : U0 × U0 → k. Let f+ be the free k-algebra with generators Ei for 1 ≤ i ≤ n. We can ex-
tend the Hopf structure on U0 to a Hopf structure on the tensor product f+,0 = f+ ⊗ U0. The
Hopf algebra is graded by Λ with deg(Ei) = ei. The Hopf pairing extends to a Hopf pairing
{·, ·} : f+,0 × f+,0 → k in such a way that

{Ei, Ej} = δij
1

v − v−1
(2)

for all 1 ≤ i ≤ n. The ideal I+ ⊆ f+ is chosen in such a way that the restriction of the Hopf pairing
to U+ = f+/I+ is non-degenerate. Note that U+ is not a Hopf subalgebra because ∆(Ei) =
Ei ⊗ 1 + Ki ⊗ Ei /∈ U+.

Put Z = Q[v, v−1, [m]−1 for m ≥ 2]. Define U+
Z to be the Z-algebra generated by Ei with

1 ≤ i ≤ n subject to the quantum Serre relations

∑
r+s=1−cij

(−1)r

[
r + s

r

]
Er

i EjE
s
i = 0

for all i 6= j. A theorem asserts that we have an isomorphism U+ ∼= k⊗Z U+
Z , and another theorem

asserts that the algebra U+
Z is a free Z-module.

3.2 Green’s theorem

Define a comultiplication ∆ : U+
Z → U+

Z ⊗ U+
Z by ∆(Ei) = 1 ⊗ Ei + Ei ⊗ 1. The comultiplication

becomes an algebra homomorphism if we define the multiplication (U+
Z ⊗ U+

Z )× (U+
Z ⊗ U+

Z ) →
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U+
Z ⊗ U+

Z by (a ⊗ b) · (c ⊗ d) = v(deg(b),deg(c))(ac ⊗ bd) for all homogeneous elements a, b, c, d ∈
U+. We say that U+

Z is a twisted bialgebra. Together with the antipode S : U+
Z → U+

Z defined by
S(Ei) = −Ei it becomes a twisted Hopf algebra. Lusztig shows that the twisted Hopf algebra U+

Z
admits a Hopf pairing U+

Z × U+
Z → Z , which is uniquely determined by formula (2).

Let Q be a quiver with n vertices such that its symmetrized Euler form equals the symmetric
bilinear form attached to the generalized Cartan matrix C. Ringel’s theorem 2.2 implies that there
is homomorphism Ψ : R ⊗Z U+

Z → C(Q) with ψ(Ei) = ui. Green’s main theorem [3, Theorem 3]
asserts:

Theorem 3.1 (Green). The map ψ is an isomorphism of twisted Hopf algebras and it respects the
grading and the Hopf pairing.

Proof. The homomorphism ψ respects the Hopf pairing, because {Ei, Ej} =
δi,j

v−v−1 = {ui, uj} for

all i, j. Suppose that x ∈ R ⊗Z U+
Z lies in the kernel of ψ. Then {x, y} = {ψ(x), ψ(y)} = 0 for all

y ∈ R ⊗R U+
Z which implies x = 0 since the Hopf pairing is non-degenerate.

4 Kac’s theorem

4.1 Characters and the denominator formula

Let n denote the number of vertices of the quiver Q. For every i we define the reflection ri(x) =
x − (x, ei)ei. The formula implies ri(ei) = −ei for all i. The reflections ri with i ∈ Q0 generate a
subgroup W = W(C) ⊆ Aut(Zn), which is called the Weyl group of C. The root system of the
Kac-Moody Lie algebra decomposes in real and imaginary roots with

Φre = {w(ei) : w ∈ W, 1 ≤ i ≤ n} = {α ∈ Φ : 0 < (α, α) ≤ 2},

Φim = Φ\Φre ⊆ {α ∈ Φ : (α, α) ≤ 0}.

A theorem asserts that every root is either positive or negative and has connected support. The
multiplicity mult(α) is defined as the dimension of the corresponding root space. It can be shown
that mult(α) = 1 if α is real, and that mult(α) = mult(w(α)) for all roots α and all Weyl group
elements w. For every α = (a1, a2, . . . , an) ∈ Λ we define a monomial e(α) = ta1

1 ta2
2 · . . . · tan

n

in the power series ring Z[[t1, t2, . . . , tn]]. Especially, the elements satisfy the exponential rule
e(α)e(β) = e(α + β). Define the characters of the composition algebra and the Hall algebra by

ch(C(Q)) = ∑
α≥0

dimR(C(Q)α)e(α), ch(H(Q)) = ∑
α≥0

dimR(H(Q)α)e(α).

Proposition 4.1. For every dimension vector α = (a1, a2, . . . , an) we denote by ind(α, k) the num-
ber of isoclasses of indecomposable representations of Q over k of dimension α. We have the
following product formula:

ch(H(Q)) = ∏
α>0

(1 − e(α))− ind(α,k)

Proof. By the theorem of Krull-Remak-Schmidt every representation is a direct sum of indecom-
posable representations. The indecomposable representation are unique up to permutation and
isomorphisms. Hence dimR(H(Q)α), the number of isoclasses of representations of Q over k of
dimension α, equals the coefficient corresponding to e(α) in the geometric series expansion.

Green’s theorem implies that the character of the composition algebra equals the character of
the positive quantum group. For the positive quantum group, Kac’s denominator formula [6,
Chapter 10.2] holds:
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Theorem 4.2 (Kac). The character of the positive quantum is

ch(U+) = ∏
α∈φ+

(1 − e(α))−mult(α)

4.2 Indecomposable representations and Kac’s theorem

Note that formula (1) implies that the Hopf pairing on H(Q) is positive definite. Following
Sevenhant-Van Den Bergh [12, Chapter 3] we choose for every 0 6= α ∈ Nn an orthonormal
basis {θi}i∈I(α) of the subspace

G(Q)α =


 ∑

β+γ=α
β,γ>0

H(Q)βH(Q)γ




⊥

⊆ H(Q)α.

Let I be the union of the I(α) for all α. Note that G(Q)ei
is a 1-dimensional vector space spanned

by ui so that I(ei) is a singleton. We define a bilinear form on ZI by (i, j) = (deg(θi), deg(θj)).

Assume that the matrix C̃ represents the bilinear form with respect to the basis I.

Lemma 4.3. Every θi is primitive, i. e. ∆(θi) = θi ⊗ 1 + 1 ⊗ θi.

Proof. Let us extend {θi}i∈I ⊆ (ζ j)j∈J to a homogeneous orthonormal basis of H(Q). Then we can
write ∆(θi) = ∑j,k∈J cjkζ j ⊗ ζk. As {·, ·} is a Hopf pairing, we have

{θi, ζlζm} = ∑
j,k∈J

cjk{ζ j, ζl}{ζk, ζm} = clm.

for all l, m ∈ J. By definition {θi, xy} = 0 for all homogeneous elements x, y ∈ H(Q) of degree
β, γ with α = β + γ, hence cl,m = 0 unless (ζl , ζm) = (θi, 1) or (ζl , ζm) = (1, θi) in which case
cl,m = 1.

A symmetric Borcherds matrix is a generalization of a generalized Cartan matrix where diagonal
entries are allowed to be in the set {2, 0,−2,−4, . . .}. Borcherds introduced these in the context of
moonshine.

Lemma 4.4. The matrix C̃ is a Borcherds matrix. Especially we have (i, j) ≤ 0 whenever i 6= j.

Proof. Let i, j ∈ I be distinct. By the previous lemma we have

∆(θiθj) = (θi ⊗ 1 + 1 ⊗ θi)(θj ⊗ 1 + 1 ⊗ θj)

= θiθj ⊗ 1 + θi ⊗ θj + v(i,j)θj ⊗ θi + 1 ⊗ θiθj.

From this equation we can follow that {θiθj, θiθj} = 1 and {θiθj, θjθi} = v(i,j). The positive defi-
niteness of the Hopf pairing implies for all x, y ∈ R the inequality

0 ≤ {xθiθj + yθjθi, xθiθj + yθjθi} = x2 + 2v(i,j)xy + y2.

Thus, the discriminant of the quadratic form must satisfy 4(1 − v(ij)) ≥ 0. Hence 1 ≥ v(i,j), so
that (i, j) ≤ 0. For the proof of the other properties of Borcherds matrices we refer the reader to
Sevenhant-Van Den Bergh [12, Proposition 3.2].
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Note that the matrix C̃ is an infinite matrix with C in the top left corner. It follows that the
root systems Φ̃ and Φ associated with C̃ and C have the same real roots and the same Weyl
group. With the Borcherds matrix C̃ we can associate a generalized Kac-Moody Lie algebra. Let
Ũ+ be its positive quantum group, which we construct similarly. As the Hopf pairing is non-
degenerate on H(Q), a Sevenhant-Van Den Bergh’s generalization [12] of Green’s main theorem
to generalized Kac-Moody algebras implies that we have an isomorphism of twisted Hopf alge-
bras H(Q) ∼= R ⊗Z Ũ+. We obtain a different proof of a theorem of Kac [7] for indecomposable
quiver representations over finite fields.

Theorem 4.5 (Kac). We have Φ̃+ = {dim(M) : M indecomposable}. Moreover, the number of
isoclasses of indecomposable representations of Q over k with dimension vector α ∈ Φ̃+ is equal
to the multiplicity of α in Φ̃+. Especially, up to isomorphism there exists only one indecomposable
representation with dimension vector α for every real root α ∈ Φre.

Proof. Compare the product formula (4.1) for ch(H(Q)) with the product formula (4.2) for the
positive quantum group of C̃.
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