Green's Main Theorem

Seminar on Ringel-Hall Algebras
Talk by Philipp Lampe

June 8, 2016

Abstract

In this talk, we wish to relate the Ringel-Hall algebra of a quiver with the Drinfel'd-Jimbo quantum group. As an application, we prove Kac's theorem which connects indecomposable quiver representations with positive roots.

Contents

1 Example: The special linear group of size 2 1

1.1 The interplay of Lie theory and representation theory 1

2 Ringel's theorem 3
2.1 The twisted Ringel-Hall algebra and Green's formula 3
2.2 Ringel's theorem and the quantum Serre relations . 3

3 Green's theorem 4
3.1 The positive quantum group and its Hopf structure 4
3.2 Green's theorem . 4

4 Kac's theorem 5
4.1 Characters and the denominator formula . 5
4.2 Indecomposable representations and Kac's theorem 6

1 Example: The special linear group of size 2

1.1 The interplay of Lie theory and representation theory

We consider the simple Lie algebra of traceless matrices:

$$
\mathfrak{s l}_{3}(\mathbb{C})=\left\{A \in \operatorname{Mat}_{3 \times 3}(\mathbb{C}) \mid \operatorname{tr}(A)=0\right\} .
$$

It is an eight-dimensional Lie algebra spanned by the weight spaces $V_{\alpha_{1}}=\mathbb{C} e_{1}, V_{\alpha_{2}}=\mathbb{C} e_{2}, V_{\alpha_{1}+\alpha_{2}}=$ $\mathbb{C} e_{12}, V_{-\alpha_{1}}=\mathbb{C} f_{1}, V_{-\alpha_{2}}=\mathbb{C} f_{2}, V_{-\alpha_{1}-\alpha_{2}}=\mathbb{C} f_{12}$, and the Cartan subalgebra $\mathfrak{h}=\mathbb{C} h_{1} \oplus \mathbb{C} h_{2}$ with

$$
\left.\left.\begin{array}{lll}
e_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & e_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & e_{12}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
f_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & f_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), & f_{12}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),
\end{array}\right), \begin{array}{lll}
0 & 0 & 0
\end{array}\right), ~\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) . ~ \$
$$

Figure 1: The root system of type A_{2}

The root system is shown in Figure 1 Note that every root is either positive or negative. The set $\Phi^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$ of positive roots is linked to the representation theory of the quiver $1 \rightarrow 2$ of type A_{2}. More precisely, the expansion of the three positive roots as linear combinations of the simple roots α_{1}, α_{2}, namely the vectors $(1,0),(1,1)$ and $(0,1)$, are the dimension vectors of the three indecomposable representations $S_{1}=(k \rightarrow 0), P_{1}=(k \rightarrow k)$ and $S_{2}=(0 \rightarrow k)$, where k is any field.

Representations of \mathfrak{g} correspond to modules over its universal enveloping algebra $U(g)$. It is generated by elements $E_{1}, E_{2}, F_{1}, F_{2}, H_{1}, H_{2}$ (corresponding to $e_{1}, e_{2}, f_{1}, f_{2}, h_{1}, h_{1}$) subject to certain relations such as the Serre relation $E_{1}^{2} E_{2}-2 E_{1} E_{2} E_{1}+E_{2} E_{1}^{2}=0$ (corresponding to $\left[e_{1},\left[e_{1}, e_{2}\right]\right]=0$).

The Lie algebra $\mathfrak{g}=\mathfrak{s l}_{3}$ admits a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}$into strictly upper triangular, diagonal and strictly lower triangular matrices. The universal enveloping algebras $U(g)$ and $U\left(\mathfrak{n}_{+}\right)$admit several Poincaré-Birkhoff-Witt bases: every ordered basis of \mathfrak{g} or \mathfrak{n} gives rise to a PBW basis of its universal enveloping algebra. For example, the basis (e_{1}, e_{12}, e_{2}) of \mathfrak{n}_{+}from above yields the basis $\mathcal{P}=\left\{E_{1}^{a}\left(E_{1} E_{2}-E_{2} E_{1}\right)^{b} E_{2}^{c} \mid(a, b, c) \in \mathbb{N}^{3}\right\}$ of $U\left(\mathfrak{n}_{+}\right)$.

The quantized universal enveloping algebra U^{+}is generated by elements E_{1}, E_{2} subject to the quantum Serre relations, e.g. $E_{1}^{2} E_{2}-\left(v+v^{-1}\right) E_{1} E_{2} E_{1}+E_{2} E_{1}^{2}=0$, over a suitable ground ring. The quantization has the following advantages:
(1) Lusztig [9, Theorem 42.1.10] uses the quantization to construct another basis of $U\left(\mathfrak{n}_{+}\right)$, the canonical basis \mathcal{B}, so that application of \mathcal{B} to lowest vectors v_{0} yields bases of the irreducible representations. In this case Lusztig's canonical basis is: $\mathcal{B}=\left\{E_{1}^{a} E_{2}^{b} E_{1}^{c} \mid a+c \geq\right.$ $b\} \cup\left\{E_{2}^{a} E_{1}^{b} E_{2}^{c} \mid a+c \geq b\right\}$.
(2) A theorem of Green-Rosso [4, 13] asserts that we can embed $U^{+} \subseteq \mathcal{F}_{v}$ in the quantum shuffle algebra. Here \mathcal{F}_{v} is spanned by all symbols $w\left[i_{1}, i_{2}, \ldots, i_{k}\right]$ for all finite sequences $\underline{i}=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in I^{k}$ of symbols from the set $\{1,2, \ldots, n\}$ of length $k \geq 0$. The product of two basis elements is defined as a linear combination of shuffles. Green-Rosso's embedding enables us to do computer calculation in U^{+}efficiently.
(3) We get a deeper connection between Lie theory and quiver representations. We saw in the first talk of the seminar that we have a short exact sequence $0 \rightarrow S_{2} \rightarrow P_{1} \rightarrow S_{1}$ but $\operatorname{Ext}_{Q}^{1}\left(S_{2}, S_{1}\right)=0$, so that in the Ringel-Hall algebra $\mathcal{H}(Q)$ we have $u_{S_{1}} u_{S_{2}}=u_{S_{1} \oplus S_{2}}+u_{P_{1}}$ but $u_{S_{2}} u_{S_{1}}=u_{S_{1} \oplus S_{2}}$. It follows that $u_{P_{1}}=u_{S_{1}} u_{S_{2}}-u_{S_{2}} u_{S_{1}}$. Moreover, $u_{S_{1}} u_{P_{1}}=q u_{S_{1} \oplus P_{1}}=q u_{P_{1}} u_{S_{1}}$. It follows that $u_{S_{1}}^{2} u_{S_{2}}-(q+1) u_{S_{1}} u_{S_{2}} u_{S_{1}}+q u_{S_{2}} u_{S_{1}}^{2}=0$. The relation becomes the quantum Serre relation in the twisted Ringel-Hall algebra.

In this talk, we wish to understand the first two lines of the following table. The talk is based on notes by Hubery [5].

	Quiver Q	Lie algebra \mathfrak{g}
Gabriel/Kac	indecomposable representations	Φ^{+}positive roots
Ringel/Green	twisted Ringel-Hall algebra $H(Q)$	positive quantum group U^{+}
Lusztig	constructible sheaves on rep $p_{k}(Q, \underline{d})$	(dual) canonical basis of U^{+}

2 Ringel's theorem

2.1 The twisted Ringel-Hall algebra and Green's formula

Let Q be a quiver with n vertices, and let k be a finite field with q elements. The Euler characteristic of two representations $M, N \in \operatorname{rep}_{k}(Q)$ is defined to be $\langle M, N\rangle=\operatorname{dim}_{k}\left(\operatorname{Hom}_{Q}(M, N)\right)-$ $\operatorname{dim}_{k}\left(\operatorname{Ext}_{Q}(M, N)\right)$. Because the category $\operatorname{rep}_{k}(Q)$ is hereditary, it induces a bilinear form $K_{0}(Q) \times$ $K_{0}(Q) \rightarrow \mathbb{R}$ where $K_{0}(Q)$ denotes the Grothendieck group of $\operatorname{rep}_{k}(Q)$. We consider the symmetrized Euler form defined by $(M, N)=\langle M, N\rangle+\langle N, M\rangle$ for all M, N. Moreover, let $v=\sqrt{q} \in$ \mathbb{R} be a square root of q.

The (twisted) Ringel-Hall algebra $\mathcal{H}(Q)$ is the \mathbb{R}-vector space with basis elements u_{M} for all isoclasses of representations M. We define the (twisted) multiplication and comultiplication on basis elements by the formulae:

$$
u_{M} u_{N}=v^{\langle M, N\rangle} \sum_{X} F_{M, N}^{X} u_{X}, \quad \Delta\left(u_{X}\right)=\sum_{M, N} v^{\langle M, N\rangle} \frac{a_{M} a_{N}}{a_{X}} F_{M, N}^{X} u_{M} \otimes u_{N},
$$

where $F_{M, N}^{X}$ is the number of subrepresentations $U \subseteq X$ such that $U \cong N$ and $X / U \cong M$, and a_{X} is the cardinality of $\operatorname{Aut}_{Q}(X)$. Then $\mathcal{H}(Q)$ becomes a (twisted) bialgebra, i. e. we have $\Delta\left(u_{M} u_{N}\right)=\Delta\left(u_{M}\right) \cdot \Delta\left(u_{N}\right)$ for all N, N when we define a multiplication on $\mathcal{H}(Q) \otimes_{\mathbb{R}} \mathcal{H}(Q)$ by the formula $\left(u_{A} \otimes u_{B}\right) \cdot\left(u_{C} \otimes u_{D}\right)=v^{-\langle A, D\rangle}\left(u_{A} u_{C} \otimes u_{B} u_{D}\right)$ or by the formula $\left(u_{A} \otimes u_{B}\right) \cdot\left(u_{C} \otimes u_{D}\right)=$ $v^{(B, C)}\left(u_{A} u_{C} \otimes u_{B} u_{D}\right)$ respectively. It becomes a (twisted) Hopf algebra by defining a suitable antipode, see Xiao [14, Theorem 4.5 (c)].

The (twisted) Hopf algebra $\mathcal{H}(Q)$ admits a Hopf pairing $\{\cdot, \cdot\}: \mathcal{H}(Q) \times \mathcal{H}(Q) \rightarrow \mathbb{R}$, e.g. we have $\{u, v w\}=\sum\left\{u_{(1)}, v\right\}\left\{u_{(2)}, w\right\}$ whenever we have $\Delta(u)=\sum u_{(1)} \otimes u_{(2)}$ in Sweedler's notation. It is determined by the values on basis elements

$$
\begin{equation*}
\left\{u_{M}, u_{N}\right\}=\delta_{M, N} \frac{v^{\mathrm{dim}(\mathrm{M})}}{a_{M}} . \tag{1}
\end{equation*}
$$

2.2 Ringel's theorem and the quantum Serre relations

Example 2.1. The quantum Serre relations in Farnsteiner's talk [2] become the following relations in the twisted Ringel-Hall algebra. Here we abbreviate $u_{i}=u_{S_{i}}$ for all i, and we denote by $[n]=$ $\left(v^{n}-v^{-n}\right) /\left(v-v^{-1}\right)$ the quantum integer.

Quiver Q	Untwisted relation	Twisted relation
$1 \rightarrow 2$	$u_{1}^{2} u_{2}-(q+1) u_{1} u_{2} u_{1}+u_{2} u_{1}^{2}=0$	$u_{1}^{2} u_{2}-[2] u_{1} u_{2} u_{1}+u_{2} u_{1}^{2}=0$
$1 \rightrightarrows 2$	$u_{1}^{3} u_{2}-\left(q^{2}+q+1\right) u_{1}^{2} u_{2} u_{1}$	$u_{1}^{3} u_{2}-[3] u_{1}^{2} u_{2} u_{1}+[3] u_{1} u_{2} u_{1}^{2}-u_{2} u_{1}^{3}=0$
	$+q\left(q^{2}+q+1\right) u_{1} u_{2} u_{1}^{2}-q^{3} u_{2} u_{1}^{3}=0$	
$1 \rightleftarrows 2$	$u_{1}^{3} u_{2}-\left(q+1+q^{-1}\right) u_{1}^{2} u_{2} u_{1}$	
$+\left(q+1+q^{-1}\right) u_{1} u_{2} u_{1}^{2}-u_{2} u_{1}^{3}=0$	$u_{1}^{3} u_{2}-[3] u_{1}^{2} u_{2} u_{1}+[3] u_{1} u_{2} u_{1}^{2}-u_{2} u_{1}^{3}=0$	

The theorem of Ringel [11] asserts that the examples generalize. The proof is a rank 2 calculation similar to the derivation of the quantum Serre relations for the n-Kronecker quiver in Farnsteiner's talk [2].

Theorem 2.2 (Ringel). Assume that $e_{i}, e_{j} \in K_{0}(Q)$ correspond to distinct simple representations S_{i}, S_{j}. As before, we abbreviate $u_{i}=u_{s_{i}}$ and $u_{j}=u_{S_{j}}$. If $c_{i j}=\left(e_{i}, e_{j}\right)$, then

$$
\sum_{r+s=1-c_{i j}}(-1)^{r}\left[\begin{array}{c}
r+s \\
r
\end{array}\right] u_{i}^{r} u_{j} u_{i}^{s}=0
$$

Especially, the quantum Serre relations in the twisted Ringel-Hall algebra are invariant under changing the orientation of arrows, i. e. they depend only on the underlying undirected diagram of the quiver. The composition algebra $\mathcal{C}(Q) \subseteq \mathcal{H}(Q)$ is the Hopf subalgebra generated by the elements $u_{i}=u_{S_{i}}$ with $i \in Q_{0}$.

3 Green's theorem

3.1 The positive quantum group and its Hopf structure

Recall the construction of the quantum group from the last talk. Let $n \geq 1$. An integer $n \times n$ matrix $C=\left(c_{i j}\right)$ is called symmetric generalized Cartan matrix if $c_{i i}=2$ for all $1 \leq i \leq n$ and $c_{i j}=c_{j i} \leq 0$ for all $i \neq j$. Such a matrix defines a Kac-Moody Lie algebra $\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}$. Drinfel'd-Jimbo replace universal enveloping algebra $U\left(\mathfrak{n}_{+}\right)$, cocommutative Hopf algebra, with the quantized enveloping algebra U^{+}, a not necessarily cocommutative Hopf algebra, c.f. Drinfel'd [1]. The process is called quantization, because in quantum mechanics classical commuting observables are replaced with not necessarily commutating operators. Let us briefly outline the construction of U^{+}; the reader can find more details in the work of Kassel [8], Lusztig [9], and Majid [10].

We fix a field k of characteristic 0 . The symmetric generalized Cartan matrix C defines a symmetric bilinear form (\cdot, \cdot) on $\Lambda=\mathbb{Z}^{n}$ with respect to the standard basis whose elements we denote by e_{i} with $1 \leq i \leq n$. The group algebra U^{0} of Λ over k can be endowed with the structure of a Hopf algebra. For every $v \in k^{*}$, that is not be a root of unity, we can define a Hopf pairing $\{\cdot, \cdot\}: U^{0} \times U^{0} \rightarrow k$. Let f^{+}be the free k-algebra with generators E_{i} for $1 \leq i \leq n$. We can extend the Hopf structure on U^{0} to a Hopf structure on the tensor product $f^{+, 0}=f^{+} \otimes U^{0}$. The Hopf algebra is graded by Λ with $\operatorname{deg}\left(E_{i}\right)=e_{i}$. The Hopf pairing extends to a Hopf pairing $\{\cdot, \cdot\}: f^{+, 0} \times f^{+, 0} \rightarrow k$ in such a way that

$$
\begin{equation*}
\left\{E_{i}, E_{j}\right\}=\delta_{i j} \frac{1}{v-v^{-1}} \tag{2}
\end{equation*}
$$

for all $1 \leq i \leq n$. The ideal $I^{+} \subseteq f^{+}$is chosen in such a way that the restriction of the Hopf pairing to $U^{+}=f^{+} / I^{+}$is non-degenerate. Note that U^{+}is not a Hopf subalgebra because $\Delta\left(E_{i}\right)=$ $E_{i} \otimes 1+K_{i} \otimes E_{i} \notin U^{+}$.

Put $\mathcal{Z}=\mathbb{Q}\left[v, v^{-1},[m]^{-1}\right.$ for $\left.m \geq 2\right]$. Define $U_{\mathcal{Z}}^{+}$to be the \mathcal{Z}-algebra generated by E_{i} with $1 \leq i \leq n$ subject to the quantum Serre relations

$$
\sum_{r+s=1-c_{i j}}(-1)^{r}\left[\begin{array}{c}
r+s \\
r
\end{array}\right] E_{i}^{r} E_{j} E_{i}^{s}=0
$$

for all $i \neq j$. A theorem asserts that we have an isomorphism $U^{+} \cong k \otimes_{\mathcal{Z}} U_{\mathcal{Z}}^{+}$, and another theorem asserts that the algebra $U_{\mathcal{Z}}^{+}$is a free \mathcal{Z}-module.

3.2 Green's theorem

Define a comultiplication $\Delta: U_{\mathcal{Z}}^{+} \rightarrow U_{\mathcal{Z}}^{+} \otimes U_{\mathcal{Z}}^{+}$by $\Delta\left(E_{i}\right)=1 \otimes E_{i}+E_{i} \otimes 1$. The comultiplication becomes an algebra homomorphism if we define the multiplication $\left(U_{\mathcal{Z}}^{+} \otimes U_{\mathcal{Z}}^{+}\right) \times\left(U_{\mathcal{Z}}^{+} \otimes U_{\mathcal{Z}}^{+}\right) \rightarrow$
$U_{\mathcal{Z}}^{+} \otimes U_{\mathcal{Z}}^{+}$by $(a \otimes b) \cdot(c \otimes d)=v^{(\operatorname{deg}(b), \operatorname{deg}(c))}(a c \otimes b d)$ for all homogeneous elements $a, b, c, d \in$ U^{+}. We say that $U_{\mathcal{Z}}^{+}$is a twisted bialgebra. Together with the antipode $S: U_{\mathcal{Z}}^{+} \rightarrow U_{\mathcal{Z}}^{+}$defined by $S\left(E_{i}\right)=-E_{i}$ it becomes a twisted Hopf algebra. Lusztig shows that the twisted Hopf algebra $U_{\mathcal{Z}}^{+}$ admits a Hopf pairing $U_{\mathcal{Z}}^{+} \times U_{\mathcal{Z}}^{+} \rightarrow \mathcal{Z}$, which is uniquely determined by formula (2).

Let Q be a quiver with n vertices such that its symmetrized Euler form equals the symmetric bilinear form attached to the generalized Cartan matrix C. Ringel's theorem 2.2 implies that there is homomorphism $\Psi: \mathbb{R} \otimes_{\mathcal{Z}} U_{\mathcal{Z}}^{+} \rightarrow \mathcal{C}(Q)$ with $\psi\left(E_{i}\right)=u_{i}$. Green's main theorem [3, Theorem 3] asserts:

Theorem 3.1 (Green). The map ψ is an isomorphism of twisted Hopf algebras and it respects the grading and the Hopf pairing.

Proof. The homomorphism ψ respects the Hopf pairing, because $\left\{E_{i}, E_{j}\right\}=\frac{\delta_{i j}}{v-v^{-1}}=\left\{u_{i}, u_{j}\right\}$ for all i, j. Suppose that $x \in \mathbb{R} \otimes_{\mathcal{Z}} U_{\mathcal{Z}}^{+}$lies in the kernel of ψ. Then $\{x, y\}=\{\psi(x), \psi(y)\}=0$ for all $y \in \mathbb{R} \otimes_{\mathbb{R}} U_{\mathcal{Z}}^{+}$which implies $x=0$ since the Hopf pairing is non-degenerate.

4 Kac's theorem

4.1 Characters and the denominator formula

Let n denote the number of vertices of the quiver Q. For every i we define the reflection $r_{i}(x)=$ $x-\left(x, e_{i}\right) e_{i}$. The formula implies $r_{i}\left(e_{i}\right)=-e_{i}$ for all i. The reflections r_{i} with $i \in Q_{0}$ generate a subgroup $W=W(C) \subseteq \operatorname{Aut}\left(\mathbb{Z}^{\mathrm{n}}\right)$, which is called the Weyl group of C. The root system of the Kac-Moody Lie algebra decomposes in real and imaginary roots with

$$
\begin{aligned}
& \Phi_{r e}=\left\{w\left(e_{i}\right): w \in W, 1 \leq i \leq n\right\}=\{\alpha \in \Phi: 0<(\alpha, \alpha) \leq 2\}, \\
& \Phi_{i m}=\Phi \backslash \Phi_{r e} \subseteq\{\alpha \in \Phi:(\alpha, \alpha) \leq 0\} .
\end{aligned}
$$

A theorem asserts that every root is either positive or negative and has connected support. The multiplicity mult (α) is defined as the dimension of the corresponding root space. It can be shown that $\operatorname{mult}(\alpha)=1$ if α is real, and that $\operatorname{mult}(\alpha)=\operatorname{mult}(w(\alpha))$ for all roots α and all Weyl group elements w. For every $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \Lambda$ we define a monomial $e(\alpha)=t_{1}^{a_{1}} t_{2}^{a_{2}} \cdot \ldots \cdot t_{n}^{a_{n}}$ in the power series ring $\mathbb{Z}\left[\left[t_{1}, t_{2}, \ldots, t_{n}\right]\right]$. Especially, the elements satisfy the exponential rule $e(\alpha) e(\beta)=e(\alpha+\beta)$. Define the characters of the composition algebra and the Hall algebra by

$$
\operatorname{ch}(\mathcal{C}(Q))=\sum_{\alpha \geq 0} \operatorname{dim}_{\mathbb{R}}\left(\mathcal{C}(Q)_{\alpha}\right) e(\alpha), \quad \operatorname{ch}(\mathcal{H}(Q))=\sum_{\alpha \geq 0} \operatorname{dim}_{\mathbb{R}}\left(\mathcal{H}(Q)_{\alpha}\right) e(\alpha) .
$$

Proposition 4.1. For every dimension vector $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ we denote by ind (α, k) the number of isoclasses of indecomposable representations of Q over k of dimension α. We have the following product formula:

$$
\operatorname{ch}(\mathcal{H}(Q))=\prod_{\alpha>0}(1-e(\alpha))^{-\operatorname{ind}(\alpha, k)}
$$

Proof. By the theorem of Krull-Remak-Schmidt every representation is a direct sum of indecomposable representations. The indecomposable representation are unique up to permutation and isomorphisms. Hence $\operatorname{dim}_{\mathbb{R}}\left(\mathcal{H}(Q)_{\alpha}\right)$, the number of isoclasses of representations of Q over k of dimension α, equals the coefficient corresponding to $e(\alpha)$ in the geometric series expansion.

Green's theorem implies that the character of the composition algebra equals the character of the positive quantum group. For the positive quantum group, Kac's denominator formula [6, Chapter 10.2] holds:

Theorem 4.2 (Kac). The character of the positive quantum is

$$
\operatorname{ch}\left(U^{+}\right)=\prod_{\alpha \in \phi^{+}}(1-e(\alpha))^{-\operatorname{mult}(\alpha)}
$$

4.2 Indecomposable representations and Kac's theorem

Note that formula (1) implies that the Hopf pairing on $\mathcal{H}(Q)$ is positive definite. Following Sevenhant-Van Den Bergh [12, Chapter 3] we choose for every $0 \neq \alpha \in \mathbb{N}^{n}$ an orthonormal basis $\left\{\theta_{i}\right\}_{i \in I(\alpha)}$ of the subspace

$$
\mathcal{G}(Q)_{\alpha}=\left(\sum_{\substack{\beta+\gamma>\alpha \\ \beta, \gamma>0}} \mathcal{H}(Q)_{\beta} \mathcal{H}(Q)_{\gamma}\right)^{\perp} \subseteq \mathcal{H}(Q)_{\alpha} .
$$

Let I be the union of the $I(\alpha)$ for all α. Note that $\mathcal{G}(Q)_{e_{i}}$ is a 1-dimensional vector space spanned by u_{i} so that $I\left(e_{i}\right)$ is a singleton. We define a bilinear form on $\mathbb{Z I}$ by $(i, j)=\left(\operatorname{deg}\left(\theta_{i}\right), \operatorname{deg}\left(\theta_{j}\right)\right)$. Assume that the matrix \widetilde{C} represents the bilinear form with respect to the basis I.

Lemma 4.3. Every θ_{i} is primitive, i.e. $\Delta\left(\theta_{i}\right)=\theta_{i} \otimes 1+1 \otimes \theta_{i}$.
Proof. Let us extend $\left\{\theta_{i}\right\}_{i \in I} \subseteq\left(\zeta_{j}\right)_{j \in J}$ to a homogeneous orthonormal basis of $\mathcal{H}(Q)$. Then we can write $\Delta\left(\theta_{i}\right)=\sum_{j, k \in J} c_{j k} \zeta_{j} \otimes \zeta_{k}$. As $\{,, \cdot\}$ is a Hopf pairing, we have

$$
\left\{\theta_{i}, \zeta_{l} \zeta_{m}\right\}=\sum_{j, k \in J} c_{j k}\left\{\zeta_{j}, \zeta_{l}\right\}\left\{\zeta_{k}, \zeta_{m}\right\}=c_{l m}
$$

for all $l, m \in J$. By definition $\left\{\theta_{i}, x y\right\}=0$ for all homogeneous elements $x, y \in \mathcal{H}(Q)$ of degree β, γ with $\alpha=\beta+\gamma$, hence $c_{l, m}=0$ unless $\left(\zeta_{l}, \zeta_{m}\right)=\left(\theta_{i}, 1\right)$ or $\left(\zeta_{l}, \zeta_{m}\right)=\left(1, \theta_{i}\right)$ in which case $c_{l, m}=1$.

A symmetric Borcherds matrix is a generalization of a generalized Cartan matrix where diagonal entries are allowed to be in the set $\{2,0,-2,-4, \ldots\}$. Borcherds introduced these in the context of moonshine.
Lemma 4.4. The matrix \widetilde{C} is a Borcherds matrix. Especially we have $(i, j) \leq 0$ whenever $i \neq j$.
Proof. Let $i, j \in I$ be distinct. By the previous lemma we have

$$
\begin{aligned}
\Delta\left(\theta_{i} \theta_{j}\right) & =\left(\theta_{i} \otimes 1+1 \otimes \theta_{i}\right)\left(\theta_{j} \otimes 1+1 \otimes \theta_{j}\right) \\
& =\theta_{i} \theta_{j} \otimes 1+\theta_{i} \otimes \theta_{j}+v^{(i, j)} \theta_{j} \otimes \theta_{i}+1 \otimes \theta_{i} \theta_{j} .
\end{aligned}
$$

From this equation we can follow that $\left\{\theta_{i} \theta_{j}, \theta_{i} \theta_{j}\right\}=1$ and $\left\{\theta_{i} \theta_{j}, \theta_{j} \theta_{i}\right\}=v^{(i, j)}$. The positive definiteness of the Hopf pairing implies for all $x, y \in \mathbb{R}$ the inequality

$$
0 \leq\left\{x \theta_{i} \theta_{j}+y \theta_{j} \theta_{i}, x \theta_{i} \theta_{j}+y \theta_{j} \theta_{i}\right\}=x^{2}+2 v^{(i, j)} x y+y^{2} .
$$

Thus, the discriminant of the quadratic form must satisfy $4\left(1-v^{(i j)}\right) \geq 0$. Hence $1 \geq v^{(i, j)}$, so that $(i, j) \leq 0$. For the proof of the other properties of Borcherds matrices we refer the reader to Sevenhant-Van Den Bergh [12, Proposition 3.2].

Note that the matrix \widetilde{C} is an infinite matrix with C in the top left corner. It follows that the root systems $\widetilde{\Phi}$ and Φ associated with \widetilde{C} and C have the same real roots and the same Weyl group. With the Borcherds matrix \widetilde{C} we can associate a generalized Kac-Moody Lie algebra. Let \widetilde{U}^{+}be its positive quantum group, which we construct similarly. As the Hopf pairing is nondegenerate on $\mathcal{H}(Q)$, a Sevenhant-Van Den Bergh's generalization [12] of Green's main theorem to generalized Kac-Moody algebras implies that we have an isomorphism of twisted Hopf algebras $\mathcal{H}(Q) \cong \mathbb{R} \otimes_{\mathcal{Z}} \widetilde{U}^{+}$. We obtain a different proof of a theorem of Kac [7] for indecomposable quiver representations over finite fields.
Theorem 4.5 (Kac). We have $\widetilde{\Phi}^{+}=\{\operatorname{dim}(M)$: M indecomposable $\}$. Moreover, the number of isoclasses of indecomposable representations of Q over k with dimension vector $\alpha \in \widetilde{\Phi}^{+}$is equal to the multiplicity of α in $\widetilde{\Phi}^{+}$. Especially, up to isomorphism there exists only one indecomposable representation with dimension vector α for every real root $\alpha \in \Phi_{r e}$.

Proof. Compare the product formula (4.1) for $\operatorname{ch}(\mathcal{H}(Q))$ with the product formula (4.2) for the positive quantum group of \widetilde{C}.

References

[1] V. G. Drinfel'd: Quantum Groups, Proceedings of the ICM (1986)
[2] R. Farnsteiner: Quiver representations and quantum Serre relations, Seminar talk (2016)
[3] J. A. Green: Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995), 361-377
[4] J. A. Green: Quantum groups, Hall algebras and quantum shuffles, in Finite reductive groups (Luminy 1994), 273-290, Birkhäuser Prog. Math. 141 (1997)
[5] A. Hubery: Private communication (2016)
[6] V. G. Kac: Infinite dimensional Lie algebras, Cambridge University Press (1995)
[7] V.G. Kac: Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92
[8] C. Kassel: Quantum Groups, Springer (1995)
[9] G. Lusztig: Introduction on Quantum Groups, Birkhäuser (1993)
[10] S. Majid: What is ... a quantum group? Notices of the AMS 53 (1), 30-31
[11] C. M. Ringel: Hall algebras and quantum groups, Invent. Math. 101 (1990), 583-591
[12] B. Sevenhant, M. Van Den Bergh: A relation between a conjecture of Kac and the structure of the Hall algebra, J. pure and appl. Algebra 160 (2001), 319-332
[13] M. Rosso: Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416
[14] J. Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra 190 (1997), 100-144

