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1 Introduction

In the construction of an infinite dimensional torsion divisible module, which was a projective object
in the category of all divisible modules over a wild hereditary algebra, a theorem of F. Lukas [L1]
was used. We will now give the detailed proof in its full generality. We will also show some proofs
for properties of the constructed divisible module, mainly that if M is non-zero D-projective, then
the class Add(M ) of direct summands of (not necessarily finite) direct sums of copies of M contains
all D-projective modules.

Let A be a finite-dimensional connected wild hereditary algebra over a field k. Mod−A denotes
the category of right A-modules and mod−A the category of finitely generated right A-modules.
The finite-dimensional indecomposable modules divide into three classes: preprojective, regular and
preinjective modules. These terms always imply finitely generated modules (but not necessarily
indecomposable). Recall the following definition:

Definition 1.1. An arbitrary module M is said to be divisible if Hom(M, R) = 0, for every regular
module R (R finite-dimensional).

One can show (using Auslander-Reiten theory) that this is equivalent to Ext(X, M ) = 0 for all
preprojective and all regular1 modules X or, equivalently, for any module X without indecompos-
able preinjective direct summand.

1.1 Torsion Theory

Recall that a pair (T ,F) of full subcategories of a module category is called a torsion pair (or
torsion theory) if the following conditions are satisfied:

(i) Hom(M, N ) = 0 for all M ∈ T , N ∈ F .

(ii) Hom(M,−)|F = 0 implies M ∈ T .

(iii) Hom(−, N )|T = 0 implies N ∈ F .

So there is no non-zero homomorphism from an object in T to an object in F and the two
subcategories are maximal with respect to this property. T is called the torsion class, F the
torsion-free class.

Definition 1.2. A torsion module M is called T -projective, if Exti(M, T ) = 0, for all i ≥ 1.

We write Exti(M, T ) = 0 for Exti(M, T ) = 0, for all T ∈ T . Let us look at the following
question: What are the T -projective modules? Since we are in the hereditary case, we are only
interested in Ext1 vanishing.

Suppose S is a class of modules with Ext1(S, T ) = 0 for all S ∈ S. Define the class E(S)
as follows: E(S) is the class of all modules M which are unions (or direct limits) of submodules
(Mλ)λ∈Λ with the properties:

(i) The set Λ is well-ordered2, and for all µ < λ, there exists a mono Mµ ↪→ Mλ.

1Note that a module is called regular, if it has no indecomposable preprojective or preinjective direct summands.
2This means every non-empty subset has a least element, or, equivalently, it is totally ordered and there is no

infinite descending sequence.
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(ii) M0 := (0), and for every λ, Mλ+1/Mλ ∈ S.3

(iii) For every limit ordinal λ ∈ Λ, i.e. λ = sup{µ |µ < λ} and λ 6= 0, Mµ =
⋃

µ<λ Mµ.

For the proof of Lukas Theorem we need more on ordinal numbers, discussed next.

1.2 Ordinals

A linearly ordered set is well-ordered if every non-empty subset has a least element. Recall that
every finite totally ordered set is well-ordered. A set T is transitive if every element of T is a subset
of T .

Definition 1.3. A set is an ordinal number (or an ordinal) if it is transitive and well-ordered by
∈.

Transfinite ordinal numbers were introduced by Georg Cantor in 1897, to accommodate infinite
sequences and to classify sets with certain kinds of order structures on them. Ordinals are an
extension of the natural numbers different from integers and from cardinals.

For ordinals α and β, define α < β if α ∈ β. We have the following: 0 = ∅ is an ordinal. If α is
an ordinal and β ∈ α, then β is an ordinal. If α and β are distinct ordinals and α ⊂ β, then α ∈ β.
If α and β are ordinals, then either α ⊂ β or β ⊂ α.

The class of ordinals, Ord, is linearly ordered by < and well-ordered. For each α ∈ Ord, α =
{β | β < α}. Also α ∪ {α} is an ordinal, and α ∪ {α} = inf{β | β > α}.

Definition 1.4. Let α+1 := α ∪ {α}. This is called the successor ordinal. If α is not a successor
ordinal, the α = sup{β | β < α}, and α is called a limit ordinal.

Definition 1.5. An ordinal number α> 0 is called a limit ordinal if and only if it has no immediate
predecessor, i.e., if there is no ordinal number β such that β+1 = α.

So a limit ordinal is an ordinal number which is neither zero nor a successor ordinal. Phrased
in yet another way, an ordinal is a limit ordinal if and only if it is equal to the supremum of all
the ordinals below it, but is not zero.

Because the class of ordinal numbers is well-ordered, there is a smallest infinite limit ordinal,
denoted by ω. This ordinal ω is also the smallest infinite ordinal, as it is the least upper bound
of the natural numbers. Hence ω represents the order type of the natural numbers. The set of all
ordinal numbers does not exist. In order of increasing size, the ordinal numbers are 0, 1, 2, . . . , ω, ω+
1, ω + 2, . . . , ω + ω, ω + ω + 1, . . . . The notation of ordinal numbers is sometimes counterintuitive,
e.g., even though 1 + ω = ω, ω + 1 > ω. The cardinality of the set of countable ordinal numbers is
denoted ℵ1.

We will use ordinal numbers for transfinite induction. Transfinite induction holds in any well-
ordered set. Any property which passes from the set of ordinals smaller than a given ordinal α to
α itself, is true of all ordinals.

2 Lukas Theorem

Theorem 2.1 (Lukas, 1990). Let (T ,F) be a torsion pair and S a class of modules with
Ext(S, T ) = 0. Then

(a) For every torsion module M ∈ E(S), Ext(M, T ) = 0, i.e. M is T -projective.

(b) If there exists a short exact sequence 0 → A → T1 → T2 → 0 with T1, T2 T -projective, then
Ext(M, T ) = 0 for every M ∈ E(S).

If T is the class of divisible modules, then the converse of (b) holds too, i.e. evey T -projective
module is contained in E(S).

3The modules in E(S) are S-filtered.
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Proof. We begin with part (a). For M torsion in E(S) we want Ext(M, T ) = 0. Let N be a torsion
module and

(∗) 0 → N → Y → M → 0

be a short exact sequence. We need to show that this sequence splits, i.e. Ext(M, N ) = 0.
M ∈ E(S), so take an S-filtration of M , M =

⋃
λ Mλ. M0 = (0), M1 ∈ S. S satisfies

Ext(S, T ) = 0, so M1 is T -projective, i.e. Ext(M1, N ) = 0. So we can find a homomorphism
f1 : M1 → Y , such that g ◦ f1 = ιM1 .

For every ordinal number λ, the following holds using transfinite induction: If fµ : Mµ → Y is
defined for all µ < λ with fµ2(m) = fµ1 (m) for all m ∈ Mµ1 , whenever µ1 ≤ µ2, and g ◦ fµ = ιMµ

for all µ < λ, then there exists a homomorphism fλ : Mλ → Y with fλ(m) = fµ(m) for all m ∈ Mµ,
µ < λ and g ◦ fλ = ιMλ . If λ is a limit ordinal, define fλ(m) = fµ(m) for m ∈ Mµ.

Otherwise we have a short exact sequence

0 → Mλ−1 → Mλ → S → 0,

with S ∈ S. Combining this sequence with the one above (∗), while applying covariant and con-
travariant Hom-functors, we get a commutative diagramm as follows:

0 0 0
y

y
y

0 −−−−→ Hom(S, N ) −−−−→ Hom(S, Y ) −−−−→ Hom(S, M ) −−−−→ Ext(S, N )
y

y
y

0 −−−−→ Hom(Mλ, N ) −−−−→ Hom(Mλ, Y ) −−−−→ Hom(Mλ, M ) −−−−→ Ext(Mλ, N )
y

y
y

0 −−−−→ Hom(Mλ−1, N ) −−−−→ Hom(Mλ−1, Y ) −−−−→ Hom(Mλ−1, M ) −−−−→ Ext(Mλ−1, N )
y

y
y

Ext(S, N ) Ext(S, Y ) Ext(S, M )

First note that the torsion class T is closed under extension, and since N, M ∈ T , we have that
Y ∈ T because of the short exact sequence (∗). Since S ∈ S satisfies Ext(S, T ) = 0, Ext(S, Y ) =
0 = Ext(S, N ), since both N, Y are T -projective. So we can start a diagram chase:

From the vanishing of the lower Ext-groups we have the existence of a lifting f ′
λ : Mλ → Y

with f ′
λ(m) = fλ−1(m) for all m ∈ Mλ−1. Define the deviation α := g ◦ f ′

λ − ιMλ of this lifting.
The restriction of α : Mλ → M to Mλ−1 is zero. So there exists α′ ∈ Hom(S, M ), which maps to
α by Hom(S, M ) → Hom(Mλ, M ).

Since Ext(S, N ) = 0, α′ is the image of α′′ ∈ Hom(S, Y ). Denote the image of α′′ in Hom(Mλ, Y )
by f ′′

λ . Since the diagram above commutes we have α = g ◦ f ′′
λ .

Now fλ := f ′
λ − f ′′

λ has the properties: fλ(m) = f ′
λ(m) = fλ−1(m) for all m ∈ Mλ−1, an we get

by applying g:

g ◦ fλ = g ◦ f ′
λ − g ◦ f ′′

λ

= g ◦ f ′
λ − α

= g ◦ f ′
λ − (g ◦ f ′

λ − ιMλ) = ιMλ ,

which is what we wanted to show for part (a), since then the short exact sequence (∗) splits,
i.e. Ext(M, N ) = 0, for all N ∈ T and torsion module M ∈ E(S).

Let us now look at part (b). For this we need the following existence of a so-called universal
short exact sequence. For modules M, T ∈ Mod−A, there exists a universal short exact sequence
in Ext(T, M ), 0 → M → M ′ → T (I) → 0, such that the induced map Hom(T, T (I)) → Ext(T, M )
is surjective.4

4For the proof of the existence we refer to [L1], which uses a generator set for Ext(T,M) and looks at pushout
diagrams.
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Thus given M ∈ E(S), define T = T1 ⊕ T2 and consider the universal short exact sequence:

(∗∗) 0 → M → M ′ → T (I) → 0.

Apply the functor Hom(T, ) to it:

Hom(T, M ) → Hom(T, M ′) → Hom(T, T (I)) → Ext(T, M ) → Ext(T, M ′) → . . .

Because of the surjectivity property from the universal short exact sequence, we have Ext(T, M ′) =
Ext(T1 ⊕ T2, M

′) = 0. Now apply the contravariant functor Hom( , M ′) to the given short exact
sequence 0 → 0 → T1 → T2 → 0, with T1, T2 T -projective to get:

Hom(T2, M
′) → Hom(T1, M

′) → Hom(A, M ′) → Ext(T2, M
′) → Ext(T1, M

′)

Since the last two terms vanish, M ′ is a torsion module, which lies in E(S ∪Add(T1 ⊕ T2)). Hence
we can use part (a) to get Ext(M ′, T ) = 0, so M ′ is T -projective and we are left to show this
property for M :

For R ∈ T apply Hom( , R) to the universal short exact sequence (∗∗) to get the long exact
sequence:

Hom(M ′, R) → Hom(M, R) → Ext(T (I), R) → Ext(M ′, R) → Ext(M, R) → 0

Since Ext(M ′, R) = 0 by above, we have Ext(M, R) = 0, i.e. M ∈ E(S) us T -projective.

3 Divisible modules

In the first part of this sequence of talks on infinite dimensional modules, it was mentioned that
there are no non-zero torsion-free divisible modules if A is a wild hereditary algebra. For the class of
divisible modules, we constructed already a so-called D-projective module AD, whichwastorsion.
For this we took as torsion class T the class of all divisible modules, where D was the torsion
radical of the torsion pair (T ,F).5 For S we took the class of all submodules of direct sums of
regular modules. Then by definition, for every divisible module D ∈ T , we have Ext(S, D) = 0.
The module AD had the following properties, which were already shown:

(i) AD =
⋃

n∈N0
An.

(ii) AD ∈ E(S).

(iii) AD is a divisible module.

And we had:

Theorem 3.1. For a wild hereditary algebra A there exists a short exact sequence
0 → A → AD → AD/A → 0 with D-projective modules AD, AD/A.

We have Ext(M, D) = 0 for every divisible module D, if M ∈ E(S). The converse is also true
for divisible modules, i.e. if M satisfies Ext(M, D) = 0 for all divisible D, then M ∈ E(S) and we
also have the following:

Proposition 3.2. (i) AD generates all divisible modules D.

(ii) For every divisible module M , there exists a short exact sequence

0 → D → A
(I)
D → M → 0,

where D is D-projective. So every D-projective module is contained in Add(AD).

5So D-projectives are the T -projective modules.
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Proof. For (i): Let M be a divisible module. Apply Hom( , M ) to the short exact sequence 0 →
A → AD → AD/A → 0 to get:

Hom(AD/A, M ) → Hom(AD, M ) → Hom(A, M ) → Ext(AD/A, M ) → . . .

Since AD/A is D-projective, Ext(AD/A, M ) = 0, so every homomorphism f ′ : A → M can be
extended to f : AD → M , i.e. any divisible module M is generated by AD which completes part
(i).

For (ii): let (fi)i∈I be a k-basis of Hom(AD, M ). Then by (i) we get a short exact sequence

0 → D → A
(I)
D → M → 0.

Apply Hom(AD, ) to get:

Hom(AD, D) → Hom(AD , A
(I)
D ) → Hom(AD, M ) → Ext(AD, D) → Ext(AD, A

(I)
D ) → . . .

Since (fi) is a k-basis of Hom(AD, M ), the second map is surjective, so Ext(AD, D) = 0. We
know that for every regular module R, there exists a short exact sequence 0 → R → AD →
AD/R → 0. To this short exact sequence we finally apply Hom( , D) to get:

. . . → Ext(AD/R, D) → Ext(AD, D) → Ext(R, D) → 0.

And since Ext(AD, D) = 0 we get Ext(R, D) = 0, which means D is divisible and contained in
Add AD.
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