
HOPF MODULES AND INTEGRALS: NAKAYAMA AUTOMORPHISMS

ROLF FARNSTEINER

We adopt the notation from our previous lectures [3, 4] and assume in particular that H is a
finite dimensional Hopf algebra over a field k. As noted in [4, Cor. 1], H is a Frobenuis algebra,

with any non-zero left integral π ∈
∫ ℓ

H∗
giving rise to a non-degenerate associative form ( , )π.

Since H is a Frobenius algebra, the Nakayama functor on modH is just the twist by any
Nakayama automorphism H, see [2]. Recall that the Nakayama automorphism µ relative to ( , )π
is defined via

π(yx) = π(µ(x)y) ∀ x, y ∈ H.

In this lecture, we relate µ to the so-called left modular function of H, thereby showing in particular
that µ has finite order. The relevant results can be found in [7] and [5].

Given x ∈
∫ r

H
, we have hx ∈

∫ r

H
for every h ∈ H. Consequently, there exists an algebra

homomorphism ζr : H −→ k with

hx = ζr(h)x ∀ h ∈ H, x ∈

∫ r

H

.

This homomorphism is referred to as the right modular function of H. Clearly,
∫ ℓ

H
=

∫ r

H
if and only

if ζr = ε coincides with the counit of H. In that case H is called unimodular. The left modular

function ζℓ is defined analogously. By [4, Thm.], we have

ζℓ = ζr ◦ η−1.

If γ : H −→ k is a homomorphism of k-algebras, then the convolution

idH ∗γ : H −→ H ; h 7→
∑
(h)

h(1)γ(h(2))

is an automorphism of the algebra H, whose inverse is given by idH ∗(γ ◦ η).

Theorem. The automorphism η−2◦(idH ∗ζℓ) is a Nakayama automorphism of the Frobenius algebra

H.

Proof. Let π ∈
∫ ℓ

H∗
be a non-zero left integral of H∗, so that

(x, y)π = π(xy)

endows H with the structure of a Frobenius algebra. Directly from the defining property of π, we
obtain

(∗) π(h)1 =
∑
(h)

π(h(2))h(1) ∀ h ∈ H.

Since the map H −→ H∗ ; h 7→ π.h is an isomorphism of right H-modules, there exists a unique
element uπ ∈ H such that

π.uπ = ε.

In other words, we have
π(uπh) = ε(h) ∀ h ∈ H.
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In view of π((uπh−ε(h)uπ)x) = (0) for all h, x ∈ H, we see that u := uπ is a non-zero right integral
of H. Given x ∈ H, we now obtain, observing (∗),∑

(u)

η(u(1))π(u(2)x) =
∑

(u),(x)

η(u(1))u(2)x(1)π(u(3)x(2)) =
∑

(u),(x)

ε(u(1))x(1)π(u(2)x(2))

=
∑
(x)

x(1)π(ux(2)) =
∑
(x)

x(1)ε(x(2)) = x.

Thus, letting µ be the Nakayama automorphism relative to ( , )π, we have

µ−1(x) =
∑
(u)

η(u(1))π(u(2)µ
−1(x)) =

∑
(u)

π(xu(2))η(u(1)).

Using (∗) again, we compute η−2 ◦ µ−1:

(η−2 ◦ µ−1)(x) =
∑
(u)

π(xu(2))η
−1(u(1)) =

∑
(u),(x)

π(x(2)u(3))x(1)u(2)η
−1(u(1))

=
∑

(u),(x)

π(x(2)u(2))x(1)ε(u(1)) =
∑
(x)

π(x(2)u)x(1) =
∑
(x)

ζr(x(2))π(u)x(1)

=
∑
(x)

ζr(x(2))x(1) = (idH ∗ζr)(x).

It follows that

µ = (idH ∗ζr)
−1 ◦ η−2 = (idH ∗(ζr ◦ η)) ◦ η−2 = η−2 ◦ (idH ∗(ζr ◦ η−1)) = η−2 ◦ (idH ∗ζℓ),

as desired. �

The following result is valid for any finite dimensional Hopf algebra. For simplicity we give a proof
for the case where η2 = idH , which holds whenever H is cocommutative.

Corollary 1. Suppose that η2 = idH . Then H possesses a Nakayama automorphism of finite order.

Proof. In view of our Theorem, µ = idH ∗ζℓ is a Nakayama automorphism of H. Next, we note that
the set Algk(H, k) of algebra homomorphisms from H to k is just the group of group like elements

G(H∗) = {ϕ ∈ H∗ \ {0} ; ∆(ϕ) = ϕ ⊗ ϕ}

of the Hopf algebra H∗. Since group-like elements are linearly independent, G(H∗) is a finite group.
In particular, there exists n ∈ N with ζn

ℓ = ε. Hence

µn = (idH ∗ζℓ)
n = (idH ∗ζn

ℓ ) = idH ,

as desired. �

Our last result concerns symmetry of Hopf algebras. Recall that group algebras of finite groups
are always symmetric. The question of symmetry for restricted enveloping algebras and Hopf
algebras was discussed by several authors [8, 6]. Given a simple H-module S, we denote by P (S)
its projective cover. The unique block B0(H) ⊂ H satisfying ε(B0(H)) 6= (0) is called the principal

block of H. The following result shows in particular that weakly symmetric cocommutative Hopf
algebras are symmetric.
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Corollary 2. Suppose that η2 is an inner automorphism of H. Then the following statements are

equivalent:

(1) H is symmetric.

(2) B0(H) is symmetric.

(3) Soc(P (k)) ∼= k.

Proof. It suffices to verify (3) ⇒ (1). Let µ be a Nakayama automorphism of H. By general theory
(cf. [2]), we know that Soc(P (k)) ∼= kε◦µ is the one-dimensional H-module defined by ε◦µ. In view
of our Theorem, we may take µ = η−2 ◦ (idH ∗ζℓ). Observing ε ◦ η = ε, we obtain

ε = ε ◦ µ = ε ◦ (idH ∗ζℓ) = ζℓ,

where the last identity follows from

(ε ◦ (idH ∗ζℓ))(h) =
∑
(h)

ε(h(1))ζℓ(h(2)) = ζℓ(
∑
(h)

ε(h(1))h(2)) = ζℓ(h) ∀ h ∈ H.

Consequently,
µ = η−2 ◦ (idH ∗ε) = η−2,

is an inner automorphism, implying that H is symmetric. �
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