
HOPF MODULES AND INTEGRALS: EXAMPLES

ROLF FARNSTEINER

In this lecture we are going to put our previous results [3, 4] in perspective by looking at a few
examples. Throughout, k is assumed to be a field. Let us begin with the easiest case concerning
group algebras of finite groups.

Example. Let G be a finite group. We already know that the projection

π : kG −→ k ;
∑

g∈G

αgg 7→ α1

endows the group algebra kG with the structure of a symmetric algebra. The Hopf algebra structure
on kG is given by the formulae

∆(g) = g ⊗ g ; ε(g) = 1 ; η(g) = g−1 ∀ g ∈ G.

Consequently, the convolution product ψ ∗ π is given by

(ψ ∗ π)(g) = ψ(g)π(g) = ψ(1)π(g) ∀ g ∈ G, ψ ∈ kG∗,

so that π is a left integral of kG∗. Since x :=
∑

g∈G g is a left and right integral of kG, it follows

that ζℓ = ε. As η2 = idkG, [4, Thm.] shows that kG is symmetric.

Our next example concerns restricted enveloping algebras. Since their definition by Jacobson in
the 1950’s, these algebras, which assume the rôle of group algebras in the representation theory of
restricted Lie algebras, have been compared to group algebras of finite groups.

Let (g, [p]) be a finite dimensional restricted Lie algebra over a field k of characteristic p > 0. By

definition, g is a Lie algebra together with a map g −→ g ; x 7→ x[p] that satisfies formal properties
of an associative p-th power. The restricted enveloping algebra

U0(g) := U(g)/({xp − x[p] ; x ∈ g})

is a finite dimensional quotient of the ordinary enveloping algebra U(g). By work of Berkson [1], the
algebra U0(g) is Frobenius. Shortly thereafter, Schue [7] gave a criterion for U0(g) to be symmetric.

Example. We pick a basis e1, . . . , en of g and use the following notation for monomials in U0(g):

ea := ea1

1 · · · ean
n ∀ a = (a1, . . . , an) ∈ N

n
0 .

We also define a ≤ b :⇔ ai ≤ bi for 1 ≤ i ≤ n and put τ := (p−1, · · · , p−1) ∈ N
n
0 . By the Theorem

of Poincaré-Birkhoff-Witt, the monomials {ea ; 0 ≤ a ≤ τ} form a basis of U0(g).
The algebra U0(g) inherits the structure of a Hopf algebra from U(g). The relevant maps are

determined by

∆(x) = x⊗ 1 + 1 ⊗ x ; ε(x) = 0 ; η(x) = −x ∀ x ∈ g.
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Writing
(

a
b

)

:=
∏n

i=1

(

ai

bi

)

for a ≤ b ∈ N
n
0 , we obtain

(∗) ∆(ea) =
∑

0≤b≤a

(

a

b

)

eb ⊗ ea−b.

Thus, letting {δa ; 0 ≤ a ≤ τ} be the basis of the commutative algebra U0(g)∗ that is dual to the
PBW-basis, we see that

δaδb =

(

a+ b

b

)

δa+b,

with the right-hand side being zero if a + b 6≤ τ . Hence every element δa with a 6= 0 is nilpotent,
and U0(g) is not isomorphic to the Hopf algebra kG for any group G. Since dimU0(g) = pn, the
algebras U0(g) and kG are only isomorphic when G is a p-group. In that case, kG is local, which
happens for U0(g) if and only if the restricted Lie algebra is unipotent.

Consider the linear map

π : U0(g) −→ k ;
∑

0≤a≤τ

αae
a 7→ ατ .

Using (∗) we obtain

(ψ ∗ π)(ea) =
∑

0≤b≤a

(

a

b

)

ψ(eb)π(ea−b) = ψ(1)π(ea) ∀ ψ ∈ U0(g)∗,

proving that π is a left integral of U0(g)∗. Thanks to [3, Cor. 1] the bilinear form ( , )π endows U0(g)
with the structure of a Frobenius algebra. This was shown by Berkson by direct computation.

A general formula for the left integral of U0(g) is not known. However, we do know from [4] that
the element vπ satisfying

π(hvπ) = ε(h) ∀ h ∈ U0(g)

is a left integral for U0(g). It follows that the basis element eτ appears as a summand in vπ with
coefficient 1.

The computation of a Nakayama automorphism proceeds as follows (cf. [9, p. 215ff] for more
details): Let ad : g −→ gl(g) be the adjoint representation. Using the standard filtration on U(g)
one shows for x ∈ g and 0 ≤ a ≤ τ

[x, ea] ≡ − tr(adx)π(ea)eτ mod(ker π).

Consequently,

π(eax) = π(xea − [x, ea]) = π((x+ tr(adx)1)ea) 0 ≤ a ≤ τ.

As a result, the Nakyama automorphism satisfies µ(x) = x+tr(adx)1 for every x ∈ g, and we thus
have

µ = idU0(g) ∗(tr ◦ ad).

In particular, U0(g) is symmetric if and only if tr(adx) = 0 for every x ∈ g.
The analogue of Maschke’s Theorem was first verified by Hochschild [5], who showed that U0(g)

is semi-simple precisely when g is abelian and g = 〈g[p]〉. Maschke’s Theorem for Hopf algebras (cf.
[3, Cor. 2]) is not useful in this context.

The foregoing examples are classical in the sense that they pertain to finite dimensional cocom-
mutative Hopf algebras. According to general theory, the category of these algebras is equivalent
to the category of finite group schemes. By contrast, the so-called quantum groups are neither
commutative nor cocommutative and their antipodes do not satisfy η2 = id.
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Let d > 1 be an odd number, q ∈ C a primitive d-th root of unity. We shall define the
restricted quantum group Ūq(sl(2)). The representation theory of these algebras was studied by
several authors, including [2, 8, 10].

Example. As a C-algebra, Ūq(sl(2)) is generated by elements E,F,K subject to the relations

Ed = 0 = F d , Kd = 1 , KEK−1 = q2E , KFK−1 = q−2F , EF − FE =
K −K−1

q − q−1

There is a PBW-Theorem, which asserts that, the monomials EiKjF ℓ, with each exponent ranging
between 0 and d− 1, form a basis of Ūq(sl(2)).

The Hopf algebra structure on Ūq(sl(2)) is defined via

∆(E) = 1 ⊗ E + E ⊗K , ∆(K) = K ⊗K , ∆(F ) = K−1 ⊗ F + F ⊗ 1

and

ε(E) = 0 = ε(F ) , ε(K) = 1 ; η(E) = −EK−1 , η(F ) = −KF , η(K) = K−1.

In this case, we have
η2(u) = KuK−1 ∀ u ∈ Ūq(sl(2)),

so that η has order 2d. Left integrals for Ūq(sl(2)) and Ūq(sl(2))
∗ seem to be unknown, yet

the representation theory of this algebra is well-understood. In [2, (3.8)] the authors show that
Soc(P (S)) ∼= S for every simple Ūq(sl(2))-module S. Since η2 is an inner automorphism of Ūq(sl(2)),
[4, Cor. 2] implies that Ūq(sl(2)) is symmetric. By work of Xiao [10], the non-simple blocks of
Ūq(sl(2)) are Morita equivalent to trivial extensions of the Kronecker algebra and are thus also
Morita equivalent to the non-simple blocks of U0(sl(2)).
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