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Throughout, Λ is assumed to be a finite dimensional k-algebra, defined over an algebraically
closed field k. We let J be the (Jacobson) radical of Λ. A Λ-module M of length ℓ(M) is called
uniserial if the following equivalent conditions hold:

• M possesses exactly one composition series.
• (J iM)i≥0 is a composition series of M .
• For every i ∈ {0, . . . , ℓ(M)}, J iM is the unique submodule of length ℓ(M)− i.

The algebra Λ is referred to as pro-uniserial if all its projective indecomposable modules are unis-
erial.

Let S(Λ) denote a complete set of representatives of the simple Λ-modules.

Proposition 1 (Thm. 9 of [2]). The following statements are equivalent:

(1) Λ is pro-uniserial

(2)
∑

T∈S(Λ) dimk Ext1Λ(S, T ) ≤ 1 for every S ∈ S(Λ).

Proof. (1) ⇒(2). Let S be an element of S(Λ) with projective cover P (S). There results an exact
sequence

(∗) (0) −→ JP (S) −→ P (S) −→ S −→ (0).

If T ∈ S(Λ) is another simple Λ-module, then general theory implies that

(∗∗) Ext1Λ(S, T ) ∼= HomΛ(JP (S)/J2P (S), T ).

Since P (S) is uniserial, the module JP (S)/J2 P (S) is either (0) or simple. Schur’s Lemma then
yields dimk Ext1Λ(S, T ) = 1 for at most one T ∈ S(Λ).

(2) ⇒ (1). Let S be an element of S(Λ) and consider the exact sequence (∗). The module
JP (S)/J2P (S) is semi-simple, and condition (2) in conjunction with (∗∗) shows that JP (S)/J2P (S)
is either zero or simple.

Given n > 1, suppose that Jn−1P (S)/JnP (S) is simple. If Q is a projective cover of Jn−1P (S),
then it is also a projective cover of Jn−1P (S)/JnP (S), and the above observation ensures that
JQ/J2Q is zero or simple. The surjective map π : Q −→ Jn−1P (S) induces a surjection π̂ :
JQ/J2Q −→ JnP (S)/Jn+1P (S), so that the latter module is also either zero or simple. It now fol-
lows inductively that the Loewy series of (J iP (S))0≤i≤ℓ(P (S)) is a composition series. Consequently,
P (S) is uniserial. �

Corollary 2. The algebra Λ is pro-uniserial if and only if Λ/J2 is pro-uniserial.

Proof. Setting Λ′ := Λ/J2, we note that the pullback functor

π∗ : mod Λ′ −→ mod Λ

induces a bijection between the simple modules. Moreover, P (S)/J2P (S) is the projective cover of
the simple Λ-module S, considered as a Λ′-module. It readily follows from (∗∗), that

Ext1Λ(π∗(S), π∗(T )) ∼= Ext1Λ′(S, T ) ∀ S, T ∈ S(Λ′).

Date: June 7, 2006.

1



2 ROLF FARNSTEINER

Our assertion is now a direct consequence of Proposition 1. �

Definition. The algebra Λ is a Nakayama algebra if every projective indecomposable and every
injective indecomposable Λ-module is uniserial.

Remarks. (1) A self-injective algebra is a Nakayama algebra if and only if it is pro-uniserial.
(2) The algebra Λ = k[1 → 2 ← 3] is pro-uniserial, but the injective indecomposable Λ-module

I2 belonging to the vertex 2 has a top of length 2, so that Λ is not a Nakayama algebra.
(3) Using duality, we see that Λ is a Nakayama algebra if and only if Λ and Λop are pro-uniserial.

Consequently, Corollary 2 also holds for Nakayama algebras.
(4) An algebra Λ is a Nakayama algebra if and only if Proposition 1 and its dual

∑

T∈S(Λ)

dimk Ext1Λ(T, S) ≤ 1 ∀ S ∈ S(Λ)

hold.

Proposition 3. Let Λ be a Nakayama algebra. Then every indecomposable Λ-module is uniserial,

and Λ has finite representation type.

Proof. We prove the first assertion by induction on the Loewy length ℓℓ(Λ) of Λ, the case ℓℓ(Λ) = 1
being trivial. Assuming ℓ := ℓℓ(Λ) ≥ 2, we consider an indecomposable Λ-module M . If Jℓ−1M =
(0), then M is an indecomposable module for the Nakayama algebra Λ/Jℓ−1, and the inductive
hypothesis yields the assertion. Alternatively, there exists a simple left ideal S ⊂ Jℓ−1 with
S.M 6= (0). We can therefore find m ∈M \ {0} such that

ψm : S −→M ; s 7→ s.m

is injective. Hence there is a map ψ̂m : M −→ E(S) to the injective envelope E(S) of S, whose
composite with ψm is the canonical inclusion S →֒ E(S). As E(S) is uniserial, we can find i ≥ 0

with ψ̂m(M) = J iE(S). Consequently, Jℓ−iM ⊂ ker ψ̂m, while Jℓ−1M 6⊂ ker ψ̂m. As a result

i = 0, so that ψ̂m is surjective and Jℓ−1E(S) 6= (0). Since the uniserial projective cover π : P −→
E(S) of E(S) satisfies ℓ(P ) = ℓℓ(P ) ≤ ℓ = ℓℓ(E(S)) = ℓ(E(S)), we have P ∼= E(S). As M is

indecomposable, it now follows that ψ̂m is an isomorphism. Thus, M is uniserial.
As an upshot of the above, every indecomposable Λ-module M has a simple top and is thus of

the form
M ∼= P (S)/J iP (S) 0 ≤ i ≤ ℓℓ(Λ),

for some simple module S. Consequently, Λ has finite representation type. �

Example. The path algebra k[D̃4] of the four subspace quiver D̃4 is pro-uniserial, but not of
finite representation type. The same holds of course for any subspace quiver involving at least four
subspaces.

We let QΛ be the Gabriel quiver of Λ and denote by An and Ãn the quivers with vertices {1, . . . , n}
and Z/(n+ 1), respectively and arrows i→ i+ 1.

An analogue of following result, which is an easy consequence of Proposition 1 and its dual, was
established by Kupisch prior to the introduction of quivers.
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Theorem 4 (cf. Satz 5 of [3]). Let Λ be a connected Nakayama algebra. Then QΛ = An, Ãn.

Proof. Let p be a directed path of maximal length in QΛ subject to every vertex of QΛ occurring
at most once. We denote by V (p) the set of vertices of p and claim that V (p) = (QΛ)0.

Writing V (p) = {p1, . . . , pn} with arrows pi → pi+1, we suppose there is a vertex x ∈ (QΛ)0\V (p)
which is connected to some vertex pi ∈ V (p). If x → pi, then the dual of Proposition 1 implies
i = 1, and the maximality of p gives a contradiction. Alternatively, we have pi → x, and the above
reasoning first shows i = n and then yields a contradiction. Since QΛ is connected, our claim
follows.

Let α ∈ (QΛ)1 be an arrow. If the starting point of α is pi, then Proposition 1 shows that α
belongs to the path whenever i < n. For i = n, the dual of Proposition 1 implies that α is the
unique arrow pn → p1. As an upshot of our discussion, we conclude that QΛ = An in case there is
no arrow originating in pn, and QΛ = Ãn−1 otherwise. �

In view of our Theorem there exists an ordering S1, . . . , Sn of the simple Λ-modules such that their
projective covers Pi := P (Si) satisfy

JPi/J
2Pi
∼= Si+1 1 ≤ i ≤ n− 1,

with JPn/J
2Pn
∼= S1 if JPn 6= (0). This ordering is often called the Kupisch series of Λ. Note that

the foregoing isomorphism also implies

ℓ(Pi+1) ≥ ℓ(Pi)− 1.

It follows from the above, that the Morita equivalence class of Λ is determined by the n-tuple
(ℓ(P1), . . . , ℓ(Pn)).

Example. Suppose that Λ is a connected hereditary Nakayama algebra. Then Λ is Morita equiv-
alent to k[An], so that ℓ(Pi) = n + 1 − i. Note that k[An] is isomorphic to the algebra of lower
triangular (n× n)-matrices.

We let k[Ãn]† be the space generated by all paths of length ≥ 1.

Corollary 5. Let Λ be a connected Nakayama algebra. Then Λ is self-injective if and only if Λ is

Morita equivalent to k[Ãn]/(k[Ãn]†)m for n = |S(Λ)| − 1 and m = ℓℓ(Λ).

Proof. If Λ is Morita equivalent to k[Ãn]/(k[Ãn]†)m, then we have Soc(Pi) ∼= Si+m−1, where the
indices are to be taken mod(n+ 1). In view of [1, Theorem], the algebra Λ is self-injective.

For the reverse direction, we pick r such that ℓ(Pr) is maximal. If n 6= 0, then no simple Λ-module
is projective and there is a surjection

Pr+1 −→ JPr.

Since ℓ(Pr) ≥ ℓ(Pr+1) ≥ ℓ(Pr)− 1, the assumption ℓ(Pr) 6= ℓ(Pr+1) implies that the above map is
in fact an isomorphism. Thus, JPr is injective and hence a direct summand of Pr. Consequently,
JPr = (0), so that Sr is projective, a contradiction. We obtain ℓ(Pr+1) = ℓ(Pr), and repeat the
argument to see that ℓ(Pi) = ℓℓ(Λ) for i ∈ {1, . . . , n+ 1}.

Since Λ has Loewy length m = ℓ(Pr), it follows that Λ is Morita equivalent to k[Ãn]/(k[Ãn]†)m.
�
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