NAKAYAMA ALGEBRAS: KUPISCH SERIES AND MORITA TYPE

ROLF FARNSTEINER

Throughout, A is assumed to be a finite dimensional k-algebra, defined over an algebraically
closed field k. We let J be the (Jacobson) radical of A. A A-module M of length ¢(M) is called
uniserial if the following equivalent conditions hold:

e M possesses exactly one composition series.

e (J'M);>p is a composition series of M.

e For every i € {0,...,4(M)}, J'M is the unique submodule of length (M) — i.
The algebra A is referred to as pro-uniserial if all its projective indecomposable modules are unis-
erial.

Let S(A) denote a complete set of representatives of the simple A-modules.

Proposition 1 (Thm. 9 of [2]). The following statements are equivalent:
(1) A is pro-uniserial

(2) Dres(n) dimg Ext}h (S,T) < 1 for every S € S(A).

Proof. (1) =-(2). Let S be an element of S(A) with projective cover P(S). There results an exact
sequence

(%) (0) — JP(S) — P(S) — S — (0).
If T € S(A) is another simple A-module, then general theory implies that

(s5) Ext} (S, T) = Homy (JP(S)/J?P(S),T).
Since P(S) is uniserial, the module JP(S)/J? P(S) is either (0) or simple. Schur’s Lemma then
yields dimy, Ext} (S, T) = 1 for at most one T € S(A).

(2) = (1). Let S be an element of S(A) and consider the exact sequence (). The module
JP(S)/J?P(S) is semi-simple, and condition (2) in conjunction with (**) shows that JP(S)/J?P(S)
is either zero or simple.

Given n > 1, suppose that J"~1P(S)/J"P(S) is simple. If Q is a projective cover of J*"'P(S),
then it is also a projective cover of J" 1P(S)/J"P(S), and the above observation ensures that
JQ/J*Q is zero or simple. The surjective map 7 : Q@ — J" !P(S) induces a surjection # :
JQ/J*Q — J"P(S)/J" L P(8), so that the latter module is also either zero or simple. It now fol-
lows inductively that the Loewy series of (J'P(S )o<i< ¢(P(s)) 1s a composition series. Consequently,
P(S) is uniserial. O

Corollary 2. The algebra A is pro-uniserial if and only if A/J? is pro-uniserial.
Proof. Setting A’ := A/J?, we note that the pullback functor
7 :mod A’ — mod A

induces a bijection between the simple modules. Moreover, P(S)/J?P(S) is the projective cover of
the simple A-module S, considered as a A’-module. It readily follows from (xx), that

Ext} (7*(S), 7*(T)) = Ext}/ (S, T) VS, TeSH).
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Our assertion is now a direct consequence of Proposition 1. ]

Definition. The algebra A is a Nakayama algebra if every projective indecomposable and every
injective indecomposable A-module is uniserial.

Remarks. (1) A self-injective algebra is a Nakayama algebra if and only if it is pro-uniserial.

(2) The algebra A = k[1 — 2 « 3] is pro-uniserial, but the injective indecomposable A-module
I5 belonging to the vertex 2 has a top of length 2, so that A is not a Nakayama algebra.

(3) Using duality, we see that A is a Nakayama algebra if and only if A and A°P are pro-uniserial.
Consequently, Corollary 2 also holds for Nakayama algebras.

(4) An algebra A is a Nakayama algebra if and only if Proposition 1 and its dual

> dimg Ext} (T, 5) < 1 VS e S(A)
TeS(A)
hold.

Proposition 3. Let A be a Nakayama algebra. Then every indecomposable A-module is uniserial,
and A has finite representation type.

Proof. We prove the first assertion by induction on the Loewy length ¢¢(A) of A, the case £¢(A) =1
being trivial. Assuming ¢ := ¢/(A) > 2, we consider an indecomposable A-module M. If J~1M =
(0), then M is an indecomposable module for the Nakayama algebra A/J¢~1 and the inductive

hypothesis yields the assertion. Alternatively, there exists a simple left ideal S C J¢ ! with
S.M # (0). We can therefore find m € M \ {0} such that

Vm: S — M ; s+— s.m

is injective. Hence there is a map ¢, : M — E(S) to the injective envelope E(S) of S, whose
composite with v, is the canonical inclusion S — FE(S). As E(S) is uniserial, we can find i > 0
with zﬁm(M) = J'E(S). Consequently, J~'M C ker ¢y, while JIM ¢ kerh,. As a result
i =0, so that v, is surjective and J*1E(S) # (0). Since the uniserial projective cover m: P —
E(S) of E(S) satisfies £(P) = ¢{(P) < ¢ = UU(E(S)) = ¢(E(S)), we have P = E(S). As M is
indecomposable, it now follows that 1[1,” is an isomorphism. Thus, M is uniserial.

As an upshot of the above, every indecomposable A-module M has a simple top and is thus of
the form

M = P(S)/JP(S) 0<i</(A),

for some simple module S. Consequently, A has finite representation type. O

Example. The path algebra k:[[?4] of the four subspace quiver Dy is pro-uniserial, but not of
finite representation type. The same holds of course for any subspace quiver involving at least four
subspaces.

We let Q4 be the Gabriel quiver of A and denote by A,, and A,, the quivers with vertices {1,...,n}
and Z/(n + 1), respectively and arrows i — i + 1.

An analogue of following result, which is an easy consequence of Proposition 1 and its dual, was
established by Kupisch prior to the introduction of quivers.
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Theorem 4 (cf. Satz 5 of [3]). Let A be a connected Nakayama algebra. Then Qpn = A, A,,.

Proof. Let p be a directed path of maximal length in Q4 subject to every vertex of (5 occurring
at most once. We denote by V(p) the set of vertices of p and claim that V(p) = (Qa)o-

Writing V' (p) = {p1, ..., pn} with arrows p; — p;+1, we suppose there is a vertex z € (Qa)o\V (p)
which is connected to some vertex p; € V(p). If © — p;, then the dual of Proposition 1 implies
1 = 1, and the maximality of p gives a contradiction. Alternatively, we have p; — x, and the above
reasoning first shows ¢ = n and then yields a contradiction. Since @A is connected, our claim
follows.

Let o € (Qa)1 be an arrow. If the starting point of « is p;, then Proposition 1 shows that «
belongs to the path whenever ¢ < n. For ¢ = n, the dual of Proposition 1 implies that « is the
unique arrow p,, — p1. As an upshot of our discussion, we conclude that Qx = A,, in case there is

no arrow originating in p,, and Qx = A,,_1 otherwise. O

In view of our Theorem there exists an ordering S1, ..., S, of the simple A-modules such that their
projective covers P; := P(S;) satisfy

JP/J?’P;~S;.; 1<i<n-—1,

with JP,/J?P, = S if JP, # (0). This ordering is often called the Kupisch series of A. Note that
the foregoing isomorphism also implies

((Piy1) > U(F) — 1.

It follows from the above, that the Morita equivalence class of A is determined by the n-tuple

(L(Py), ..., L(Pyp)).

Example. Suppose that A is a connected hereditary Nakayama algebra. Then A is Morita equiv-
alent to k[A,], so that ¢(P;) = n+ 1 —i. Note that k[A,] is isomorphic to the algebra of lower
triangular (n x n)-matrices.

We let k[A,]" be the space generated by all paths of length > 1.

Corollary 5. Let A be a connected Nakayama algebra. Then A is self-injective if and only if A is

Morita equivalent to k[A,]/(k[A,]1)™ for n = |S(A)| — 1 and m = £{(A).

Proof. If A is Morita equivalent to k[A,]/(k[A,]1)™, then we have Soc(P;) = Siim_1, where the
indices are to be taken mod(n 4 1). In view of [1, Theorem]|, the algebra A is self-injective.
For the reverse direction, we pick r such that ¢(P,) is maximal. If n # 0, then no simple A-module
is projective and there is a surjection
Py — JP,.

Since 4(P,) > ¢(Pr41) > ¢(P;) — 1, the assumption ¢(P,) # ¢(P,+1) implies that the above map is

in fact an isomorphism. Thus, JP, is injective and hence a direct summand of P,. Consequently,

JP,. = (0), so that S, is projective, a contradiction. We obtain ¢(P,y1) = ¢(F,), and repeat the
argument to see that ¢(P;) = ¢¢(A) for i € {1,...,n+ 1}.

Since A has Loewy length m = ¢(P,), it follows that A is Morita equivalent to k[A,]/(k[A,]")™.
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