SIMPLE MODULES AND *p*-REGULAR CLASSES

ROLF FARNSTEINER

Let Λ be a finite dimensional algebra over an algebraically closed field k. One fundamental problem is to determine the number s_{Λ} of isomorphism classes of simple Λ -modules. If Λ is semi-simple, then Wedderburn's Theorem yields an isomorphism

$$\Lambda \cong \operatorname{Mat}_{n_1}(k) \oplus \cdots \oplus \operatorname{Mat}_{n_{s_\Lambda}}(k),$$

so that $s_{\Lambda} = \dim_k \mathfrak{Z}(\Lambda)$ is the dimension of the center $\mathfrak{Z}(\Lambda)$ of Λ .

If $\Lambda = kG$ is the group algebra of a finite group G, then $\dim_k \mathfrak{Z}(kG)$ is the number c_G of conjugacy classes of kG, and Maschke's Theorem implies $c_G = s_{kG}$ whenever $\operatorname{char}(k) \nmid \operatorname{ord}(G)$.

The examples of local group algebras show that $s_{kG} \neq c_G$ for not necessarily semi-simple group algebras. Suppose that $\operatorname{char}(k) = p > 0$, and consider an abelian group G. Then

$$G = P \times Q$$

is a direct product of its Sylow-*p*-subgroup P and a group Q of order prime to p. Every simple kG-module is given by an algebra homomorphism $\lambda : kG \longrightarrow k$, which corresponds a group homomorphism $\lambda : G \longrightarrow k^{\times}$ from G to the multiplicative group $k^{\times} = k \setminus \{0\}$ of the field k. Since k^{\times} has no elements of order a proper *p*-power, it follows that $s_{kG} = s_{kQ} = \operatorname{ord}(Q)$ is the number of *p*-regular elements of G. This is the content of Dickson's early result [3] concerning this problem.

About thirty years later, Brauer [1] provided a solution for arbitrary finite groups. He returned to the subject again in his article [2].

We henceforth assume that k is an algebraically closed field of characteristic p > 0.

Definition. Let G be a finite group. A conjugacy class $C \subset G$ is called *p*-regular if it contains an element whose order is not divisible by p.

Theorem. Let G be a finite group. Then s_{kG} coincides with the number of p-regular classes of G.

We begin by giving a characterization of s_{Λ} for an arbitrary k-algebra Λ . In the sequel, J denotes the (Jacobson) radical of Λ . We consider Λ as a Lie algebra via the commutator product

$$[x,y] := xy - yx \qquad \forall \ x, y \in \Lambda.$$

Let $\Lambda^{(1)} = [\Lambda, \Lambda]$ be the derived algebra, and define

$$\mathcal{N}_p(\Lambda) := \{ x \in \Lambda ; \exists n \in \mathbb{N}_0 \text{ with } x^{p^n} \in \Lambda^{(1)} \}.$$

We record the following basic properties:

- (1) If $\Lambda = \Lambda_1 \times \Lambda_2$ is a product of algebras, then $\mathcal{N}_p(\Lambda) = \mathcal{N}_p(\Lambda_1) \times \mathcal{N}_p(\Lambda_2)$.
- (2) $(x+y)^p \equiv x^p + y^p \mod(\Lambda^{(1)}).$
- (3) $(xy yx)^p \equiv (xy)^p (yx)^p = [x, y(xy)^{p-1}] \equiv 0 \mod(\Lambda^{(1)}) \quad \forall x, y \in \Lambda.$
- (4) Let $\pi: \Lambda \longrightarrow \Lambda/J$ be the canonical projection. Then $\mathcal{N}_p(\Lambda) = \pi^{-1}(\mathcal{N}_p(\Lambda/J))$.

Date: June 14, 2006.

Lemma 1. There exist linear maps $\omega_i : \Lambda \longrightarrow k$ for $1 \leq i \leq s_\Lambda$ such that

- (a) $\omega_i(xy) = \omega_i(yx)$ $\forall x, y \in \Lambda, and$ (b) $\omega_i(x^p) = \omega_i(x)^p$ $\forall x \in \Lambda, and$ (c) $\mathcal{N}_p(\Lambda) = \bigcap_{i=1}^{s_{\Lambda}} \ker \omega_i.$

Proof. We write

$$\Lambda/J \cong \bigoplus_{i=1}^{s_{\Lambda}} \operatorname{Mat}_{n_i}(k)$$

and let

$$\omega_i := \operatorname{tr}_i \circ \operatorname{pr}_i \circ \pi$$

be the composition of the projections $\pi : \Lambda \longrightarrow \Lambda/J$, $\operatorname{pr}_i : \Lambda/J \longrightarrow \operatorname{Mat}_{n_i}(k)$ and the trace function $\operatorname{tr}_i: \operatorname{Mat}_{n_i}(k) \longrightarrow k$. Since tr_i satisfies (a) and (b) and $\operatorname{pr}_i \circ \pi$ is a homomorphism of k-algebras, properties (a) and (b) hold.

In view of property (4), it suffices to verify

$$\mathcal{N}_p(\Lambda/J) = \bigcap_{i=1}^{s_\Lambda} \ker(\operatorname{tr}_i \circ \operatorname{pr}_i).$$

If $\Gamma = \operatorname{Mat}_n(k)$ is a matrix algebra, then $\Gamma^{(1)} = \mathfrak{sl}(n)$ is the special linear Lie algebra. Since $\operatorname{tr}(x^p) = \operatorname{tr}(x)^p$ for all $x \in \Gamma$, we obtain $\mathcal{N}_p(\Gamma) = \ker \operatorname{tr}$. It follows that

$$\bigcap_{i=1}^{s_{\Lambda}} \ker(\operatorname{tr}_{i} \circ \operatorname{pr}_{i}) = \ker \operatorname{tr}_{1} \times \cdots \times \ker \operatorname{tr}_{s_{\Lambda}} = \prod_{i=1}^{s_{\Lambda}} \mathcal{N}_{p}(\operatorname{Mat}_{n_{i}}(k))$$

so that property (1) yields the desired result.

Lemma 2. We have $s_{\Lambda} = \dim_k \Lambda / \mathcal{N}_p(\Lambda)$.

Proof. Using the above notation, we let $v_i \in Mat_{n_i}(k)$ be a matrix of trace 1 and put $u_i :=$ $(\delta_{ij}v_i)_{1\leq i\leq s_{\Lambda}}\in \Lambda/J$. Picking $x_j\in \pi^{-1}(u_j)$, we obtain

 $\omega_i(x_i) = \delta_{ij}.$

In view of (c), the map $\omega : \Lambda \longrightarrow k^{s_{\Lambda}}$; $x \mapsto (\omega_1(x), \dots, \omega_{s_{\Lambda}}(x))$ induces an isomorphism $\Lambda/\mathcal{N}_p(\Lambda) \cong$ $k^{s_{\Lambda}}$, as desired.

In the context of symmetric algebras, we have the following description of the center $\mathfrak{Z}(\Lambda)$ and the derived Lie algebra $\Lambda^{(1)}$:

Lemma 3. Let Λ be a symmetric algebra. Then

$$\mathfrak{Z}(\Lambda) = (\Lambda^{(1)})^{\perp} \quad and \quad \mathfrak{Z}(\Lambda)^{\perp} = \Lambda^{(1)}.$$

Proof. Let $(,): \Lambda \times \Lambda \longrightarrow k$ be a non-degenerate symmetric associative form. Given $c, x, y \in \Lambda$, we have

$$(cx - xc, y) = (c, xy) - (y, xc) = (c, xy) - (yx, c) = (c, xy - yx),$$

so that $c \in \mathfrak{Z}(\Lambda)$ if and only if $c \in (\Lambda^{(1)})^{\perp}$.

Since (,) is non-degenerate, we have $X = (X^{\perp})^{\perp}$ for every subspace $X \subset \Lambda$. Consequently, the above also shows $\mathfrak{Z}(\Lambda)^{\perp} = ((\Lambda^{(1)})^{\perp})^{\perp} = \Lambda^{(1)}$. \square

 $\mathbf{2}$

Recall that the projection onto 1 endows kG with the structure of a symmetric algebra. Given a conjugacy class $C \subset G$, we let $z_C := \sum_{g \in G} g$ be the corresponding central element. Denoting by $\operatorname{Cl}(G)$ the set of conjugacy classes of G, Lemma 3 yields

(*)
$$kG^{(1)} = \{\sum_{g \in G} \alpha_g g ; \sum_{g \in C} \alpha_g = 0 \quad \forall \ C \in \operatorname{Cl}(G) \}.$$

We now turn to the proof of the main theorem:

Proof. Given an element $g \in G$ of order n, the cyclic subgroup $\langle g \rangle \subset G$ generated by g is the direct product of its Sylow subgroups. Consequently, g uniquely decomposes as

 $g = g_p g_r$

with
$$g_p g_r = g_r g_p$$
, $\operatorname{ord}(g_p) = p^{\ell}$ and g_r being *p*-regular. Since $((g_p - 1)g_r)^{p^{\ell}} = 0$, it follows that
 $g = (g_p - 1)g_r + g_r \equiv g_r \mod(\mathcal{N}_p(kG)).$

Let $h \in G$. In view of $\omega_i(hgh^{-1}) = \omega_i(g)$ for all $i \in \{1, \ldots, s_{kG}\}$, Lemma 1 gives

$$hgh^{-1} \equiv g \mod \mathcal{N}_p(kG).$$

Let c_1, \ldots, c_t be elements of G, each belonging to exactly one of the *p*-regular classes of G. As an upshot of our discussion, the canonical projection map $\sigma : kG \longrightarrow kG/\mathcal{N}_p(kG)$ induces a surjection

$$\sigma: \bigoplus_{i=1}^t kc_i \longrightarrow kG/\mathcal{N}_p(kG).$$

It remains to be shown that σ is injective.

Let $x = \sum_{i=1}^{t} \alpha_i c_i$ be an element of ker σ . Then we have $x^{p^n} \in kG^{(1)}$ for some $n \in \mathbb{N}_0$, so that properties (2) and (3) imply

$$\sum_{i=1}^t \alpha_i^{p^n} c_i^{p^n} \in kG^{(1)}.$$

Observe that the $c_i^{p^n}$ still belong to different *p*-regular classes of *G*. Identity (*) now yields $\alpha_i^{p^n} = 0$ for every *i*, so that x = 0.

Consequently, $s_{kG} = \dim_k kG / \mathcal{N}_p(kG) = t$ is the number of *p*-regular classes of *G*.

Example. Let G = SL(2, p) be the special linear group over \mathbb{F}_p . Then G has (p-1)p(p+1) elements and is known to afford p p-regular classes. Thus, G has p simple modules, given by the first p symmetric powers of the standard module (the first power being the trivial module).

References

[1] R. Brauer. Über die Darstellung von Gruppen in Galoisschen Feldern. Actualités Sci. Indust. 195 (1935), 15pp.

- [2] _____. Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Z. 72 (1956), 406-444
- [3] L. Dickson. Modular theory of group characters. Bull. Amer. Math. Soc. 13 (1907), 477-488