SIMPLE MODULES AND p-REGULAR CLASSES

ROLF FARNSTEINER

Let Λ be a finite dimensional algebra over an algebraically closed field k. One fundamental problem is to determine the number s_{Λ} of isomorphism classes of simple Λ-modules. If Λ is semisimple, then Wedderburn's Theorem yields an isomorphism

$$
\Lambda \cong \operatorname{Mat}_{n_{1}}(k) \oplus \cdots \oplus \operatorname{Mat}_{n_{s_{\Lambda}}}(k),
$$

so that $s_{\Lambda}=\operatorname{dim}_{k} \mathfrak{Z}(\Lambda)$ is the dimension of the center $\mathfrak{Z}(\Lambda)$ of Λ.
If $\Lambda=k G$ is the group algebra of a finite group G, then $\operatorname{dim}_{k} \mathcal{Z}(k G)$ is the number c_{G} of conjugacy classes of $k G$, and Maschke's Theorem implies $c_{G}=s_{k G}$ whenever char $(k) \nmid \operatorname{ord}(G)$.

The examples of local group algebras show that $s_{k G} \neq c_{G}$ for not necessarily semi-simple group algebras. Suppose that $\operatorname{char}(k)=p>0$, and consider an abelian group G. Then

$$
G=P \times Q
$$

is a direct product of its Sylow- p-subgroup P and a group Q of order prime to p. Every simple $k G$-module is given by an algebra homomorphism $\lambda: k G \longrightarrow k$, which corresponds a group homomorphism $\lambda: G \longrightarrow k^{\times}$from G to the multiplicative group $k^{\times}=k \backslash\{0\}$ of the field k. Since k^{\times}has no elements of order a proper p-power, it follows that $s_{k G}=s_{k Q}=\operatorname{ord}(Q)$ is the number of p-regular elements of G. This is the content of Dickson's early result [3] concerning this problem.

About thirty years later, Brauer [1] provided a solution for arbitary finite groups. He returned to the subject again in his article [2].

We henceforth assume that k is an algebraically closed field of characteristic $p>0$.
Definition. Let G be a finite group. A conjugacy class $C \subset G$ is called p-regular if it contains an element whose order is not divisible by p.

Theorem. Let G be a finite group. Then $s_{k G}$ coincides with the number of p-regular classes of G.
We begin by giving a characterization of s_{Λ} for an arbitrary k-algebra Λ. In the sequel, J denotes the (Jacobson) radical of Λ. We consider Λ as a Lie algebra via the commutator product

$$
[x, y]:=x y-y x \quad \forall x, y \in \Lambda .
$$

Let $\Lambda^{(1)}=[\Lambda, \Lambda]$ be the derived algebra, and define

$$
\mathcal{N}_{p}(\Lambda):=\left\{x \in \Lambda ; \exists n \in \mathbb{N}_{0} \text { with } x^{p^{n}} \in \Lambda^{(1)}\right\} .
$$

We record the following basic properties:
(1) If $\Lambda=\Lambda_{1} \times \Lambda_{2}$ is a product of algebras, then $\mathcal{N}_{p}(\Lambda)=\mathcal{N}_{p}\left(\Lambda_{1}\right) \times \mathcal{N}_{p}\left(\Lambda_{2}\right)$.
(2) $(x+y)^{p} \equiv x^{p}+y^{p} \quad \bmod \left(\Lambda^{(1)}\right)$.
(3) $(x y-y x)^{p} \equiv(x y)^{p}-(y x)^{p}=\left[x, y(x y)^{p-1}\right] \equiv 0 \bmod \left(\Lambda^{(1)}\right) \quad \forall x, y \in \Lambda$.
(4) Let $\pi: \Lambda \longrightarrow \Lambda / J$ be the canonical projection. Then $\mathcal{N}_{p}(\Lambda)=\pi^{-1}\left(\mathcal{N}_{p}(\Lambda / J)\right)$.

Lemma 1. There exist linear maps $\omega_{i}: \Lambda \longrightarrow k$ for $1 \leq i \leq s_{\Lambda}$ such that
(a) $\omega_{i}(x y)=\omega_{i}(y x) \quad \forall x, y \in \Lambda$, and
(b) $\omega_{i}\left(x^{p}\right)=\omega_{i}(x)^{p} \quad \forall x \in \Lambda$, and
(c) $\mathcal{N}_{p}(\Lambda)=\bigcap_{i=1}^{s \Lambda} \operatorname{ker} \omega_{i}$.

Proof. We write

$$
\Lambda / J \cong \bigoplus_{i=1}^{s_{\Lambda}} \operatorname{Mat}_{n_{i}}(k)
$$

and let

$$
\omega_{i}:=\operatorname{tr}_{i} \circ \operatorname{pr}_{i} \circ \pi
$$

be the composition of the projections $\pi: \Lambda \longrightarrow \Lambda / J, \operatorname{pr}_{i}: \Lambda / J \longrightarrow \operatorname{Mat}_{n_{i}}(k)$ and the trace function $\operatorname{tr}_{i}: \operatorname{Mat}_{n_{i}}(k) \longrightarrow k$. Since tr_{i} satisfies (a) and (b) and $\mathrm{pr}_{i} \circ \pi$ is a homomorphism of k-algebras, properties (a) and (b) hold.

In view of property (4), it suffices to verify

$$
\mathcal{N}_{p}(\Lambda / J)=\bigcap_{i=1}^{s_{\Lambda}} \operatorname{ker}\left(\operatorname{tr}_{i} \circ \operatorname{pr}_{\mathrm{i}}\right)
$$

If $\Gamma=\operatorname{Mat}_{n}(k)$ is a matrix algebra, then $\Gamma^{(1)}=\mathfrak{s l}(n)$ is the special linear Lie algebra. Since $\operatorname{tr}\left(x^{p}\right)=\operatorname{tr}(x)^{p}$ for all $x \in \Gamma$, we obtain $\mathcal{N}_{p}(\Gamma)=$ ker tr. It follows that

$$
\bigcap_{i=1}^{s_{\Lambda}} \operatorname{ker}\left(\operatorname{tr}_{i} \circ \operatorname{pr}_{\mathrm{i}}\right)=\operatorname{ker} \operatorname{tr}_{1} \times \cdots \times \operatorname{ker} \operatorname{tr}_{s_{\Lambda}}=\prod_{i=1}^{s_{\Lambda}} \mathcal{N}_{p}\left(\operatorname{Mat}_{n_{i}}(k)\right)
$$

so that property (1) yields the desired result.

Lemma 2. We have $s_{\Lambda}=\operatorname{dim}_{k} \Lambda / \mathcal{N}_{p}(\Lambda)$.
Proof. Using the above notation, we let $v_{j} \in \operatorname{Mat}_{n_{j}}(k)$ be a matrix of trace 1 and put $u_{j}:=$ $\left(\delta_{i j} v_{i}\right)_{1 \leq i \leq s_{\Lambda}} \in \Lambda / J$. Picking $x_{j} \in \pi^{-1}\left(u_{j}\right)$, we obtain

$$
\omega_{i}\left(x_{j}\right)=\delta_{i j}
$$

In view of (c), the map $\omega: \Lambda \longrightarrow k^{s_{\Lambda}} ; x \mapsto\left(\omega_{1}(x), \ldots, \omega_{s_{\Lambda}}(x)\right)$ induces an isomorphism $\Lambda / \mathcal{N}_{p}(\Lambda) \cong$ $k^{s_{\Lambda}}$, as desired.

In the context of symmetric algebras, we have the following description of the center $\mathfrak{Z}(\Lambda)$ and the derived Lie algebra $\Lambda^{(1)}$:

Lemma 3. Let Λ be a symmetric algebra. Then

$$
\mathfrak{Z}(\Lambda)=\left(\Lambda^{(1)}\right)^{\perp} \quad \text { and } \quad \mathfrak{Z}(\Lambda)^{\perp}=\Lambda^{(1)}
$$

Proof. Let (,) : $\Lambda \times \Lambda \longrightarrow k$ be a non-degenerate symmetric associative form. Given $c, x, y \in \Lambda$, we have

$$
(c x-x c, y)=(c, x y)-(y, x c)=(c, x y)-(y x, c)=(c, x y-y x)
$$

so that $c \in \mathfrak{Z}(\Lambda)$ if and only if $c \in\left(\Lambda^{(1)}\right)^{\perp}$.
Since (,) is non-degenerate, we have $X=\left(X^{\perp}\right)^{\perp}$ for every subspace $X \subset \Lambda$. Consequently, the above also shows $\mathfrak{Z}(\Lambda)^{\perp}=\left(\left(\Lambda^{(1)}\right)^{\perp}\right)^{\perp}=\Lambda^{(1)}$ 。

Recall that the projection onto 1 endows $k G$ with the structure of a symmetric algebra. Given a conjugacy class $C \subset G$, we let $z_{C}:=\sum_{g \in G} g$ be the corresponding central element. Denoting by $\mathrm{Cl}(G)$ the set of conjugacy classes of G, Lemma 3 yields

$$
\begin{equation*}
k G^{(1)}=\left\{\sum_{g \in G} \alpha_{g} g ; \sum_{g \in C} \alpha_{g}=0 \quad \forall C \in \mathrm{Cl}(G)\right\} \tag{*}
\end{equation*}
$$

We now turn to the proof of the main theorem:
Proof. Given an element $g \in G$ of order n, the cyclic subgroup $\langle g\rangle \subset G$ generated by g is the direct product of its Sylow subgroups. Consequently, g uniquely decomposes as

$$
g=g_{p} g_{r}
$$

with $g_{p} g_{r}=g_{r} g_{p}, \operatorname{ord}\left(g_{p}\right)=p^{\ell}$ and g_{r} being p-regular. Since $\left(\left(g_{p}-1\right) g_{r}\right)^{p^{\ell}}=0$, it follows that

$$
g=\left(g_{p}-1\right) g_{r}+g_{r} \equiv g_{r} \quad \bmod \left(\mathcal{N}_{p}(k G)\right)
$$

Let $h \in G$. In view of $\omega_{i}\left(h g h^{-1}\right)=\omega_{i}(g)$ for all $i \in\left\{1, \ldots, s_{k G}\right\}$, Lemma 1 gives

$$
h g h^{-1} \equiv g \quad \bmod \mathcal{N}_{p}(k G)
$$

Let c_{1}, \ldots, c_{t} be elements of G, each belonging to exactly one of the p-regular classes of G. As an upshot of our discussion, the canonical projection map $\sigma: k G \longrightarrow k G / \mathcal{N}_{p}(k G)$ induces a surjection

$$
\sigma: \bigoplus_{i=1}^{t} k c_{i} \longrightarrow k G / \mathcal{N}_{p}(k G)
$$

It remains to be shown that σ is injective.
Let $x=\sum_{i=1}^{t} \alpha_{i} c_{i}$ be an element of $\operatorname{ker} \sigma$. Then we have $x^{p^{n}} \in k G^{(1)}$ for some $n \in \mathbb{N}_{0}$, so that properties (2) and (3) imply

$$
\sum_{i=1}^{t} \alpha_{i}^{p^{n}} c_{i}^{p^{n}} \in k G^{(1)}
$$

Observe that the $c_{i}^{p^{n}}$ still belong to different p-regular classes of G. Identity (*) now yields $\alpha_{i}^{p^{n}}=0$ for every i, so that $x=0$.

Consequently, $s_{k G}=\operatorname{dim}_{k} k G / \mathcal{N}_{p}(k G)=t$ is the number of p-regular classes of G.

Example. Let $G=\mathrm{SL}(2, p)$ be the special linear group over \mathbb{F}_{p}. Then G has $(p-1) p(p+1)$ elements and is known to afford p p-regular classes. Thus, G has p simple modules, given by the first p symmetric powers of the standard module (the first power being the trivial module).

References

[1] R. Brauer. Über die Darstellung von Gruppen in Galoisschen Feldern. Actualités Sci. Indust. 195 (1935), 15pp.

$$
[2]-
$$

\qquad . Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Z. 72 (1956), 406-444
[3] L. Dickson. Modular theory of group characters. Bull. Amer. Math. Soc. 13 (1907), 477-488

