Prüfer modules of finite type.

Claus Michael Ringel

Let Λ be an artin algebra. Recall that a module M is said to be a *Prüfer module* provided there exists a surjective locally nilpotent endomorphism ϕ of M with non-zero kernel of finite length.

A module M is said to be of finite type provided it is the direct sum of copies of finitely many indecomposable modules of finite length. A module G is called *generic* provided it is indecomposable, of infinite length, and endo-finite (the latter means: it is of finite length when considered as a module over its endomorphism ring).

Claim. If there are no generic modules, then all Prüfer modules are of finite type.

More precisely:

Proposition. Let M be a Prüfer module. The following conditions are equivalent:

- (i) *M* is not of finite type.
- (ii) There is an infinite index I set such that the product module M^{I} has a generic direct summand.
- (iii) For every infinite index I set, the product module M^{I} has a generic direct summand.

Proof: The implications (iii) \implies (ii) is trivial. Also (ii) \implies (i) is obvious: If M is of finite type, then also all product modules M^I are of finite type. We only have to show (i) \implies (iii). (It it sufficient to consider $I = \mathbb{N}$ in (iii), since any infinite index set I can be written as the disjoint union of \mathbb{N} and some other index set I', and then $M^I = M^{\mathbb{N}} \oplus M^{I'}$ —however, there is no problem to work in general.)

Now assume that I is an infinite index set and that M^{I} has no indecomposable direct summand which is endo-finite and of infinite length. Since M is a Prüfer module, there is a surjective, locally nilpotent endomorphism ϕ with kernel W = W[1] non-zero and of finite length. Let W[n] be the kernel of ϕ^{n} . Thus

$$M[1] \subset M[2] \subset \cdots \subset \bigcup_{n} M[n] = M$$

is a filtration of M with finite length modules M[n]. We obtain a corresponding chain of inclusions

$$M[1]^I \subset M[2]^I \subset \cdots \subset \bigcup_n M[n]^I = M'$$

It has been shown in [R1] (see also [K]) that M' is isomorphic to a direct sum of copies of M and itself a direct summand of M^I ; there is an endo-finite submodule E of M^I such that

$$M^{I} = M' \oplus E.$$

Any endo-finite module E can be written as a direct sum of copies of finitely many indecomposable endo-finite modules, say E_1, \ldots, E_t . By assumption, all these modules E_i are of finite length. A well-known lemma of Auslander asserts that any indecomposable direct summand of M^I of finite length is a direct summand of M itself, thus the modules E_1, \ldots, E_t occur as direct summands of M.

Since M is artinian as a module over its endomorphism ring, M is Σ -algebraic compact, thus it is a direct sum of indecomposable modules with local endomorphism ring. Write $M = A \oplus B$, where A is a direct sum of copies of the various E_i and B has no direct summand of the form E_i , for any i. We want to show that B is of finite length. This then shows that M is of finite type.

The modules A, B are also filtered, with $A_n = A \cap M[n]$, $B_n = B \cap M[n]$ (it is obvious that $A = \bigcup_n A_n$, $B = \bigcup_n B_n$). For any n there is some n' with $M[n] \subseteq A_{n'} \oplus B_{n'}$. (Namely, let $x \in M[n]$, write x = a + b with $a \in A$, $b \in B$. Then there is some n' with $a, b \in M_{n'}$, thus $a \in A_{n'}, b \in B_{n'}$.)

We write $A' = \bigcup_i A_i^I$ and $B' = \bigcup_i B_i^I$. Then

$$M' = A' \oplus B'$$

(the inclusion \supseteq is obvious, the other follows from $M[n]^I \subseteq (A_{n'} \oplus B_{n'})^I = A_{n'}^I \oplus B_{n'}^I \subseteq A' \oplus B'$.). We see that

$$(A^I/A') \oplus (B^I/B') = M^I/M' = E,$$

thus $A^{I}/A' = E_A$ and $B^{I}/B' = E_B$ with $E = E_A \oplus E_B$. In particular, E_A and E_B are direct sums of copies of E_1, \ldots, E_t . Since the direct sum of the inclusion maps

$$A' \to A^I$$
 and $B' \to B^I$

is a split monomorphism, the maps themselves are split monomorphisms, thus

$$A^I \simeq A' \oplus E_A$$
 and $B^I \simeq B' \oplus E_B$.

Consider the last isomorphism. If E_i is a direct summand of E_B , then it is a direct summand of B (Auslander Lemma), impossible. This shows that $E_B = 0$. But then $B' = B^I$ implies that $B = B_n$ for some n, thus $B \subseteq M[n]$. This shows that B is of finite length.

May-be one should record: Assume that M^{I}/M' is the direct sum of copies of indecomposable modules E_1, \ldots, E_t of finite length, then M is the direct sum of a finite length module B and of copies of the modules E_i . For dealing with Prüfer modules obtained using the ladder construction $M = U_{\infty}/U_0$, it seems to be of interest to relate the finite type properties of U_{∞} and M. More generally, let us consider filtered modules in more generality.

Lemma. Let $U_0 \subset U_1 \subset \cdots \subset \bigcup_i U_i = U_\infty$ be a filtration of U_∞ using finite length modules U_i and proper inclusions $U_i \subset U_{i+1}$. Consider the following conditions:

- (i) $\bigoplus_{i \in \mathbb{N}} U_i$ is of finite type.
- (ii) U_{∞} is of finite type.
- (ii') U_{∞}/U_0 is of finite type.
- (iii) Only finitely many inclusions $U_i \subset U_{i+1}$ are radical morphisms.

(iv) Only finitely many modules U_i are indecomposable.

The following implications hold: (i) \implies (ii) \implies (iii) \implies (iv), and the conditions (ii) and (ii') are equivalent.

Proof: (i) \implies (ii): Projectify the modules M_i , so that all the modules U_i are projective. Then U_{∞} is flat, thus projective

(ii) \implies (ii'): Let $U_{\infty} = \bigoplus_{i \in I} M_i$ with all M_i indecomposable of finite length, and with only finitely many isomorphism classes of modules involved. Now $U_0 \subseteq \bigoplus_{i \in I'} M_i = M'$ with I' a finite subset of I. Then

$$U_{\infty}/U_0 = M'/U_0 \oplus \bigoplus_{i \in I \setminus I'} M_i,$$

is a direct sum of indecomposable modules of finite length (one has to decompose M'/U_0) and only finitely many isomorphism classes are involved.

 $(ii') \implies (ii)$: Roiter's extension argument.

(ii) \implies (iii): Let $U_{\infty} = M \oplus M'$ with M of finite length. Then $M \subseteq U_i$ for some i. But then the inclusion $M \subset U_{\infty}$ factors as follows $M \subseteq U_i \subset U_{i+1} \subset U_{\infty}$. This inclusion splits, thus there is a projection $U_{\infty} \to M$ such that the composition

$$M \to U_i \to U_{i+1} \to U_\infty \to M$$

is the identity. This shows that $U_i \to U_{i+1}$ is not in the radical.

(iii) \implies (iv): If a proper inclusion $V \subset W$ does not belong to the radical, then W cannot be indecomposable: namely, there are indecomposable direct summands V' of V and W' of W which are isomorphic. Then |W'| = |V'| < |V| < |W|, thus W is decomposable.

References

- [K] H. Krause: Generic modules over artin algebras. Proc. London Math. Soc. 76. (1998), 276–306.
- [R] C.M. Ringel: A construction of endofinite modules. In: Advances in Algebra and Model Theory. Gordon-Breach. (ed. M. Droste, R. Göbel). London (1997). 387–399.