The real root modules for some quivers.

Claus Michael Ringel

Let Q be a finite quiver with veretx set I and let $\Lambda=k Q$ be its path algebra. The quivers we are interested in will contain cyclic paths, but we may assume that there are no loops. For every vertex i, we denote by $S(i)$ the corresponding simple module, and we denote by $\bmod \Lambda$ the category of finite length modules with all composition factors of the form $S(i)$ (thus the category of all locally nilpotent representations of finite length).

We denote by q on \mathbb{Z}^{I} the quadratic form defined by Q (it only depends on the graph \bar{Q} obtained from Q by deleting the orientation of the edges). For any vertex i, we denote by \mathbf{e}_{i} the corresponding base element of \mathbb{Z}^{I} and by σ_{i} the reflection of \mathbb{Z}^{I} on the hyperplane orthogonal to \mathbf{e}_{i}. The group W generated by the reflections σ_{i} is called the Weyl group (and the elements σ_{i} its generators). An element of \mathbb{Z}^{I} is called a real root provided it belongs to the W-orbits of some \mathbf{e}_{i}. Also, a non-zero element of \mathbb{Z}^{I} is said to be positive if all its coefficients are non-negative, and negative, if all its coefficients are non-positive. It is well-known that all real roots are positive or negative.

According to Kac, for any positive real root \mathbf{d}, there is an indecomposable module $M(\mathbf{d})$ in $\bmod k Q$ with $\operatorname{dim} M(\mathbf{d})=\mathbf{d}$, and this module is unique up to isomorphism, we call it a real root module. The problem discussed here is the following: In general, the existence of these modules is known, but no constructive way in order to obtain them. Also, one may be interested in special properties of these modules: Are they tree modules? What is the structure of the endomorphism ring $\operatorname{End}(M(\mathbf{d}))$?

The following report is based on investigations of Jensen and Su [JS]. We consider the following quiver $\Delta(b, c)$:

with $b \geq 1$ arrows of the form β and $c \geq 1$ arrows of the form γ. The quadratic form is $q\left(d_{1}, d_{2}, d_{3}\right)=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}-d_{1} d_{2}-(b+c) d_{2} d_{3}$. (Jensen and Su consider in [JS] only the case $b=1=c$, however the general case is rather similar.)

1. The Weyl group W. It is generated by $\sigma_{1}, \sigma_{2}, \sigma_{3}$ with relations $\sigma_{i}^{2}=1$ for $i=1,2,3$, and $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{1}$. The length $l(w)$ of an element $w \in W$ is t provided w can be written as a product of t generators, and t is minimal with this property.

Lemma 1. Any element in W of length t can be written as a product of t generators such that neither $\sigma_{2} \sigma_{1} \sigma_{2}$ nor $\sigma_{1} \sigma_{3}$ occurs.

Proof: Write $w=\sigma_{i_{1}} \cdots \sigma_{i_{t}}$ with generators $\sigma_{i_{s}}$ for all s and such that the number of occurances of σ_{1} is maximal. Then $\sigma_{2} \sigma_{1} \sigma_{2}$ does not occur. In addition, shift the σ_{1} to the right, whenever possible. Then also $\sigma_{1} \sigma_{3}$ does not occur.
2. The real roots. They are obtained from the canonical base vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ by applying Weyl group elements, the positive real roots are of the form $w \mathbf{e}_{i_{0}}$, with $1 \leq i_{0} \leq 3$. Note that $\sigma_{2} \mathbf{e}_{1}=\sigma_{1} \mathbf{e}_{2}$, thus if $t \geq 1$, we can assume that i_{0} is equal to 2 or 3 .

Lemma 2. The positive real roots different from \mathbf{e}_{1} are of the form

$$
\mathbf{d}=\sigma_{i_{t}} \cdots \sigma_{i_{1}} \mathbf{e}_{i_{0}}
$$

with the following properties (here, $1 \leq s \leq t$):

- $i_{0}=2$, or $i_{0}=3$.
- If $i_{s}=1$, then $i_{s-1}=2$.
- If $i_{s}=2$, then $i_{s-1}=3$.
- If $i_{s}=3$, then $i_{s-1}=1$ or $i_{s-1}=2$.

We call $\mathbf{d}=\sigma_{i_{t}} \cdots \sigma_{i_{1}} \mathbf{e}_{i_{0}}$ a standard presentation of \mathbf{d} provided these conditions are satisfied.

Proof: Let \mathbf{d} be a positive real root different from \mathbf{e}_{1}. Write $\mathbf{d}=w \mathbf{e}_{i_{0}}$ with $i_{0} \in\{1,2,3\}$. If $w=\sigma_{i_{t}} \cdots \sigma_{i_{1}}$, with generators $\sigma_{i_{s}}$ for $1 \leq s \leq t$, than we can assume that all the roots $\sigma_{i_{s}} \cdots \sigma_{i_{1}} \mathbf{e}_{i}$ with $1 \leq s \leq t$ are positive. In addition, we can assume that w has smallest possible length.

Since $\mathbf{d} \neq \mathbf{e}_{1}$, we can assume that $i_{0} \in\{2,3\}$. Namely, we cannot have $i_{1}=3$, since $\sigma_{3} \mathbf{e}_{1}=\mathbf{e}_{1}$ would contradict the minimal length of w and if $i_{1}=2$, then we replace $\sigma_{2} \mathbf{e}_{1}$ by $\sigma_{1} \mathbf{e}_{2}$.

According to Lemma 1, we can assume that w does not include a subword of the form $\sigma_{2} \sigma_{1} \sigma_{2}$ or $\sigma_{1} \sigma_{3}$.

The last condition is obvious: if $i_{s}=3=i_{s-1}$, then either $s=1$ and $\sigma_{i_{1}} \mathbf{e}_{i_{0}}=\sigma_{3} \mathbf{e}_{3}$ is negative, or else $s>1$ and there is a cancellation in w, in contrast to the minimality of the length of w.

Similarly, if $i_{s}=1$, then i_{s-1} cannot be equal to 1 , since otherwise there would be a cancellation. Also $i_{s-1} \neq 3$: for $s>1$ this follows from the fact that w does not contain $\sigma_{1} \sigma_{3}$ as a subword. For $s=1$, we could replace $\sigma_{1} \mathbf{e}_{3}$ by \mathbf{e}_{3}, contrary to the minimal choice of w.

Finally, assume that $i_{s}=2$. If $s=1$, then clearly $i_{0}=3$. Thus $s \geq 2$, and i_{s-1} is either 1 or 3 , since otherwise there is a cancellation. Assume that $i_{s-1}=1$, and therefore $i_{s-2}=2$. For $s>2$ this is impossible, since w does not contain a subword of the form $\sigma_{2} \sigma_{1} \sigma_{2}$. If $s=2$, then we deal with $\sigma_{i_{2}} \sigma_{i_{1}} \mathbf{e} i_{0}=\sigma_{2} \sigma_{1} \mathbf{e}_{2}=\mathbf{e}_{1}$, this contradicts again that w is of smallest possible length. This completes the proof.

Remarks: (1) As a consequence, we see: The positive real roots different form \mathbf{e}_{1} are of the form $w \mathbf{e}_{2}$ or $w \mathbf{e}_{2}$, where w is a subword of a word of the form

$$
\sigma_{1}\left(\sigma_{2} \sigma_{3}\right)^{s_{1}} \sigma_{1}\left(\sigma_{2} \sigma_{3}\right)^{s_{2}} \cdots \sigma_{1}\left(\sigma_{2} \sigma_{3}\right)^{s_{m}}
$$

with all $s_{i} \geq 1$.
(2) If $\mathbf{d}=\sigma_{i_{t}} \cdots \sigma_{i_{1}} \mathbf{e}_{i_{0}}$ is a standard presentation, then the coefficients of the roots $\sigma_{i_{s}} \cdots \sigma_{i_{1}} \mathbf{e}_{i_{0}}$ with $0 \leq s \leq t$ are increased step by step.

Proof: We apply σ_{3} to $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}\right)$ only in case $d_{2}>d_{3}$, and then d_{3} is replaced by $2 d_{2}-d_{3}>d_{2}>d_{3}$. Similarly, we apply σ_{2} only in case $d_{2}<d_{3}$, and then d_{2} is replaced by $d_{1}+2 d_{3}-d_{2}>d_{1}+d_{3}>d_{1}+d_{2} \geq d_{2}$. Finally, if we apply σ_{1}, we either apply it to \mathbf{e}_{2}, or else we have applied just before σ_{2} to a vector $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}\right)$ with $d_{2}<d_{3}$, thus $\sigma_{2} \mathbf{d}=\left(d_{1}, d_{1}+2 d_{3}-d_{2}, d_{3}\right)$ and therefore $\sigma_{1} \sigma_{2} \mathbf{d}=\left(2 d_{3}-d_{2}, d_{1}+2 d_{3}-d_{2}, d_{3}\right)$. But then $2 d_{3}-d_{2}>d_{3}>d_{2} \geq d_{1}$ (the last inequality is valid for all positive roots).
3. The reflection constructions Σ_{i}. For every vertex i we are going to exhibit a reflection construction Σ_{i} which may be defined only on a full subcategory $\mathcal{M}(i)$ of mod Λ and the values may lie in a module category $\bmod \Lambda^{\prime}$ where the graphs of Λ and Λ^{\prime} (obtained from the quivers by deleting the orientation) can be (and have been) identified. Always we want that an indecomposable module M is sent to an indecomposable module $\Sigma_{i} M$ and that

$$
\begin{equation*}
\operatorname{dim} \Sigma_{i} M=\sigma_{i}(\operatorname{dim} M) \tag{*}
\end{equation*}
$$

for M in $\mathcal{M}(i)$. The problem we are faced with is now visible: The construction process of the real root modules has to assure that we always are in the domain of applying a corresponding reflection construction.

Let us start with the vertices 2 and 3 , here we use a general procedure as exhibited in [R1]:

For any vertex i of a quiver Q with no loop at i, there is defined a functor

$$
\rho_{i}: \mathcal{M}_{i}^{i} \rightarrow \mathcal{M}_{-i}^{-i}
$$

which induces an equivalence

$$
\rho_{i}: \mathcal{M}_{i}^{i} /\langle S(i)\rangle \rightarrow \mathcal{M}_{-i}^{-i}
$$

It is defined as follows: Given a $k Q$-module M, let $\operatorname{rad}_{i} M$ be the intersection of the kernels of maps $M \rightarrow S(i)$, thus $M / \operatorname{rad}_{i} M$ is the homogeneous component of type i of the top of M. Similarly, let $\operatorname{soc}_{i} M$ be the sum of the images of maps $S(i) \rightarrow M$, thus $\operatorname{soc}_{i} M$ is the homogeneous component of type i of the socle of M. Let $\rho_{i}(M)=\operatorname{rad}_{i} M /\left(\operatorname{soc}_{i} M \cap \operatorname{rad}_{i} M\right)$ (if M has no direct summand isomorphic to $S(i)$, then $\rho_{i}(M)=\operatorname{rad}_{i} M / \operatorname{soc}_{i} M$; the intersection term in the denominator is necessary in order that ρ_{i} can be applied also to the simple module $S(i)$). For a proof of the asserted equivalence as well as the required formula $(*)$, see [R1], Proposition 2.

Since the kernel of the functor ρ_{i} is just the ideal $\langle S(i)\rangle$ of \mathcal{M}_{i}^{i} given by all maps which factor through direct sums of copies of $S(i)$, we see the following: Assume that M, M^{\prime} belong to \mathcal{M}_{i}^{i} (so that ρ_{i} is defined). Then

$$
\operatorname{dim} \operatorname{Hom}\left(\rho_{i} M, \rho_{i} M^{\prime}\right)=\operatorname{dim} \operatorname{Hom}\left(M, M^{\prime}\right)-\left(\operatorname{dim} M / \operatorname{rad}_{i} M\right) \cdot\left(\operatorname{dim} \operatorname{soc}_{i} M^{\prime}\right)
$$

In particular,

$$
\operatorname{dim} \operatorname{End}\left(\rho_{i} M\right)=\operatorname{dim} \operatorname{End}(M)-\left(\operatorname{dim} M / \operatorname{rad}_{i} M\right) \cdot\left(\operatorname{dim} \operatorname{soc}_{i} M\right)
$$

The reverse construction (forming universal extensions and coextensions) will be denoted by ρ_{a}^{-1}.

In our case of the quiver $Q=\Delta(b, c)$, let $\Sigma_{2}=\rho_{2}^{-1}$, and $\Sigma_{3}=\rho_{3}^{-1}$. Thus

$$
\mathcal{M}(2)=\mathcal{M}_{-2}^{-2} \quad \text { and } \quad \mathcal{M}(3)=\mathcal{M}_{-3}^{-3} .
$$

Now consider the vertex 1 . The reflection construction Σ_{1} is actually functorial and defined on all of $\bmod k \Delta(a, b)$, but we restrict it to

$$
\mathcal{M}(1)=\bmod k \Delta(a, b) \backslash\langle S(1)\rangle
$$

and it takes values in $\bmod k \Delta(b, a)$. We start with the functor

$$
\Sigma_{1}: \bmod k \Delta(a, b) \rightarrow \bmod k \Delta(b, a)
$$

which is the composition of the BGP reflection functor at the source 1 (see [BGP]) followed by k-duality and renaming of arrows. It provides an equivalence

$$
\Sigma_{1}: \bmod k \Delta(a, b) \backslash\langle S(1)\rangle \rightarrow \bmod k \Delta(b, a) \backslash\langle S(1)\rangle .
$$

The following property is of importance:
(a)

$$
\Sigma_{1}\left(\mathcal{M}_{-3}^{-3}\right) \subseteq \mathcal{M}_{-3}^{-3}
$$

Namely, $\Sigma_{1} S(3)=S(3)$, thus a non-zero homomorphism $\Sigma_{1} M \rightarrow S(3)$ yields under Σ_{1} a non-zero homomorphism $S(3)=\Sigma_{1} S(3) \rightarrow \Sigma_{1}^{2} M=M$, and similarly, a non-zero homomorphism $S(3) \rightarrow \Sigma_{1} M$ yields under Σ_{1} a non-zero homomorphism $M=\Sigma_{1}^{2} M \rightarrow$ $\Sigma_{1} S(3)=S(3)$.

In addition, we also need to know that

$$
\begin{equation*}
\mathcal{M}_{2}^{2} \subseteq \mathcal{M}_{-3}^{-3}, \quad \text { and } \tag{b}
\end{equation*}
$$

(c)
$\mathcal{M}_{3}^{3} \subseteq \mathcal{M}_{-2}^{-2}$.
This follows from the following general result:
Lemma 3. Assume there are arrows $i \rightarrow j$ and $j \rightarrow i$. Then

$$
\mathcal{M}_{i}^{i} \subseteq \mathcal{M}_{-j}^{-j}
$$

For a proof, we may refer to [R1], Lemma 4. Let us show one of the four arguments (the remaining ones are similar). Let M be a module with $\operatorname{Ext}^{1}(S(i), M)=0$. We want to show that $\operatorname{Hom}(M, S(j))=0$. Thus assume there is a non-zero homomorphism $\phi: M \rightarrow S(j)$; note that ϕ is surjective. This map ϕ induces a map

$$
\operatorname{Ext}^{1}(S(i), \phi): \operatorname{Ext}^{1}(S(i), M) \longrightarrow \operatorname{Ext}^{1}(S(i), S(j))
$$

Since we are in a hereditary category, an epimorphism such as ϕ induces an epimorphism $\operatorname{Ext}^{1}(S(i), \phi)$. However, we assume that there is an arrow $i \rightarrow j$. Thus $\operatorname{Ext}^{1}(S(i), S(j)) \neq 0$ and therefore $\operatorname{Ext}^{1}(S(i), M) \neq 0$, a contradiction.

4. The real root modules.

Theorem (Jensen-Su). For the quivers $\Delta(b, c)$, the real root modules $M(\mathbf{d})$ different from $S(1)$ are inductively obtained from the simple modules $S(2), S(3)$, using the reflection constructions $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ (and following a standard presentation of \mathbf{d}.)

Proof: We have to show that the modules obtained inductively are contained in a subcategory $\mathcal{M}(i)$ whenever we have to use the construction Σ_{i}. There is no problem with Σ_{1}, since it is always defined (except for $S(1)$, but this does not matter).

Assume we have to use Σ_{2}. Then either we deal with the root $\mathbf{d}=\sigma_{2} \mathbf{e}_{3}$ or else with a root $\mathbf{d}=w \mathbf{b}=\sigma_{2} \sigma_{3} \mathbf{d}^{\prime}$, for some positive real root \mathbf{d}^{\prime}. By induction, the module $M\left(\sigma_{3} \mathbf{d}^{\prime}\right)$ has been constructed using Σ_{3}, thus it belongs to \mathcal{M}_{3}^{3}. Of course, also $M\left(\mathbf{e}_{3}\right)=S(3)$ belongs to \mathcal{M}_{3}^{3}. Thus, in both cases we have to apply Σ_{2} to a module in \mathcal{M}_{3}^{3}. According to (c), we know that $\mathcal{M}_{3}^{3} \subseteq \mathcal{M}_{-2}^{-2}$, thus we can apply the construction Σ_{2} in order to obtain $M(\mathbf{d})$ (we obtain either $\Sigma_{2} S(3)$ or $\Sigma_{2} M\left(\sigma_{3} \mathbf{d}^{\prime}\right)$).

Finally, assume we have to apply Σ_{3}. If we deal with the root $\mathbf{d}=\sigma_{3} \mathbf{e}_{2}$ or with $\mathbf{d}=\sigma_{3} \sigma_{2} \mathbf{d}^{\prime}$ for some positive real root \mathbf{d}^{\prime}, then we argue as in the previous case, now using the assertion (b): $\mathcal{M}_{2}^{2} \subseteq \mathcal{M}_{-3}^{-3}$. Thus it remains to consider the case where either $d=\sigma_{3} \sigma_{1} \mathbf{e}_{2}$ or $\mathbf{d}=\sigma_{3} \sigma_{1} \sigma_{2} \mathbf{d}^{\prime \prime}$ for some positive real root $\mathbf{d}^{\prime \prime}$. In this case, we start with the module $N=M\left(e_{2}\right)$ or with $N=M\left(\sigma_{2} \mathbf{d}^{\prime \prime}\right)$, both belonging to \mathcal{M}_{2}^{2}, thus N belongs to \mathcal{M}_{-3}^{-3} (this is (b)), and apply to it first Σ_{1}, then Σ_{3}. Now, with N also $\Sigma_{1} N$ belongs to \mathcal{M}_{-3}^{-3}, according to (a), thus there is no problem for applying Σ_{3} to $\Sigma_{1} N$. This completes the proof.
5. Coefficient quivers for \mathbb{A}_{2}. Let $J=\{0,1, \ldots, n\}$ and $I \subset J$ with $0 \in I$ and $n \notin I$. For $i \in I$, let $i^{+}=\min \left\{i^{\prime} \mid i<i^{\prime}, i^{\prime} \in I \cup\{n\}\right.$. We define an $(I \times J)$-matrix $A(I, J)$ by

$$
a_{i j}= \begin{cases}1 & \text { if } i \leq j \leq i^{+} \\ 0 & \text { otherwise },\end{cases}
$$

This is a matrix of rank $|I|$.
Simliarly, consider $K \subset J$ with $0 \notin K$ and $n \in K$. For $k \in K$, let $k^{-}=\min \left\{k^{\prime} \mid k<\right.$ $k^{\prime}, k^{\prime} \in K \cup\{0\}$. We define an $(J \times K)$-matrix $B(J, K)$ by

$$
b_{j k}=\left\{\begin{array}{cl}
(-1)^{k} & \text { if } k^{-} \leq j \leq k \\
0 & \text { otherwise }
\end{array}\right.
$$

This is a matrix of rank $|I|$.
Lemma 4. Let $I \subset J=\{0,1, \ldots, n\}$ with $0 \in I$ and $n \notin I$. Then

$$
A(I, J) B(J, J \backslash I)=0
$$

Example: Let $n=9$, let $I=\{0,1,4,5\}$. Then

For the proof, we need the following observation: Let $K=J \backslash I$. For $i \in I$ and $k \in K$, the intervalls $\left[i, i^{+}\right]$and $\left[k^{-}, k\right]$ either avoid each other, or else they intersect in a pair $[j-1, j]$. Namely, assume they do not avoid each other, let j be maximal in the intersection. In particular, $i \leq j \leq i^{+}$and $k^{-} \leq j \leq k$. Note that j cannot be zero: If $j=0$, then $i=0$ and $k^{-}=0$. But then also 1 belongs to $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$.

Case 1. Assume that j belongs to I, thus $k^{-}<j<k$ (here we use that $j \neq 0$). Note that all the elements $\left\{k^{+}+1, \ldots, k-1\right\}$ belong to I. Then $j=i^{+}$, since otherwise $j+1 \in\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$, contrary to the maximality of j. Thus $i<j$. If $i=j-1$, then $k^{-}<j-1$ and $[i, i+1]=[j-1, j] \subset\left[k^{-}, k\right]$. If $i<j-1$, then $i<j-1<i^{+}$shows that $j-1$ belongs to K, thus $j-1=k^{-}$and $[j-1, j]=\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$.

Case 2. Now j belongs to K, thus $i<j$. The only elements in $\left[k^{-}, k\right]$ which belong to K are k^{-}and k. If $j=k^{-}$, then $j+1 \in\left[k^{-}, k\right]$. Also $j<i^{+}$, thus j is not maximal in $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$, a contradiction. This shows that $j=k$. If $\left.k^{-}=j-1\right]$, then $[j-$ $1, j]=\left[k^{-}, k\right] \subset\left[i, i^{+}\right]$. If $\left.k^{-}<j-1\right]$, then $j-1$ belongs to I and $j<i^{+}$. Thus again $[j-1, j]=\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$.

Remark: A non-zero intersection $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$ arises in different ways: we may have $\left[i, i^{+}\right] \subset\left[k^{-}, k\right]$ (in the example above, this arises for $i=0$ and $k=2$), or $\left[k^{-}, k\right] \subset\left[i, i^{+}\right]$ (in the example: $i=1, k=3$), as $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]=\left[k^{-}, i^{+}\right]$(in the example: $i=1, k=2$). or finally as $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]=[i, k]$ (in the example: $i=5, k=6$).

Now we are able to provide the proof of Lemma 4: If we multiply the row of $A(I, J)$ with index $i \in I$ with the column of $B(J, K)$ with index $k \in K$, we obtain

$$
\sum_{t} a_{i t} b_{t k}=\sum_{t \in\left[i, i^{+}\right] \cap\left[k^{-}, k\right]} a_{i t} b_{t k}
$$

All the summands are zero in case $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]$ is empty. Otherwise, there is some j with $\left[i, i^{+}\right] \cap\left[k^{-}, k\right]=[j-1, j]$ and then

$$
\sum_{t} a_{i t} b_{t k}=a_{i, j-1} b_{j-1, k}+a_{i j} b_{j k}=(-1)^{j-1}+(-1)^{j}=0
$$

It is of interest for us, to draw the coefficient quivers both of $A(I, J)$ and $B(J, K)$, where $K=J \backslash I$:

(the arrows go from right to left).
Definition: We say that a matrix with rank equal to the number of columns is in standard inclusion form provided it is a direct sum of matrices of the form $B(J, K)$ as well as of copies of [1]: $k \rightarrow k$ and of empty matrices $0 \rightarrow k$.

Proposition 1 (Jensen-Su). Let $f: U \rightarrow V$ be an injective vector space homomorphism. Assume there is given a basis \mathcal{U} of U and a basis \mathcal{V} of V such that the corresponding matrix representation of f in standard inclusion form. Let $g: V \rightarrow W$ be a cokernel of f and consider the dual map $g^{*}: W^{*} \rightarrow V^{*}$. Let \mathcal{V}^{*} be the dual basis of \mathcal{V}. Then there is a basis of \mathcal{W} of W, with dual basis \mathcal{W}^{*} such that the matrix representation of g^{*} with respect to \mathcal{W}^{*} and V^{*} is again in standard inclusion form.

The proof of Proposition 1 by Jensen-Su uses induction (see [JS] Proposition 6.2).
Remark. Let us characterize the shape of the coefficient quiver of a matrix of the form $A(I, J)$: It is a tree obtained from the bipartite \mathbb{A}-quiver with vertex set

$$
I \times\{0\} \cup(I \cup\{n\}) \times\{1\}
$$

and arrows $(i, 0) \leftarrow(i, 1)$ and $(i, 0) \leftarrow\left(i^{+}, 1\right)$ by adding additional leaves in vertices in $I \times\{0\}$. There is a similar description for the coefficient quiver of $B(J, K)$, here the \mathbb{A} subquiver has the vertex set \mathbb{A}-quiver with vertex set

$$
(\{0\} \cup K) \times\{0\} \cup K \times\{1\}
$$

and the additional leaves are attached to vertices in $K \times\{1\}$.
In the example above, let us exhibit the bipartite \mathbb{A}-quivers for $A(I, J)$ as well as of
$B(J, K)$ by marking the additional leaves as dotted edges:

J K
6. The real root representations of $\Delta(a, b)$ are tree modules (in the sense of [R2]; for $b=1=c$, see [JS], Theorem 6.3). This will be shown by induction, using the reflection constructions $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$.

Recipe for Σ_{1}. Here we use Proposition 1 as follows:
Let M be a representation of a quiver Q of the form

Let $\mathcal{M}(1)=\bmod k Q \backslash\langle S(1)\rangle$ and define Σ_{1} as the composition of the BGP reflection functor at the source 1 followed by k-duality (note that $\Sigma_{1} M$ is a representation of the quiver $Q^{\prime \prime}$ obtained from Q by reversing all the arrows in Q^{\prime}). A representation M of Q (or of $Q^{\prime \prime}$) will be said to be a tree module with α in standard inclusion form, provided there are bases of the vector spaces M_{i} such that both the corresponding coefficient quiver is a tree as well as M_{α} is in standard inclusion form.

Lemma 5. Assume that M in $\mathcal{M}(1)$ is a tree module with α in standard inclusion form. Then also $\Sigma_{1} M$ is a tree module with α in standard inclusion form.

Proof. For every vertex i of Q, there is given a basis \mathcal{B}_{i} of M_{i} such that the coefficient quiver Γ of M with respect to these bases is a tree and such that the matrix for M_{α} is in standard inclusion form. For every $i \neq 0$, let \mathcal{B}_{i}^{*} be the dual basis of M_{i}^{*}. Let $g: M_{2} \rightarrow W$ be the cokernel of M_{α}. According to proposition 1 there is a basis \mathcal{W} of W with dual basis \mathcal{W}^{*} such that the matrix representation of g with respect to the bases \mathcal{B}_{2}^{*} and \mathcal{W}^{*} is in standard inclusion form. It remains to show that the coefficient quiver Γ^{*} of $\Sigma_{1} M$ with respect to the bases \mathcal{W}^{*} and \mathcal{B}_{i}^{*} with $i \neq 1$ is a tree. First we show that the Γ^{*} is connected. By assumption, any two elements of \mathcal{B} are connected by a path in Γ. Now we
have deleted the paths given by the matrix M_{α}. However, two vertices in \mathcal{B}_{1} are connected by a path corresponding to the matrix M_{α} if and only if the corresponding vertices in \mathcal{B}_{1}^{*} are connected by a path corresponding to g. Second, note that we have not created cycles, since the new connections which are established are given by unique paths.

Let M be a representation of $\Delta(b, c)$. We denote by $\operatorname{Kr} M$ the restriction of M to the full subquiver Q^{\prime} given by vertices 2 and 3 ; it is a submodule of M and the factor module $M / \mathrm{Kr} M$ can be identified with M_{1} (considered as a representation of $\Delta(b, c)$ extended by zeros, thus as a direct sum of copies of $S(1)$).

Recipe for Σ_{2} and Σ_{3}. Since these reflection constructions are provided by universal extensions from above and from below, we see as in [R2] that with M a tree module in $\mathcal{M}(i)$ also $\Sigma_{i} M$ is a tree module $(i=1,2)$. (But observe that this argument yields a tree structure for a given base field and one cannot be sure that the construction is independent of the characteristic of the field!) In case $b=c=1$, Jensen-Su [JS] provide a tree presentation which works for every field.

The construction Σ_{3} only depends on the restriction $\operatorname{Kr} M$ of M the full subquiver Q^{\prime} with vertices 2,3 . In contrast, the construction Σ_{2} also takes into account the vector space at the vertex 1 . In order to provide a clear picture for Σ_{2}, we need the following preliminary result.

Lemma 6.

$$
\mathcal{M}_{3}^{3} \subseteq\{M \mid \operatorname{Hom}(S(2), \operatorname{Kr} M)=0=\operatorname{Hom}(\operatorname{Kr} M, S(2))\} .
$$

Clearly, any homomorphism $S(2) \rightarrow M$ factors through the submodule $\mathrm{Kr} M$ of M, thus $\operatorname{Hom}(S(2), \operatorname{Kr} M)$ can be identified with $\operatorname{Hom}(S(2), M)$. According to Lemma 3, we know that any module M in \mathcal{M}_{3}^{3} satisfies $\operatorname{Hom}(S(2), M)=0$, thus also $\operatorname{Hom}(S(2), \operatorname{Kr} M)=$ 0 . On the other hand, the restriction map $\operatorname{Hom}(M, S(2)) \rightarrow \operatorname{Hom}(\operatorname{Kr} M, S(2))$ is injective, thus we see that Lemma 6 is stronger than the assertion obtained from Lemma 3.

Let M be an indecomposable representation of $\Delta(b, c)$ with $\operatorname{Hom}(\operatorname{Kr} M, S(2)) \neq 0$. As we have seen in the proof of Lemma $3, \operatorname{Ext}^{1}(S(3), \operatorname{Kr} M) \neq 0$. Let

$$
0 \rightarrow \mathrm{Kr} M \xrightarrow{f} N \rightarrow S(3) \rightarrow 0
$$

be a non-split extension. The inclsuion map $\operatorname{Kr} M \rightarrow M$ yields an induced exact sequence

Now assume the induced exact sequence splits, thus there is $h: N^{\prime} \rightarrow M$ with $h f^{\prime}=1_{M}$. This yields a commutative diagram

The map $S(3) \rightarrow M_{1}$ has to be zero, since M_{1} is a direct sum of copies of $S(1)$, thus $h u^{\prime}$ factors through u, and this implies that f is a split monomorphism, a contradiction.

Corollary. Let $M \in \mathcal{M}_{3}^{3}$. The exact sequence $0 \rightarrow \mathrm{Kr} M \rightarrow M \rightarrow M_{1} \rightarrow 0$ induces an exact sequence

$$
0 \rightarrow \operatorname{Ext}^{1}\left(M_{1}, S(2)\right) \rightarrow \operatorname{Ext}^{1}(M, S(2)) \rightarrow \operatorname{Ext}^{1}(\operatorname{Kr} M, S(2)) \rightarrow 0
$$

Proof: This is part of the long exact sequence

$$
\operatorname{Hom}(\operatorname{Kr} M, S(2)) \rightarrow \operatorname{Ext}^{1}\left(M_{1}, S(2)\right) \rightarrow \operatorname{Ext}^{1}(M, S(2)) \rightarrow \operatorname{Ext}^{1}(\operatorname{Kr} M, S(2)) \rightarrow 0
$$

and Lemma 6 asserts that $\operatorname{Hom}(\operatorname{Kr} M, S(2))=0$.
For our problem of finding a tree presentation for $\Sigma_{2} M$, we see the following: we start with a tree presentation of M and attach copies of $S(2)$ from above by taking a basis of $\operatorname{Ext}^{1}(S(2), M)$. Then we attach copies of $S(2)$ from below by taking on the one hand a basis of $\operatorname{Ext}^{1}\left(M_{1}, S(2)\right)$, on the other hand a basis of $\operatorname{Ext}^{1}(\mathrm{Kr} M, S(2))$. The process of attaching copies of $S(2)$ from below dealing with $\operatorname{Ext}^{1}\left(M_{1}, S(2)\right)$ is achieved as follows: we just attach to each base element b of M_{1} a corresponding leaf at b.

Let us denote by Q^{\prime} the full subquiver of $\Delta(b, c)$ with vertices 2,3 . Let M belong to $\mathcal{M}(2)$. Then $\operatorname{Kr} \Sigma_{2} M=\Sigma_{2} \operatorname{Kr} M \oplus\left(M_{1}, 0\right)$. (Here, $N=\left(M_{1}, 0\right)$ is the representation of Q^{\prime} with $N_{2}=M_{1}$ and $N_{3}=0$.)

In case $b=c=1$, the reflection constructions Σ_{2} and Σ_{3} for representations $N=\operatorname{Kr} N$ are very easy to describe: an indecomposable module $N=\operatorname{Kr} N$ is serial and the process of attaching copies of $S(2)$ or $S(3)$ from above or from below just means that we enlarge the length of it by 2 : we write N as the subfactor $N=\operatorname{rad} N^{\prime} / \operatorname{soc} N^{\prime}$, where N^{\prime} is indecomposable. Of course, such serial modules are tree modules, with coefficient quiver being linearly ordered of type \mathbb{A} (in particular, the coefficient quiver is independent of the given base field).
7. Some properties of real root modules. Having constructed the real root modules $M(\mathbf{d})$ for $\Delta(a, b)$, one may use the construction in order to study properties of these modules.

Let M be a real root module, and $\mathrm{Kr} M$ its restriction to the full subquiver Q^{\prime} of $\Delta(b, c)$ with vertices 2,3 . The indecomposable direct summands N of $\operatorname{Kr} M$ are real root modules for Q^{\prime}, thus of odd Loewy length. if the Loewy length of such a direct summand N is equal to $2 t+1$, then $\operatorname{rad}^{t} M /\left(\operatorname{soc}^{t} M \cap \operatorname{rad}^{t} M\right)$ is a simple module, called the center of N.
(1) For $M=S(1)$, the module $\operatorname{Kr} M$ is 0 , otherwise non-zero. If $\operatorname{Kr} M \neq 0$, then $\mathrm{Kr} M$ has at most one direct summand with center $S(3)$, the remaining direct summands have center $S(2)$. Write $\mathbf{d}=w \mathbf{b}$ with $w \in W$ and $\mathbf{b}=\mathbf{e}_{2}$ or $\mathbf{b}=\mathbf{e}_{3}$. The restriction Kr $M(w \mathbf{b})$ has a direct suammmand with center $S(3)$ if and only if $\mathbf{b}=\mathbf{e}_{3}$.
(2) Either the image of α is contained in $\operatorname{rad} \operatorname{Kr} M$, or else M is generated by the subspace M_{1}. Note that M is generated by M_{1} if and only if either $M=S(1)$, or $M=$ $\Sigma_{1} S(2)$, or $M=\Sigma_{1} \Sigma_{2} M^{\prime \prime}$ for some real root module $M^{\prime \prime} \in \mathcal{M}(2)$.
8. Further properties of real root modules. Some other properties of the real root modules should be considered. In the case $b=1=c$, this is done in [JS].
(a) One can use the indications mentioned above concerning the change of endomorphism rings under the reflection constructions in order to describe $\operatorname{End}(M(\mathbf{d}))$ at least partly; in particular one is interested in the growth of $\operatorname{dim} \operatorname{End}(M(w \mathbf{b}))$ depending on the length of w (where $w \mathbf{b}$ is given by a standard presentation), see [JS], sections 5 and 7 .
(b) For any positive real root \mathbf{d}, one may compare the module $M(\mathbf{d})$ with the other modules with dimension vector \mathbf{d}, in particular with those with smallest possible endomorphism ring dimension, see [JS], section 7 (for the quivers with 2 vertices, see [R1], Proposition 4).
9. Final remarks. It should be noted that the reflection functors ρ_{i} are very special cases of the reflection functors ρ_{E} introduced in [R1]: in general, one considers instead of $S(i)$ an arbitrary exceptional module E (this means: an indecomposable module without self-extensions, such modules are always real root modules), and a suitably defined subcategory \mathcal{M}_{E}^{E}. This then provides a partial realization of the reflection σ_{E} at the hyperplane in \mathbb{Z}^{I} orthogonal to $\operatorname{dim} E$.

Note that the special cases ρ_{i} allow to construct all the real root modules in case we deal with a quiver Q with the following property ([R3]): Given an arrow $i \rightarrow j$ in the quiver, there are also arrows $j \rightarrow i$.

References

[BGP] Bernstein, Gelfand, Ponomarev: Coxeter functors and Gabriel's theorem. Russian Math. Surveys 28 (1973), 17-32.
[JS] Jensen, Su: Indecomposable representations for real roots of a wild quiver. Preprint (2006).
[R1] Ringel: Reflection functors for hereditary algebras. J.London Math.Soc.(2) 21 (1980), 465-479.
[R2] Ringel: Exceptional modules are tree modules. Lin.Alg.Appl. 275-276 (1998) 471-493.
[R3] Ringel: Indecomposable representations of a quiver as elements of the corresponding quantum group. Workshop Lecture. Weizman Institute, Rehovot. (1999)

