The theorems of Maschke and Artin-Wedderburn

Let k be a field, and let G be a finite group. Suppose that the characteristic of k divides the order of G. Then $x := \sum_{g \in G} g \in kG$ satisfies gx = x for all $g \in G$ and $x^2 = |G|x = 0$. Thus kGx = kx is a submodule of kG which contains no idempotent. In particular, kx is not projective, and hence kG is not semisimple.

Theorem 1 (Maschke, 1898)

If char(\Bbbk) does not divide the order of *G*, then $\Bbbk G$ is semisimple.

Proof: Let *V* be a finite dimensional &G-module, and let *W* be submodule of *V*. Pick an idempotent $e \in \operatorname{End}_{\Bbbk}(V)$ with eV = W. Define $\overline{e} := \frac{1}{|G|} \sum_{g \in G} geg^{-1}$, where the elements of *G* are considered as endomorphisms of *V*. Then

$$h\overline{e} = \frac{1}{|G|} \sum_{g \in G} hgeg^{-1} = \frac{1}{|G|} \sum_{g \in G} (hg)e(hg)^{-1}h = \overline{e}h$$

for all $h \in G$ and thus $\overline{e} \in \text{End}_{\Bbbk G}(V)$. Since W is a submodule of V, the endomorphism \overline{e} still satisfies $\overline{e}V \leq W$ and $\overline{e}|_W = \text{id}_W$. Hence \overline{e} is an idempotent with $\overline{e}V = W$, and we have $V = W \oplus (1 - \overline{e})V$ as desired.

Maschke's original proof is essentially the following: take $\mathbb{k} = \mathbb{C}$, and let $\langle \cdot, \cdot \rangle$ be a *G*-invariant scalar product on *V* (which is known to exist by an avering process similar to the one above). Then $V = W \oplus W^{\perp}$.

Theorem 2 (Artin-Wedderburn, 1927-1907)

Let A be a (left) semisimple ring. Then $A \cong \bigoplus_{i=1}^{r} D_i^{n_i \times n_i}$ for some division rings D_i . Here r is the number of simple A-modules, and the (n_i, D_i) are determined by A up to isomorphism.

Proof: Write $_{A}A = \bigoplus_{i=1}^{r} n_{i}V_{i}$, where $\{V_{1}, \ldots, V_{r}\}$ is a set of representatives of the isomorphism classes of simple A-modules. Then

$$A \cong \operatorname{End}_A({}_AA)^{op} \cong \bigoplus_{i=1}^r \operatorname{End}_A(n_iV_i)^{op} \cong \bigoplus_{i=1}^r (\operatorname{End}_A(V_i)^{op})^{n_i \times n_i}.$$

The first isomorphism is given by the map $a \mapsto (\varrho_a : x \mapsto xa)$. Since the $\text{End}_A(V_i)$ are division rings by Schur's lemma, existence is proved.

It remains to show that whenever $A \cong \bigoplus_{i=1}^{r'} (D'_i)^{n'_i \times n'_i}$, we have r = r', and, after renumbering, $n_i = n'_i$ and $D_i \cong D'_i$. To do this it suffices to show that for any division ring D, the natural module D^n is the unique simple $D^{n \times n}$ -module, and that D isomorphic to $\operatorname{End}_{D^{n \times n}}(D^n)^{op}$. But $D^{n \times n} \cong$ $\bigoplus_{j=1}^n D^{n \times n} e_{jj}$, where e_{jj} is the diagonal matrix with 1 in position (j, j) and zeros everywhere else. Clearly D^n is simple and all $D^{n \times n}$ are isomorphic to D^n . The theorem of Jordan-Hölder implies that D^n is indeed the unique simple D^n -module. The map

$$f: D \to \operatorname{End}_{D^{n \times n}}(D^n)^{op}, d \mapsto (\lambda_d: v \mapsto vd)$$

is a ring monomorphism. Pick $\lambda \in \operatorname{End}_{D^{n \times n}}(D^n)$ and write $\lambda(e_1) = de_1 + \sum_{j=2}^n a_j e_j$. Then $\lambda(v) = \lambda((v, 0, \dots, 0)e_1) = (v, 0, \dots, 0)\lambda(e_1) = vd$ for all $v \in D^n$. Thus f is onto.

The theorem of Artin-Wedderburn implies in particular that a left semisimple ring is also right semisimple. Since the same proof – with right instead of left modules – works for a right semisimple ring, left semisimplicity is the same thing as right semisimplicity. Therefore we can simply speak of semisimple rings.

Let $A \cong \bigoplus_{i=1}^{r} D_i^{n_i \times n_i}$ be a semisimple ring. Recall that a central idempotent $0 \neq e \in Z(A)$ is called primitive if for any decomposition $e = e_1 + e_2$ with orthogonal central idempotents e_i either $e = e_1$ or $e = e_2$.

Corollary 1

Let $1 = e_1 + \cdots + e_{r'}$ be a decomposition of 1 in central primitive idempotents. Then r = r' and, after renumbering, $e_i A e_i = A e_i \cong D_i^{n_i \times n_i}$.

Corollary 2

Let k be an algebraically closed field, A a semisimple k-algebra, and $\{V_1, \ldots, V_r\}$ be a set of representatives of the isomorphism classes of simple A-modules. Then $r = \dim_k Z(A)$, the multiplicity n_i of V_i in $_AA$ is $\dim_k V_i$, and $A \cong \bigoplus_{i=1}^r \mathbb{k}^{n_i \times n_i}$.

If $A = \Bbbk G$ is a group algebra, an easy computation shows that

$$Z(\Bbbk G) = \langle \sum_{c \in C} c \mid C \subseteq G \text{ conjugacy class } \rangle_{\Bbbk}.$$

Thus we have

Corollary 3

Let \Bbbk be an algebraically closed field an *G* a finite group such that char(\Bbbk) $\nmid |G|$. Then the number of simple $\Bbbk G$ -modules is equal to the number of conjugacy classes of *G*.

Let \mathbb{k} be field of characteristic zero and let V be a $\mathbb{k}G$ -module. Then the map

$$\chi_V: G \to \mathbb{k}, g \mapsto Tr_V(g)$$

which associates to each element of *G* its trace on *V* is called the character of *G* afforded by *V*. Assume that \mathbb{k} is algebraically closed, and let V_1, \ldots, V_r be the simple $\mathbb{k}G$ -modules. Then the $\chi_i := \chi_{V_i}$ are called the irreducible characters of *G*. Corollary 2 implies

$$|G| = \dim_{\mathbb{k}}(\mathbb{k}G) = \sum_{i=1}^{r} (\dim_{\mathbb{k}}(V_i))^2 = \sum_{i=1}^{r} \chi_i(1)^2.$$

This is a special case of the so-called orthogonality relations.