The theorems of Maschke and Artin-Wedderburn

Let k be a field, and let G be a finite group. Suppose that the characteristic of k divides the order of
G. Then x := deG g € kG satisfies gx = x forall g € G and x?> = |G|x = 0. Thus kGx = kx
is a submodule of kG which contains no idempotent. In particular, kx is not projective, and hence
kG is not semisimple.

Theorem 1 (Maschke, 1898)
If char(lk) does not divide the order of G, then kG is semisimple.

Proof: Let V be a finite dimensional kG-module, and let W be submodule of V. Pick an idempotent
e € Endy (V) witheV = W. Define e := ﬁ > e geg ™', where the elements of G are considered
as endomorphisms of V. Then
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for all h € G and thus ¢ € Endig(V). Since W is a submodule of V, the endomorphism e
still satisfies eV < W and e|ly = idy. Hence e is an idempotent with eV = W, and we have
V=W& (1l —e)V as desired. O

Maschke’s original proof is essentially the following: take k = C, and let < -,- > be a
G-invariant scalar product on V (which is known to exist by an avering process similar to the one
above). Then V =W @ W+.

Theorem 2 (Artin-Wedderburn, 1927-1907)
Let A be a (left) semisimple ring. Then A = @;_, D;"*"" for some division rings D;. Here r is the
number of simple A-modules, and the (n;, D;) are determined by A up to isomorphism.

Proof: Write yA = @;_, n;V;, where {Vi, ..., V,} is a set of representatives of the isomorphism
classes of simple A-modules. Then

A = Ends(4A)” = €D Enda (n: Vi) = @D (End (V,)r)" .
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The first isomorphism is given by the map a — (0, : x + xa). Since the End,(V;) are division
rings by Schur’s lemma, existence is proved.

It remains to show that whenever A = EBf/: (D )"EX”;, we have r = r/, and, after renumbering,
n; = n; and D; = D. To do this it suffices to show that for any division ring D, the natural module
D" is the unique simple D"*"-module, and that D isomorphic to Endpnxn (D")°P. But D"*" =
@;_, D"*"e;;, where ¢;; is the diagonal matrix with 1 in position (j, j) and zeros everywhere else.
Clearly D" is simple and all D"*" are isomorphic to D". The theorem of Jordan-Holder implies that
D" is indeed the unique simple D”-module. The map

f D — Endpnxa (D")?,d — (Mg : v > vd)

is a ring monomorphism. Pick A € Endpwx»(D") and write A(e;) = de; + 2;7:2 aje;. Then
A(v) = A((v,0,...,0)e) = (v,0,...,0)A(e;) = vd for all v € D". Thus f is onto. U



The theorem of Artin-Wedderburn implies in particular that a left semisimple ring is also right
semisimple. Since the same proof — with right instead of left modules — works for a right semisimple
ring, left semisimplicity is the same thing as right semisimplicity. Therefore we can simply speak
of semisimple rings.

Let A = ;_, D!""" be a semisimple ring. Recall that a central idempotent 0 # e € Z(A) is
called primitive if for any decomposition e = e; + e, with orthogonal central idempotents e; either
e=ejore=e.

Corollary 1
Let1 = e +- - - e, be a decomposition of 1 in central primitive idempotents. Then r = r’ and, after

renumbering, ¢; Ae; = Ae; = D" O

Corollary 2

Let Ik be an algebraically closed field, A a semisimple lk-algebra, and {V), ..., V,} be a set of repre-
sentatives of the isomorphism classes of simple A-modules. Then r = dimy, Z(A), the multiplicity
n; of Vi in 4 A isdimy V;, and A = @;_, k">, O

If A = kG is a group algebra, an easy computation shows that

Z(kG) = (Z c | C € G conjugacy class ).
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Thus we have
Corollary 3
Let &k be an algebraically closed field an G a finite group such that char(k) { |G|. Then the number
of simple kG -modules is equal to the number of conjugacy classes of G. U

Let k be field of characteristic zero and let V be a kG-module. Then the map
xv:G—>k g Try(g)

which associates to each element of G its trace on V is called the character of G afforded by V.
Assume that k is algebraically closed, and let Vi, ..., V, be the simple kG-modules. Then the
Xi := xv, are called the irreducible characters of G. Corollary 2 implies

|G| = dimi(kG) = Y (dimy(V)> = Y xi(1)".
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This is a special case of the so-called orthogonality relations.



