SELF-INJECTIVE ALGEBRAS: COMPARISON WITH FROBENIUS ALGEBRAS

ROLF FARNSTEINER

Let Λ be a finite dimensional algebra, defined over a field k. The category of finite dimensional left Λ -modules and the set of isoclasses of simple Λ modules will be denoted by mod Λ and $S(\Lambda)$, respectively. We will occasionally identify $S(\Lambda)$ with a complete set of its representatives. Given a simple Λ -module S, we consider its projective cover P(S) and its injective envelope E(S). Recall that $\operatorname{Top}(P(S)) \cong S$ and $\operatorname{Soc}(E(S)) \cong S$.

In our lecture [2], we observed that Λ is self-injective if and only if $S \mapsto \operatorname{Soc}(P(S))$ defines a permutation $\nu : S(\Lambda) \longrightarrow S(\Lambda)$, the so-called *Nakayama permutation* [2, Theorem]. In early articles, these algebras were referred to as *quasi-Frobenius algebras* (cf. [3]). The purpose of this lecture is to understand when a self-injective algebra is a Frobenius algebra. This class of algebras was introduced by Brauer and Nesbitt in [1], who provided the following chacterization:

Lemma 1. Let $\pi : \Lambda \longrightarrow k$ be a linear map. Then the following statements are equivalent:

- (1) ker π does not contain a non-zero left ideal.
- (2) The Λ -linear map

$$\Phi_{\pi}: \Lambda \longrightarrow \Lambda^* \quad ; \quad x \mapsto x \cdot \pi$$

is an isomorphism.

(3) ker π does not contain a non-zero right ideal.

Proof. (1) \Rightarrow (2). Consider the left ideal $J := \ker \Phi_{\pi}$. Since

$$0 = \Phi_{\pi}(x)(1) = \pi(x) \quad \forall \ x \in J,$$

we obtain the injectivity and hence the bijectivity of Φ_{π} .

 $(2) \Rightarrow (3)$. Let $J \subset \ker \pi$ be a right ideal. Given a linear form $f \in \Lambda^*$, condition (2) provides an element $x \in \Lambda$ such that $f = x \cdot \pi$. For $y \in J$ we thus obtain

$$f(y) = (x \cdot \pi)(y) = \pi(yx) \in \pi(J) = (0)$$

Consequently, J = (0).

 $(3) \Rightarrow (1)$. Since $(1) \Rightarrow (3)$ holds for every algebra, application to the opposite algebra Λ^{op} yields the desired conclusion.

Definition. A k-algebra Λ is a *Frobenius algebra* if there exists a linear form $\pi \in \Lambda^*$ such that ker π contains no non-zero left ideals.

Given a linear form $\pi : \Lambda \longrightarrow k$, we consider the bilinear form

$$(,)_{\pi}: \Lambda \times \Lambda \longrightarrow k \; ; \; (a,b) := \pi(ab) \quad \forall \; a, b \in \Lambda.$$

This form is *associative*, that is,

$$(ax,b)_{\pi} = (a,xb)_{\pi} \quad \forall a,b,x \in \Lambda.$$

Date: October 27, 2005.

Conversely, any associative form $(,): \Lambda \times \Lambda \longrightarrow k$ is obtained in this fashion: $(,) = (,)_{\pi}$, where $\pi(a) = (a, 1)$.

Corollary 2. The algebra Λ is a Frobenius algebra if and only if there exists a non-degenerate, associative form on Λ . \Box

If $(,): \Lambda \times \Lambda \longrightarrow k$ is such a form, then there exists an automorphism $\mu: \Lambda \longrightarrow \Lambda$ such that

$$(y,x) = (\mu(x),y) \quad \forall \ x,y \in \Lambda.$$

Another such automorphism μ' , induced by a form $\{, \}$, is related to μ via an invertible element $u \in \Lambda$, i.e.

$$\mu'(x) = u\mu(x)u^{-1} \quad \forall \ x \in \Lambda$$

These automorphisms are referred to as *Nakayama automorphisms* of the Frobenius algebra Λ .

Given an automorphism $\alpha : \Lambda \longrightarrow \Lambda$ and a Λ -module M, we denote by $M^{(\alpha)}$ the Λ -module with underlying k-space M and action

$$a.m := \alpha^{-1}(a)m \quad \forall \ a \in \Lambda, m \in M.$$

Since twisting M by an inner automorphism reproduces M, the Nakayama automorphisms induce naturally equivalent automorphisms on mod Λ .

Let $(,) : \Lambda \times \Lambda \longrightarrow k$ be a non-degenerate associative form with Nakayama automorphism μ ; then $\gamma := \mu \otimes \mathrm{id}_{\Lambda}$ is an automorphism of the enveloping algebra $\Lambda^e := \Lambda \otimes_k \Lambda^{\mathrm{op}}$. The map

$$\Psi: \Lambda^{\gamma^{-1}} \longrightarrow \Lambda^* \quad ; \quad \Psi(x)(y) = (x, y)$$

is an isomorphism of Λ^{e} -modules. Let us look at left linearity. For $r, x, y \in \Lambda$ we have

$$\Psi(r \cdot x)(y) = \Psi(\mu(r)x)(y) = (\mu(r)x, y) = (\mu(r), xy) = (xy, r) = (x, yr) = \Psi(x)(yr) = (r \cdot \Psi(x))(y) = (y \cdot \psi($$

As a result, we have

$$\Lambda^* \otimes_{\Lambda} M \cong M^{(\mu^{-1})} \quad \forall \ M \in \operatorname{mod} \Lambda.$$

Watt's theorem tells us that the functor $M \mapsto \Lambda^* \otimes_{\Lambda} M$ is naturally isomorphic to the Nakayama functor (see [2] for the definition). Here is a low brow argument involving adjoint isomorphisms: We have the following isomorphisms of Λ -modules:

$$\Lambda^* \otimes_{\Lambda} M \cong (\Lambda^* \otimes_{\Lambda} M)^{**} \cong \operatorname{Hom}_k(\Lambda^* \otimes_{\Lambda} M, k)^*$$
$$\cong \operatorname{Hom}_{\Lambda}(M, \operatorname{Hom}_k(\Lambda^*, k))^* \cong \operatorname{Hom}_{\Lambda}(M, \Lambda)^* = \mathcal{N}(M).$$

As an upshot, we obtain natural isomorphisms

$$\mathcal{N}(M) \cong M^{(\mu^{-1})}.$$

By combining this with [2, Lemma 2] we conclude that the Nakayama permutation is given by

$$u(S) \cong S^{(\mu)} \quad \forall \ S \in \mathcal{S}(\Lambda).$$

We have thus verified one implication of our main result:

Theorem 3. Let Λ be a self-injective algebra. Then the following statements are equivalent:

- (1) Λ is a Frobenius algebra.
- (2) $\dim_k \operatorname{Soc}(P(S)) = \dim_k S \quad \forall S \in \mathcal{S}(\Lambda).$

Proof. (2) \Rightarrow (1). Since Λ is self-injective, we have a Nakayama permutation $\nu : \mathcal{S}(\Lambda) \longrightarrow \mathcal{S}(\Lambda)$. Since $\mathcal{N}(S) \cong \nu^{-1}(S)$, \mathcal{N} induces an injection $\operatorname{End}_{\Lambda}(S) \hookrightarrow \operatorname{End}_{\Lambda}(\nu^{-1}(S))$, so that iteration implies

$$\operatorname{End}_{\Lambda}(S) \cong \operatorname{End}_{\Lambda}(\nu(S)) \quad \forall S \in \mathcal{S}(\Lambda).$$

Writing $\Lambda = \bigoplus_{S \in \mathcal{S}(\Lambda)} n_S P(S)$, application of $\operatorname{Hom}_{\Lambda}(-, S)$ yields

(*)
$$n_S = \frac{\dim_k S}{\dim_k \operatorname{End}_{\Lambda}(S)} = \frac{\dim_k \nu(S)}{\dim_k \operatorname{End}_{\Lambda}(\nu(S))} = n_{\nu(S)}.$$

In view of $P(S) \cong E(\nu(S))$ and [2, Lemma 2] we thus have

$$(\Lambda_{\Lambda})^* \cong \mathcal{N}(\Lambda) \cong \bigoplus_{S \in \mathcal{S}(\Lambda)} n_S E(S) \cong \bigoplus_{S \in \mathcal{S}(\Lambda)} n_S P(S) \cong \Lambda.$$

If $\Phi : \Lambda \longrightarrow \Lambda^*$ is the corresponding isomorphism of Λ -modules, then $\pi := \Phi(1)$ renders Λ a Frobenius algebra.

Corollary 4. Every self-injective, basic algebra Λ is a Frobenius algebra.

Proof. Returning to the proof of Theorem 3 we recall that our present assumption means $n_S = 1$ for every $S \in \mathcal{S}(\Lambda)$. Equation (*) then implies $\dim_k S = \dim_k \nu(S)$, so that Λ is a Frobenius algebra.

References

- R. Brauer and C. Nesbitt. On the regular representations of algebras. Proc. Nat. Acad. Sci. U.S.A. 23 (1937), 236-240
- [2] R. Farnsteiner. *Self-injective algebras: The Nakayama permutation*. Lecture Notes, available at http://www.mathematik.uni-bielefeld.de/~sek/selected.html
- [3] T. Nakayama. On Frobeniusean algebras I. Ann. of. Math. 40 (1939), 611-633