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Let Λ be an artin algebra. As shown in our previous lecture [3], Riedtmann’s Theorem sets
the stage for the determination of the regular components of the Auslander-Reiten quiver of Λ.
More precisely, given such a component Q, abstract considerations, which make no reference to the
category modΛ of finitely generated left Λ-modules, provide a directed tree TQ and an admissible
subgroup Π ⊂ Aut(Z[TQ]) such that

Q ∼= Z[TQ]/Π.

We say that Q is tree-infinite if the tree class T̄Q of Q is an infinite tree.
In this lecture, we determine TQ and Π of tree-infinite components subject to some hypotheses

concerning the growth numbers of the modules belonging to Q. The relevant conditions obtain in
classical contexts, such as group algebras of finite groups.
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Theorem ([6]). Let Q be a non-periodic, tree-infinite, regular component of the Auslander-Reiten

quiver of Λ. If the growth numbers ρℓ
Q and ρr

Q of Q are smaller that ω, then

Q ∼= Z[T ], where T ∈ {A∞, A∞

∞
, B∞, C∞,D∞}.

The result refers to valued quivers, thus the distinction between A∞, B∞ and C∞. To ease the
technical aspects, we will ignore valuations, thereby eliminating B∞ and C∞. This simplification
is legitimate in case Λ is a finite dimensional algebra over an algebraically closed field.

An AR-component Q is called regular if it contains neither projective nor injective vertices.
Regular components are stable representation quivers with τ = DTr.

Let Q be a regular AR-component. We say that Q is periodic if for each isoclass [M ] ∈ Q there
exists a natural number m ≥ 1 such that

DTrm(M) ∼= M.

Thanks to a result due to Happel-Preiser-Ringel [4, Cor.2], periodic components are of the form
Q ∼= Z[A∞]/〈τm〉 for some m ≥ 1.

We let k be a commutative artinian ring such that Λ is a finitely generated k-module. The length
of a k-module module M will be denoted ℓ(M). There exists a natural number ℓΛ such that

max{ℓ(DTr(M)), ℓ(TrD(M))} ≤ ℓΛ ℓ(M)

for every M ∈ mod Λ. We may thus make the following definition, which does not depend on the
choice of k:
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Definition. Let M ∈ modΛ. Then

ρℓ
M := lim sup

n→∞

n

√

ℓ(DTrn(M)) and ρr
M := lim sup

n→∞

n

√

ℓ(TrDn(M))

are called the left and right growth numbers of M , respectively.

Remark. By definition, we have
ℓ(DTrn(M)) ≈ (ρℓ

M )n

for infinitely many n, so that our notion of growth refers to exponential growth.

Lemma 1. If Q is a regular component of the AR-quiver of mod Λ, then

ρℓ
M := ρℓ

N and ρr
M := ρr

N [M ], [N ] ∈ Q. 2

Accordingly, we can define the left and right growth numbers

ρℓ
Q := ρℓ

M and ρℓ
Q := ρℓ

M [M ] ∈ Q

of the component Q.

The proof of our Theorem rests on a comparison between the growth numbers of Q and the spectral
radius of the Coxeter transformation of TQ.

Let H be a hereditary algebra with Grothendieck group K0(H) ∼= Z
m. The Coxeter transforma-

tion Φ : Z
m −→ Z

m is defined via
Φ([P (S)]) = −[I(S)],

where P (S) and I(S) are the projective cover and the injective hull of the simple H-module S,
respectively. If M is an indecomposable, non-projective H-module, then, letting dimM ∈ Z

m be
the dimension vector of M , we have

dim DTr(M) = Φ(dimM).

Viewing Φ as a linear map of C
m, we let

ρH := max{|λ| ; λ ∈ Spec(Φ)}

be the maximal modulus of all eigenvalues of Φ. By the Perron-Frobenius Theorem ρΛ is a simple
eigenvalue of Φ and

|λ| < ρΛ ∀ λ 6= ρΛ ∈ Spec(Φ).

To get a feeling for the connection between the spectral radius and growth numbers, let us consider
the following result:

Proposition 2 ([5]). Let H be a wild connected hereditary algebra. Then there exists x+ ∈ R
m

such that for every regular H-module M there is αM > 0 with

lim
n→∞

ρ−n
H dim DTrn(M) = αMx+.

Upon application of the continuous function x 7→
∑m

i=1 xi, we obtain

lim
n→∞

n

√

dim DTrn(M) = ρH .

Our goal is to establish a similar result for arbitrary artin algebras. Given a finite quiver Γ without
oriented cycles, we put ρΓ := ρC[Γ].
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Lemma 3. If T and T ′ are finite directed trees with the same underlying graph, then ρT = ρT ′. 2

Definition. Let T be a tree. The spectral radius ̺(T ) is defined via

̺(T ) = sup
T ′⊂T finite

ρ(T ′),

where ρ(T ′) := ρT ′ .

Proposition 4. There exist infinite trees T 1, . . . , T 5 with the following properties:

(1) ρ(T 1) = min{ρ(T i) ; 1 ≤ i ≤ 5} = ω.

(2) If T be an infinite tree not belonging to {A∞, A∞

∞
, B∞, C∞,D∞}, then T i ⊂ T for some

i ∈ {1, . . . , 5} and ρ(T ) ≥ ω. 2

r r r r r · · · r r

r

· · ·

The graph T1

Proof of the Theorem. Let Q be an AR-component as given in the Theorem. By Riedtmann’s
Theorem, there exists a directed tree TQ and an admissible subgroup Π ⊂ Aut(Z[TQ]) such that

Z[TQ]/Π ∼= Q.

By assumption, the tree class T̄Q is an infinite tree.
If T̄Q 6∈ {A∞, A∞

∞
, B∞, C∞,D∞}, then T i ⊂ T̄Q for some i ∈ {1, . . . , 5}. Let us assume that

T 1 ⊂ T̄Q and observe that T 1 can be approximated by wild trees Tj . We can apply Proposition 2
to each Tj and combine it with a theorem by Bautista [1] to arrive at the estimate

min{ρℓ
Q, ρr

Q} ≥ ρ(T̄Q).

Our current assumption in conjunction with Proposition 4 now gives a contradiction, so that
T̄Q ∈ {A∞, A∞

∞
, B∞, C∞,D∞}. To complete the proof, we require the following facts concerning

automorphisms of Z[TQ]:

• If T̄Q = A∞, B∞, C∞, then Aut(Z[TQ]) = 〈τ〉.
• If {1} 6= Π ⊂ Aut(Z[D∞]) is admissible, then there exists n ∈ N with τn ∈ Π.
• If T̄Q

∼= A∞

∞
and Q is regular, then Π = {1}, cf. [2].

Since the component Q is not periodic, the group Π does not contain a positive power of τ and is
therefore trivial. 2



4 ROLF FARNSTEINER

References

[1] R. Bautista. Sections in Auslander-Reiten quivers. Representation Theory II. Lecture Notes in Math. 832 (1980),
74-96

[2] M.C.R. Butler and C.M. Ringel. Auslander-Reiten sequences with few middle terms and applications to string

algebras. Comm. Algebra 15 (1987), 357-368
[3] R. Farnsteiner. Stable representation quivers: The Riedtmann structure theorem. Lecture Notes, available at

http://www.mathematik.uni-bielefeld.de/~sek/selected.html

[4] D. Happel, U. Preiser, and C.M. Ringel. Vinberg’s characterization of Dynkin diagrams using subadditive functions

with application to DTr-periodic modules. In: Representation Theory II. Lecture Notes in Math. 832 (1981), 280-
294

[5] J.A de la Peña and M. Takane. Spectral properties of Coxeter transformations and applications. Arch. Math. 55

(1990), 120-134
[6] Y. Zhang. Eigenvalues of Coxeter transformations and the structure of regular components of an Auslander-Reiten

quiver. Comm. Algebra 17 (1989), 2347-2362


