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1 The quadratic dual and lattices

We consider a graded algebra A := TV/(I), where V is a finite dimensional k–vector space,
TV is the tensor algebra of V over k and I is a subspace in V ⊗V . Since I generates an ideal
in TV , we get

Ai = T iV/
∑

r

V ⊗ ... ⊗ V ⊗ I ⊗ V ⊗ . . . ⊗ V,

and we define

W r+1
i := V ⊗ ... ⊗ V ⊗ I ⊗ V ⊗ . . . ⊗ V,

where we have r times the tensor product of V at the beginning. So we get subspaces
W r

i ⊆ T iV for r = 1, . . . , i − 1.
In a similar way we want to describe the graded dual B of A! defined by

Bi := (A!
i)
∗, B := ⊕i≥0Bi.

Lemma. For the graded pieces of B we obtain

B0 = k, B1 = V, B2 = I, Bi =

i−1⋂

r=1

W r
i .

Proof. The assertion is obvious for B0 and B1. We consider B2: Using the definition of
the quadratic dual algebra we obtain an exact sequence

0 −→ I⊥ −→ V ∗ ⊗ V ∗ −→ V ∗ ⊗ V ∗/I⊥ = A!
2 = B∗

2 −→ 0.

Taking the dual space we obtain

0 −→ I = B2 −→ V ⊗ V −→ V ⊗ V/I = A2 −→ 0.

To prove the result for Bi, i > 2 we note that for a vector space U with two subspaces U1

and U2 we obtain

(U/(U1 + U2))
∗ = U⊥

1 ∩ U⊥
2 ,

where U⊥
i := {φ ∈ U∗ | φ(u) = 0 ∀u ∈ Ui}. If we apply this formula to

B∗
i = T iV ∗/

∑
V ∗ ⊗ . . . ⊗ V ∗ ⊗ I⊥ ⊗ V ∗ ⊗ . . . ⊗ V ∗ = T iV ∗/(

i−1∑

j=1

W j
i )

we obtain the result. 2

The subspaces W r
i generate a lattice in T iV with respect to + and ∩.
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Definition. Let U be a vector space with a set of subspaces {Ui}i∈I . The vector space U
with subspaces {Ui}i∈I is called 3–distributive (or triple–distributive) if (Ui + Uj) ∩ Ul =
Ui ∩ Ul + Uj ∩ Ul for all triples i, j, l in I. The lattice U is called distributive if for alle
triples in the lattice (take three subspaces, each of them is obtained by a finite sequence of
operations including +, ∩ and Ui) we have the previous triple–identity. Similarly, a set of
subspaces {Ui}i∈I in U is called n–distributive (for n ≥ 3) if each subset of n spaces generates
a distributive lattice in U . A sequence of subspaces {Ui}

t
i=1 is called linear–distributive if

the subspaces U1 ∩ . . .∩Ui−1, Ui, Ui+1 + . . .+ Ut form a distributive triple in U . Note that we
need the total order on I to define it, however we can similarly define an analogeous notion
for any poset I.

Example. Let dim U = 2 and ♯I = 2. The only non-trivial lattice consists of two one-
dimensional subspaces U1 and U2. We can, after chosing an adapted basis, assume U1 = k(0, 1)
and U2 = k(1, 0). Consequently the lattice is distributive.
Let dim U = 2 and ♯I = 3. We can again assume U1 and U2 are as above and U3 = k(1, 1).
This lattice is not distributive, since U1 + U2 = k2 and (U1 + U2) ∩ U3 = U3, whereas
U1 ∩ U3 + U2 ∩ U3 = {0}.

The following theorem is a standard result in lattice theory (cf. [3], 2.7 Theorem 19).

Theorem. Let U , with subspaces Ui, a lattice as above. Then this lattice is distributive
precisely when there exists a basis of U , so that each vector space Ui is generated by a part of
this basis.

Proof. Here we only show the easy conclusion, the other one is more technical.
Let {ej} be a basis of U , so that each Ui is generated by some elements ej for some subset J
UJ := 〈ej | j ∈ J〉. Let I, J,K be three subsets, then

(U I + UJ) ∩ UK = U (I∪J)∩K = U I∩K∪J∩K

= U I ∩ UK + UJ ∩ UK .

2

2 Distributive triples and representations of D4

Let U be a vector space together with subspaces U1, . . . , Ut. These subspaces generate a
lattice of subspaces in U . We are interested in distributive triples, n–distributive subspaces
and linear–distributive subspaces. We can consider the subspaces of U in a natural way as
representations of the subspace quiver. Then triples correspond to representations of D4, 4
subspaces correspond to representations of D̃4 and t subspaces correspond to representations
of the t–subspace quiver Q(t).

Lemma. The representation U associated to the t subspaces Ui decomposes into dim U inde-
composable representations (these representations must be thin), precisely when the t subspaces
Ui generate a distributive lattice in U .

Proof. Assume the subspaces generate a distributive lattice, then there exists a basis of
U compatible with all these subspaces, that is the intersection of this basis with each Ui is a
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basis of Ui. Consequently, U decomposes into dimU thin representations. Conversely, if there
exists a non-thin direct summand, then the lattice is not distributive ny the above example.
2

Example. We show that there exist t–distributive sets of subspaces that are not t + 1–
distributive for each t ≥ 2. Note that each set of subspaces is 1–distributive and 2–distributive
(this is just representation theory of the quiver An).
Consider a t–dimensional vector space U together with t + 1 one–dimensional subspaces in
general position. Then this set is t–distributive (the direct sum of any t subspaces is U)
and not t + 1–distributive: take for Ua the sum of t − 1 subspaces, for Ub and Uc one of the
remaining one–dimensional subspaces. Then (Ua + Ub) ∩ Uc 6= Ua ∩ Uc + Ub ∩ Uc. Note that
this set of subspaces is also not linear–distributive.

We show in section 4 that A is Koszul precisely when the subspaces W i in T dV form a linear–
distributive set for all d ≥ 4. Even stronger, one can show that A is Koszul precisely when
the subspaces W i in T dV generate a distributive lattice (see [5]).

3 The Koszul complex in low degrees

In this section we consider the Koszul complex B ⊗ A, d in low degrees. With notation from
above we have

Ai = T iV/
i−1∑

r=1

W r
i , Bi =

i−1⋂

r=1

W r
i .

degree 1: The Koszul complex is exact:

0 −→ B1 ≃ B1 ⊗ k −→ A1 ≃ k ⊗ A1 −→ 0
V ≃ V

degree 2: The Koszul complex is exact:

0 −→ B2 −→ B1 ⊗ A1 −→ A2 −→ 0
I −→ V ⊗ V −→ V ⊗ V/I.

degree 3: For simplicity we omitt the zeros and use both notations in this case. Moreover
we also omit the subscript for W , since it is always 3. The complex is exact, it only needs a
little argument:

B3 −→ B2 ⊗ A1 −→ B1 ⊗ A2 −→ A3

V ⊗ V ⊗ V −→ I ⊗ V −→ V ⊗ V ⊗ V/V ⊗ I −→ V ⊗ V ⊗ V/(V ⊗ I + I ⊗ V )
W 1 ∩ W 2 −→ W 1 −→ T 3V/W 2 −→ T 3V/(W 1 + W 2).

The complex is exact precisely when the cokernel of the first map coincides with the kernel
of the last map. That is

W 1/(W 1 ∩ W 2) ≃ (W 1 + W 2)/W 2,

which is obviously satisfied.
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degree 4: In degree 4 and higher we also introduce a short notation for the spaces
⋂

W i

and the spaces
∑

W i that appear in the Koszul complex. We define in degree d

Xi := W 1 ∩ . . . ∩ W i, X0 := X−1 := T dV, Y i := W i + . . . + W d−1, Y d := Y d+1 := {0}.

Then we get descending filtrations of T dV as follows

{0} ⊆ Xd−1 ⊆ . . . X1 ⊆ X0 = X−1 = T dV and

{0} = Y d+1 = Y d ⊆ Y d−1 ⊆ . . . ⊆ Y 2 ⊆ Y 1 ⊆ T dV

Using this notation we obtain (in degree 4) a sequence

B4 −→ B3 ⊗ A1 −→ B2 ⊗ A2 −→
W 1 ∩ W 2 ∩ W 3 −→ W 1 ∩ W 2 −→ W 1/(W 1 ∩ W 3) −→ . . .
X3/(X3 ∩ Y 5) −→ X2/(X2 ∩ Y 4) −→ X1/(X1 ∩ Y 3) −→

−→ B1 ⊗ A3 −→ A4

. . . −→ T 4V/(W 2 + W 3) −→ T 4V/(W 1 + W 2 + W 3)
−→ X0/(X0 ∩ Y 2) −→ X−1/(X−1 ∩ Y 1)

Since the Koszul complex is already exact in degree 3, it is everywhere exact, except, possibly,
in position B2 ⊗A2. To show exactness in this place, we compute the cokernel and the kernel
of the corresponding maps:

Coker (W 1 ∩ W 2 ∩ W 3 −→ W 1 ∩ W 2) = (W 1 ∩ W 2)/(W 1 ∩ W 2 ∩ W 3)
≃ (W 1 ∩ W 2 + W 1 ∩ W 3)/(W 1 ∩ W 3)

Ker (W 1/(W 1 ∩ W 3) −→ T dV/(W 2 + W 3)) =
Ker (W 1/(W 1 ∩ W 3) −→ (W 1 + W 2 + W 3)/(W 2 + W 3)) =

Ker (W 1/(W 1 ∩ W 3) −→ W 1/(W 1 ∩ (W 2 + W 3))) = (W 1 ∩ (W 2 + W 3))/(W 1 ∩ W 3).

We finally see, that the Koszul complex is exact, precisely when (W 1 ∩ (W 2 + W 3))/(W 1 ∩
W 3) = (W 1 ∩W 2 + W 1 ∩W 3)/(W 1 ∩W 3), that is the triple W 1,W 2,W 3 is distributive. So
we have proven the following lemma.

Lemma. The Koszul comples in degree at most 4 is exact precisely when W 1,W 2, and W 3

is a distributive triple of subspaces in T 4V .

4 The Koszul complex and the lattice

Now we consider the Koszul complex in arbitrary degree. We first compute the terms of
the Koszul complex using the subsapces Xi and Y i defined above. It turns out, that the
differential is the unique natural map comming from the two filtrations of T dV :
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Theorem. 1) The Koszul complex is the complex

· · · −→ Xi/(Xi ∩ Y i+2)
di−→ Xi−1/(Xi−1 ∩ Y i+1)

di−1

−→ Xi−2/(Xi−2 ∩ Y i) −→ · · · ,

with the natural maps.
2.) The kernel of di is (Xi ∩ Y i+1)/(Xi ∩ Y i+2) and the cokernel of di+1 is Xi/(Xi ∩ Y i+1).
3.) The Koszul complex splits of into short exact sequences

0 −→ (Xi ∩ Y i+1)/(Xi ∩ Y i+2) −→ Xi/(Xi ∩ Y i+2) −→ Xi/(Xi ∩ Y i+1) −→ 0

and the Koszul complex is exact precisely when (Xi∩Y i+1)/(Xi∩Y i+2) = Xi+1/(Xi+1∩Y i+2).
4) The Koszul complex is exact in degree d precisely when the subspaces W i

d, i = 1, . . . , d − 1
form a linear-distributive set of subspaces in T dV . This condition is equivalent to

Xi ∩ Y i+1 = Xi+1 + Xi ∩ Y i+2.

Proof. First we note that (we denote natural isomorphisms by ”=”)

Xi+1/(Xi+1 ∩ Y i+2) = Xi+1/(Xi+1 ∩ Xi ∩ Y i+2)
= (Xi+1 + Xi ∩ Y i+2)/(Xi ∩ Y i+2)
= (Xi ∩ W i+1 + Xi ∩ Y i+2)/(Xi ∩ Y i+2),

(Xi ∩ Y i+1)/(Xi ∩ Y i+2) = (Xi ∩ (W i+1 + Y i+2))/(Xi ∩ Y i+2),

and both sides are equal precisely when the triples Xi,W i+1, Y i+2 are distributive (as sub-
spaces in T dV ). In any case we have a natural injective map inducing the differential in the
Koszul complex

Xi+1/(Xi+1 ∩ Y i+2) −→ (Xi ∩ Y i+1)/(Xi ∩ Y i+2).

If we replace the terms in the Koszul complex by the terms Xi and Y j and combining the
formulas above we proved the theorem. 2

The following stronger result is proven in [5].

Theorem. The quadratic algebra A = TV/(I) is Koszul precisely when the subspaces W i

generate a distributive lattice in T dV for all d ≥ 4.
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