Selected topics in representation theory 4 Koszul algebras and distributive lattices

WS 2005/06

1 The quadratic dual and lattices

We consider a graded algebra $A:=T V /(I)$, where V is a finite dimensional k-vector space, $T V$ is the tensor algebra of V over k and I is a subspace in $V \otimes V$. Since I generates an ideal in $T V$, we get

$$
A_{i}=T^{i} V / \sum_{r} V \otimes \ldots \otimes V \otimes I \otimes V \otimes \ldots \otimes V
$$

and we define

$$
W_{i}^{r+1}:=V \otimes \ldots \otimes V \otimes I \otimes V \otimes \ldots \otimes V
$$

where we have r times the tensor product of V at the beginning. So we get subspaces $W_{i}^{r} \subseteq T^{i} V$ for $r=1, \ldots, i-1$.
In a similar way we want to describe the graded dual B of $A^{!}$defined by

$$
B_{i}:=\left(A_{i}^{!}\right)^{*}, \quad B:=\oplus_{i \geq 0} B_{i}
$$

Lemma. For the graded pieces of B we obtain

$$
B_{0}=k, \quad B_{1}=V, \quad B_{2}=I, \quad B_{i}=\bigcap_{r=1}^{i-1} W_{i}^{r}
$$

Proof. The assertion is obvious for B_{0} and B_{1}. We consider B_{2} : Using the definition of the quadratic dual algebra we obtain an exact sequence

$$
0 \longrightarrow I^{\perp} \longrightarrow V^{*} \otimes V^{*} \longrightarrow V^{*} \otimes V^{*} / I^{\perp}=A_{2}^{!}=B_{2}^{*} \longrightarrow 0
$$

Taking the dual space we obtain

$$
0 \longrightarrow I=B_{2} \longrightarrow V \otimes V \longrightarrow V \otimes V / I=A_{2} \longrightarrow 0 .
$$

To prove the result for $B_{i}, i>2$ we note that for a vector space U with two subspaces U_{1} and U_{2} we obtain

$$
\left(U /\left(U_{1}+U_{2}\right)\right)^{*}=U_{1}^{\perp} \cap U_{2}^{\perp}
$$

where $U_{i}^{\perp}:=\left\{\phi \in U^{*} \mid \phi(u)=0 \quad \forall u \in U_{i}\right\}$. If we apply this formula to

$$
B_{i}^{*}=T^{i} V^{*} / \sum V^{*} \otimes \ldots \otimes V^{*} \otimes I^{\perp} \otimes V^{*} \otimes \ldots \otimes V^{*}=T^{i} V^{*} /\left(\sum_{j=1}^{i-1} W_{i}^{j}\right)
$$

we obtain the result.
The subspaces W_{i}^{r} generate a lattice in $T^{i} V$ with respect to + and \cap.

Definition. Let U be a vector space with a set of subspaces $\left\{U_{i}\right\}_{i \in I}$. The vector space U with subspaces $\left\{U_{i}\right\}_{i \in I}$ is called 3-distributive (or triple-distributive) if $\left(U_{i}+U_{j}\right) \cap U_{l}=$ $U_{i} \cap U_{l}+U_{j} \cap U_{l}$ for all triples i, j, l in I. The lattice U is called distributive if for alle triples in the lattice (take three subspaces, each of them is obtained by a finite sequence of operations including,$+ \cap$ and U_{i}) we have the previous triple-identity. Similarly, a set of subspaces $\left\{U_{i}\right\}_{i \in I}$ in U is called n-distributive (for $n \geq 3$) if each subset of n spaces generates a distributive lattice in U. A sequence of subspaces $\left\{U_{i}\right\}_{i=1}^{t}$ is called linear-distributive if the subspaces $U_{1} \cap \ldots \cap U_{i-1}, U_{i}, U_{i+1}+\ldots+U_{t}$ form a distributive triple in U. Note that we need the total order on I to define it, however we can similarly define an analogeous notion for any poset I.

Example. Let $\operatorname{dim} U=2$ and $\sharp I=2$. The only non-trivial lattice consists of two onedimensional subspaces U_{1} and U_{2}. We can, after chosing an adapted basis, assume $U_{1}=k(0,1)$ and $U_{2}=k(1,0)$. Consequently the lattice is distributive.
Let $\operatorname{dim} U=2$ and $\sharp I=3$. We can again assume U_{1} and U_{2} are as above and $U_{3}=k(1,1)$. This lattice is not distributive, since $U_{1}+U_{2}=k^{2}$ and $\left(U_{1}+U_{2}\right) \cap U_{3}=U_{3}$, whereas $U_{1} \cap U_{3}+U_{2} \cap U_{3}=\{0\}$.

The following theorem is a standard result in lattice theory (cf. [3], 2.7 Theorem 19).
Theorem. Let U, with subspaces U_{i}, a lattice as above. Then this lattice is distributive precisely when there exists a basis of U, so that each vector space U_{i} is generated by a part of this basis.

Proof. Here we only show the easy conclusion, the other one is more technical.
Let $\left\{e_{j}\right\}$ be a basis of U, so that each U_{i} is generated by some elements e_{j} for some subset J $U^{J}:=\left\langle e_{j} \mid j \in J\right\rangle$. Let I, J, K be three subsets, then

$$
\begin{aligned}
\left(U^{I}+U^{J}\right) \cap U^{K} & =U^{(I \cup J) \cap K}=U^{I \cap K \cup J \cap K} \\
& =U^{I} \cap U^{K}+U^{J} \cap U^{K}
\end{aligned}
$$

2 Distributive triples and representations of \mathbb{D}_{4}

Let U be a vector space together with subspaces U_{1}, \ldots, U_{t}. These subspaces generate a lattice of subspaces in U. We are interested in distributive triples, n-distributive subspaces and linear-distributive subspaces. We can consider the subspaces of U in a natural way as representations of the subspace quiver. Then triples correspond to representations of $\mathbb{D}_{4}, 4$ subspaces correspond to representations of $\widetilde{\mathbb{D}}_{4}$ and t subspaces correspond to representations of the t-subspace quiver $Q(t)$.

Lemma. The representation U associated to the t subspaces U_{i} decomposes into $\operatorname{dim} U$ indecomposable representations (these representations must be thin), precisely when the t subspaces U_{i} generate a distributive lattice in U.

Proof. Assume the subspaces generate a distributive lattice, then there exists a basis of U compatible with all these subspaces, that is the intersection of this basis with each U_{i} is a
basis of U_{i}. Consequently, U decomposes into $\operatorname{dim} U$ thin representations. Conversely, if there exists a non-thin direct summand, then the lattice is not distributive ny the above example.

Example. We show that there exist t-distributive sets of subspaces that are not $t+1-$ distributive for each $t \geq 2$. Note that each set of subspaces is 1 -distributive and 2 -distributive (this is just representation theory of the quiver \mathbb{A}_{n}).
Consider a t-dimensional vector space U together with $t+1$ one-dimensional subspaces in general position. Then this set is t-distributive (the direct sum of any t subspaces is U) and not $t+1$-distributive: take for U_{a} the sum of $t-1$ subspaces, for U_{b} and U_{c} one of the remaining one-dimensional subspaces. Then $\left(U_{a}+U_{b}\right) \cap U_{c} \neq U_{a} \cap U_{c}+U_{b} \cap U_{c}$. Note that this set of subspaces is also not linear-distributive.

We show in section 4 that A is Koszul precisely when the subspaces W^{i} in $T^{d} V$ form a lineardistributive set for all $d \geq 4$. Even stronger, one can show that A is Koszul precisely when the subspaces W^{i} in $T^{d} V$ generate a distributive lattice (see [5]).

3 The Koszul complex in low degrees

In this section we consider the Koszul complex $B \otimes A, d$ in low degrees. With notation from above we have

$$
A_{i}=T^{i} V / \sum_{r=1}^{i-1} W_{i}^{r}, \quad B_{i}=\bigcap_{r=1}^{i-1} W_{i}^{r}
$$

Degree 1: The Koszul complex is exact:

$$
\begin{aligned}
0 \longrightarrow B_{1} \simeq B_{1} \otimes k & \longrightarrow A_{1} \simeq k \otimes A_{1} \longrightarrow 0 \\
V & \simeq V
\end{aligned}
$$

Degree 2: The Koszul complex is exact:

$$
\begin{array}{rlll}
0 \longrightarrow B_{2} & \longrightarrow B_{1} \otimes A_{1} & \longrightarrow A_{2} \longrightarrow 0 \\
I & \longrightarrow & V \otimes V & \longrightarrow \\
V \otimes V / I .
\end{array}
$$

DEGREE 3: For simplicity we omitt the zeros and use both notations in this case. Moreover we also omit the subscript for W, since it is always 3 . The complex is exact, it only needs a little argument:

$$
\begin{array}{rcccl}
B_{3} & \longrightarrow & B_{2} \otimes A_{1} & \longrightarrow & B_{1} \otimes A_{2} \\
V \otimes V \otimes V & \longrightarrow A_{3} \\
V \otimes V \otimes V & \longrightarrow & V \otimes V \otimes V / V \otimes I & \longrightarrow V \otimes V \otimes V /(V \otimes I+I \otimes V) \\
W^{1} \cap W^{2} & \longrightarrow & W^{1} & \longrightarrow & T^{3} V / W^{2}
\end{array}
$$

The complex is exact precisely when the cokernel of the first map coincides with the kernel of the last map. That is

$$
W^{1} /\left(W^{1} \cap W^{2}\right) \simeq\left(W^{1}+W^{2}\right) / W^{2}
$$

which is obviously satisfied.

DEGREE 4: In degree 4 and higher we also introduce a short notation for the spaces $\bigcap W^{i}$ and the spaces $\sum W^{i}$ that appear in the Koszul complex. We define in degree d
$X^{i}:=W^{1} \cap \ldots \cap W^{i}, \quad X^{0}:=X^{-1}:=T^{d} V, \quad Y^{i}:=W^{i}+\ldots+W^{d-1}, \quad Y^{d}:=Y^{d+1}:=\{0\}$.
Then we get descending filtrations of $T^{d} V$ as follows

$$
\begin{gathered}
\{0\} \subseteq X^{d-1} \subseteq \ldots X^{1} \subseteq X^{0}=X^{-1}=T^{d} V \text { and } \\
\{0\}=Y^{d+1}=Y^{d} \subseteq Y^{d-1} \subseteq \ldots \subseteq Y^{2} \subseteq Y^{1} \subseteq T^{d} V
\end{gathered}
$$

Using this notation we obtain (in degree 4) a sequence

$$
\begin{aligned}
& \begin{array}{rlccc}
B_{4} & \longrightarrow & B_{3} \otimes A_{1} & \longrightarrow & B_{2} \otimes A_{2}
\end{array} \quad \longrightarrow \begin{array}{l}
\\
W^{1} \cap W^{2} \cap W^{3}
\end{array} \quad \longrightarrow \quad \begin{array}{l}
W^{1} \cap W^{2}
\end{array} \quad \longrightarrow \quad W^{1} /\left(W^{1} \cap W^{3}\right) \quad \longrightarrow \ldots \\
& X^{3} /\left(X^{3} \cap Y^{5}\right) \quad \longrightarrow \quad X^{2} /\left(X^{2} \cap Y^{4}\right) \quad \longrightarrow \quad X^{1} /\left(X^{1} \cap Y^{3}\right) \quad \longrightarrow
\end{aligned}
$$

Since the Koszul complex is already exact in degree 3, it is everywhere exact, except, possibly, in position $B_{2} \otimes A_{2}$. To show exactness in this place, we compute the cokernel and the kernel of the corresponding maps:

$$
\begin{aligned}
\operatorname{Coker}\left(W^{1} \cap W^{2} \cap W^{3} \longrightarrow W^{1} \cap W^{2}\right) & =\left(W^{1} \cap W^{2}\right) /\left(W^{1} \cap W^{2} \cap W^{3}\right) \\
& \simeq\left(W^{1} \cap W^{2}+W^{1} \cap W^{3}\right) /\left(W^{1} \cap W^{3}\right) \\
\operatorname{Ker}\left(W^{1} /\left(W^{1} \cap W^{3}\right) \longrightarrow T^{d} V /\left(W^{2}+W^{3}\right)\right) & = \\
\operatorname{Ker}\left(W^{1} /\left(W^{1} \cap W^{3}\right) \longrightarrow\left(W^{1}+W^{2}+W^{3}\right) /\left(W^{2}+W^{3}\right)\right) & = \\
\operatorname{Ker}\left(W^{1} /\left(W^{1} \cap W^{3}\right) \longrightarrow W^{1} /\left(W^{1} \cap\left(W^{2}+W^{3}\right)\right)\right) & =\left(W^{1} \cap\left(W^{2}+W^{3}\right)\right) /\left(W^{1} \cap W^{3}\right) .
\end{aligned}
$$

We finally see, that the Koszul complex is exact, precisely when $\left(W^{1} \cap\left(W^{2}+W^{3}\right)\right) /\left(W^{1} \cap\right.$ $\left.W^{3}\right)=\left(W^{1} \cap W^{2}+W^{1} \cap W^{3}\right) /\left(W^{1} \cap W^{3}\right)$, that is the triple W^{1}, W^{2}, W^{3} is distributive. So we have proven the following lemma.

Lemma. The Koszul comples in degree at most 4 is exact precisely when W^{1}, W^{2}, and W^{3} is a distributive triple of subspaces in $T^{4} V$.

4 The Koszul complex and the lattice

Now we consider the Koszul complex in arbitrary degree. We first compute the terms of the Koszul complex using the subsapces X^{i} and Y^{i} defined above. It turns out, that the differential is the unique natural map comming from the two filtrations of $T^{d} V$:

Theorem. 1) The Koszul complex is the complex

$$
\cdots \longrightarrow X^{i} /\left(X^{i} \cap Y^{i+2}\right) \xrightarrow{d_{i}} X^{i-1} /\left(X^{i-1} \cap Y^{i+1}\right) \xrightarrow{d_{i-1}} X^{i-2} /\left(X^{i-2} \cap Y^{i}\right) \longrightarrow \cdots,
$$

with the natural maps.
2.) The kernel of d_{i} is $\left(X^{i} \cap Y^{i+1}\right) /\left(X^{i} \cap Y^{i+2}\right)$ and the cokernel of d_{i+1} is $X^{i} /\left(X^{i} \cap Y^{i+1}\right)$.
3.) The Koszul complex splits of into short exact sequences

$$
0 \longrightarrow\left(X^{i} \cap Y^{i+1}\right) /\left(X^{i} \cap Y^{i+2}\right) \longrightarrow X^{i} /\left(X^{i} \cap Y^{i+2}\right) \longrightarrow X^{i} /\left(X^{i} \cap Y^{i+1}\right) \longrightarrow 0
$$

and the Koszul complex is exact precisely when $\left(X^{i} \cap Y^{i+1}\right) /\left(X^{i} \cap Y^{i+2}\right)=X^{i+1} /\left(X^{i+1} \cap Y^{i+2}\right)$. 4) The Koszul complex is exact in degree d precisely when the subspaces $W_{d}^{i}, i=1, \ldots, d-1$ form a linear-distributive set of subspaces in $T^{d} V$. This condition is equivalent to

$$
X^{i} \cap Y^{i+1}=X^{i+1}+X^{i} \cap Y^{i+2}
$$

Proof. First we note that (we denote natural isomorphisms by "=")

$$
\begin{aligned}
X^{i+1} /\left(X^{i+1} \cap Y^{i+2}\right) & =X^{i+1} /\left(X^{i+1} \cap X^{i} \cap Y^{i+2}\right) \\
& =\left(X^{i+1}+X^{i} \cap Y^{i+2}\right) /\left(X^{i} \cap Y^{i+2}\right) \\
& =\left(X^{i} \cap W^{i+1}+X^{i} \cap Y^{i+2}\right) /\left(X^{i} \cap Y^{i+2}\right) \\
\left(X^{i} \cap Y^{i+1}\right) /\left(X^{i} \cap Y^{i+2}\right) & =\left(X^{i} \cap\left(W^{i+1}+Y^{i+2}\right)\right) /\left(X^{i} \cap Y^{i+2}\right)
\end{aligned}
$$

and both sides are equal precisely when the triples X^{i}, W^{i+1}, Y^{i+2} are distributive (as subspaces in $\left.T^{d} V\right)$. In any case we have a natural injective map inducing the differential in the Koszul complex

$$
X^{i+1} /\left(X^{i+1} \cap Y^{i+2}\right) \longrightarrow\left(X^{i} \cap Y^{i+1}\right) /\left(X^{i} \cap Y^{i+2}\right) .
$$

If we replace the terms in the Koszul complex by the terms X^{i} and Y^{j} and combining the formulas above we proved the theorem.

The following stronger result is proven in [5].
Theorem. The quadratic algebra $A=T V /(I)$ is Koszul precisely when the subspaces W^{i} generate a distributive lattice in $T^{d} V$ for all $d \geq 4$.

References

[1] A. A. Beilinson, V. A. Ginsburg, V. V. Schechtman, Koszul duality. J. Geom. Phys. 5 (1988), no. 3, 317-350.
[2] A. A. Beilinson, V. A. Ginsburg, W. Soergel, Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473-527.
[3] G. Grätzer, Lattice theory. W. H. Freeman and Company, San Francisco 1971.
[4] Yu. I. Manin, Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 191-205.
[5] A. Polishchuk, L. Positselski, Quadratic algebras. University Lecture Series, 37. American Mathematical Society, Providence, RI, 2005.

