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In this lecture we want to present how to define torsion pairs from the Harder-
Narasimhan filtration of a representation of a quiver. Therefore we start with a
quick revision of torsion theory.

1 Torsion theory

Let A be a finite-dimensional, basic, connected algebra over a fixed algebraically
closed field k. Denote by mod A the category of all finite-dimensional left A-
modules.

A pair (T ,F) of full subcategories of a module category is called a torsion
pair (or torsion theory) if the following conditions are satisfied:

(i) Hom(M,N) = 0 for all M ∈ T , N ∈ F .

(ii) Hom(M,−)|F = 0 implies M ∈ T .

(iii) Hom(−, N)|T = 0 implies N ∈ F .

That is, there is no non-zero homomorphism from an object in T to an object
in F and the two subcategories are maximal with respect to this property. T is
called the torsion class, F the torsion-free class.

Each torsion pair induces an idempotent radical, called torsion radical, and
conversely: T is a torsion class of some (T ,F) if and only if there exists an
idempotent radical t such that T = {M | tM = M}. So for M ∈ Mod−A,
tM ∈ T and M/tM ∈ F . Also there is always the canonical short exact sequence
0 → tM → M → M/tM → 0.

A torsion pair (T ,F) is called splitting if each indecomposable module M
either lies in T or in F . Then the canonical sequence above splits. One can also
show:

Proposition 1.1. Let (T ,F) be a torsion pair in mod A. Then (T ,F) is splitting
if and only if Ext1A(M,N) = 0 for all M ∈ T , N ∈ F .

Of course, not every torsion pair is splitting.

1



2 Harder-Narasimhan filtration

Let Q to be a finite quiver with set of vertices I, and let θ : ZI → Z be a linear
function, called stability. We also define dim on ZI by dim d =

∑
i∈I di. For a

non-zero dimension vector d ∈ NI, we define its slope by µ(d) = θ(d)
dim d

∈ Q. We
define the slope of a non-zero representation X of Q (over some field) as the slope
of its dimension vector, thus µ(X) = µ(dimX) ∈ Q.

We call the representation X semistable if µ(U) ≤ µ(X) for all non-zero
subrepresentations U of X, and we call X stable if µ(U) < µ(X) for all non-zero
proper subrepresentations U of X.

Definition 2.1. A filtration 0 = X0 ⊂ X1 ⊂ . . . ⊂ Xs = X of a representation
X is called Harder-Narasimhan (abbreviated by HN) if the subquotients Xi/Xi−1

are semistable for i = 1, . . . , s and µ(X1/X0) > µ(X2/X1) > . . . > µ(Xs/Xs−1).

It was shown in a previous lecture that any non-zero representation X pos-
sesses a unique Harder-Narasimhan filtration, which was done with the help of
the following concept:

Definition 2.2. A subrepresentation U of a representation X is called strongly
contradicting semistable (or just scss) if its slope is maximal among the slopes
of subrepresentations of X, that is, µ(U) = max{µ(V ) |V ⊂ X}, and it is of
maximal dimension with this property.

3 Functorial properties of the HN-filtration

The Harder-Narasimhan filtration can be interpreted functorially. Introduce for
a given slope µ and each representation X a family of representations {X(a)}, for
a ∈ Q from the Harder-Narasimhan filtration as follows: Define

X(a) = Xk if µ(Xk/Xk−1) ≥ a > µ(Xk+1/Xk),

X(a) = X, if a ≤ µ(Xi/Xi−1), i = 1, . . . , s,

X(a) = 0, if a > µ(Xi/Xi−1), i = 1, . . . , s.

Recall the following results on maps between semistable representations: Let
X,Y be semistable and let f : X → Y a non-zero homomorphism. Then µ(X) ≤
µ(Y ). Also, each homomorphism f : X → Y with µ(X) > µ(Y ) is zero.

Lemma 3.1. Any morphism f : X → Y respects the HN-filtration, in the sense
that f(X(a)) ⊂ Y (a) for all a ∈ Q.

Proof. First, we will prove the following property by induction on k:
If f(Xk) ⊂ Yl\Yl−1, then µ(Yl/Yl−1) ≥ µ(Xk/Xk−1).
The claim in the lemma follows from this: given a ∈ Q, we have X(a) = Xk for

the index k satisfying µ(Xk/Xk−1) ≥ a > µ(Xk+1/Xk) (by definition). Choosing
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l minimal such that f(Xk) ⊂ Yl, we then have µ(Yl/Yl−1) ≥ µ(Xk/Xk−1) ≥ a,
and thus Yl ⊂ Y (a) by definition.

In case k = 0 there is nothing to show. For k = 1, suppose f(X1) ⊂ Yl\Yl−1.
Then f induces a non-zero map between the semistable representations X1 and
Yl/Yl−1, showing µ(X1) ≤ µ(Yl/Yl−1) as claimed. For general k, suppose that
f(Xk) ⊂ Yl\Yl−1, and consider the short exact sequences

0 → Xk−1
α→ Xk → Xk/Xk−1 → 0

0 → Yl−1 → Yl
β→ Yl/Yl−1 → 0

together with the map f : Xk → Yl.
If the composition βfα equals 0, the map f induces a non-zero map Xk/Xk−1 →

Yl/Yl−1 between semistable representations, and thus µ(Xk/Xk−1) ≤ µ(Yl/Yl−1)
as desired.

If βfα is non-zero, we have f(Xk−1) ⊂ Yl\Yl−1, and we can conclude by
induction that µ(Yl/Yl−1) ≥ µ(Xk−1/Xk−2) > µ(Xk/Xk−1), which gives what we
wanted.

4 Torsion pairs from HN-filtration

Let us call the slopes µ(X1/X0), . . . , µ(Xs/Xs−1) in the unique Harder-Narasimhan
filtration of X the weights of X.

Definition 4.1. Given a ∈ Q, define Ta as the class of all representations X all
of whose weights are ≥ a, and define Fa as the class of all representations X all
of whose weights are < a.

Lemma 4.1. For each a ∈ Q, the pair (Ta,Fa) defines a torsion pair in mod kQ.
For a < b, we have Ta ⊇ Tb and Fa ⊆ Fb.

Proof. Assume X ∈ Ta and Y ∈ Fa. In the Q-indexed Harder-Narisimhan filtra-
tion, we thus have X(b) = X for all a ≤ b, and Y (b) = 0 for all a < b. But any
morphism f : X → Y is already zero, since the slope of X is greater than the
slope of Y, proving Hom(Ta,Fa) = 0.

Now assume Hom(X,Fa) = 0 for some representation X. Suppose X has a
weight strictly less than a, then certainly the slope of the (semistable) top factor
in the Harder-Narasimhan filtration, X/Xs−1 is strictly less than a, too, thus it
belongs to Fa. But the projection map X → X/Xs−1 is non-zero, a contradiction.
Thus, X belongs to Ta.

Finally, assume Hom(Ta, Y ) = 0 for some representation Y. If Y has a weight
≥ a, then certainly the slope of its (semistable) scss subrepresentation Y1 is ≥ a.
Thus Y1 belongs to Ta. But the inclusion Y1 → Y is non-zero, a contradiction.
Thus, Y belongs to Fa.

The inclusion properties of the various torsion and free classes follows from
the definitions.
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