
CARTIER’S THEOREM

ROLF FARNSTEINER

Let k be a field. Recall that a k-algebra H together with k-linear maps

∆ : H −→ H ⊗k H ; ε : H −→ k ; η : H −→ H

is called a Hopf algebra if
• ∆ and ε are homomorphisms of k-algebras,
• η is an anti-homomorphism of k-algebras,
• ∆ and ε satisfy axioms dual to that of an associative multiplication and an identity element.

We shall write
∆(h) =

∑
(h)

h(1) ⊗ h(2)

for every h ∈ H. Among the axioms mentioned above we shall require
(1)

∑
(h) h(1)ε(h(2)) = h =

∑
(h) ε(h(1))h(2) for all h ∈ H, and

(2)
∑

(h) h(1)η(h(2)) = ε(h)1 =
∑

(h) η(h(1))h(2) for all h ∈ H.

The category of H-modules has tensor products. If M and N are H-modules, then M⊗kN obtains
the structure of an H-module by pulling the H ⊗k H-structure on M ⊗k N back along ∆:

h.(m⊗ n) :=
∑
(h)

h(1)m⊗ h(2)n ∀ h ∈ H, m ∈M, n ∈ N.

A commutative k-algebra A is referred to as reduced if 0 is the only nilpotent element of A. The
object of this lecture is the following fundamental result, which implies that locally algebraic group
schemes of characteristic zero are smooth, cf. [1, (II,§6,1.1)].

Theorem (Cartier). Let H be a finitely generated commutative Hopf algebra. If char(k) = 0, then
H is reduced.

Remark. The polynomial ring k[X] obtains the structure of a Hopf algebra by defining

∆(X) = X ⊗ 1 + 1⊗X ; ε(X) = 0 ; η(X) = −X.

If char(k) = p > 0, then the ideal I := (Xp) satisfies

∆(I) ⊆ I ⊗k H +H ⊗k I ; I ⊆ ker ε ; η(I) = I.

Hence the local algebra H := k[X]/I inherits the Hopf algebra structure from k[X], showing that
Cartier’s Theorem fails in positive characteristic.

The proof of Cartier’s Theorem requires the following result from commutative algebra:
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Theorem 1 (Krull’s Intersection Theorem,[2, 3]). Let R be a commutative noetherian ring, Max(R)
be the set of maximal ideals of R. Then ⋂

M∈Max(R)

⋂
n∈N

Mn = (0).

Let A be a commutative k-algebra. A k-linear map, d : A −→ M with values in an A-module M
is called a derivation of A into M , provided

d(xy) = x.d(y) + y.d(x) ∀ x, y ∈ A.

Given a derivation d : A −→M , the map

idA ⊗d : A⊗k A −→ A⊗k M ; a⊗ b 7→ a⊗ d(b)

is a derivation of the k-algebra A⊗kA with values in the (A⊗kA)-module A⊗kM , whose structure
is defined by

(a⊗ b).(a′ ⊗m) := aa′ ⊗ b.m.

Let H be a commutative Hopf algebra with augmentation ideal I := ker ε. We consider the map

πH : H −→ I/I2 ; h 7→ h− ε(h)1 + I2,

which is readily seen to be a derivation. Hence idH ⊗πH is a derivation of H ⊗k H with values in
H ⊗k (I/I2). Consequently,

dH := (idH ⊗πH) ◦∆
is a derivation of H into H⊗k (I/I2), where the latter space is the tensor product of the H-modules
H and I/I2.

Proof of the Theorem. Since the k-algebra H is finitely generated, the vector space I/I2 is finite-
dimensional. Hence there are elements x1, . . . , xr ∈ I such that their residue classes form a basis
of I/I2. Using multi-index notation, we write

xm := xm1
1 · · ·xmr

r and |m| :=
r∑

i=1

mi

for m ∈ Nr
0. The following claim says that the graded algebra, defined by the powers of the

augmentation ideal I, is a polynomial ring in r variables.

(i) Let n ≥ 1. The residue classes {xm + In+1 ; |m| = n} form a basis of In/In+1.
Given i ∈ {1, . . . , r}, we consider the k-linear map

fi : I/I2 −→ k ; x̄j 7→ δij

as well as
f̃i : H ⊗k I/I

2 −→ H ; a⊗ v 7→ fi(v)a.
For a, b ∈ H and v ∈ I/I2, we have, observing (1),

a.(b⊗ v) =
∑
(a)

a(1)b⊗ a(2)v =
∑
(a)

a(1)b⊗ ε(a(2))v = (
∑
(a)

a(1)ε(a(2)))b⊗ v = ab⊗ v,

so that the map f̃i is H-linear.
Consequently, the map

di : H −→ H ; h 7→ f̃i ◦ dH(h)
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is a derivation of H with di(h) =
∑

(h) fi(πH(h(2)))h(1) for all h ∈ H. We thus obtain

(ε ◦ di)(h) =
∑
(h)

ε(h(1))fi(πH(h(2))) = fi(
∑
(h)

ε(h(1))πH(h(2))) = (fi ◦ πH)(h),

whence
(∗) di(xj) ≡ δij mod I

for 1 ≤ i ≤ r. Let 1i ∈ Nr
0 be the element with coordinates δij . Since di is a derivation, (∗) implies

di(xm) ≡ mix
m−1i mod I |m|.

In particular, di(In) ⊆ In−1 for all n ≥ 1. Thus, if∑
|m|=n

αmx
m ≡ 0 mod In+1,

then, applying di, we obtain

0 =
∑
|m|=n

miαmx
m−1i mod In,

so that induction implies miαm = 0. Since char(k) = 0, we conclude that αm = 0. �

(ii) If h2 = 0, then h ∈
⋂

n∈N I
n.

We have h ∈ I, and if h 6∈
⋂

n∈N I
n, then there exists n ∈ N with h ∈ In \ In+1. We write

h =
∑
|m|=n

αmx
m + z,

with αm ∈ k and z ∈ In+1. Our assumption in conjunction with (i) implies∑
m+m′=t

αmαm′ = 0

for all t ∈ Nr
0 with |t| = 2n. Upon ordering the elements of Nr

0 lexicographically we obtain 0 = αm̃,
where m̃ = max|m|=n{αm 6= 0}, a contradiction. �

It suffices to verify our theorem under the assumption that k is algebraically closed. If M �H is a
maximal ideal of H, then Hilbert’s Nullstellensatz provides an algebra homomorphism λ : H −→ k
such that M = kerλ. Direct computation shows that λ induces an automorphism

ψλ : H −→ H ; h 7→
∑
(h)

λ(h(1))h(2)

of H, whose inverse is ψλ◦η. (At this stage, we need property (2).) Since

(ε ◦ ψλ)(h) =
∑
(h)

λ(h(1))ε(h(2)) = λ(
∑
(h)

h(1)ε(h(2))) = λ(h)

for every h ∈ H, it follows that Ψλ(M) = I.
Let h ∈ H be nilpotent. Without loss of generality, we may assume that h2 = 0. Given a maximal

ideal M = kerλ, (ii) implies that ψλ(h) ∈
⋂

n∈N I
n, whence h ∈

⋂
n∈N Mn. Krull’s Intersection

Theorem now yields h = 0, as desired. �
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