
INDUCED MODULES: FIRST PROPERTIES OF DEFECT GROUPS

ROLF FARNSTEINER

Let k be a field of characteristic p > 0. If G is a finite group, then the group algebra kG has a
block decomposition

kG = B1 ⊕ B2 ⊕ · · · ⊕ Br,

where each block Bi � kG is an indecomposable two-sided ideal. Equivalently, each block B ⊆ kG
is an indecomposable kG⊗k kG

op-module. Since the map

(g, h) 7→ g ⊗ h−1

induces an isomorphism k(G × G) −→ kG ⊗k kG
op of associative k-algebras, the latter condition

amounts to B being an indecomposable submodule of the (G×G)-module kG, relative to the action

(g, h).x := gxh−1 ∀ g, h ∈ G, x ∈ kG.
One can thus speak of the vertex of the (G×G)-module B, see [4] for the definition.

Let ∆ : G −→ G×G ; g 7→ (g, g) be the diagonal embedding, whose induced algebra homomor-
phism kG −→ k(G×G) will also be denoted ∆.

Definition. Let B ⊆ kG be a block. A p-subgroup D ⊆ G is called a defect group of B if ∆(D) is
a vertex of the (G×G)-module B. If ord(D) = pd, then d is called the defect of B.

The name defect derives from an early result of the theory, which states that a block B ⊆ kG is
semi-simple (and hence simple) if and only if d = 0. Thus, d may be viewed as a measure for the
deviation of B from being semi-simple.

Defects were first defined by Brauer [1], with the definition of a defect group following shortly
thereafter [2]. In his seminal articles [1, 2, 3] Brauer established important properties of defect
groups that were later reformulated by Green [6, 7], whose approach is the basis of our exposition.

Recall that G acts on k via
g.α = α ∀ g ∈ G, α ∈ k.

Our first result establishes the existence of defect groups and shows that the defect of a block is
well-defined.

Theorem 1. Let B ⊆ kG be a block of kG.
(1) B possesses a defect group D ⊆ G.
(2) If D,D′ ⊆ G are defect groups of B, then there exists g ∈ G with D′ = gDg−1.

Proof. (1) We consider k(G×G) as a left and right G-module via ∆. The bilinear map

ϕ : k(G×G)× k −→ kG ; ((g, h), α) 7→ αgh−1

is kG-balanced: Given x ∈ G, we have

ϕ((g, h).x, α) = ϕ((gx, hx), α) = αgh−1 = ϕ((g, h), x.α).
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Hence there exists a surjective, k-linear map

ψ : k(G×G)⊗kG k −→ kG ; (g, h)⊗ α 7→ αgh−1,

which is readily seen to be k(G×G)-linear. Since both spaces involved have dimension ord(G), ψ
is in fact an isomorphism, so that kG is a relatively ∆(G)-projective k(G × G)-module. Being a
direct summand of kG, the block B enjoys the same property. According to [4, Prop.4] there exists
a p-subgroup D ⊆ G such that ∆(D) is a vertex of B.

(2) Let D,D′ be defect groups of B. Owing to [4, Prop.4], there exists an element (g, h) ∈ G×G
such that

∆(D′) = (g, h)∆(D)(g, h)−1,

whence D′ = gDg−1. �

We would like to relate the defect group of a block to the vertices of its indecomposable modules.
This necessitates the following subsidiary result, which shows that induction commutes with taking
tensor products over k. Recall that the tensor product M ⊗k N of two G-modules obtains the
structure of a G-module via

g.(m⊗ n) := g.m⊗ g.n

for all g ∈ G, m ∈M and n ∈ N .

Lemma 2 (Tensor Identity). Let H ⊆ G be a subgroup of the finite group G. If V is a finite-
dimensional G-module and M is a finite-dimensional H-module, then we have an isomorphism

kG⊗kH (M ⊗k V |H) ∼= (kG⊗kH M)⊗k V

of G-modules.

Proof. Given g ∈ G, we consider the k-linear map

λg : M ⊗k V −→ (kG⊗kH M)⊗k V ; m⊗ v 7→ (g ⊗m)⊗ g.v

If a =
∑

g∈G αgg is an element of kG, we define λa :=
∑

g∈G αgλg. There results a bilinear map

ψ : kG× (M ⊗k V ) −→ (kG⊗kH M)⊗k V ; (a, x) 7→ λa(x).

Since λah(x) = λa(hx) for all a ∈ kG, h ∈ H and x ∈ M ⊗k V , the map ψ is kH-balanced and
there exists a k-linear map

ω : kG⊗kH (M ⊗k V ) −→ (kG⊗kH M)⊗k V ; a⊗ x 7→ λa(x).

This map is actually kG-linear: Let g, g′ ∈ G, m ∈M and v ∈ V . Then we have

ω(g′.(g ⊗ (m⊗ v))) = ω(g′g ⊗ (m⊗ v)) = (g′g ⊗m)⊗ g′g.v = g′.((g ⊗m)⊗ g.v)
= g′.ω(g ⊗ (m⊗ v)).

Directly from the definition, we obtain the surjectivity of ω. Since both G-modules involved have
dimension |G/H|(dimk M)(dimk V ), the map ω is bijective. �

Recall that any block B ⊆ kG is of the form B = kGe, where e ∈ kG is a central, primitive
idempotent of kG. Given an indecomposable kG-module M , we thus have e.M = (0) or e.M = M .
In the latter case, we say that M belongs to B.

Theorem 3. Let B ⊆ kG be a block with defect group D. Then every indecomposable kG-module
M belonging to B has a vertex DM ⊆ D.
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Proof. We let G act on kG via conjugation, i.e.,

g.a := gag−1 ∀ a ∈ kG, g ∈ G.
Note that this amounts to pulling back the (G × G)-action on kG along ∆. Since B � kG is a
two-sided ideal, B ⊆ kG is a G-submodule relative to this operation. The multiplication

µ : B ⊗k M −→M ; b⊗m 7→ bm

is a homomorphism of G-modules: Given g ∈ G, b ∈ B and m ∈M , we have

µ(g(b⊗m)) = µ(g.b⊗ gm) = µ(gbg−1 ⊗ gm) = gbg−1gm = g(bm) = gµ(b⊗m).

Let e ∈ kG be the central primitive idempotent of B, so that B = kGe. Then

ι : M −→ B ⊗k M ; m 7→ e⊗m

is a homomorphism of G-modules. Since M belongs to B, we obtain µ ◦ ι = idM , so that M is a
direct summand of B ⊗k M .

As D ⊆ G is a defect group of B, the G-module B is relatively D-projective. Consequently, B
is a direct summand of kG ⊗kD B|D. In view of Lemma 2, the tensor product B ⊗k M is a direct
summand of (kG ⊗kD B|D)⊗k M ∼= kG ⊗kD (B|D ⊗k M |D). By the above, this implies that M is
relatively D-projective, so that D contains a vertex of M , cf. [4, Prop.4]. �

There exists exactly one block B0(G) ⊆ kG to which the trivial G-module k belongs. The block
B0(G) is customarily referred to as the principal block. The following result shows why B0(G) is
thought of as being the “most complicated” block of kG:

Corollary 4. Every defect group D ⊆ G of the principal block B0(G) is a Sylow-p-subgroup of G.

Proof. Owing to Theorem 3, D contains a vertex D′ of the trivial module k. Being a p-group, D′

is contained in a Sylow-p-subgroup P ⊆ G. As k is relatively D′-projective, k is a summand of
kG⊗kD′ k. By Mackey’s Theorem [4], the trivial P -module k|P is a summand of⊕

PgD′

kP ⊗k(P∩D′g) k
g =

⊕
PgD′

kP ⊗k(P∩D′g) k,

where D′g := gD′g−1. Repeated application of Green’s Indecomposability Theorem [5] (to a chain
of normalizers in P starting with NorP (P ∩D′g)) implies that each summand is an indecomposable
kP -module.1 The Theorem of Krull-Remak-Schmidt now ensures that k|P is isomorphic to one of
these summands. Hence there exists an element g with P = D′g, so that P = D′. �

Corollary 5. Let B ⊆ kG be a block with defect group D.
(1) If D is cyclic, then B has finite representation type.
(2) If D = {1}, then B is simple.

Proof. Suppose that ord(D) = pr. As D is cyclic, the group algebra kD ∼= k[X]/(Xpr
) has finite

representation type, with indecomposable modules N1, . . . , Npr . In view of Theorem 3, every inde-
composable B-module is relatively D-projective, and hence a direct summand of some kG⊗kD Ni.
Consequently, there are only finitely many isomorphism classes of such modules. If D = {1}, then
each indecomposable B-module M is a direct summand of kG ⊗k k ∼= kG and is thus projective.
This implies that B is simple. �

1This argument actually shows that induction functors of p-groups preserve indecomposables. In our situation,
Frobenius reciprocity gives HomkP (kP ⊗k(P∩D′g) k, k) ∼= Homk(P∩D′g)(k, k), which, in view of kP being local, implies

that the top of the induced module is simple.
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Remark. The converse statements of (1) and (2) of Corollary 5 also hold, but their proofs necessitate
the so-called Brauer correspondence of blocks.
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