INDUCED MODULES: FIRST PROPERTIES OF DEFECT GROUPS

ROLF FARNSTEINER

Let k be a field of characteristic $p>0$. If G is a finite group, then the group algebra $k G$ has a block decomposition

$$
k G=\mathcal{B}_{1} \oplus \mathcal{B}_{2} \oplus \cdots \oplus \mathcal{B}_{r}
$$

where each block $\mathcal{B}_{i} \unlhd k G$ is an indecomposable two-sided ideal. Equivalently, each block $\mathcal{B} \subseteq k G$ is an indecomposable $k G \otimes_{k} k G^{\text {op }}$-module. Since the map

$$
(g, h) \mapsto g \otimes h^{-1}
$$

induces an isomorphism $k(G \times G) \longrightarrow k G \otimes_{k} k G^{\mathrm{op}}$ of associative k-algebras, the latter condition amounts to \mathcal{B} being an indecomposable submodule of the $(G \times G)$-module $k G$, relative to the action

$$
(g, h) \cdot x:=g x h^{-1} \quad \forall g, h \in G, x \in k G .
$$

One can thus speak of the vertex of the $(G \times G)$-module \mathcal{B}, see [4] for the definition.
Let $\Delta: G \longrightarrow G \times G ; g \mapsto(g, g)$ be the diagonal embedding, whose induced algebra homomorphism $k G \longrightarrow k(G \times G)$ will also be denoted Δ.

Definition. Let $\mathcal{B} \subseteq k G$ be a block. A p-subgroup $D \subseteq G$ is called a defect group of \mathcal{B} if $\Delta(D)$ is a vertex of the $(G \times G)$-module \mathcal{B}. If $\operatorname{ord}(D)=p^{d}$, then d is called the defect of \mathcal{B}.

The name defect derives from an early result of the theory, which states that a block $\mathcal{B} \subseteq k G$ is semi-simple (and hence simple) if and only if $d=0$. Thus, d may be viewed as a measure for the deviation of \mathcal{B} from being semi-simple.

Defects were first defined by Brauer [1], with the definition of a defect group following shortly thereafter [2]. In his seminal articles [1, 2, 3] Brauer established important properties of defect groups that were later reformulated by Green [6, 7], whose approach is the basis of our exposition.

Recall that G acts on k via

$$
g . \alpha=\alpha \quad \forall g \in G, \alpha \in k
$$

Our first result establishes the existence of defect groups and shows that the defect of a block is well-defined.

Theorem 1. Let $\mathcal{B} \subseteq k G$ be a block of $k G$.
(1) \mathcal{B} possesses a defect group $D \subseteq G$.
(2) If $D, D^{\prime} \subseteq G$ are defect groups of \mathcal{B}, then there exists $g \in G$ with $D^{\prime}=g D g^{-1}$.

Proof. (1) We consider $k(G \times G)$ as a left and right G-module via Δ. The bilinear map

$$
\varphi: k(G \times G) \times k \longrightarrow k G \quad ; \quad((g, h), \alpha) \mapsto \alpha g h^{-1}
$$

is $k G$-balanced: Given $x \in G$, we have

$$
\varphi((g, h) \cdot x, \alpha)=\varphi((g x, h x), \alpha)=\alpha g h^{-1}=\varphi((g, h), x . \alpha)
$$

Date: November 29, 2007.

Hence there exists a surjective, k-linear map

$$
\psi: k(G \times G) \otimes_{k G} k \longrightarrow k G \quad ; \quad(g, h) \otimes \alpha \mapsto \alpha g h^{-1}
$$

which is readily seen to be $k(G \times G)$-linear. Since both spaces involved have dimension ord $(G), \psi$ is in fact an isomorphism, so that $k G$ is a relatively $\Delta(G)$-projective $k(G \times G)$-module. Being a direct summand of $k G$, the block \mathcal{B} enjoys the same property. According to [4, Prop.4] there exists a p-subgroup $D \subseteq G$ such that $\Delta(D)$ is a vertex of \mathcal{B}.
(2) Let D, D^{\prime} be defect groups of \mathcal{B}. Owing to [4, Prop.4], there exists an element $(g, h) \in G \times G$ such that

$$
\Delta\left(D^{\prime}\right)=(g, h) \Delta(D)(g, h)^{-1}
$$

whence $D^{\prime}=g D g^{-1}$.

We would like to relate the defect group of a block to the vertices of its indecomposable modules. This necessitates the following subsidiary result, which shows that induction commutes with taking tensor products over k. Recall that the tensor product $M \otimes_{k} N$ of two G-modules obtains the structure of a G-module via

$$
g \cdot(m \otimes n):=g \cdot m \otimes g . n
$$

for all $g \in G, m \in M$ and $n \in N$.

Lemma 2 (Tensor Identity). Let $H \subseteq G$ be a subgroup of the finite group G. If V is a finitedimensional G-module and M is a finite-dimensional H-module, then we have an isomorphism

$$
k G \otimes_{k H}\left(\left.M \otimes_{k} V\right|_{H}\right) \cong\left(k G \otimes_{k H} M\right) \otimes_{k} V
$$

of G-modules.
Proof. Given $g \in G$, we consider the k-linear map

$$
\lambda_{g}: M \otimes_{k} V \longrightarrow\left(k G \otimes_{k H} M\right) \otimes_{k} V \quad ; \quad m \otimes v \mapsto(g \otimes m) \otimes g . v
$$

If $a=\sum_{g \in G} \alpha_{g} g$ is an element of $k G$, we define $\lambda_{a}:=\sum_{g \in G} \alpha_{g} \lambda_{g}$. There results a bilinear map

$$
\psi: k G \times\left(M \otimes_{k} V\right) \longrightarrow\left(k G \otimes_{k H} M\right) \otimes_{k} V \quad ; \quad(a, x) \mapsto \lambda_{a}(x)
$$

Since $\lambda_{a h}(x)=\lambda_{a}(h x)$ for all $a \in k G, h \in H$ and $x \in M \otimes_{k} V$, the map ψ is $k H$-balanced and there exists a k-linear map

$$
\omega: k G \otimes_{k H}\left(M \otimes_{k} V\right) \longrightarrow\left(k G \otimes_{k H} M\right) \otimes_{k} V \quad ; \quad a \otimes x \mapsto \lambda_{a}(x)
$$

This map is actually $k G$-linear: Let $g, g^{\prime} \in G, m \in M$ and $v \in V$. Then we have

$$
\begin{aligned}
\omega\left(g^{\prime} \cdot(g \otimes(m \otimes v))\right) & =\omega\left(g^{\prime} g \otimes(m \otimes v)\right)=\left(g^{\prime} g \otimes m\right) \otimes g^{\prime} g \cdot v=g^{\prime} \cdot((g \otimes m) \otimes g \cdot v) \\
& =g^{\prime} \cdot \omega(g \otimes(m \otimes v))
\end{aligned}
$$

Directly from the definition, we obtain the surjectivity of ω. Since both G-modules involved have dimension $|G / H|\left(\operatorname{dim}_{k} M\right)\left(\operatorname{dim}_{k} V\right)$, the map ω is bijective.

Recall that any block $\mathcal{B} \subseteq k G$ is of the form $\mathcal{B}=k G e$, where $e \in k G$ is a central, primitive idempotent of $k G$. Given an indecomposable $k G$-module M, we thus have $e . M=(0)$ or $e . M=M$. In the latter case, we say that M belongs to \mathcal{B}.

Theorem 3. Let $\mathcal{B} \subseteq k G$ be a block with defect group D. Then every indecomposable $k G$-module M belonging to \mathcal{B} has a vertex $D_{M} \subseteq D$.

Proof. We let G act on $k G$ via conjugation, i.e.,

$$
g . a:=g a g^{-1} \quad \forall a \in k G, g \in G .
$$

Note that this amounts to pulling back the $(G \times G)$-action on $k G$ along Δ. Since $\mathcal{B} \unlhd k G$ is a two-sided ideal, $\mathcal{B} \subseteq k G$ is a G-submodule relative to this operation. The multiplication

$$
\mu: \mathcal{B} \otimes_{k} M \longrightarrow M \quad ; \quad b \otimes m \mapsto b m
$$

is a homomorphism of G-modules: Given $g \in G, b \in \mathcal{B}$ and $m \in M$, we have

$$
\mu(g(b \otimes m))=\mu(g \cdot b \otimes g m)=\mu\left(g b g^{-1} \otimes g m\right)=g b g^{-1} g m=g(b m)=g \mu(b \otimes m)
$$

Let $e \in k G$ be the central primitive idempotent of \mathcal{B}, so that $\mathcal{B}=k G e$. Then

$$
\iota: M \longrightarrow \mathcal{B} \otimes_{k} M \quad ; \quad m \mapsto e \otimes m
$$

is a homomorphism of G-modules. Since M belongs to \mathcal{B}, we obtain $\mu \circ \iota=\operatorname{id}_{M}$, so that M is a direct summand of $\mathcal{B} \otimes_{k} M$.

As $D \subseteq G$ is a defect group of \mathcal{B}, the G-module \mathcal{B} is relatively D-projective. Consequently, \mathcal{B} is a direct summand of $\left.k G \otimes_{k D} \mathcal{B}\right|_{D}$. In view of Lemma 2 , the tensor product $\mathcal{B} \otimes_{k} M$ is a direct summand of $\left(\left.k G \otimes_{k D} \mathcal{B}\right|_{D}\right) \otimes_{k} M \cong k G \otimes_{k D}\left(\left.\left.\mathcal{B}\right|_{D} \otimes_{k} M\right|_{D}\right)$. By the above, this implies that M is relatively D-projective, so that D contains a vertex of M, cf. [4, Prop.4].

There exists exactly one block $\mathcal{B}_{0}(G) \subseteq k G$ to which the trivial G-module k belongs. The block $\mathcal{B}_{0}(G)$ is customarily referred to as the principal block. The following result shows why $\mathcal{B}_{0}(G)$ is thought of as being the "most complicated" block of $k G$:

Corollary 4. Every defect group $D \subseteq G$ of the principal block $\mathcal{B}_{0}(G)$ is a Sylow-p-subgroup of G.
Proof. Owing to Theorem 3, D contains a vertex D^{\prime} of the trivial module k. Being a p-group, D^{\prime} is contained in a Sylow- p-subgroup $P \subseteq G$. As k is relatively D^{\prime}-projective, k is a summand of $k G \otimes_{k D^{\prime}} k$. By Mackey's Theorem [4], the trivial P-module $\left.k\right|_{P}$ is a summand of

$$
\bigoplus_{P g D^{\prime}} k P \otimes_{k\left(P \cap D^{\prime g}\right)} k^{g}=\bigoplus_{P g D^{\prime}} k P \otimes_{k\left(P \cap D^{\prime g}\right)} k
$$

where $D^{\prime g}:=g D^{\prime} g^{-1}$. Repeated application of Green's Indecomposability Theorem [5] (to a chain of normalizers in P starting with $\operatorname{Nor}_{P}\left(P \cap D^{\prime g}\right)$) implies that each summand is an indecomposable $k P$-module. ${ }^{1}$ The Theorem of Krull-Remak-Schmidt now ensures that $\left.k\right|_{P}$ is isomorphic to one of these summands. Hence there exists an element g with $P=D^{\prime g}$, so that $P=D^{\prime}$.

Corollary 5. Let $\mathcal{B} \subseteq k G$ be a block with defect group D.
(1) If D is cyclic, then \mathcal{B} has finite representation type.
(2) If $D=\{1\}$, then \mathcal{B} is simple.

Proof. Suppose that $\operatorname{ord}(D)=p^{r}$. As D is cyclic, the group algebra $k D \cong k[X] /\left(X^{p^{r}}\right)$ has finite representation type, with indecomposable modules $N_{1}, \ldots, N_{p^{r}}$. In view of Theorem 3, every indecomposable \mathcal{B}-module is relatively D-projective, and hence a direct summand of some $k G \otimes_{k D} N_{i}$. Consequently, there are only finitely many isomorphism classes of such modules. If $D=\{1\}$, then each indecomposable \mathcal{B}-module M is a direct summand of $k G \otimes_{k} k \cong k G$ and is thus projective. This implies that \mathcal{B} is simple.

[^0]Remark. The converse statements of (1) and (2) of Corollary 5 also hold, but their proofs necessitate the so-called Brauer correspondence of blocks.

References

[1] R. Brauer, On the arithmetic in a group ring. Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 109-114.
[2] \qquad , On blocks of characters of groups of finite order I. Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 182-186.
\qquad On blocks of characters of groups of finite order II. Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 215-219.
[4] R. Farnsteiner, Induced modules: The Mackey Decomposition Theorem. Lecture Notes, available at http://www.math.uni-bielefeld.de/~sek/selected.html
[5] Induced modules: Graded algebras and Green's Indecomposability Theorem. Lecture Notes, available at http://www.math.uni-bielefeld.de/~sek/selected.html
[6] J.A. Green, Blocks of modular representations. Math. Z. 79 (1962), 100-115.
[7] \qquad , Some remarks on defect groups. Math. Z. 107 (1968), 133-150.

[^0]: ${ }^{1}$ This argument actually shows that induction functors of p-groups preserve indecomposables. In our situation, Frobenius reciprocity gives $\operatorname{Hom}_{k P}\left(k P \otimes_{k\left(P \cap D^{\prime g}\right)} k, k\right) \cong \operatorname{Hom}_{k\left(P \cap D^{\prime g}\right)}(k, k)$, which, in view of $k P$ being local, implies that the top of the induced module is simple.

