INDUCED MODULES: FIRST PROPERTIES OF DEFECT GROUPS

ROLF FARNSTEINER

Let k be a field of characteristic p > 0. If G is a finite group, then the group algebra kG has a block decomposition

$$kG = \mathcal{B}_1 \oplus \mathcal{B}_2 \oplus \cdots \oplus \mathcal{B}_r,$$

where each block $\mathcal{B}_i \leq kG$ is an indecomposable two-sided ideal. Equivalently, each block $\mathcal{B} \subseteq kG$ is an indecomposable $kG \otimes_k kG^{\text{op}}$ -module. Since the map

$$(g,h) \mapsto g \otimes h^{-1}$$

induces an isomorphism $k(G \times G) \longrightarrow kG \otimes_k kG^{\text{op}}$ of associative k-algebras, the latter condition amounts to \mathcal{B} being an indecomposable submodule of the $(G \times G)$ -module kG, relative to the action

$$(g,h) \cdot x := gxh^{-1} \quad \forall g,h \in G, x \in kG.$$

One can thus speak of the vertex of the $(G \times G)$ -module \mathcal{B} , see [4] for the definition.

Let $\Delta: G \longrightarrow G \times G$; $g \mapsto (g, g)$ be the diagonal embedding, whose induced algebra homomorphism $kG \longrightarrow k(G \times G)$ will also be denoted Δ .

Definition. Let $\mathcal{B} \subseteq kG$ be a block. A *p*-subgroup $D \subseteq G$ is called a *defect group of* \mathcal{B} if $\Delta(D)$ is a vertex of the $(G \times G)$ -module \mathcal{B} . If $\operatorname{ord}(D) = p^d$, then *d* is called the *defect* of \mathcal{B} .

The name defect derives from an early result of the theory, which states that a block $\mathcal{B} \subseteq kG$ is semi-simple (and hence simple) if and only if d = 0. Thus, d may be viewed as a measure for the deviation of \mathcal{B} from being semi-simple.

Defects were first defined by Brauer [1], with the definition of a defect group following shortly thereafter [2]. In his seminal articles [1, 2, 3] Brauer established important properties of defect groups that were later reformulated by Green [6, 7], whose approach is the basis of our exposition.

Recall that G acts on k via

$$q.\alpha = \alpha \qquad \forall \ g \in G, \ \alpha \in k.$$

Our first result establishes the existence of defect groups and shows that the defect of a block is well-defined.

Theorem 1. Let $\mathcal{B} \subseteq kG$ be a block of kG.

- (1) \mathcal{B} possesses a defect group $D \subseteq G$.
- (2) If $D, D' \subseteq G$ are defect groups of \mathcal{B} , then there exists $g \in G$ with $D' = gDg^{-1}$.

Proof. (1) We consider $k(G \times G)$ as a left and right G-module via Δ . The bilinear map

 $\varphi: k(G \times G) \times k \longrightarrow kG \; \; ; \; \; ((g,h),\alpha) \mapsto \alpha g h^{-1}$

is kG-balanced: Given $x \in G$, we have

$$\varphi((g,h)\boldsymbol{.} x,\alpha) = \varphi((gx,hx),\alpha) = \alpha g h^{-1} = \varphi((g,h),x.\alpha).$$

Date: November 29, 2007.

Hence there exists a surjective, k-linear map

 $\psi: k(G \times G) \otimes_{kG} k \longrightarrow kG \quad ; \quad (g,h) \otimes \alpha \mapsto \alpha g h^{-1},$

which is readily seen to be $k(G \times G)$ -linear. Since both spaces involved have dimension $\operatorname{ord}(G)$, ψ is in fact an isomorphism, so that kG is a relatively $\Delta(G)$ -projective $k(G \times G)$ -module. Being a direct summand of kG, the block \mathcal{B} enjoys the same property. According to [4, Prop.4] there exists a *p*-subgroup $D \subseteq G$ such that $\Delta(D)$ is a vertex of \mathcal{B} .

(2) Let D, D' be defect groups of \mathcal{B} . Owing to [4, Prop.4], there exists an element $(g, h) \in G \times G$ such that

$$\Delta(D') = (g, h)\Delta(D)(g, h)^{-1},$$

whence $D' = gDg^{-1}$.

We would like to relate the defect group of a block to the vertices of its indecomposable modules. This necessitates the following subsidiary result, which shows that induction commutes with taking tensor products over k. Recall that the tensor product $M \otimes_k N$ of two G-modules obtains the structure of a G-module via

$$g.(m\otimes n):=g.m\otimes g.n$$

for all $g \in G$, $m \in M$ and $n \in N$.

Lemma 2 (Tensor Identity). Let $H \subseteq G$ be a subgroup of the finite group G. If V is a finitedimensional G-module and M is a finite-dimensional H-module, then we have an isomorphism

$$kG \otimes_{kH} (M \otimes_k V|_H) \cong (kG \otimes_{kH} M) \otimes_k V$$

of G-modules.

Proof. Given $g \in G$, we consider the k-linear map

$$\lambda_q: M \otimes_k V \longrightarrow (kG \otimes_{kH} M) \otimes_k V \; ; \; m \otimes v \mapsto (g \otimes m) \otimes g.v$$

If $a = \sum_{g \in G} \alpha_g g$ is an element of kG, we define $\lambda_a := \sum_{g \in G} \alpha_g \lambda_g$. There results a bilinear map

$$\psi: kG \times (M \otimes_k V) \longrightarrow (kG \otimes_{kH} M) \otimes_k V \quad ; \quad (a, x) \mapsto \lambda_a(x).$$

Since $\lambda_{ah}(x) = \lambda_a(hx)$ for all $a \in kG$, $h \in H$ and $x \in M \otimes_k V$, the map ψ is kH-balanced and there exists a k-linear map

$$\omega: kG \otimes_{kH} (M \otimes_k V) \longrightarrow (kG \otimes_{kH} M) \otimes_k V \; ; \; a \otimes x \mapsto \lambda_a(x).$$

This map is actually kG-linear: Let $g, g' \in G, m \in M$ and $v \in V$. Then we have

$$\omega(g' \cdot (g \otimes (m \otimes v))) = \omega(g'g \otimes (m \otimes v)) = (g'g \otimes m) \otimes g'g \cdot v = g' \cdot ((g \otimes m) \otimes g \cdot v)$$

= $g' \cdot \omega(g \otimes (m \otimes v)).$

Directly from the definition, we obtain the surjectivity of ω . Since both G-modules involved have dimension $|G/H|(\dim_k M)(\dim_k V)$, the map ω is bijective.

Recall that any block $\mathcal{B} \subseteq kG$ is of the form $\mathcal{B} = kGe$, where $e \in kG$ is a central, primitive idempotent of kG. Given an indecomposable kG-module M, we thus have e.M = (0) or e.M = M. In the latter case, we say that M belongs to \mathcal{B} .

Theorem 3. Let $\mathcal{B} \subseteq kG$ be a block with defect group D. Then every indecomposable kG-module M belonging to \mathcal{B} has a vertex $D_M \subseteq D$.

Proof. We let G act on kG via conjugation, i.e.,

$$q \cdot a := gag^{-1} \qquad \forall \ a \in kG, \ g \in G.$$

Note that this amounts to pulling back the $(G \times G)$ -action on kG along Δ . Since $\mathcal{B} \leq kG$ is a two-sided ideal, $\mathcal{B} \subseteq kG$ is a G-submodule relative to this operation. The multiplication

$$\mu: \mathcal{B} \otimes_k M \longrightarrow M \quad ; \quad b \otimes m \mapsto bm$$

is a homomorphism of G-modules: Given $g \in G, b \in \mathcal{B}$ and $m \in M$, we have

$$\mu(g(b\otimes m)) = \mu(g \cdot b\otimes gm) = \mu(g b g^{-1}\otimes gm) = g b g^{-1}gm = g(bm) = g\mu(b\otimes m).$$

Let $e \in kG$ be the central primitive idempotent of \mathcal{B} , so that $\mathcal{B} = kGe$. Then

 $\iota: M \longrightarrow \mathcal{B} \otimes_k M \quad ; \quad m \mapsto e \otimes m$

is a homomorphism of G-modules. Since M belongs to \mathcal{B} , we obtain $\mu \circ \iota = \mathrm{id}_M$, so that M is a direct summand of $\mathcal{B} \otimes_k M$.

As $D \subseteq G$ is a defect group of \mathcal{B} , the *G*-module \mathcal{B} is relatively *D*-projective. Consequently, \mathcal{B} is a direct summand of $kG \otimes_{kD} \mathcal{B}|_D$. In view of Lemma 2, the tensor product $\mathcal{B} \otimes_k M$ is a direct summand of $(kG \otimes_{kD} \mathcal{B}|_D) \otimes_k M \cong kG \otimes_{kD} (\mathcal{B}|_D \otimes_k M|_D)$. By the above, this implies that M is relatively *D*-projective, so that *D* contains a vertex of *M*, cf. [4, Prop.4].

There exists exactly one block $\mathcal{B}_0(G) \subseteq kG$ to which the trivial *G*-module *k* belongs. The block $\mathcal{B}_0(G)$ is customarily referred to as the *principal block*. The following result shows why $\mathcal{B}_0(G)$ is thought of as being the "most complicated" block of kG:

Corollary 4. Every defect group $D \subseteq G$ of the principal block $\mathcal{B}_0(G)$ is a Sylow-p-subgroup of G.

Proof. Owing to Theorem 3, D contains a vertex D' of the trivial module k. Being a p-group, D' is contained in a Sylow-p-subgroup $P \subseteq G$. As k is relatively D'-projective, k is a summand of $kG \otimes_{kD'} k$. By Mackey's Theorem [4], the trivial P-module $k|_P$ is a summand of

$$\bigoplus_{PgD'} kP \otimes_{k(P \cap D'^g)} k^g = \bigoplus_{PgD'} kP \otimes_{k(P \cap D'^g)} k,$$

where $D'^g := gD'g^{-1}$. Repeated application of Green's Indecomposability Theorem [5] (to a chain of normalizers in P starting with $\operatorname{Nor}_P(P \cap D'^g)$) implies that each summand is an indecomposable kP-module.¹ The Theorem of Krull-Remak-Schmidt now ensures that $k|_P$ is isomorphic to one of these summands. Hence there exists an element g with $P = D'^g$, so that P = D'. \Box

Corollary 5. Let $\mathcal{B} \subseteq kG$ be a block with defect group D.

(1) If D is cyclic, then \mathcal{B} has finite representation type.

(2) If $D = \{1\}$, then \mathcal{B} is simple.

Proof. Suppose that $\operatorname{ord}(D) = p^r$. As D is cyclic, the group algebra $kD \cong k[X]/(X^{p^r})$ has finite representation type, with indecomposable modules N_1, \ldots, N_{p^r} . In view of Theorem 3, every indecomposable \mathcal{B} -module is relatively D-projective, and hence a direct summand of some $kG \otimes_{kD} N_i$. Consequently, there are only finitely many isomorphism classes of such modules. If $D = \{1\}$, then each indecomposable \mathcal{B} -module M is a direct summand of $kG \otimes_k k \cong kG$ and is thus projective. This implies that \mathcal{B} is simple.

¹This argument actually shows that induction functors of *p*-groups preserve indecomposables. In our situation, Frobenius reciprocity gives $\operatorname{Hom}_{kP}(kP \otimes_{k(P \cap D'^g)} k, k) \cong \operatorname{Hom}_{k(P \cap D'^g)}(k, k)$, which, in view of kP being local, implies that the top of the induced module is simple.

ROLF FARNSTEINER

Remark. The converse statements of (1) and (2) of Corollary 5 also hold, but their proofs necessitate the so-called Brauer correspondence of blocks.

References

- [1] R. Brauer, On the arithmetic in a group ring. Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 109–114.
- [2] _____, On blocks of characters of groups of finite order I. Proc. Nat. Acad. Sci. U.S.A. **32** (1946), 182–186.
- [3] _____, On blocks of characters of groups of finite order II. Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 215–219.
- [4] R. Farnsteiner, Induced modules: The Mackey Decomposition Theorem. Lecture Notes, available at
 - http://www.math.uni-bielefeld.de/~sek/selected.html
- [5] _____, Induced modules: Graded algebras and Green's Indecomposability Theorem. Lecture Notes, available at http://www.math.uni-bielefeld.de/~sek/selected.html
- [6] J.A. Green, Blocks of modular representations. Math. Z. 79 (1962), 100-115.
- [7] _____, Some remarks on defect groups. Math. Z. 107 (1968), 133–150.