INDUCED MODULES: GRADED ALGEBRAS AND GREEN'S INDECOMPOSABILITY THEOREM

ROLF FARNSTEINER

Throughout, k is assumed to be an algebraically closed field of characteristic char(k) = p > 0. Let $N \leq G$ be a normal subgroup of a finite group G. As usual, kG denotes the group algebra of G.

Theorem (Green's Indecomposability Theorem, [3]). Suppose that G/N is a p-group. If M is an indecomposable kN-module, then the kG-module $kG \otimes_{kN} M$ is indecomposable.

We shall prove this result by establishing a general statement on group-graded algebras, that has also been useful in the representation theory of infinitesimal group schemes (cf. [2]). In the sequel, all algebras and modules are finite-dimensional.

Definition. Let G be a finite group. A k-algebra

$$R = \bigoplus_{g \in G} R_g$$

is said to be G-graded if $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. We call R strongly G-graded if $R_g R_h = R_{gh}$ for all $g, h \in G$.

For instance, if $N \leq G$ is a normal subgroup, then kG is a strongly G/N-graded k-algebra. In fact, if $R = \bigoplus_{g \in G} R_g$ is G-graded and $\pi : G \longrightarrow H$ is a surjective homomorphism of finite groups, then R obtains the structure of an H-graded algebra via

$$R_h := \bigoplus_{g \in \pi^{-1}(h)} R_g.$$

Indecomposability corresponds to endomorphism rings being local, so we are interested in the question when a graded algebra is local. By way of motivation we record a few necessary conditions.

Lemma 1. Suppose that $R = \bigoplus_{g \in G} R_g$ is a local algebra. Then the following statements hold:

- (1) The algebra R_1 is local.
- (2) If $R_q \not\subseteq \operatorname{Rad}(R)$ for every $g \in G$, then G is a p-group.

Proof. By assumption, there exists an algebra homomorphism $\varepsilon : R \longrightarrow k$ such that ker $\varepsilon = \operatorname{Rad}(R)$.

(1) Since ker $\varepsilon|_{R_1}$ is a nilpotent ideal of codimension 1, it follows that R_1 is local.

(2) Consider $N := \bigoplus_{g \in G} (\ker \varepsilon) \cap R_g$. Then N is a nilpotent ideal of R. Thus, ε induces an algebra homomorphism $\gamma : S \longrightarrow k$ of the local, G-graded algebra S := R/N. By virtue of our current assumption, we have $\dim_k S_g = 1$ for every $g \in G$, and for every $g \in G$ there exists a unique element $s_g \in S_g$ such that $\gamma(s_g) = 1$. Consequently, we have

$$s_g s_h = s_{gh} \qquad \forall \ g, h \in G_s$$

Date: November 22, 2007.

ROLF FARNSTEINER

so that the map $G \longrightarrow S$; $g \mapsto s_g$ induces a surjective algebra homomorphism $\zeta : kG \longrightarrow S$. By equality of dimensions, this map is bijective. As a result, the group algebra kG is local, forcing G to be a p-group.

We turn to algebras that are graded by some p-group G, beginning with the case where G is abelian.

Lemma 2. Let $R = \bigoplus_{g \in G} R_g$ be a group-graded k-algebra. Suppose that

- (a) G is an abelian p-group, and
- (b) $\dim_k R_g \leq 1$ for every $g \in G$, and
- (c) the elements of $R_q \setminus \{0\}$ are invertible for every $g \in G$.

Then there exists a subgroup $H \subseteq G$ with $R \cong kH$.

Proof. In view of (c), $H := \{h \in G ; R_h \neq (0)\}$ is a subgroup of G, and $R = \bigoplus_{h \in H} R_h$. By general theory, the group H is a direct sum of cyclic groups with generators h_1, \ldots, h_ℓ of orders $p^{n_1}, \ldots, p^{n_\ell}$, say. Pick $r_i \in R_{h_i}$ with $r_i^{p^{n_i}} = 1$. Given $i, j \in \{1, \ldots, \ell\}$, there exists $\alpha_{ij} \in k$ such that

$$r_i r_j r_i^{-1} = \alpha_{ij} r_j$$

Thus,

$$r_j = r_i^{p^{n_i}} r_j r_i^{-p^{n_i}} = \alpha_{ij}^{p^{n_i}} r_j$$

so that $\alpha_{ij} = 1$. Consequently, the elements r_1, \ldots, r_ℓ commute with each other. Since the subalgebra generated by these elements contains all homogeneous parts of R, we see that R is commutative. By the same token, the map $T_i \mapsto r_i$ defines an isomorphism

$$k[T_1,\ldots,T_r]/(T_1^{p^{n_1}}-1,\ldots,T_\ell^{p^{n_\ell}}-1) \xrightarrow{\sim} R,$$

with the truncated polynomial ring being isomorphic to kH.

The proof of our main result necessitates information on nilpotent elements. A subset $W \subseteq R$ of a k-algebra R is *nil* if every element $w \in W$ is nilpotent. We say that W is *nilpotent* if $W^n = (0)$ for some $n \in \mathbb{N}$. The set W is referred to as *weakly closed* if there exists a function $\gamma : W \times W \longrightarrow k$ such that $vw + \gamma(v, w)wv \in W$ for all $v, w \in W$. Here is the relevant result, which we shall take for granted (see [4, (II.2)]).

Theorem 3 (Jacobson's Theorem on nil weakly closed sets). Let $W \subseteq R$ be a nil, weakly closed subset of an associative k-algebra R. Then the associative subalgebra $alg_k(W) \subseteq R$ without identity that is generated by W is nilpotent.

Theorem 4 ([2]). Let G be a p-group, $R = \bigoplus_{g \in G} R_g$ be a G-graded algebra. If R_1 is local, then R is local.

Proof. We first assume that G is abelian and write G additively. Since R_0 is local, there exists a linear map $\alpha : R_0 \longrightarrow k$ such that

$$\ker \alpha = \{ r \in R_0 ; r \text{ is nilpotent} \}.$$

Given $g \in G$, we set

 $N_g := \{ r \in R_g ; r \text{ is nilpotent} \}.$

Suppose that $\operatorname{ord}(G) = p^m$. For $g \in G$ and $r \in R_g$, we have $r^{p^m} \in R_{p^m g} = R_0$. By the above, we can write

$$(*) r^{p^m} = \alpha(r^{p^m})1 + x$$

for some nilpotent element $x \in N_0$. It follows that

$$\psi_a: R_a \longrightarrow k \; ; \; r \mapsto \alpha(r^{p^m})$$

is a homogeneous polynomial function of degree p^m , whose zero locus $\mathcal{Z}(\psi_g)$ is N_g . Since R_g and k are irreducible varieties and ψ_g is a morphism, it follows from standard results on morphisms that $\dim N_g \geq \dim_k R_g - 1$.

By (*), a homogeneous element $r \in R$ is either nilpotent or invertible. Given $r \in N_g$ and $s \in R_h$, we have $rs \in R_{g+h}$. If rs is invertible, then left multiplication by r is surjective, which contradicts the nilpotence of r. Hence $rs \in N_{g+h}$, and a similar argument shows that $sr \in N_{g+h}$. Consequently, $N := \bigcup_{g \in G} N_g$ is a nil weakly closed subset of R. Theorem 3 now implies that the associative algebra $alg_k(N)$ without identity generated by N is nilpotent. In particular, N_g is a subspace of R_g , which, by our earlier observation, has codimension ≤ 1 . By the above, $J = \bigoplus_{g \in G} N_g$ is a nilpotent ideal of R, such that the factor algebra S := R/J is G-graded with the following properties:

- (a) $\dim_k S_g \leq 1$ for every $g \in G$, and
- (b) every element of $S_q \setminus \{0\}$ is invertible.

Consequently, Lemma 2 provides a subgroup $H \subseteq G$ such that $S \cong kH$. In particular, S is local and the algebra R thus enjoys the same property.

In the general case, that is, when G is not necessarily abelian, we proceed by induction on the order of G. The p-group G has a non-trivial center C(G). We set G' := G/C(G) and denote by $\pi : G \longrightarrow G'$ the canonical projection. By our introductory remarks, this map endows R with a G' grading such that $R_1 = \bigoplus_{g \in C(G)} R_g$ is graded with respect to the abelian p-group C(G). By the first part of the proof R_1 is local, so that induction ensures that the algebra R is also local. \Box

Corollary 5. Let $R = \bigoplus_{g \in G} R_g$ be a group-graded algebra. If $N \leq G$ is a normal subgroup of index a p-power such that the subalgebra $\bigoplus_{h \in N} R_h$ is local, then R is local.

If G is a finite group that acts on a k-algebra Λ via automorphisms

$$(g,\lambda) \mapsto g_{\boldsymbol{\cdot}}\lambda,$$

then $\Lambda * G$ denotes the *skew group algebra* of G with coefficients in Λ . By definition, $\Lambda * G$ is the free Λ -module with basis G, whose multiplication is given by

$$(\lambda_g g)(\lambda_h h) := \lambda_g(g \cdot \lambda_h)gh \qquad \forall \ g, h \in G, \ \lambda_g, \lambda_h \in \Lambda.$$

We now obtain the following generalization of Green's theorem:

Corollary 6. Let G be a finite group that operates on an algebra Λ via automorphisms, and suppose that $N \trianglelefteq G$ is a normal subgroup of index a power of p. If M is an indecomposable $\Lambda *N$ -module, then the induced module $\Lambda *G \otimes_{\Lambda *N} M$ is indecomposable.

Proof. The skew group algebra $\Lambda * G$ is strongly graded relative to the *p*-group G/N, with onecomponent $(\Lambda * G)_1 = \Lambda * N$. Moreover, the induced module $\Lambda * G \otimes_{\Lambda * N} M$ and its endomorphism ring are also G/N-graded, and [1, (4.8)] provides an isomorphism

$$\operatorname{End}_{\Lambda * G}(\Lambda * G \otimes_{\Lambda * N} M)_1 \cong \operatorname{End}_{\Lambda * N}(M)$$

ROLF FARNSTEINER

References

- [1] E. Dade, Group-graded rings and modules. Math. Z. 174 (1980), 241–262.
- [2] R. Farnsteiner, *Group-graded algebras, extensions of infinitesimal groups, and applications.* SFB-preprint 07-070. Universität Bielefeld.
- [3] J. Green, On the indecomposable representations of a finite group. Math. Z. 70 (1959), 430-445.
- [4] N. Jacobson, Lie Algebras. Dover Publications, New York 1979.