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Let S be a ring, R ⊆ S be a subring. Given an R-module M , we can form the induced S-module
S ⊗R M . In this fashion, we obtain a functor

modR −→ modS ; N 7→ S ⊗R N.

When the composite of this functor with the restriction functor modS −→ modR ;M 7→M |R can
be controlled, one can relate properties of modS to those of modR. By way of illustration, let us
consider the following result:

Lemma 1. Suppose that R ⊆ S are finite-dimensional k-algebras such that
(∗) M is a direct summand of (S ⊗R M)|R for every finite-dimensional R-module M .

If S is representation-finite, so is R.

Proof. Let N1, . . . , Nr be a complete set of representatives for the isoclasses of finite-dimensional
indecomposable S-modules. If M is a finite-dimensional indecomposable R-module, then

S ⊗R M ∼= n1N1 ⊕ · · · ⊕ nrNr

with ni ∈ N0. In view of (∗), the Theorem of Krull-Remak-Schmidt implies that M is isomorphic
to an indecomposable direct summand of some Ni|R, so that the isoclass of M belongs to the finite
set of indecomposable summands of

⊕r
i=1Ni|R. �

At first sight, condition (∗) looks awfully contrived and one may wonder about the existence of
non-trivial examples. In fact, any representation-infinite algebra R gives rise to a non-example:
Since R can be viewed as a subalgebra of some algebra S = Matn(k) of (n × n)-matrices, the
resulting extension of algebras cannot satisfy (∗). The purpose of this lecture is to establish a
result for group algebras of finite groups, which greatly refines (∗).

Let k be a field. In the following, we let K ⊆ G be finite groups with group algebras kK ⊆ kG.
Given g ∈ G, we let Kg := {ghg−1 ; h ∈ K}. If M is a K-module, then Mg denotes the Kg-module
with underlying k-space M and action

x.m := g−1xg.m ∀ x ∈ Kg, m ∈M.

If M is a G-module, then M |K denotes the restriction of M to K.

Theorem (Mackey Decomposition Theorem, [3]). Let H,K ⊆ G be subgroups of G, M be a K-
module. Then we have an isomorphism

(kG⊗kK M)|H ∼=
⊕
HgK

kH ⊗k(H∩Kg) M
g|H∩Kg

of H-modules, where the sum is taken over the double cosets HgK.
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Corollary 2. Suppose that char(k) = p > 0. If kG has finite representation type, then every
Sylow-p-subgroup P ⊆ G is cyclic.

Proof. Let P ⊆ G be a Sylow-p-subgroup, M be a kP -module. Setting H = K = P and g = 1 in
the Theorem, we see that kP ⊗kP M ∼= M is a direct summand of the P -module (kG⊗kP M)|P . In
view of Lemma 1, the algebra kP is representation-finite. Since P is a p-group, kP local, whence
dimk Rad(kP )/Rad(kP )2 = dimk Ext1kP (k, k) = 1. As a result, every element x ∈ Rad(kP ) \
Rad(kP )2 induces an isomorphism k[X]/(Xpn

) ∼−→ kP . Since Rad(kP ) =
∑

g∈P k(g − 1), we
conclude that P is cyclic. �

Remarks. (1) The converse of Corollary 2 also holds, see [2].
(2) Property (∗) does not require Mackey’s Theorem: Let C ⊆ G be a set of representatives for

the left K-cosets 6= K. Then kG⊗kK M ∼= M ⊕ (
⊕

g∈C g ⊗M) is a decomposition of K-modules.

Proof of the Theorem. We proceed in several steps, beginning with a refinement of the foregoing
remark. Given g ∈ G, we put

k(HgK) =
∑

x∈HgK

kx.

Let {g1, . . . , gn} be a complete set of double coset representatives, so that G =
⊔n

i=1HgiK. We
immediately obtain:

(i) k(HgK) is a (kH, kK)-bimodule of kG for every g ∈ G and kG =
⊕n

i=1 k(HgiK), a direct
sum of (kH, kK)bimodules. 3

(ii) Let g be an element of G. Then there is an isomorphism

ϕg : kH ⊗k(H∩Kg) M
g|H∩Kg −→ k(HgK)⊗kK M ; h⊗m 7→ hg ⊗m

of kH-modules.
Direct computation shows the existence of ϕg. Moreover, ϕg is surjective. Let h1, . . . , h` be a
complete set of representatives for the left H ∩Kg-cosets of H. Then {h1g, . . . , h`g} is a basis of
the right kK-module k(HgK) ⊆ kG. Consequently,

dimk k(HgK)⊗kK M = `dimk M = dimk kH ⊗k(H∩Kg) M
g|H∩Hg ,

implying that ϕg is an isomorphism. 3

Combining (i) and (ii), we arrive at the following isomorphisms of kH-modules:

kG⊗kK M ∼=
n⊕

i=1

k(HgiK)⊗kK M ∼=
n⊕

i=1

kH ⊗k(H∩Kgi ) M
gi |H∩Kgi .

This completes the proof of our theorem. �

Mackey’s Theorem is of fundamental importance as it sets the stage for the theory of vertices and
sources. Suppose that k is a field of positive characteristic p > 0, and let G be a finite group.
Let M be a kG-module, H ⊆ G be a subgroup. We say that M is relatively H-projective, if M
is a direct summand of an induced module kG ⊗kH N , where N is an H-module. We record the
following basic fact:

Lemma 3. Let M be a G-module. If P ⊆ G is a Sylow-p-subgroup, then M is relatively P -
projective.
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Proof. Let g1, . . . , gn ∈ G be a complete set of representatives for the left P -cosets. Given a P -linear
map ϕ : X −→ Y between two G-modules X and Y , we define

Tr(ϕ) : X −→ Y ; x 7→
n∑

i=1

giϕ(g−1
i x).

Then Tr(ϕ) does not depend on the choice of g1, . . . , gn and is G-linear (!) with Tr(ϕ) = [G :P ]ϕ
if ϕ is already G-linear.

We consider the canonical G-linear surjection

f : kG⊗kP M −→M ; a⊗m 7→ am,

which admits a P -linear splitting

s : M −→ kG⊗kH M ; m 7→ 1⊗m.

Since f is G-linear, the identity f ◦ s = idM implies

[G :P ] idM = Tr(f ◦ s) = f ◦ Tr(s).

As p does not divide the index [G :P ], it follows that f is split surjective. �

Definition. Let M be an indecomposable G-module. A subgroup D ⊆ G is called a vertex for M
if

(a) M is relatively D-projective, and
(b) if D′ ( D is a proper subgroup, then M is not relatively D′-projective.

Definition. Let M be an indecomposable G-module, D ⊆ G be a vertex of M . An indecomposable
D-module N is a source of M if and only if M is a direct summand of kG⊗kD N .

We record a few basic properties:
• If M is an indecomposable G-module, then any subgroup D ⊆ G of minimal order subject

to M being relatively D-projective is a vertex of M . Hence M is a direct summand of
some kG ⊗kD N , and the Theorem of Krull-Remak-Schmidt provides an indecomposable
summand N0 of N such that M is a direct summand of kG⊗kD N0. Consequently, vertices
and sources exist.

• Let D ⊆ G be a vertex of M , N ∈ mod kD be a source. Given g ∈ G, we have Mg ∼= M
and (kG⊗kD N)g ∼= kG⊗kDg Ng, so that Dg is also a vertex of M and Ng ∈ mod kDg is a
source.

• If M is an indecomposable G-module whose vertex is {1}, then M is a direct summand of
kG and hence projective. Thus, vertices measure the degree of departure from projectivity.
(Since kG is self-injective, the projective dimension pd(M) of M is either zero or infinite,
so that this notion is useless in our present context.)

For a subgroup H ⊆ G, we let NorG(H) := {g ∈ G ; gHg−1 = H} be the normalizer of H in G.
Here is a key result from Green’s seminal paper [1] on vertices an sources:

Proposition 4. Let M be an indecomposable G-module, D ⊆ G be a vertex of M .
(1) D is a p-group.
(2) If H ⊆ G is a subgroup such that M is relatively H-projective, then there exists g ∈ G such

that Dg ⊆ H.
(3) If D′ ⊆ G is a vertex of M , then there exists g ∈ G with D′ = Dg.
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(4) Let N0 and N1 be D-modules that are sources of M . Then there exists g ∈ NorG(D) with
N1

∼= Ng
0 .

Proof. (1) Let N be a D-module, which is a source of M . If P is a Sylow-p-subgroup of D, then
Lemma 3 implies that N is relatively P -projective. Hence M is a direct summand of kG ⊗kD N
and N is a direct summand of kD ⊗kP N

′. Consequently, M is a direct summand of

kG⊗kD (kD ⊗kP N
′) ∼= kG⊗kP N

′.

Since D is a vertex, we obtain D = P , so that D is a p-group.
(2) Since M is relatively H-projective, M actually is a direct summand of kG ⊗kH M |H : If

ϕ : kG⊗kH N −→M is split surjective, then the map

ω : kG⊗kH N −→ kG⊗kH M ; a⊗ n 7→ a⊗ ϕ(1⊗ n)

is G-linear and its composite ψ ◦ ω with the canonical map

ψ : kG⊗kH M −→M ; a⊗m 7→ m

equals ϕ. Hence ψ is also split surjective.
Mackey’s Theorem now implies that M |D is a direct summand of⊕

DgH

kD ⊗k(D∩Hg) M
g|D∩Hg .

Since M is also a direct summand of kG⊗kD M |D, we see that it is a direct summand of⊕
DgH

kG⊗k(D∩Hg) M
g|D∩Hg .

As M is indecomposable, there exists g ∈ G such that M is a direct summand of kG ⊗
k(D∩Hg−1 )

Mg−1 |
D∩Hg−1 . Since D is a vertex, this implies D ⊆ Hg−1

, whence Dg ⊆ H.
(3) This is a direct consequence of (2).
(4) Since M is a direct summand of kG⊗kD M |D, there exists an indecomposable summand N

of M |D which is a source of M . Then N is an indecomposable summand of

(kG⊗kD N0)|D ∼=
⊕
DgD

kD ⊗k(D∩Dg) N
g
0 |D∩Dg .

Thus, there is g such that N is a summand of kD ⊗k(D∩Dg) N
g
0 . Then M is a summand of

kG ⊗k(D∩Dg) N
g
0 , so that D being a vertex implies D = Dg. Thus, g ∈ NorG(D) and N is a

summand of kD ⊗kD Ng
0
∼= Ng

0 . Consequently, N ∼= Ng
0 , and our assertion follows by applying the

same reasoning to N1. �
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