INDUCED MODULES: THE MACKEY DECOMPOSITION THEOREM

ROLF FARNSTEINER

Let S be a ring, $R \subseteq S$ be a subring. Given an R-module M, we can form the induced S-module $S \otimes_R M$. In this fashion, we obtain a functor

$$\operatorname{mod} R \longrightarrow \operatorname{mod} S \; ; \; N \mapsto S \otimes_R N.$$

When the composite of this functor with the restriction functor mod $S \longrightarrow \text{mod } R$; $M \mapsto M|_R$ can be controlled, one can relate properties of mod S to those of mod R. By way of illustration, let us consider the following result:

Lemma 1. Suppose that $R \subseteq S$ are finite-dimensional k-algebras such that

(*) M is a direct summand of $(S \otimes_R M)|_R$ for every finite-dimensional R-module M. If S is representation-finite, so is R.

Proof. Let N_1, \ldots, N_r be a complete set of representatives for the isoclasses of finite-dimensional indecomposable S-modules. If M is a finite-dimensional indecomposable R-module, then

$$S \otimes_R M \cong n_1 N_1 \oplus \cdots \oplus n_r N_r$$

with $n_i \in \mathbb{N}_0$. In view of (*), the Theorem of Krull-Remak-Schmidt implies that M is isomorphic to an indecomposable direct summand of some $N_i|_R$, so that the isoclass of M belongs to the finite set of indecomposable summands of $\bigoplus_{i=1}^r N_i|_R$.

At first sight, condition (*) looks awfully contrived and one may wonder about the existence of non-trivial examples. In fact, any representation-infinite algebra R gives rise to a non-example: Since R can be viewed as a subalgebra of some algebra $S = Mat_n(k)$ of $(n \times n)$ -matrices, the resulting extension of algebras cannot satisfy (*). The purpose of this lecture is to establish a result for group algebras of finite groups, which greatly refines (*).

Let k be a field. In the following, we let $K \subseteq G$ be finite groups with group algebras $kK \subseteq kG$. Given $g \in G$, we let $K^g := \{ghg^{-1}; h \in K\}$. If M is a K-module, then M^g denotes the K^g -module with underlying k-space M and action

$$x \cdot m := g^{-1} x g \cdot m \qquad \forall \ x \in K^g, \ m \in M.$$

If M is a G-module, then $M|_K$ denotes the restriction of M to K.

Theorem (Mackey Decomposition Theorem, [3]). Let $H, K \subseteq G$ be subgroups of G, M be a K-module. Then we have an isomorphism

$$(kG \otimes_{kK} M)|_{H} \cong \bigoplus_{HgK} kH \otimes_{k(H \cap K^g)} M^g|_{H \cap K^g}$$

of H-modules, where the sum is taken over the double cosets HgK.

Date: November 14, 2007.

ROLF FARNSTEINER

Corollary 2. Suppose that char(k) = p > 0. If kG has finite representation type, then every Sylow-p-subgroup $P \subseteq G$ is cyclic.

Proof. Let $P \subseteq G$ be a Sylow-*p*-subgroup, M be a kP-module. Setting H = K = P and g = 1 in the Theorem, we see that $kP \otimes_{kP} M \cong M$ is a direct summand of the *P*-module $(kG \otimes_{kP} M)|_P$. In view of Lemma 1, the algebra kP is representation-finite. Since *P* is a *p*-group, kP local, whence $\dim_k \operatorname{Rad}(kP)/\operatorname{Rad}(kP)^2 = \dim_k \operatorname{Ext}_{kP}^1(k,k) = 1$. As a result, every element $x \in \operatorname{Rad}(kP) \setminus \operatorname{Rad}(kP)^2$ induces an isomorphism $k[X]/(X^{p^n}) \xrightarrow{\sim} kP$. Since $\operatorname{Rad}(kP) = \sum_{g \in P} k(g-1)$, we conclude that *P* is cyclic. □

Remarks. (1) The converse of Corollary 2 also holds, see [2].

(2) Property (*) does not require Mackey's Theorem: Let $\mathcal{C} \subseteq G$ be a set of representatives for the left K-cosets $\neq K$. Then $kG \otimes_{kK} M \cong M \oplus (\bigoplus_{g \in \mathcal{C}} g \otimes M)$ is a decomposition of K-modules.

Proof of the Theorem. We proceed in several steps, beginning with a refinement of the foregoing remark. Given $g \in G$, we put

$$k(HgK) = \sum_{x \in HgK} kx.$$

Let $\{g_1, \ldots, g_n\}$ be a complete set of double coset representatives, so that $G = \bigsqcup_{i=1}^n Hg_i K$. We immediately obtain:

(i) k(HgK) is a (kH, kK)-bimodule of kG for every $g \in G$ and $kG = \bigoplus_{i=1}^{n} k(Hg_iK)$, a direct sum of (kH, kK) bimodules.

(ii) Let g be an element of G. Then there is an isomorphism

$$\varphi_g: kH \otimes_{k(H \cap K^g)} M^g|_{H \cap K^g} \longrightarrow k(HgK) \otimes_{kK} M \quad ; \quad h \otimes m \mapsto hg \otimes m$$

of kH-modules.

Direct computation shows the existence of φ_g . Moreover, φ_g is surjective. Let h_1, \ldots, h_ℓ be a complete set of representatives for the left $H \cap K^g$ -cosets of H. Then $\{h_1g, \ldots, h_\ell g\}$ is a basis of the right kK-module $k(HgK) \subseteq kG$. Consequently,

$$\dim_k k(HgK) \otimes_{kK} M = \ell \dim_k M = \dim_k kH \otimes_{k(H \cap K^g)} M^g|_{H \cap H^g},$$

implying that φ_g is an isomorphism.

Combining (i) and (ii), we arrive at the following isomorphisms of kH-modules:

$$kG \otimes_{kK} M \cong \bigoplus_{i=1}^{n} k(Hg_iK) \otimes_{kK} M \cong \bigoplus_{i=1}^{n} kH \otimes_{k(H \cap K^{g_i})} M^{g_i}|_{H \cap K^{g_i}}.$$

This completes the proof of our theorem.

Mackey's Theorem is of fundamental importance as it sets the stage for the theory of vertices and sources. Suppose that k is a field of positive characteristic p > 0, and let G be a finite group. Let M be a kG-module, $H \subseteq G$ be a subgroup. We say that M is relatively H-projective, if M is a direct summand of an induced module $kG \otimes_{kH} N$, where N is an H-module. We record the following basic fact:

Lemma 3. Let M be a G-module. If $P \subseteq G$ is a Sylow-p-subgroup, then M is relatively P-projective.

 \diamond

Proof. Let $g_1, \ldots, g_n \in G$ be a complete set of representatives for the left *P*-cosets. Given a *P*-linear map $\varphi : X \longrightarrow Y$ between two *G*-modules *X* and *Y*, we define

$$\operatorname{Tr}(\varphi): X \longrightarrow Y \; ; \; x \mapsto \sum_{i=1}^{n} g_i \varphi(g_i^{-1}x).$$

Then $\operatorname{Tr}(\varphi)$ does not depend on the choice of g_1, \ldots, g_n and is *G*-linear (!) with $\operatorname{Tr}(\varphi) = [G:P]\varphi$ if φ is already *G*-linear.

We consider the canonical G-linear surjection

 $f: kG \otimes_{kP} M \longrightarrow M \; ; \; a \otimes m \mapsto am,$

which admits a *P*-linear splitting

 $s: M \longrightarrow kG \otimes_{kH} M \; ; \; m \mapsto 1 \otimes m.$

Since f is G-linear, the identity $f \circ s = id_M$ implies

$$[G:P] \operatorname{id}_M = \operatorname{Tr}(f \circ s) = f \circ \operatorname{Tr}(s).$$

As p does not divide the index [G:P], it follows that f is split surjective.

Definition. Let M be an indecomposable G-module. A subgroup $D \subseteq G$ is called a *vertex* for M if

- (a) M is relatively D-projective, and
- (b) if $D' \subsetneq D$ is a proper subgroup, then M is not relatively D'-projective.

Definition. Let M be an indecomposable G-module, $D \subseteq G$ be a vertex of M. An indecomposable D-module N is a source of M if and only if M is a direct summand of $kG \otimes_{kD} N$.

We record a few basic properties:

- If M is an indecomposable G-module, then any subgroup $D \subseteq G$ of minimal order subject to M being relatively D-projective is a vertex of M. Hence M is a direct summand of some $kG \otimes_{kD} N$, and the Theorem of Krull-Remak-Schmidt provides an indecomposable summand N_0 of N such that M is a direct summand of $kG \otimes_{kD} N_0$. Consequently, vertices and sources exist.
- Let $D \subseteq G$ be a vertex of M, $N \in \text{mod } kD$ be a source. Given $g \in G$, we have $M^g \cong M$ and $(kG \otimes_{kD} N)^g \cong kG \otimes_{kD^g} N^g$, so that D^g is also a vertex of M and $N^g \in \text{mod } kD^g$ is a source.
- If M is an indecomposable G-module whose vertex is $\{1\}$, then M is a direct summand of kG and hence projective. Thus, vertices measure the degree of departure from projectivity. (Since kG is self-injective, the projective dimension pd(M) of M is either zero or infinite, so that this notion is useless in our present context.)

For a subgroup $H \subseteq G$, we let $Nor_G(H) := \{g \in G ; gHg^{-1} = H\}$ be the normalizer of H in G. Here is a key result from Green's seminal paper [1] on vertices an sources:

Proposition 4. Let M be an indecomposable G-module, $D \subseteq G$ be a vertex of M.

(1) D is a p-group.

(2) If $H \subseteq G$ is a subgroup such that M is relatively H-projective, then there exists $g \in G$ such that $D^g \subseteq H$.

(3) If $D' \subseteq G$ is a vertex of M, then there exists $g \in G$ with $D' = D^g$.

ROLF FARNSTEINER

(4) Let N_0 and N_1 be *D*-modules that are sources of *M*. Then there exists $g \in Nor_G(D)$ with $N_1 \cong N_0^g$.

Proof. (1) Let N be a D-module, which is a source of M. If P is a Sylow-p-subgroup of D, then Lemma 3 implies that N is relatively P-projective. Hence M is a direct summand of $kG \otimes_{kD} N$ and N is a direct summand of $kD \otimes_{kP} N'$. Consequently, M is a direct summand of

$$kG \otimes_{kD} (kD \otimes_{kP} N') \cong kG \otimes_{kP} N'.$$

Since D is a vertex, we obtain D = P, so that D is a p-group.

(2) Since M is relatively H-projective, M actually is a direct summand of $kG \otimes_{kH} M|_{H}$: If $\varphi: kG \otimes_{kH} N \longrightarrow M$ is split surjective, then the map

$$\omega: kG \otimes_{kH} N \longrightarrow kG \otimes_{kH} M \quad ; \quad a \otimes n \mapsto a \otimes \varphi(1 \otimes n)$$

is G-linear and its composite $\psi \circ \omega$ with the canonical map

$$\psi: kG \otimes_{kH} M \longrightarrow M \quad ; \quad a \otimes m \mapsto m$$

equals φ . Hence ψ is also split surjective.

Mackey's Theorem now implies that $M|_D$ is a direct summand of

$$\bigoplus_{DgH} kD \otimes_{k(D\cap H^g)} M^g|_{D\cap H^g}.$$

Since M is also a direct summand of $kG \otimes_{kD} M|_D$, we see that it is a direct summand of

$$\bigoplus_{DgH} kG \otimes_{k(D \cap H^g)} M^g|_{D \cap H^g}.$$

As M is indecomposable, there exists $g \in G$ such that M is a direct summand of $kG \otimes_{k(D \cap H^{g^{-1}})} M^{g^{-1}}|_{D \cap H^{g^{-1}}}$. Since D is a vertex, this implies $D \subseteq H^{g^{-1}}$, whence $D^g \subseteq H$.

(3) This is a direct consequence of (2).

(4) Since M is a direct summand of $kG \otimes_{kD} M|_D$, there exists an indecomposable summand N of $M|_D$ which is a source of M. Then N is an indecomposable summand of

$$(kG \otimes_{kD} N_0)|_D \cong \bigoplus_{DgD} kD \otimes_{k(D \cap D^g)} N_0^g|_{D \cap D^g}.$$

Thus, there is g such that N is a summand of $kD \otimes_{k(D\cap D^g)} N_0^g$. Then M is a summand of $kG \otimes_{k(D\cap D^g)} N_0^g$, so that D being a vertex implies $D = D^g$. Thus, $g \in \operatorname{Nor}_G(D)$ and N is a summand of $kD \otimes_{kD} N_0^g \cong N_0^g$. Consequently, $N \cong N_0^g$, and our assertion follows by applying the same reasoning to N_1 .

References

- [1] J. Green, On the indecomposable representations of a finite group. Math. Z. 70 (1959), 430-445.
- [2] D. Higman, Indecomposable representations of characteristic p. Duke J. Math. 21 (1954), 377–381.
- [3] G. Mackey, On induced representations of groups. Amer. J. Math. 73 (1951), 576–592.