QUILLEN’S STRATIFICATION THEOREM

MARC STEPHAN

We fix a finite group G. Our goal is to explain Quillen’s result how the maximal ideal
spectrum of the group cohomology ring of G over an algebraically closed field of characteristic
p > 0 can be glued together from group cohomology of its elementary abelian p-subgroups.

Quillen wrote four papers about the structure of the group cohomology ring. The first two
[Qui71b] are more general as they treat compact Lie groups and use equivariant cohomology.
In [Qui71a], Quillen developed an algebraic approach, but still used equivariant cohomology for
some key step. Finally, he provided an algebraic proof for this step in collaboration with Venkov
[QV72]. In this short exposition, we follow the algebraic approach. More details can be found
in the very readable master’s thesis of Amalie Hggenhaven [Hogl13].

Quillen’s stratification theorem arose as a continuation of establishing the Atiyah-Swan con-
jecture which states that the Krull dimension of the mod-p cohomology ring of G equals its
p-rank. We will encounter the stratification theorem as a crucial input in Henning Krause’s
forthcoming talk. He will provide an exposition of his work [BIK11] with Dave Benson and
Srikanth Iyengar. For further developments motivated by Quillen’s work, we refer to Eric Fried-
lander’s discussion [Fril3].

1. BASICS OF GROUP COHOMOLOGY

Let R be a commutative ring, G and G’ finite groups, H C G a subgroup, and M an RG-
module.

The group cohomology of G with coeflicients in M is the graded R-module given in degree
nby H*(G,M) = Extga(R,M). It M = R, then H*(G, R) is a graded commutative ring. The
multiplication can be defined via Yoneda splicing if the Ext-groups are defined via extensions
or with the help of a diagonal approximation P, — P, ®pg P, if the Ext-groups are defined as
the cohomology groups of the cochain complex Hompg(Py, R) for a projective resolution P, of
R over RG.

Group cohomology is functorial. If ¢: G — G’ is a group homomorphism, M’ an RG’-module
and f: M’ — M a homomorphism of RG-modules, then we obtain an induced map

(o, f): H*(G',M') — H*(G, M).
In particular, the inclusion H — G induces a natural restriction map
resg.p: H(G,M) — H*(H,M).

It is induced on cochain level by Hompg(Px, M) — Hompgy (P, M) using that any projective
resolution P, over RG is also a projective resolution over RH and that RG-module homor-
mophisms are in particular RH-module homomorphisms.

There is also a natural map in the other direction, called corestriction (or transfer)

corgg: H*(H,M) - H*(G,M).

We will only need the fact that cory g oresg,m is multiplication by the index |G : H|.
For any g € G, conjugation induces a natural homomorphism

9"+ H*(H,M) — H*(gHg™ ", M)

given on cochain level by Homprpg (Pn, M) — Hompgrg-1) (P, M), f+ (z+— gfg 1 (x)).
If H is normal in G, then we obtain a G/H-action on H*(H, M) since elements of H act as
the identity by construction.
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The Bockstein homomorphism B: H"(G,F,) — H""1(G,F,) is the connecting homomor-
phism in the long exact sequence arising from the short exact sequence

0—Z/p -2 7Z)p* — Z/p — 0.

Finally, we recall the group cohomology of an elementary abelian p-group E = (Z/p)™ of rank
n with coefficients in a field k of characteristic p. It is a polynomial algebra for p = 2 and a
tensor product of a polynomial algebra with an exterior algebra for odd p:

klx1,...,zp], with |z;| =1, p=2,
klz1, .., 20 Qp Ayr, ..o, yn), with |z;| = 2,|y:| =1, p odd.

H*(E,k) = {

There is a canonical choice of generators such that §(y;) = z; for k =T, and odd p.

2. QUILLEN-VENKOV LEMMA

The following theorem is the Quillen-Venkov Lemma.

Theorem 2.1. Ifu € H*(G,F,) restricts to 0 € H*(E,F,) for all elementary abelian subgroups
E of G, then u is nilpotent.

It holds more generally over any field & of charcteristic p since H*(G, k) = H*(G,F,) ®F, k.
We will use Serre’s Theorem.

Theorem 2.2 ([Ser65]). Suppose that G is a finite p-group. If G is not elementary abelian,
then there exist cohomology classes as, ..., o, € HY(G,F,) \ {0} such that

Blan)... Blar) = 0.
Example 2.3. The group cohomology of the dihedral group Dg of order 8 is

]FQ [‘Ta ¢, y]
(ze)

with |z] = |e] =1 and |y| = 2. For p = 2, the Bockstein of a degree 1 cohomology class is just
its square. Thus we can take a1 = x, as = e which multiply to zero even before squaring.

H*(Dg,Fy)

1%

This is no coincidence. Ergiin Yalgin proved in [Yal08] that there exist nonzero 1-dimensional
cohomology classes with trivial product for any nonabelian 2-group.

In addition to Serre’s Theorem we will need the following result whose proof is an application
of the Lyndon-Hochschild-Serre spectral sequence. Its statement uses the identification of group
cohomology classes of degree one with group homomorphisms.

Lemma 2.4. Letv # 0 in H'(G,F,) = Hom(G,F,) and G’ =kerv. If u € H*(G,F,) restricts
to zero on G', then u* € H*(G,F,) - B(v).

We are ready to prove the Quillen-Venkov Lemma.

Proof of Theorem 2.1. By induction on the order of G. Let u € H*(G,F,) such that resg g(u) =
0 for all elementary abelian p-subgroups £ C G. By induction hypothesis we assume that
resg,m (1) is nilpotent for all proper subgroups H C G, and after replacing u by a power, that
resg, g (u) = 0 for all such H.

If G is not a p-group, let H C G be a p-Sylow subgroup. Then resq g is injective since p
does not divide the index |G : H|, and hence u = 0.

If G is a p-group, we may assume that G is not elementary abelian as otherwise u = 0 by
assumption. Choose ag,...,, as in Serre’s Theorem 2.2. By Lemma 2.4, the square u? is
divisible by B(a;) for all 1 < i < r. So u?" is divisible by B(a1)...8(a,.) = 0. Hence u is
nilpotent. O
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3. KRULL DIMENSION

Let k be a field of characteristic p > 0. Instead of working with graded-commutative algebras,
Quillen restricts to the commutative part of even-degree classes when p is odd.

Notation 3.1.
H*(G,k), p=2,

H(G, k) = ,
(G, k) {EBDOHZ(G,IC), p odd.

Example 3.2. For an elementary abelian p-group E of rank n, we obtain
H(E,k) = klz1,...,2z,], with |z;| =1,
when p = 2, and
H(E,k) = klxy,...,z,]) ® J, with |z;| =2,
as graded k[z1, ..., 2,]-modules, where J C H(E, k) is the nilpotent ideal generated by H(E, k)-
H(E, k), when p is odd.

Quillen’s starting point was the following theorem of Evens-Venkov.

Theorem 3.3 ([Venb9, Eve61]). The group cohomology H*(G, k) is a finitely generated algebra
over k. If M is a finitely generated kG-module, then H*(G, M) is a finitely generated module
over H*(G, k).

Since H*(H, k) = H*(G, kG ®m k) by the Eckmann-Shapiro Lemma, we obtain the following
consequence.

Corollary 3.4. For any subgroup H C G, the group cohomology H*(H, k) is a finitely generated
module over H*(G, k) via the restriction map.

Recall that the Krull dimension of a commutative ring is the longest length [ of proper
inclusions pg C p; C ... C p; of prime ideals. In particular the Krull dimension of a polynomial
ring over a field is the number of indeterminates. The following result of Quillen establishes a
conjecture of Atiyah and Swan.

Theorem 3.5. The Krull dimension of H(G, k) is the p-rank of G, i.e., the mazimal rank of
its elementary abelian p-subgroups.

Proof. The restriction maps resg, g for the elementary abelian p-subgroups £ C G induce a ring
homomorphism
¢: H(G, k) — [] H(E, k).
ECG
It factors over its image

H(G,k) — ¢(H(G,k)) — [[ H(E, k)
ECG
as a surjection whose kernel is nilpotent by the Quillen-Venkov Lemma, followed by an integral
extension since [ [ ;- H(E, k) is finitely generated as a module over ¢(H (G, k)) by Corollary 3.4.
Since nilpotent elements are contained in any prime ideal and integral extensions have the
same Krull dimension, we obtain

dim H(G, k) = dim ¢(H (G, k)) = diml_[H(E'7 k) = mgxdimH(E, k) = p-rank of G.
E

4. BASICS OF COMMUTATIVE ALGEBRA

Let k£ be an algebraically closed field. We will work with finitely generated commutative
algebras A over k. By Hilbert’s Basis Theorem, the ring A is noetherian and we may think of
A as a quotient
/{3[331, ces ,.Z‘n]

4 (fla'”afm)

1

as in affine algebraic geometry.
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The maximal ideal spectrum is the set
max(A) = {m | m C A maximal ideal}
equipped with the Zariski topology given by the closed sets
V(I) = {m € max(A4)|] C m}

for the ideals I of A.

Any homomorphism of finitely generated commutative algebras ¢: A — B induces a contin-
uous map

#*: max(B) — max(A4), m ¢ (m),

thus max is a contravariant functor to topological spaces.
Fact 4.1. Let A, B be finitely generated commutative algebras.

(1) If : A — B is surjective, then ¢* is a closed embedding with image V (ker ¢).
(2) If i: A — B is an integral extension, then the map i*: max(B) — max(A) is surjective and
closed.

We will use the following consequence.

Corollary 4.2. If ¢: A — B is a homomorphism such that B is integral over ¢(A), then
¢*: max(B) — max(A) is a closed map with image V (ker ¢).

5. QUILLEN STRATIFICATION

Let k be an algebraically closed field of characteristic p > 0. For a finite group G, the
group cohomology H*(G, k) is finitely generated by the Evens-Venkov Theorem. Hence so is its
”commutative part” H(G, k) C H*(G, k) which we defined in Notation 3.1. Let

Ve = max(H (G, k))

be the maximal ideal spectrum of H(G, k).
If H C G is a subgroup, then the restriction resq n: H(G, k) — H(H, k) induces a map

resg Ve — Va.
Theorem 5.1. The topological space Vg is the union

Vo = U resg; (V)
ECG

over all elementary abelian p-subgroups E C G.

Proof. As in the proof of Theorem 3.5, let ¢: H(G,k) = [[5-q H(E, k) be the map induced
by the restrictions resg g. It suffices to show that

H Ve = max( H H(E,k)) ¢—*> max(H (G, k)) & Vg
ECG ECaG

is surjective. This follows from Corollary 4.2 since ¢ factors over its image ¢(H (G, k)) as a
surjection with nilpotent kernel followed by an integral extension as explained in the proof of
Theorem 3.5. U

Remark 5.2. The subspaces resy, z(Vi) in the stratification are closed and are identical for
conjugate elementary abelian p-subgroups. Indeed, Corollary 4.2 applied to resg, g yields

TESE’E(VE) = V(ker(resg,g)) C Vg.

Moreover, since the conjugation action by an element g € G induces a commutative diagram

H(B, k) —% H(gEg~', k)

resG,ET TresG,gEgl

H(G, k) H(G, k),

g*=id

it follows that resg; (V) = res’é’gEg,l(Vgngl).
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With a more detailed analysis of the pieces, Quillen established the following refined stratifi-
cation theorem.

Theorem 5.3. The restriction maps resg, g induce a homeomorphism
co}gimVE = Va,

where the colimit is taken over the category with objects the elementary abelian p-subgroups of
G and morphisms E — E' the group homomorphisms of the form x — gxg~"' for some g € G.

Instead of providing a proof, we illustrate it in an example.
Example 5.4. Let p = 2 and thus k of characteristic 2, and G the dihedral group of order 8
Dg = {(a,b|a*=1,b> =1,bab' =a™').
The elementary abelian 2-subgroups of Dg together with inclusions and conjugations are

{1,a%,b,ba’} {1,a*} —————={1,a?, ba, ba®}

N TN

{1,ba%} (1,6} {1, ba} {1, ba?}.

The subgroups E; = {1,a?,b,ba*} and E; = {1,a? ba,ba®} are normal in Dg. Their in-
tersection Z = {1,a?} is the center of Dg. For any elementary abelian p-group E and sub-
group E’, the restriction homomorphism resg g: H*(E, k) — H*(E’, k) is surjective. Hence
resy g Ve — Vi is a closed embedding. It follows that the colimit Vi simplifies to a pushout
of two planes glued together along a line

Ve = colimp Vi = Vi, [ [ Vi,
Vz
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