Gentle algebras arising from triangulations of surfaces with orbifold points

Joint work in progress with Lang Mou

Daniel Labardini-Fragoso
UNAM, Mexico
Universität zu Köln, Germany

Workshop 'Geometry and Representations'
Zentrum für interdisziplinäre Forschung, Bielefeld, Germany April 9, 2022
(1) Generalized cluster algebras
2) Surfaces with orbifold points
(3) Gentle algebras associated to triangulations
(4) Main result

5 Mutations of representations

6 Generic bases and bangle bases

7 Some questions

Generalized cluster algebras

Generalized cluster algebras

Definition

A matrix $B \in \mathbb{Z}^{n \times n}$ is skew-symmetrizable if there exists a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}_{\geq 0}$ with positive diagonal entries, such that $D B=-(D B)^{\mathrm{T}}$.

Examples

$$
D=\left[\begin{array}{lll}
1 & & \\
& & 2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & -2 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \left\lvert\, D=\left[\begin{array}{lll}
2 & & \\
& 1 & \\
& & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & -1 & 0 \\
2 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad D=\left[\begin{array}{llll}
2 & & & \\
& 1 & & \\
& & 1 & \\
& & & 2
\end{array}\right] \quad B=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
2 & 0 & -1 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

Fix positive integers $\rho=\left(r_{1}, \ldots, r_{n}\right)$ such that r_{j} divides the $j^{\text {th }}$ column of B, as well as monic palindromic polynomials $\theta_{1}, \ldots, \theta_{n} \in \mathbb{C}[u, v]$.

$$
\theta_{j}=\sum_{i=1}^{j_{1}} c_{1} u^{2} v^{j^{-1}}
$$

Workshop 'Geometry and Representations' Gentle algs from triangs of surfs with orb pts

Generalized cluster algebras

Definition (Chekhov-Shapiro)

Let \mathcal{F} be the field of rational functions in n indeterminates with complex coefficients. Suppose we have a skew-symmetrizable seed (B, \mathbf{x}) in \mathcal{F}.
(1) For each $k \in\{1, \ldots, n\}$, define the generalized seed mutation

$$
\mathbf{x}^{\prime}:=\left(\begin{array}{c}
\mu_{k}^{\rho, \theta}(B, \mathbf{x}):=\left(\mu_{k}(B), \mathbf{x}^{\prime}\right), \quad \text { where } \\
\left.x_{1}, \ldots, x_{k-1}, \frac{\theta_{k}\left(\prod_{i: b_{i k}>0} x_{i}^{\frac{b_{i k}}{r_{k}}}, \prod_{i: b_{i k}<0} x_{i}^{-\frac{b_{i k}}{r_{k}}}\right)}{x_{k}}, x_{k+1}, \ldots, x_{n}\right) .
\end{array}\right.
$$

(2) The (coefficient-free) generalized cluster algebra $\mathcal{A}^{p, \theta}(B, x)$ is the \mathbb{Q}-subalgebra of \mathcal{F} generated by the union of all clusters produced from (B, \mathbf{x}) by finite sequences of generalized seed mutations.

For $r_{1}=\cdots=r_{n}=1$ and $\theta_{1}=\cdots=\theta_{n}=u+v$, we obtain FominZelevinsky's cluster algebra.

Generalized cluster algebras

Example

Let $B=\left[\begin{array}{ccc}0 & -2 & 1 \\ 1 & 0 & -1 \\ -1 & 2 & 0\end{array}\right], \mathrm{x}=\left(x_{1}, x_{2}, x_{3}\right), \rho=(1,2,1)$,
$\theta_{1}=u+v, \quad \theta_{2}=u^{2}+\omega u v+v^{2}, \quad \theta_{3}=u+v$. Then:
(1) $\mu_{1}^{\rho, \theta}(B, \mathbf{x})=\left(\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left(\frac{x_{2}+x_{3}}{x_{1}}, x_{2}, x_{3}\right)\right)$
(2) $\mu_{2}^{\rho, \theta}(B, \mathbf{x})=\left(\left[\begin{array}{ccc}0 & 2 & -1 \\ -1 & 0 & 1 \\ 1 & -2 & 0\end{array}\right],\left(x_{1}, \frac{x_{1}^{2}+\omega x_{1} x_{3}+x_{3}^{2}}{x_{2}}, x_{3}\right)\right)$
(3) $\mu_{3}^{\rho, \theta}(B, \mathbf{x})=\left(\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -2 & 0\end{array}\right],\left(x_{1}, x_{2}, \frac{x_{1}+x_{2}}{x_{3}}\right)\right)$

Generalized cluster algebras

Theorem (Chekhov-Shapiro)
Generalized cluster algebras have the Laurent phenomenon.

Surfaces with orbifold points

Surfaces with orbifold points

Definition

An unpunctured surface with orbifold points is a quadruple $(\Sigma, \mathbb{M}, \mathbb{O}, o)$ consisting of:
(1) a compact, connected, oriented, two-dimensional real manifold Σ with non-empty boundary;
(2) a finite subset $\mathbb{M} \subseteq \partial \Sigma$ with at least one point from each boundary component;
3) a finite subset $\mathbb{O} \subseteq \Sigma \backslash \partial \Sigma$;
(4) a function $o: \mathbb{O} \rightarrow \mathbb{Z}_{\geq 2}$.

Surfaces with orbifold points

Definition

An arc on $(\Sigma, \mathbb{M}, \mathbb{O}, o)$ is a curve that connects points of \mathbb{M}, is not homotopic in $\Sigma \backslash \mathbb{O}$ to a point or a boundary segment, and does not cross itself.

Definition

A triangulation of $(\Sigma, \mathbb{M}, \mathbb{O}, o)$ is a maximal collection (up to isotopy rel $\mathbb{M} \cup \mathbb{O}$) of arcs that do not cross each other.

Surfaces with orbifold points

Definition (Chekhov-Shapiro, Felikson-Shapiro-Tumarkin)

Each triangulation T of $(\Sigma, \mathbb{M}, \mathbb{O}, o)$ gives rise to a skew-symmetrizable matrix $B(T)$:

$$
\left[\begin{array}{ccc}
0 & -2 & 2 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{array}\right]
$$

$D=\left[\begin{array}{lll}1 & \\ 2 & 2\end{array}\right]$

$$
\left[\begin{array}{rrr}
0 & 2 & -2 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Observation

We can take r_{1}, \ldots, r_{n}, to be any choice of positive divisors of d_{1}, \ldots, d_{n}.

Surfaces with orbifold points

Taking $r_{1}=: d_{1}, \ldots, r_{n}:=d_{n}, \omega_{q}:=2 \cos (\pi / o(q))$, and
$\theta_{j}:= \begin{cases}u+v & j \text { not pending } \\ u^{2}+\omega_{q} u v+v^{2} & j \text { pending around } q \in \mathbb{O}\end{cases}$
we have:

Theorem (Chekhov-Shapiro)

The ring of Penner lambda lengths on the decorated Teichmüller space of any surface with marked points and orbifold points is a generalized cluster algebra (so-called boundary coefficients have to be chosen). Moreover, there is a bijection

$$
\{\operatorname{arcs} \text { on }(\Sigma, \mathbb{M}, \mathbb{O}, o)\} \quad \longleftrightarrow \quad\left\{\text { cluster variables of } \mathcal{A}^{\rho, \theta}\left(B(T), \lambda_{T}\right)\right\}
$$

which in turn induces a bijection
$\{$ triangulations of $(\Sigma, \mathbb{M}, \mathbb{O}, o)\} \longleftrightarrow$ clusters of $\left.\mathcal{A}^{\rho, \theta}\left(B(T), \lambda_{T}\right)\right\}$ making flips correspond to generalized cluster mutations.

Surfaces with orbifold points

Concretely, the generalized cluster mutation corresponding to a flip takes one of the following forms:

Surfaces with orbifold points

From now on, we assume that $(\Sigma, \mathbb{M}, \mathbb{O}, o)=\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$ is an unpunctured surface with orbifold points of order 3 . This implies $\omega_{q}=1$ for all $q \in \mathbb{O}$, hence the generalized cluster mutation corresponding to a flip takes one of the following forms:

$$
\begin{gathered}
\omega_{q}:=2 \cos (\pi / o(q)) \\
\cos (\pi / 3)=\frac{1}{2}
\end{gathered}
$$

Gentle algebras associated to triangulations

Gentle algebras associated to triangulations

Definition (LF-Mou)

For each triangulation T of $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$, let $(Q(T), S(T))$ be the following quiver with potential:
$Q_{0}(T):=\{$ arcs belonging to $T\}$
$Q_{1}(T):=$ clockwisely drawn within triangles of T

$$
S(T):=\sum_{\triangle} \alpha^{\triangle} \beta^{\triangle} \gamma^{\triangle}+\sum_{j \text { pending }} \varepsilon_{j}^{3}
$$

Remark

For $\mathbb{O}=\varnothing$, flip/DWZ-mutation behavior of $(Q(T), S(T))$ studied by LF (2008), representation theory of its Jacobian algebra $A(T)$ studied by Assem-Brüstle-Charbonneau-Plamondon (2009).

Gentle algebras associated to triangulations

The Jacobian algebra $A(T)$ of $(Q(T), S(T))$ is finite-dimensional gentle. Thus, indecomposable $A(T)$-modules \longleftrightarrow curves on $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$ not in T.

Theorem (Brüstle-Zhang, 2010)

Suppose $\mathbb{O}=\varnothing$. Let M, N, be string modules over $A(T)$ and γ_{M}, γ_{N}, their corresponding arcs on $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$. The following are equivalent:
(1) $\operatorname{Hom}_{A}(N, \tau(M))=0=\operatorname{Hom}_{A}(M, \tau(N))$;
(2) γ_{M} and γ_{N} do not cross in $\Sigma \backslash \partial \Sigma$.

Theorem (Geiss-LF-Schröer, 2020)

Suppose $\mathbb{O}=\varnothing$. Let M, N, be indecomposable $A(T)$-modules and γ_{M}, γ_{N}, their corresponding curves on $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$. The following are equivalent:
(1) $\operatorname{Hom}_{A}(N, \tau(M))=0=\operatorname{Hom}_{A}(M, \tau(N))$;
(2) γ_{M} and γ_{N} do not cross in $\Sigma \backslash \partial \Sigma$.

Gentle algebras associated to triangulations

Theorem (Geiss-LF-Schröer, 2020)

Suppose $\mathbb{O}=\varnothing$. For any triangulation T of $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$,
(1) there is a bijection between the set of laminations of $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$ and the set of τ-reduced irreducible components of $A(T)$;
2 the generic values of the Caldero-Chapoton map on the τ-reduced components of $A(T)$ coincide with Musiker-Schiffler-Williams' expansions in terms of perfect matchings of bipartite graphs.

Main result

Main result

Theorem (LF-Mou)

For each triangulation T of $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$ there are commutative diagrams of bijections $\quad\left\{\operatorname{arcs}\right.$ on $\left.\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)\right\}$

Palu-Pilaud-Plamondon | LF-Mou | |
| ---: | ---: |
| | \downarrow |

cluster vars. in $\mathcal{A}^{\rho, \theta}(B(T))$
$\{\tau$-rigid indec. pairs over $A(T)\}$

\{support τ-tilling pairs over $A(T)\}$

Mutations of representations

Key observation

Recall the three types of basic configurations of triangles making up T :

Observation

Whenever the third configuration appears somewhere in T, the bimodule we attach to $a: j \rightarrow k$ is free as a left module and as a right module.

Mutating a representation at a pending arc

Mutating a representation at a pending arc
Choose $\mathbb{C}\left[\varepsilon_{n}\right] / \varepsilon_{n}^{2}$-module homomorphisms $\quad r: \mathbb{C}\left[\varepsilon_{k}\right] / \varepsilon_{k}^{2} \otimes \mathbb{C} M_{l} \longrightarrow \operatorname{ker} \gamma$ $S: \frac{\operatorname{ker} \alpha}{\operatorname{Im}(\gamma)} \longrightarrow \operatorname{ker} \alpha \quad$ such that $r \cdot i=\mathbb{1}_{\operatorname{ker}}$ and $\pi \cdot s=\mathbb{1}_{\frac{\operatorname{ker}^{2}}{}}^{I_{m \gamma}}$
Def (LF-Mou) The pre-mutation $\tilde{\mu}_{n}(M)$

and use the natural isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{C}\left(\varepsilon_{0}\right) \varepsilon_{i}^{2}}\left(\mathbb{C}\left[\varepsilon_{k}\right] / \varepsilon_{k}^{2} \otimes \mathbb{C} A, B\right) \cong \\
& \operatorname{Hom}_{\mathbb{C}}(A, B) \cong \\
& \operatorname{Hom}_{\mathrm{Ct}_{\mathrm{E}}^{2} / \varepsilon_{c_{4}^{*}}}\left(A, \mathbb{C}\left[\varepsilon_{n}\right] \varepsilon_{k}^{2} \otimes \mathbb{C} B\right)
\end{aligned}
$$

Thy (LF-Mou) (i) 2-cycles deleted through reduction process
(ii) mutation $\mu_{k}(M)$ is module over $A\left(f_{k}(T)\right)$.

Workshop 'Geometry and Representations' Gentle algs from triangs of surfs with orb pts Daniel Labardini-Fragoso 25 / 30

Generic bases and bangle bases

Generic bases and bangle bases

Theorem (LF-Mou)

Let $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$ be an unpunctured surface with orbifold points of order 3 . If at least one boundary component of Σ has an odd number of marked points, then for any triangulation T, the set of generic values of the CalderoChapoton map on the τ-reduced irreducible components of $A(T)$ is linearly independent. This set is invariant under mutations of representations.

Conjecture

The aforementioned generic values of the Caldero-Chapoton map on the τ-reduced components coincide with Banaian-Kelley's expansions in terms of perfect matchings.
A proof would follow from a combination

(LF-Mou) + (ongoing work of Banaian-Valdivieso).

Some questions

Some questions

(1) Is Geiss-Leclerc-Schröer's generic set always linearly independent?
2) does GLS's generic set span the Caldero-Chapoton algebra of $A(T)$?
(3) is the Caldero-Chapoton algebra of $A(T)$ equal to the generalized cluster algebra of $\left(\Sigma, \mathbb{M}, \mathbb{O}, c_{3}\right)$?
(4) what is the relation to Paquette-Schiffler's approach?
5) is there a way to tackle orbifold points of higher order?

Thank you!

