ELEMENTARE ZAHLENTHEORIE 3. ÜBUNGSBLATT

DR. BAPTISTE ROGNERUD

Aufgabe 1. [2+2 Punkte]

(b) Sei $a \in \mathbb{N}_{>0}$. Sei b eine reelle Zahl mit Kettenbruch $[\overline{a}] = [a, a, a, \cdots]$. Zeigen Sie:

$$b = \frac{a + \sqrt{a^2 + 4}}{2}.$$

(c) Was ist die reelle Zahl mit Kettenbruch $[3, \overline{2, 6}]$?

Aufgabe 2. [3 Punkte]

Lösen Sie die diophantische Gleichung

$$8x + 6y + 3z = 10.$$

Aufgabe 3. [1+2+2 Punkte]

Bewisen Sie den folgenden Satz, indem Sie (a), (b), (c) siehe unten, folgen.

Satz: Sei $k \in \mathbb{N}_{>0}$. Die Elemente von $\{1, 2, \dots, 2k\}$ können in disjunkte Paare aufgeteilt werden, so dass die Summe der Elemente in jedem Paar prim ist.

- (a) Zeigen Sie den Satz für k = 1, 2, 3, 4.
- (b) Zeigen Sie, dass es eine Primzahl $p \in [2k+1, 4k-1]$ gibt.
- (c) Zeigen Sie den Satz mit Induktion.

(Hinweis:
$$\{1, 2, \dots, 2k\} = \{1, 2, \dots, m-1\} \cup \{m, m+1, \dots, 2k-1, 2k\}$$
 für $m = p-2k$).

Aufgabe 4. [4 Punkte] Sei $n \in \mathbb{N}$ so dass $n \ge 2$. Zeigen Sie dass $\pi(n^2) \ge n$.

Abgabe: Freitag, 04. Mai 2018, bis 10 Uhr in die Postfächer der Tutoren in V3-126.