ELEMENTARE ZAHLENTHEORIE 9. ÜBUNGSBLATT

DR. BAPTISTE ROGNERUD

Aufgabe 1. [2+2 Punkte]

- (a) Finden Sie eine Primitivwurzel für 5^{10} .
- (b) Finden Sie eine Primitivwurzel für 250.

Aufgabe 2. [3+1 Punkte]

- (a) Sei $m \in \mathbb{N}_{>1}$ so, dass es eine Primitivwurzel modulo m gibt. Zeigen Sie, dass es $\phi(\phi(m))$ Primitivwurzeln modulo m in $\{1, 2, \dots, m-1\}$ gibt.
- (b) Wie viele Primitivwurzeln modulo 30 und modulo 101 gibt es?

Aufgabe 3. [3+1 Punkte]

- (a) Sei p eine Primzahl, so dass $p \equiv 1 \pmod{4}$ gilt. Zeigen Sie, dass $a \in (\mathbb{Z}/p\mathbb{Z})^*$ genau dann eine Primitivwurzel modulo p ist, wenn -a eine Primitivwurzel modulo p ist. (Hinweis: Sie dürfen Präsenzaufgabe 9.3 verwenden.)
- (b) Sei p eine beliebige Primzahl. Geben Sie ein Gegenbeispiel für die Aussage in Teil (a) an.

Aufgabe 4. [4 Punkte]

(a) Sie $n \in \mathbb{N}_{>0}$. Zeigen Sie:

$$3^{2n} \equiv 1 + 2^{n+2} \pmod{2^{n+3}},$$

mit Induktion.

(b) Zeigen Sie, dass $\operatorname{ord}_{2^n}(3) = 2^{n-2}$ für $n \geqslant 3$.

Abgabe: Freitag, 15. Juni 2018, bis 10 Uhr in die Postfächer der Tutoren in V3-126.