Elementare Zahlentheorie

12ter Übungszettel Abgabe: Donnerstag, 02.07, 12:00 Uhr (ins Postfach Ihres Tutors)

Bitte bearbeiten Sie drei Aufgaben. Wenn Sie alle vier bearbeiten, zeigen Sie bitte an, welche in die Bepunktung eingehen sollen. Jede Aufgabe wiegt fünf Punkte.

Aufgabe 1. Sei P ein Knoten von T, die Form q nehme auf den drei angrenzenden Gebieten die Werte a, b und c an. Die nach P führenden Kanten haben dann die Werte h = c - (a + b), k = b - (a + c) und l = a - (b + c). Die Form hat bezüglich der Kante, die a und b trennt die Darstellung:

$$q(x,y) = ax^2 + hxy + by^2$$

und es ergibt sich für die Diskriminante die Formel:

$$\Delta = 4ab - h^2$$

Stelle Δ als Funktion von a, b und c dar; und stelle Δ auch als Funktion von h, k und l dar.

Aufgabe 2. Auf dem vorigen Übungszettel war eine Aufgabe, zu zeigen, daß die ganzzahlige quadratische Form

$$q(x,y) = ax^2 + hxy + by^2$$

den Wert 0 genau dann auf einem (primitiven) Gitterpunkt $(x, y) \neq (0, 0)$ annimmt, wenn $h^2 - 4ab$ eine Quadratzahl ist. Der im Hinweis vorgeschlagene Beweis verlief über Zerlegung der Form als Produkt zweier linearer Formen.

Gib nun einen "visuellen Beweis" mit Hilfe des Baumes T aus der Vorlesung.

Aufgabe 3. Entscheide, welche der folgenden Gleichungen ganzzahlige Lösungen in x und y haben:

$$x^{2} + y^{2} = 321$$
$$x^{2} - y^{2} = 321$$
$$2x^{2} - 5xy + 3y^{2} = 113$$
$$3x^{2} - 6xy + 2y^{2} = 35$$

Aufgabe 4. Zeige, daß alle folgenden Formen der Diskriminante 8 äquivalent sind:

$$3x^{2} + 2xy + y^{2}$$
$$6x^{2} + 16xy + 11y^{2}$$
$$2x^{2} + 4xy + 3y^{2}$$

Aufgabe 5 (Zusatzaufgabe zum Tüfteln). Finde eine ganzzahlige quadratische Form der Diskriminante 8, die nicht zu den obigen äquivalent ist, oder zeige, daß es eine solche Form nicht gibt.