Differentialgleichungen

Übungszettel 06

Abgabe: **Donnerstag**, **24.06.**, 10:00 Uhr

(ins Postfach Ihres Tutors)

Jede Aufgabe ist fünf Punkte wert.

Aufgabe 1. Sei $X: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ ein stetiges zeitabhänngiges Vektorfeld, für das gilt:

$$X_t(x) < 0$$
 falls $tx > 0$ und $X_t(x) > 0$ falls $tx < 0$

Zeige, daß die Kurve $\gamma: t \mapsto 0$ die einzige Integralkurve mit $\gamma(0) = 0$ ist.

Aufgabe 2. Berechne die Funktion:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto \int_{-\infty}^{\infty} \cos(tx) \exp(-x^2) dx$$

Stelle dazu eine Differentialgleichung für f auf und löse das Anfangswertproblem zu:

$$f(0) = \int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}$$

Aufgabe 3. Seien a, b > 0 Konstanten. Betrachte das zeitunabhängige Vektorfeld

$$X: \mathbb{R}^2 \longmapsto \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a - bx + x^2y - x \\ bx - x^2y \end{pmatrix}$$

Zeige, daß durch einen Punkt $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ im ersten Quadranten (d.h. $x_0 > 0$ und $y_0 > 0$) genau eine Integralkurve geht, die in positiver Zeitrichtung unendlich lang existiert und den ersten Quadranten nicht verläßt.

Hint: betrachte das Vektorfeld auf den Koordinatenchsen und studiere, welche Quadrantenwechsel entlang von Integralkurven vorkommen können.

Aufgabe 4. Sei $X: \mathbb{R} \times E \to E$ ein stetiges Vektorfeld und zusätzlich uniform Lipschitz-stetig im Raum. Zeige, daß maximale Integralkurven in X stets auf ganz \mathbb{R} definiert sind.

Hint: Wäre eine maximale Integralkurve nicht auf ganz R definiert, würde sie in endlicher Zeit ins Unendliche laufen (in positiver oder in negativer Zeitrichtung). Meditiere über das Lemma von Gronwald.